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The paper presents two methods to design cutouts that allow damage-free folding of the

stiffest possible composite self-deployable thin shell structures of complex shapes. The first

method uses level-set functions that define a general number of cutouts. The second method uses

a spline representation of the contour of a single cutout and optimizes its shape. Material failure

detection is implemented in the solution. Both methods are applied to the design of deployable

thin shells forming 90° joints, and multiple viable solutions are obtained. Experiments on

the best performing design, a 90-390 μm thick shell made of Astroquartz with a cyanate ester

matrix, with 5 cutouts on each side, are presented to illustrate and validate the proposed

approach.

Nomenclature

Fx,Fy = In-plane failure strengths, combination of failure coefficients

F1t = F2t = Tensile strength parameters

F1c = F2c = Compressive strength parameters

F3,F4,F6 = In-plane shear, bending, and twisting strength parameters

FI1 = In-plane failure index

FI2 = Bending failure index

FI3 = Coupled in-plane and bending failure index
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fi, fi j = Failure coefficients, combination of strength parameters

KB = Deployed bending stiffness of shell

Mx,My,Mxy = Bending and twisting moment resultants for a flat plate

Nx,Ny,Nxy = In-plane and shear stress resultants for a flat plate

RPcenter ,RPle f t,RPright = Reference points for boundary conditions

Ux,Uy,Uz = Displacements in Cartesian coordinate system

ΔM0 = Initial bending moment

Δθ0 = Initial folding angle

θx−RPcenter , θx−RPle f t
, θx−RPr ight

= Folding angles in Cartesian coordinate system

I. Introduction

U
utrathin composite shell structures, where a shell is defined as ultrathin if the wall thickness is smaller

than 400 μm, provide a versatile low-cost solution for many kinds of deployable structures. The introduction of

small cutouts enables damage-free elastic folding that, combined with reverse snap-through that provides self-locking

into the deployed configuration, can result in stiff, lightweight, and remarkably simple-looking structures. However,

only a relatively narrow range of structural configurations have been considered so far, mostly straight booms with

parallel dogbone cutouts [1, 2], and engineering intuition has played a significant role in the identification of suitable

configurations for the cutouts. The general aim of this paper is applying this folding technique to more general situations.

The paper considers the problem of folding a shell with a complex geometry by introducing cutouts, and deploys

different tools from the literature on structural optimization of thin shells to demonstrate and experimentally validate the

automatic design of cutouts. Both single and multiple cutouts are included in the design space that is investigated, and it

is found that the best performing solutions include both types.

Previous studies have optimized the length of cutouts in the edge stiffeners of deployable reflectors [3] as well as

the length, width, and end hole diameter of slots in composite tape-spring hinges [4]. There is a rich literature on

structural topology optimization, which includes widely used density-based methods, first formalized by Bendsøe and

Kikuchi [5], and level-set methods, introduced by Osher and Sethian [6]. A comprehensive review of these methods

was presented by Sigmund and Maute [7]. A study by Ye et al. [8] used a level-set method that allows the formation of

cutouts to optimize shell structures, but without including geometric or material nonlinearities. Level-set topology

optimization methods were also used by Maute et al. [9] to optimize 3D printed composites, and by Geiss et al. [10], for

shell structures undergoing large deformations. This existing literature is very relevant to the problem to hand, but it

should also be noted that the minimization of structural compliance by optimizing the voids (cutouts) and subject to

stress constraints in the folded configuration of a deployable structure poses several unique challenges. The approach
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chosen in the present paper is a level-set method, in order to allow consideration of a wide range of cutout designs

while also keeping the computational effort manageable. An implementation of a density-based method for the cutout

optimization of deployable booms can be found in [11].

A specific structure consisting of two cylinders forming a 90° corner joint, as shown in Fig. 1, is studied in this

paper. The diameter of each cylinder is 32 mm and the distance from the end of a cylinder to the inner intersection is

200 mm. The structure is made of plain-weave 525 Astroquartz® II fabric (quartz fiber) [12], pre-impregnated with

PMT-F6 cyanate ester resin [13], and the thickness ranges between 90 and 390 μm. The most highly deformed region,

at the intersection between the two cylinders and shown in red in Fig. 1, consists of a two-ply laminate [45pw]2, where

the 0° direction corresponds to the axis of each cylinder. The thinnest laminate was used in this region to minimize

bending related effects. Thicker laminates with up to six plies were used in the rest of the structure.

Symmetry plane

Fig. 1 Thin shell self-deployable joint with two-ply region shown in red.

The aim of the study is to transform this structure into a deployable joint that can be folded without damage. A

folding angle of 45° was chosen, to shorten the time required to carry out geometrically nonlinear finite element

simulations and hence to allow fast numerical simulations for the optimization studies. Nonconvergence of iterative

finite element solvers is an issue when implementing large displacement simulations of deployable thin shells. Previous

authors have addressed this issue by running explicit simulations with very small increments to obtain accurate results

[2, 14–16] and benchmark problems that compare the implicit and explicit solvers of the Sierra Solid Mechanics code

have been proposed [17, 18]. Generally, the drawback of choosing an explicit solver is longer simulation times, not a

viable option for optimization studies, and therefore an implicit solver was adopted for the present study. The chosen

folding angle allowed the study to capture the geometrically nonlinear effects associated with the folding of a corner

joint, but avoided the effects of self-contact that would develop for larger folding angles. These effects are also of

practical interest for the design of deployable shell structures and will be a topic of future research.
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The specific objective of the study is to identify designs for the cutouts in this structure that allow it to withstand

folding through 45° without any damage. The compliance of the resulting structures in the fully deployed configuration

is to be minimized.

It should be noted that the shell has a vertical plane of mirror symmetry, shown in Fig. 1, and all of the cutouts

considered in this study maintain this symmetry. Therefore, only the cutouts on one side of the shell will be explicitly

discussed and a second set on the other side is assumed.

Two analytical tools were used to carry out this work. First, a finite element software was used to compute the

stiffness of each candidate structural design in the deployed configuration and to carry out folding simulations for each

design, in order to determine the stress distribution in the folded configuration. Second, a material failure criterion for

the two-ply quartz laminate was implemented. These tools are presented in Section II. Section III presents designs

based either on the simple approach of placing cutouts in the regions of the shell with the highest values of the failure

indices in the folded configuration, or to use cutouts inspired by previous deployable boom designs, without any formal

optimization. Section IV introduces the problem of optimizing the number, location, and shape of cutouts in a shell to

allow folding without damage while maximizing the deployed stiffness. Section IV.A presents an optimization approach

that uses level-set functions. The best performing design obtained from this approach was implemented, built and tested.

Section IV.B presents the shape optimization of a single cutout. Section V summarizes the outcomes of the study and

compares the designs obtained. Section VI concludes the paper.

II. Analytical Methods
Finite element simulations were used to analyze the deformation of trial designs of the deployable joint. A failure

criterion for two-ply plain-weave laminates was implemented to numerically detect the onset of failure in the most

highly stressed region of the joint.

Each simulation computed the bending stiffness of the joint in the initial configuration and the values of the failure

indices at each step of the folding process.

A. Finite Element Simulations and Model Parameters

Geometrically nonlinear finite element simulations were carried out with the commercial software Abaqus 2017.

After testing different types of shell elements (S3, S4, and S4R), the S4R elements were chosen because these reduced

integration elements run faster and provide results in agreement with experimental results.

The composite layup was not defined explicitly. Instead, the laminate stiffness matrix was defined using the feature

"general section properties" in Abaqus, which allows to manually input the ABD stiffness matrix of a shell.

Following Soykasap [19] the ABD matrix of the laminates was calculated with the mosaic model and the correction

factor α (defined as the ratio between the values of D11 from the mosaic model and the measured values) was applied
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to all terms of the D matrix to account for the mosaic model’s over-prediction of the bending and twisting stiffnesses

for laminates with small numbers of plies. The value of α for each laminate was measured from 4-point bending

experiments [11] and is presented in Table 1. The effect of the crimp angle on the A matrix is relatively small and was

neglected [19]. As expected from [19], the values of α decrease and tend to 1 as the number of plies increases.

Laminate Average

D11expt

Samples Standard

Deviation

α

[45pw]2 3.1 3 0.26 2.34

[45pw/0pw/45pw] 10.0 5 0.34 2.19

[45pw]4 23.0 5 1.10 1.69

[45pw /45pw /0pw]s 69.8 5 1.30 1.30

Table 1 Bending stiffness D11 (Nmm) and reduction factor α for two- to six-ply laminates.

The A matrix for the laminate at the center of the deployable joint, [45pw]2, was

A[45pw ]2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3403.2 1872.0 0

1872.0 3403.2 0

0 0 2150.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N/mm) (1)

and the D matrix, after introducing the correction factor α, was

D[45pw ]2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.10 1.71 0

1.71 3.10 0

0 0 1.96

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Nmm) (2)

The B matrix was zero because the laminate is symmetric.

The boundary conditions applied to the finite element model are shown in Fig. 2. Three massless reference points,

RP1, RP2, and RP3, were defined. Two rectangular patches, shown in red, were coupled to the left and right reference

points such that the in-plane rotations of the patches, θx , match the rotations imposed to the reference points. The sum

of the rotations of the left and right reference points was set equal to the rotation of the center one, and was increased

from 0° to 45°. With this boundary condition the end reaction moments are set equal. Finally, two nodes at the bottom

of the shell, shown by red dots in Fig. 2, were constrained to remain in the y-z plane and the three translations of the

node at the top of the shell were all set to zero.

The simulations were carried out with the Abaqus implicit solver that uses Newton-Raphson iterations to enforce

equilibrium between the internal forces and the external loads. Convergence settings based on "half-increment residual
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RP2

RP1

RP3

XZ

Y

Ux = 0

Ux = 0

Ux, Uy, Uz = 0

 θx_RP1 + θx_RP3 = θx_RP2 = 45º

Fig. 2 Finite element model and boundary conditions.

tolerance" were used. This tolerance represents the equilibrium residual error (out-of-balance forces) halfway through a

time increment. If the half-increment residual is small, it indicates that the accuracy of the solution is high and that the

time step can be increased; conversely, if the half-increment residual is large, the time step used in the solution should

be reduced. The Abaqus default half-increment residual tolerance, which is set at 10−3 times the time average force and

moment values, was used.

B. Failure Criterion

Failure predictions during folding were made using the laminate failure criterion by Mallikarachchi and Pellegrino

[20]. This criterion, developed for two-ply plain-weave carbon fiber composites, is applicable to laminates with fibers of

any material and with an even number of plain-weave plies. Hence, it can be applied to the laminate at the center of the

deployable joint.

The criterion uses three non-dimensional failure indices to capture in-plane, bending, and coupled in-plane and

bending failures, defined as follows

FI1 = f1(Nx + Ny) + f11(N2
x + N2

y ) + f12NxNy + f33N2
xy < 1 (3)

FI2 = f44 × max(M2
x,M

2
y ) + f66M2

xy < 1 (4)
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FI3 = max

(
Nx

Fx
,

Ny

Fy

)
+

max(|Mx |, |My |)

F4
< 1 (5)

where the failure coefficients, fi and fi j , are given by

f1 = f2 =
1

F1t
−

1

F1c
(6a)

f11 = f22 =
1

F1tF1c
(6b)

f12 = −
f11

2
(6c)

f33 =
1

F2
3

(6d)

f44 = f55 =
1

F2
4

(6e)

f66 =
1

F2
6

(6f)

and

Fx =
−( f1 + f12Ny) ±

√
( f1 + f12Ny)2 − 4 f11( f1Ny + f11N2

y + f33N2
xy − 1)

2 f11
(7a)

Fy =
−( f1 + f12Nx) ±

√
( f1 + f12Nx)2 − 4 f11( f1Nx + f11N2

x + f33N2
xy − 1)

2 f11
(7b)

The terms Fi represent directly measured or calculated strengths in the tow directions, and the subscripts t and c

denote tension and compression, respectively. In a plain-weave laminate F1t = F2t and F1c = F2c .

The tensile strength was measured as the smallest failure stress resultant obtained from tensile tests on plain-weave

[0pw]2 laminates on 15 mm wide test samples. The compressive strength was calculated using elasto-plastic fiber

microbuckling theory [21]

F1c =
G

1 +
φ0

γy

t (8)

where φ0 is the fiber misalignment angle, measured from micrographs of the laminate, γy is the in-plane yield shear

strain, and t is the tow thickness. γy was derived from direct measurements of the shear strength τy , with

γy =
τy

G
(9)

and G is the shear modulus of a composite tow

G =
Gm(G12 f + Gm + Vf (G12 f − Gm))

G12 f + Gm − Vf (G12 f − Gm)
(10)
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The reason why the compressive strength was not obtained from direct measurements is that it has been shown [22] that

compression tests on thin plain-weave composites have a low success rate due to test sample delamination and other

spurious failure modes occurring instead of fiber microbuckling. It was found [22] that the prediction method described

above estimates the microbuckling failure load with good accuracy. The in-plane shear strength, F3, was measured from

tension tests on [45pw]2 laminates. The bending strength, F4, and the twisting strength, F6, were obtained from the

smallest failure moments measured from platen bending tests [20, 23, 24] respectively on [0pw]2 and [45pw]2 laminates.

Table 2 shows the resulting strength parameters for two-ply laminates.

Strength Parameter Average Value Samples

Tested

Standard

Deviation

F1t = F2t [N/m] 76.16 5 2.83

F1c = F2c [N/mm] 34.50 - -

F3 [N/mm] 14.55 5 0.12

F4 [N] 3.26 4 0.28

F6 [N] 1.10 4 0.06

Table 2 Material strength parameters for two-ply laminates of Astroquartz ® fiber and cyanate ester resin.

Initially, the three failure indices in Eqs. 3-5 were calculated at each step of the folding simulations and it was found

that FI1 was the largest of the three and the only failure index with values above 1. Because of the extreme thinness of

the shells, FI2 and FI3 tend to be smaller. Therefore, it was decided to focus on FI1 in the optimization study.

III. Preliminary Designs
Folding simulations of the shell without any cutouts were used to identify an initial location for a set of two identical

cutouts, symmetrically placed on each side of the joint. Figure 3 shows the mid-plane stress resultants in the longitudinal

direction of the two cylinders. The figure shows two peaks, one tensile and one compressive, in a narrow region at the

center of the shell.

Based on this initial result, it was conjectured that the cutout topology problem could be solved simply by “drilling

out” the most highly stressed part of the shell. Hence, a series of joints with circular cutouts over the stress peak region

in Fig. 3 were analyzed. These attempts were all unsuccessful, even when the cutout with an initial diameter of 14 mm

was enlarged.

An example is shown in Fig. 4, which shows a plot of FI1 in the two-ply region of the joint. White areas of the plot

are regions corresponding to cutouts or parts of the shell that were excluded from the failure analysis. Black areas in

Fig. 4 are regions where FI1 < 1 and hence, according to the failure criterion, will not fail. Finally, all the regions

plotted with a color other than white or black are predicted to fail. This result is typical of cutouts introduced without a

formal analysis: instead of disappearing, the high stress concentrations move to the edges of the new cutouts.
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Fig. 3 Mid-plane stress resultant in 2-direction for shell without cutouts folded through 45°.

(a) Overall view. (b) Close-up.

Fig. 4 FI1 for shell folded through 45°mapped on deployed configuration.

To remove wider areas of the shell, elliptical cutouts were considered. Figure 5 shows a cutout obtained by

intersecting two ellipses and symmetrically varying the major and minor axes of each ellipse. Again, the first failure

index was greater than one in several parts of the shell, see the regions circled in red in the figure.

Fig. 5 Contour plot of FI1 (mapped on deployed configuration) for joint with sharp corners and cutout
consisting of two intersecting ellipses, folded through 45°.

Further attempts to find a simple, viable cutout shape were made. The cutout in Fig. 6 was inspired by previous

designs for cylindrical booms with slotted hinges [1, 4]. This cutout shape greatly decreases the extent of the damage
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but does not fully prevent it. Even wider cutouts were also considered and finally a design that fully succeeds in avoiding

any damage is shown in Fig. 7 in which the two-ply region of the joint has been largely removed. This type of cutout

changes the folding behavior of the joint, as it allows two localized elastic hinges to form near the ends of the cylinders,

and the 90° corner tape spring at the top opens out when the joint is folded. A problem with this approach is that, while

being successful in resolving the issue of material damage, it also greatly reduces the deployed stiffness of the shell.

The main conclusion, after the preliminary design attempts presented in this section, was that the simple approach of

designing the cutouts by removing the most highly stressed material does not work well. A more rigorous formulation

of the problem is needed, together with a solution method that is compatible with the adopted formulation.

Fig. 6 Contour plot of FI1 on shell folded 45° with cutout inspired by booms with slotted hinges. FI1 has been
mapped on the deployed shell.

(a) Contour plot of FI1 (plotted on deployed configuration). (b) contour plot of FI1 on shell folded through 45°.

Fig. 7 Joint with smooth corners and partially removed two-ply region.
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IV. Optimization Methods
The problem of finding the shape, number, and position of cutouts to optimize the stiffness and satisfy the failure

constraints of a deployable shell forming a 90° joint can be defined as follows

min
x1...xn

: −KB

subject to : αi < xi < βi, i = 1,2,3, ...,n

: max (FI1) < 1

(11)

where the objective function KB is the bending stiffness of the joint in the deployed configuration and n is the number

of design variables. The two sets of inequality constraints specify that the cutouts should remain within prescribed

geometric boundaries, α and β, defined by the geometry of the shell and there should be no damage of the shell during

folding, thus constraining the maximum value of the first failure index to be less than one (the second and third failure

indices were not included in the optimization, as noted in Section II.B).

Due to the interaction between the shape and position of the cutouts as well as the interaction with the constraints,

the optimization problem defined in Eq. 11 is likely to be non-convex. The Appendix provides further details. Hence, a

robust solution method has to examine changes in the objective associated with small changes in the design parameters

and also the possibility of achieving greater changes in the objective by switching from one cutout to two, etc. Taking a

practical viewpoint, both local and global changes of cutout designs need to be considered for a thorough study of the

design space.

Several topology optimization methodologies were investigated [11] including a density-based approach (using

both SIMP and RAMP interpolation schemes) that was implemented on simpler shell structures, where convexity of

the optimization problem could be assumed. This approach has the advantage that no assumption is made regarding

the initial position or shape of the cutouts. It is applicable to any structural problem, but the large number of design

variables, equal to the number of elements in the finite element discretization of the structure, is a significant limitation if

the optimization problem is non-convex. This is the most likely scenario in the present case and for this reason a level-set

approach was chosen. This approach, presented in the next sub-section, can be used to explore general configurations of

the cutouts relatively quickly. A second approach, that can be used to optimize the shape of a particular cutout [25], is

then presented in the following sub-section.

A. Topology Optimization using Level-Set Functions

Level-set methods change the topology of a structure by moving the geometric boundaries [26–29]. A scalar level-set

function is based on the following definition: if a point within the design domain corresponds to negative values of the

function, the point is assigned to the void domain; if it corresponds to positive values of the function, the point belongs
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to the solid domain; finally, null values of the function describe the boundaries of the structure.

In two dimensions, a closed curve Γ is defined by the auxiliary function φ, called the level-set function. Γ is defined

by φ = 0 and the level-set method manipulates Γ implicitly (i.e. without an explicit parametrization of the contour of

the curve), through the function φ.

This method allows for a broad exploration of the shape, number and position of the cutouts. The algorithm assigns

values to the design variables and then generates new shapes for the cutouts based on these values. Once these shapes

are created, a Python script generates an input file for the finite element software, Abaqus 2017, which runs a finite

element analysis and returns the values of the first failure index and the overall bending stiffness of the structure.

1. Method Description

A basis function, z = f (xp, yp), is defined on a plane tangent to the shell. The basis function is chosen such that it

vanishes at the boundaries of its domain and hence the geometric constraints of the optimization problem in Eq. 11 are

automatically satisfied. A cutting plane, parallel to the xpyp plane, is then introduced and the intersection of the plane

and the basis function defines a set of contour shapes that determine a set of cutouts.

The method consists of four steps, shown in Fig. 8. The first step, Fig. 8a-8b, finds a mapping between the domain

on which the basis function is described (in this case a square), and the domain on which the contours of the cutouts are

generated (in this case an L-shaped, smooth domain that represents a portion of the projection of the shell). The second

step, Fig. 8c, chooses a basis function and applies the mapping to it. Two basis functions were investigated, a series of

cosines squared

z =
Nh∑
h=1

Nl∑
l=1

an

[
cos (2h + 1)

πxp
2

× cos (2l + 1)
πyp

2

]2

,n = 1,2,3, ...,NhNl (12)

and a series of cosines and sines squared

z =
Nh∑
h=1

Nl∑
l=1

an

[(
cos (2h + 1)

πxp
2
+ sin (hπxp)

)
(

cos (2l + 1)
πyp

2
+ sin (lπyp)

)]2

, n = 1,2,3, ...,NhNl

(13)

These functions were chosen because they vanish at the boundaries of the chosen domain, which is a square defined

by xp = ±1 and yp = ±1, and because the number of peaks of these functions can be easily changed by increasing the

number of terms in the series.

The third step, Fig. 8d, consists in intersecting the chosen basis function with a plane parallel to the xpyp plane. For

a chosen basis function, the only design variables used to define the problem and carry out the optimization analysis are

the z-coordinate of the cutting plane, z = c, and the numbers of terms in the series, Nh and Nl , which define the number

of peaks of the function. Together, the parameters c,Nh,Nl define the number of cutouts. Note that the cutting plane
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Fig. 8 Steps of topology optimization method using level-set functions.
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Fig. 9 Cutout shapes obtained by intersecting the basis function in Eq. 12 with Nh = Nl = 1, with planes z = 1
and z = 2.6.

need not be parallel to the xpyp plane, as two slopes could be included as additional design variables, to generate a

wider range of shapes.

For example, the basis function in Eq. 12 with Nh = Nl = 1 with the planes, z = c1 and z = c2, gives the cutouts

shown in Fig. 9.

2. Results

Because the number of design variables is small, no particular optimization algorithm was used. Instead, the entire

design space was evaluated. Three cutout designs generated using level-set optimization are shown in Fig. 10. The first

design, Fig. 10a, was obtained from Eq. 12 for the choice Nh = 0 and Nl = 2, and hence the shapes of the cutouts are

symmetric. This design provides the highest bending stiffness while also satisfying the constraints on the maximum

values of the failure index. Figure 10a also shows a plot of KB vs. max(FI1) for different values of c; among the designs

with max(FI1) < 1 the stiffest corresponds to the point (0.85,2078). Note that the boomerang-shaped cutouts in this

design leave strips of material connecting the right and left parts of the shell, which increases the deployed bending

stiffness of the joint.
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The second design, Fig. 10b, was also obtained using Eq. 12, for the choice Nh = 1 and Nl = 2. The continuous

cutout at the center of the joint removes areas of localized stresses while thin slits on the sides help to decrease the

highest stresses when the joint is folded.

Finally, the third design, Fig. 10c , was obtained using Eq. 13, which results in a non-symmetric cutout. The shape

in Fig. 10c was obtained by choosing Nh = 2 and Nl = 0. Despite being the best result obtained using a non-symmetric

basis function, this larger cutout leads to a joint with a much lower bending stiffness when compared to the symmetric

cutout designs.

3. Experimental Verification

To experimentally verify the best result from the level-set optimization method, a self-deployable joint was built

using a silicon molding technique [30]. The cutouts in Fig. 10a were laser-cut after demolding the joint.

A quasi-static folding experiment was conducted using the setup shown in Fig. 11a. Two 35 mm × 15 mm curved

clamps conforming to the curvature of the cylindrical shells constrained small regions of the shell, thus leaving the

end cross-sections free to ovalize. The joint was mounted on the test setup through brackets attached to gearboxes,

connected to strain gauges and to a data acquisition system, in an initially stress free configuration. One of the gearboxes

was mounted on ball bearings, to allow it to slide towards the other gearbox. The experiment consisted in manually

rotating both ends of the joint by equal amounts, through the gearboxes. First, the sliding bracket was rotated by a small

angle (1-3°), and the corresponding reaction moment was recorded. Second, the fixed bracket was rotated until the

reaction moment equaled the moment recorded on the sliding bracket. This process was repeated until the joint had

been folded through 45°. At the end of the test, the moment-rotation profile shown in Fig. 11b was obtained by plotting

the folding angle and the corresponding moment at each step.

The moment-rotation profile resulting from the numerical simulations described in Section II.A, in which the

boundary conditions matched the experiment, has been superposed to the experimental results. This comparison shows

a very good agreement for the first 27° of folding, but there is a deviation of up to 12% for the last 18°. The reason for

this deviation becomes clear when one looks closely at the deformed shape of the shell near the cutouts for a fold angle

greater than 27°, as shown in Fig. 12. Comparing the actual deformed shapes of the five strips to the finite element

simulation it can be noticed that four of the five shapes are similar, but the actual shape of the central strip —identified

by red arrows— is curved inwards whereas in the simulation it is curved outwards. The curvature reversal of this strip is

associated with a snap-through instability along the main equilibrium path of the shell and is triggered by an unmodeled

shape imperfection of the shell. This reversal of the strip curvature corresponds to a softening of the moment-rotation

response of the shell. Examples of this type of behavior have been studied by Royer and Pellegrino [31].

Two results stand out from this experiment. First, the bending stiffness of the deployed joint (defined by the tangent
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(a) Eq. 12 and Nh = 0, Nl = 2. c = [0.8,1.65] with step size 0.05.
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(b) Eq. 12 and Nh = 1, Nl = 2. c = [1.5,2.45] with step size 0.05.
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(c) Eq. 13 and Nh = 2, Nl = 0. c = [0.01,3.01] with step size 0.1.

Fig. 10 Results from level-set method.

at the origin of the moment-rotation curve:

KB =
ΔM0

Δθ0
(14)
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(a) Test setup.

0 10 20 30 40 50

Rotation angle (deg)

0

50

100

150

200

250

300

350

B
e

n
d

in
g

 m
o

m
e

n
t 

(N
m

m
)

Experiments

Simulation

KB

1

(b) Comparison of test and simulation results.

Fig. 11 Folding test.

where ΔM0 is the increment in bending moment measured on the tangent to the moment-rotation curve at the initial

point (M = 0, θ = 0), and Δθ0 is the corresponding increment in folding angle, measured in radians), is practically

identical between simulation and test. Second, no damage was observed after folding the joint 3 times and the measured

bending stiffness in the deployed configuration did not change after the shell had been folded.

(a) (b)

Fig. 12 Deformed shape of the shell near the cutout (a) experiment, (b) simulation.

B. Shape Optimization of Single Cutout

A contour was defined on a plane tangent to the side of the shell, using a set of 8 control points and a spline fit

between them. The tangent plane provides a convenient Cartesian coordinate system to describe the control points. The

contour was then projected onto the shell. The coordinates of each control point, xi, yi , in the tangent plane were chosen

as design variables for the minimization problem. A visualization of the design space is provided in Fig. 13.

The geometric constraints in Eq. 11 were initially defined such that the control points remain within the red contour,

Fig. 13, corresponding to the large cutout in Fig. 7. Constraining the control points to fit within this contour ensures that
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Fig. 13 Design space for shape optimization of single cutout.

the cutout remains within the physical boundaries of the shell.

Since the control points can be placed anywhere within the red contour, and the position of each point is independent

of the other points, two issues emerge regarding these geometric constraints. The first issue is that the red contour is

non-convex and hence the spline connecting the control points can escape the contour. To prevent this, the control

points were originally defined on a square domain, Fig. 14a, with Cartesian coordinates xp, yp

xp ∈ [−1,1], yp ∈ [−1,1] (15)

The points were then mapped to an L-shaped domain, Fig. 14b, with Cartesian coordinates x, y via the following

mapping, which uses polynomial functions whose coefficients were found by substituting the points that lie on the

boundary of the square and L-shaped domains

for xp < −1/3

x = −12 + 8yp (16)

y = −15 − 21xp + 12yp + 12xpyp (17)
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for xp > 1/3

x = −15 + 21xp + 12yp − 12xpyp (18)

y = −12 + 8yp (19)

for −1.3 ≤ xp ≤ 1/3

x = −10.83 + 6xp + 8yp + 7.46x2
p (20)

y = −10.83 − 6xp + 8yp + 7.46x2
p (21)

The second issue, how to avoid self-intersection of the spline, was addressed by constraining each control point to

remain within a sub-domain of the square domain, displayed with dotted lines in Fig. 14a.
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(a) Definition of control points and spline on
square domain.
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(b) Mapping to L-shaped domain.

Fig. 14 Geometrical constraints for shape optimization problem.

1. Mesh Convergence Studies

The sensitivity to the mesh size of the objective function in Eq. 11 and of the associated constraints was studied

across a range of cutout shapes. The circular cutout in Fig. 15a was used as the initial cutout configuration and its

contour was described by 8 control points connected by a spline. One coordinate, x, of a single control point was

increased from 4.95 mm, Fig. 15a, to 12.7 mm, Fig. 15b, while the other control points were held fixed. For each value

of x, a geometrically nonlinear finite element simulation of folding was carried out.

The values of the deployed joint stiffness and of the maximum failure index FI1 that were obtained from this analysis
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are plotted in Figs. 15c and 15d, respectively, for four mesh sizes. In these figures, the indicated mesh size is the average

size of the S4R elements near the cutout.

(a) Initial guess x = 4.95 mm (b) Final shape x = 12.7 mm

6 8 10 12

x [mm]

1850

1900

1950

2000

2050

S
ti

ff
n

e
s
s
 K

B
 [

N
m

m
]

mesh 0.5 [mm]

mesh 0.25 [mm]

mesh 0.125 [mm]

mesh 0.0625 [mm]

(c)

4 6 8 10 12

x [mm]

1

2

3

4

5

m
a

x
(F

I 1
)

mesh 0.5 [mm]

mesh 0.25 [mm]

mesh 0.125 [mm]

mesh 0.0625 [mm]

(d)

(e)

Fig. 15 Mesh convergence study , (c) objective function plotted against x for different mesh sizes, (d) maximum
value of first failure index plotted against x for different mesh sizes, and (e) example of S4R shell elements mesh
distribution.

One of the four meshes, with average element size of 0.125 mm near the cutout, is shown in Fig. 15e. The size of

the elements far away from the cutout is determined by the largest distance allowed between consecutive nodes such that

a smooth transition region between larger and smaller elements can be generated. The aspect ratio of the elements was

set to be no larger than 3.
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Figure 15c shows that the bending stiffness KB is insensitive to the mesh size, as the stiffnesses computed with the

four different mesh sizes are practically identical across the full range of x. Figure 15d shows significant variations

in the maximum value of FI1 when the mesh size near the cutout is decreased from 0.5 mm to 0.125 mm, however

there is practically no difference when the mesh is further refined to 0.0625 mm (the yellow and purple curves in the

figure differ by < 1% for all values of x). It is therefore concluded that accurate estimates of both KB and max(FI1) are

obtained for a mesh size of 0.125 mm.

2. Cutout Optimization

After completing these initial studies, a search for a global minimum was carried out with a global search method.

The global optimization was performed with the Basin-Hopping algorithm [32], a stochastic, two-phase method that

combines a global stepping algorithm with local minimization at each step. The algorithm iterates first by performing

random perturbations of the design variables, second by performing local optimization, and third by accepting or

rejecting new design variables based on an acceptance test. The local minimization was performed with Constrained

Optimization BY Linear Approximation (COBYLA) [33], an optimization algorithm for constrained problems that

does not utilize gradient information. The acceptance test used was the Metropolis criterion of standard Monte Carlo

algorithms [34], although there are many other possibilities.

During an iteration, a linear approximation of the objective function is solved to obtain a candidate for the optimal

solution. The candidate solution is evaluated using the original objective and constraint functions, yielding a new data

point in the optimization space. This information is used to improve the linear approximation for the next iteration.

When the solution cannot be improved, the step size is reduced and the search is refined. When the step size becomes

sufficiently small, the algorithm stops.

The Basin-Hopping and COBYLA algorithms are available in publicly available libraries for Python scripts [35] and

were incorporated within the parametric optimization method. A Python script was used to generate an input file for

Abaqus 2017, with the cutout shape defined by specific design variables. The Abaqus software runs a finite element

analysis of the prescribed joint design and returns the values of FI1 and KB. The script evaluates the objective function

and calls the Basin-Hopping and COBYLA algorithms to update the design variables. Each set of design variables

defines a new cutout shape, which is generated and passed to Abaqus for another analysis. The optimization loops

continue to run until the maximum number of iterations allowed is reached. The optimization iteration runs until the

convergence criterion is satisfied

|K i
B − K i−1

B | ≤ 10−6 (22)

where i is the current iteration counter.
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3. Results

The optimized shape of the cutout and the bending stiffness KB at each iteration of the local optimization iteration

are shown in Fig. 16. The contour plot of FI1 in Fig. 16a shows that the optimized cutout fully satisfies the failure

constraint. It is interesting to note that the optimized cutout shape in Fig. 16 is non-symmetric. Additional shape

optimization results for a single cutout have been presented in [36].

(a) FI1 mapped on deployed shell.

0 20 40 60 80 100 120

Iteration

1400

1500

1600

1700

1800

1900

2000

2100

S
ti

ff
n

e
s
s
 K

B
 [

N
m

m
]

(b) Evolution of objective function.

Fig. 16 Shape optimization of a single cutout.

V. Summary and Comparison of Results
A general formulation for the design of cutouts in deployable thin shells has been developed and it has been applied

to a detailed study of a deployable corner joint. Three different approaches have been presented. The first approach was

to carry out a finite element simulation of the folding of a shell without any cutouts, and then remove the regions of

the shell that had been found to be most highly stressed in the folded configuration. This approach was based on the

conjecture that “drilling out” this material would remove the stress peaks. However it was found that the insertion of the

cutout changed the behavior of the shell to such an extent that high stresses appeared elsewhere and it was concluded

that this approach does not work. The second approach was to formulate the topology optimization of the cutouts using

level-set functions, which allowed a systematic evaluation of a wide range of designs by varying only a small number of

geometric parameters. The third approach was to insert a single cutout and optimize its shape by searching for the

global minimum of the design space defined by a set of control points. Both the second and third approach have ben

successful and, interestingly, have provided different solutions with almost identical performance.

The deployed bending stiffness of the shells and the maximum value of the first failure index for all the designs

obtained in the paper are summarized in Table 3 and are also visually depicted in Fig. 17. The green shaded region

of this plot corresponds to designs with a safe value of the failure index. A most desirable design would lie near the
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upper-left corner of the plot, representing designs with a bending stiffness of around 5 Nm, i.e. as high as the shell

without any cutouts but without any damage from folding. This performance is not achievable. The figure shows that,

five of the nine proposed designs lie in the safe region of the plot and the highest achievable stiffness is around 2 Nm.

Among these five designs, three are symmetric and two are not.

Name max(FI1) KB [Nm]

P
re

li
m

in
ar

y
A1 7.06 5.33

A2 4.47 2.02

A3 8.64 1.79

A4 10.35 1.53

A5 0.99 1.05

O
p
ti
m

iz
ed

B1 0.95 2.06

B2 0.85 2.08

B3 0.98 1.90

B4 0.53 1.44

Table 3 Summary of KB vs. max FI1 for shell designs studied in the paper.

Fig. 17 KB vs. max FI1 for shell designs studied in the paper.

A shell without any cutouts, A1, has been included in the set of designs as a baseline, and it is surprising that

two joint designs with cutouts, A3 and A4, reach even higher values of the failure index than the baseline. Placing a

small circular cutout at the center of the A1 design produced design A2 which has less than half the bending stiffness

and a lower value of the failure index, but still much larger than one. These results demonstrate the complex and

counterintuitive variation of the maximum stress in a shell when cutouts are inserted.

Two more designs with a single cutout, A3 and A4, have a bending stiffness lower than 2.0 Nm and a maximum
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first failure index higher than 8. These particular designs have sharp corners and it is likely that a lower value of the

maximum failure index would be obtained by rounding the transition between the shell. Design A5, with a smooth

transition between the two cylinders and a very large cutout that fully removes the two-play laminate region, leaves in

place only two curved tape springs connecting the two parts of the joint. It satisfies the failure constraint but suffers a

substantial penalty in terms of the bending stiffness. Overall, it is clear that the Ai designs, generated without a formal

optimization, were either unsuccessful or performed rather poorly.

The Bi designs, obtained from topology or shape optimization, were superior to the Ai designs. Design B1 uses a

single cutout with non-symmetric shape, and concurrently satisfies the failure constraint and maximizes the overall

bending stiffness of the deployed shell. It is the second-best performer overall. Three designs obtained from topology

optimization, B2, B3 and B4, are shown in Fig. 17. Amongst these, design B2 provides the highest bending stiffness

while keeping the maximum failure index below 1. A physical model of this design was built and tested (section IV.A.3)

and showed no signs of damage after being folded.

All of the studies presented in this paper were carried out with the Abaqus commercial finite element software. Publicly

available optimization software, combined with Python scripts that run Abaqus, were used to implement the optimization

algorithms and to evaluate the failure indices. Sample codes are available at this link https://github.com/sergio-

pellegrino/Serena-files .

VI. Conclusion
It has been shown that thin shells with cutouts have a significant potential for deployable structures applications, and

that topology/shape optimization is an essential tool to design structures that achieve the best possible performance. An

unexpected result of the study is that the best two deployable joint designs (joint B1 with a single cutout and joint B2

with five cutouts) are different in geometry but practically equivalent in terms of the chosen performance metrics. This

results suggests that the ultimate performance for the chosen material and global shell geometry may have been reached.

An interesting observation is that one of these designs is symmetric and the other design is not, which leads to

the question of what is the role of symmetry in the design of cutouts. Considering the folded shapes that have been

previously seen in booms with cutouts [2, 4], it is not surprising that a non-symmetric cutout has been obtained from the

shape optimization. However, finding a symmetric design with equivalent performance is indeed surprising. It would be

worth studying the design space near these two cutout designs, both with and without symmetry constraints, to better

understand the role of symmetry-breaking in shell folding.

Regarding the number of cutouts, shape optimization for two or three cutouts was also investigated during the

course of the present study but the results were inconclusive and have not been included in the paper. Separate cutouts

have a tendency to merge into larger ones, and hence an algorithm that avoids merging of separate cutouts would need

to be developed. Also, the computational burden of fully investigating the shape optimization of multiple cutouts is
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significant. It had been conjectured that topology optimization and shape optimization would converge to similar cutout

designs, but this conjecture could not be verified. This is an interesting topic for further research.

A further topic of future research is the extension of the range of folding angles to include the regime in which

self-contact develops between different parts of the shell. It is believed that the cutout designs obtained in the present

study would not change much, but it is likely that the second and third failure index would begin to play a greater role

when self-contact forces the shell to reach higher curvature changes.

Additional topics that could be addressed in future work include further experimental verification to quantify the

effects of randomly distributed manufacturing imperfections and the consideration of additional load conditions, instead

of bending only, when optimizing the stiffness of the joints. For example, twisting or combined bending and twisting

deformation modes could be considered to obtain different cutouts.

Finally, an important topic that has not been addressed in the present study is a detailed analysis of localized damage

during folding of shells with cutouts. Some results of the present study show cutouts positioned very closely and forming

thin strips of material which are to a certain extent softer and weaker than the rest of the shell, due to size effects. This

topic has been addressed in a separate paper [37] and it has been shown that the results presented here are still valid.

Appendix: Convexity of Objective Function
The convexity of the function in Eq. 11 was investigated by computing KB for different types of variations of the

cutout shape. An example in which monotonically varying level-set functions were considered is shown in Fig. 18.

Fig. 18a shows two cutout shapes defined by Eq. 13 with Nh = 1,Nl = 0, intersected with cutting planes defined by

z = 0.1 and z = 0.8. Fig. 18b shows a plot of the stiffness KB for equally-spaced cutting planes in the range 0.1-1.0.

This figure shows the existence of a local minimum for the particular type of cutout variation that has been considered.

While it cannot be excluded that this minimum is in fact a saddle point, as it would require an investigation of the

variation of KB for fully general variations of the cutout to reach a definite conclusion, this result indicates that the

existence of local minima for KB is very likely. For this reason it is believed that the optimization problem is non-convex.
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