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An adaptive meshing procedure is developed for the analysis of thin shell structures that
experience localized elastic deformations associatedwith the formation of folds. The refinement
criterion for remeshing takes into consideration the localization of deformation in the folds,
while avoiding excessive refinement outside this region. The local bending strains in two
principal directions are used to construct the refinement criterion. A geometrical parameter
related to a boundary layer effect is shown to be effective as a limit length for refinement.
Isogeometric shell finite elements are used for the simulations. Different tape spring geometries
are simulated to illustrate the generality and efficiency of the proposed adaptive procedure.

Nomenclature

� = Young’s modulus
ℎ8 = Element length along axis 8
ℎCℎ = Element length limit
! = Tape spring length
Mmax = Peak moment
M∗ = Steady-state moment
' = Radius of curvature
A8 = Refinement indicator
A0 = Refinement threshold
C = Thickness
U = Arc angle
^8 = Bending strain along axis 8
a = Poisson’s ratio

I. Introduction
Ultralight deployable structures have been proposed for various space applications, such as solar power [1] and RF

antennas [2]. Complex space structures that use long and narrow thin-shell structural elements are envisaged. The
longerons can be coiled and deployed as necessary, and during packaging they experience localized deformations (folds)
[3]. These folds can form suddenly and are fundamental to understanding and simulating the deployment process.

The finite element method [4] has been developed as a means of simulating complex structures. It applies the
differential equations of equilibrium in weak form by discretizing the structure into a mesh of finite elements. Although
the method can describe the behavior of structures accurately, it can be computationally intensive as the size of the
discretisation depends on the size of the structure and the characteristics of the deformation. The use of non-uniform
meshes can improve the efficiency of the method [5]. The mesh can be modified as the solution progresses, in order to
obtain accurate results with minimal computational cost, which is denoted as adaptive meshing. The refinement can
be guided by defining an error estimator [6]. Although bounds on the errors and robust estimators are available for
linear problems, in nonlinear problems the accuracy of error estimators can be problem-dependent and lacks robustness.
Another approach for adaptive meshing is to define refinement indicators for each element. Elements are selected for
refinement according to whether the refinement indicator exceeds a certain threshold value. The values of the refinement
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indicators are used to mark specific elements for refinement. Different refinement indicators have been proposed in the
literature, based on the strain energy [7], the gradient of the strain energy [8], and a measure of the curvature vector [9].

Adaptive procedures have been mostly developed for standard finite elements. These elements use shape functions
which exactly interpolate values at nodes. Although mathematically simple, more complex shape functions could allow
various advantages to be realised. Isogeometric finite elements [10] use the same shape functions as the geometries
defined in computer-aided design software, that is, Non-Uniform Rational B-Spline (NURBS) shape functions. These
functions can model certain geometric features exactly, such as cylinders. However, NURBS functions have a tensor
product structure, and thus a rectangular mesh grid must be used. This makes truly local refinement impossible.
Extensions of the isogeometric analysis to other shape functions that increase the mesh flexibility are available, such as
T-splines [11]. Adaptive meshing using T-splines has been developed [12], [13] and is useful when highly local effects
are present. However, the meshing procedure is significantly more complex than with NURBS functions.

In this work, we present a new adaptive meshing procedure for deployable thin shell structures. Two refinement
indicators per element are used, each of which marks the element for refinement along an axis in the local shell coordinate
system. As a test case, we consider a tape spring, which is a long and thin cylindrical shell that exhibits similar localized
deformations observed in complex thin-shell deployable structures. Simulations are performed using the isogeometric
shell finite element formulation presented in [14]. In order to limit excessive refinement in the fold region, a limit to
the refinement is introduced by defining an element length lower limit. This limit is derived from an estimate of the
boundary layer in tape springs [3]. This approach is shown to be efficient for tape springs with various geometries.

II. Tape spring geometry and behavior
A tape spring can be described as a cylindrical shell of length !, thickness C, radius of curvature ' and angle

subtended U, as shown in Fig. 1.

Fig. 1 Tape spring geometry [15].

The tape spring is subjected to opposite-sense bending moments that deform the shell as shown in Fig. 2. As the
moment is increased, the initially smooth deformation becomes localized, and a fold forms at the center. Both stages of
this process are illustrated in Fig. 2.

Fig. 2 Opposite-sense bending [15]. (i) Smooth beam-like bending. (ii) Localized fold formation.

This process can be characterized by plotting the relation between the moment reaction at the ends and the rotation
applied. A schematic diagram of this relationship is shown in Fig. 3. For small end rotations the moment-rotation
relationship is linear. As the rotation is increased, a peak moment, Mmax, is reached as the cross-section near the
center of the tape suddenly flattens. With further rotation increases, the deformation localizes in a small region, and a
snap-through behavior occurs between points A and B. If the rotation is increased further, the moment stays almost
constant.
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Fig. 3 Moment-rotation schematic relationship.

III. NURBS basis functions for surfaces
Since the isogeometric shape functions dictate the meshing procedure, a brief overview of the bidimensional NURBS

basis functions used in the finite element procedure and the B-spline functions which are used as building blocks are
presented here. More details are given in [10].

Univariate B-spline basis functions of degree ? are constructed by defining a non-decreasing sequence of elements{
b1, ..., b=+?+1

}
, each of which is called a knot. There are = basis function associated with this knot sequence, which

can be computed using the Cox-de-Boor recursion formula:

#8, ? (b) =
b − b8
b8+? − b8

#8, ?−1 (b) +
b8+?+1 − b
b8+?+1 − b8+1

#8+1, ?−1 (b) (1)

For the case ? = 0 a piecewise constant basis function is defined:

#8,0 (b) =
{
1, if b8 ≤ b < b8+1
0, otherwise

(2)

Bidimensional B-spline basis functions are obtained as a tensor product of sets of univariate B-spline functions.
On each dimension we use the variables

(
b1, b2

)
respectively, the degrees of the functions

(
?1, ?2

)
and

(
=1, =2

)
basis

functions.
The bidimensional B-spline basis functions are defined as:

�8,p (/) = #81 , ?1
(
b1

)
#82 , ?2

(
b2

)
(3)

where 8 = 81 + =1 (82 − 1), p =
{
?1, ?2

}
, / =

(
b1, b2

)
and 8: =

{
1, ..., =:

}
.

Bidimensional NURBS basis functions are defined as:

'8,p (/) =
F8�8,p (/)∑=
8=1 F8�8,p (/)

(4)

where = = =1=2 and F8 are specified weights.
NURBS sufaces are defined using the NURBS shape functions as follows:

S (/) =
=∑
8=1

V8'8,p (/) (5)

where V8 ∈ R3 are control points which form the surface mesh. By carefully choosing the control points V8 and the
weights F8 , various surfaces can be obtained.

3

D
ow

nl
oa

de
d 

by
 S

er
gi

o 
Pe

lle
gr

in
o 

on
 D

ec
em

be
r 

30
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

2-
12

69
 



IV. Adaptive meshing procedure
The adaptive procedure is different than for standard finite elements due to the tensor product structure of NURBS

shape functions. Refinement in the literature is commonly performed in every axis of a given element, which is not
possible when using NURBS shape functions. Therefore, we propose a new adaptive meshing procedure which is
suitable for meshes formed by tensor product. This procedure is described by specifying (i) the refinement indicator and
(ii) the method for remeshing. Both are defined below.

A. Refinement indicator
This parameter is used to decide whether an element needs to be refined. We propose using one refinement indicator

for each direction in the local shell coordinate system. Each refinement indicator A8 is defined using the bending strain
^8 and the element length ℎ8 along the corresponding axis 8:

A8 = ^8ℎ8 (6)

Subdivisions are added along a given element axis if the refinement indicator corresponding to that axis exceeds a
threshold value A0. In addition, we define an element length limit ℎCℎ at which no further refinement is carried out:

IF

{
A8 > A0

ℎ8/2 > ℎCℎ
REFINE along 8 axis (7)

The element length limit ℎCℎ is defined as follows:

ℎCℎ =
√
'C (8)

This parameter is related to the edge effect in tape springs [3]. When there is a fold in a tape spring, there is a transition
along the arc axis between the free edges and the central, uniform curvature region. The parameter ℎCℎ describes this
transition length.

B. Remeshing scheme
When the refinement indicator A8 exceeds the threshold value A0, the element is marked for refinement. We refine

the element along the axis 8 by introducing subdivisions. For example, consider the mesh in Figure 4a. If the top two
elements are considered for refinement along the horizontal axis, we introduce the subdivision shown in Figure 4b. If
the same two elements are considered for refinement along the vertical axis, we introduce subdivisions such as those
shown in Figure 4c.

(a) (b) (c)

Fig. 4 Refined meshes. (a) Initial mesh with elements marked for refinement in yellow. (b) Subdivisions along
horizontal direction. (c) Subdivisions along vertical direction.

.

Note that this type of remeshing (where the additional subdivision lines extend through the whole mesh) is necessary
due to the grid structure of the NURBS shape functions used in the simulation. However, due the particular nature of
the folds in tape springs (which drive the adaptive meshing), this proposed adaptive meshing procedure is still efficient.
Further work will examine the use of T-spline shape functions [11], which can account for hanging nodes and therefore
do not need extension of subdivision lines through the whole mesh.
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After the finer mesh is defined, the displacement data in the coarse mesh is interpolated to the fine mesh using
the NURBS shape functions. However, the interpolated displacement data does not in general satisfy the equilibrium
equations defined with the fine mesh. Therefore, a new equilibrium is solved for using the Newton-Raphson method.
This is done with the load level fixed at the value from the previous step. Due to the presence of snap-through behavior
in tape springs, the standard Newton-Raphson solver might fail. Therefore, a backtracking line search [16] is added to
the Newton-Raphson scheme to increase robustness.

V. Numerical results
Tape springs of various geometries are tested using the adaptive procedure described above. The refinement indicator

threshold A0 is found by a calibration procedure, evaluating the error of a coarse mesh by comparing with results from a
fine mesh for a few load steps. We stop this procedure when the error of the coarse mesh exceeds 1%, and the maximum
value of the refinement indicator A8 given in Eq. (6) is taken as the threshold. We observed that this value only changes
very slightly when different tape spring geometries are used, so it is assumed constant. Using this method, the refinement
indicator threshold is chosen to be A0 = 0.019.

The Newton-Raphson solver is used, using the rotation applied at the ends as the incremental variable. The total
rotation applied is chosen to be high enough to observe the snap-through behavior. The rotation increment at each step is
fixed, and dependent on the tape spring geometry. The same step is used for both results using a uniform mesh and the
adaptive mesh procedure. A geometrically nonlinear isogeometric shell element formulation [14] has been implemented
in MATLAB using GPU commands and is used to carry out the analysis. Computations are performed using a laptop
with Intel i7-8750H processor, 16 GB RAM and a GeForce GTX 1070 GPU. Results from ABAQUS/Standard 2018
finite element software using shell elements S4 and the arc-length method [17] are used for reference.

An isotropic tape spring is considered in the following. It has Young’s modulus � = 131GPa and Poisson’s ratio
a = 0.3. The angle subtended by the cross-section is U = 110°.

A. Baseline case
Initially, we consider a tape spring with the geometrical parameters ! = 300mm, ' = 10mm and C = 0.1mm. The

initial mesh of the tape spring contains 4 elements along the length and 4 elements along the arc. Using Eq. (8), the
element length limit for the adaptive procedure is ℎCℎ = 1mm.

The initial and final states of deformation of the tape spring are shown in Figure 5, where the formation of a localized
deformation at the center is evident. Using the adaptive procedure we obtain the results shown in Figure 6. Results from
ABAQUS are also shown to ascertain the accuracy of the uniform fine mesh. Good accuracy is observed compared to
results from ABAQUS and results from a fine mesh. Meshes used at different rotation angles are shown in Figure 7, as
well as the uniform fine mesh used for comparison.

It should be noted that after the snap-through behavior occurs (at around 10° of rotation of the ends) the mesh does
not have further changes and remains constant until the end, indicating that bending strains do not increase further.
Also, the number of elements along the arc is the same at the end of the adaptive procedure as with the uniform mesh.
However, the number and distribution of elements along the length of the tape spring differs.

B. Influence of length
We tested the adaptive procedure for tape springs of two different lengths: ! = 150 mm, and ! = 600 mm keeping

the radius and thickness the same as before. We plot the results using the adaptive meshing method and the results
obtained using a uniform fine mesh as a reference in Fig. 8. Good agreement is observed in both cases. The steady-state
moment is almost the same in both cases, which agrees with the analytical results from [15].

The speedup factor of the adaptive procedure compared to using a uniform mesh with similar accuracy is given
in Table 1. This includes time spent remeshing and finding a new equilibrium solution after remeshing. With longer
lengths, the fold that is created in the tape spring becomes a smaller part of the total structure and is more localized.
This is shown in Figure 9, where the final deformation state for the two tape spring geometries are presented. Due to the
more localized nature of the fold as the tape spring is longer, the adaptive procedure is more efficient.

C. Influence of radius and thickness
We know consider tape springs with ! = 300mm and two sets of radii and thicknesses given in Table 2. Using

Eq. (8), the element length limit is ℎCℎ = 0.95mm for both geometries. The initial mesh is the same as before, with 4
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(a) (b) (c)

Fig. 5 Tape spring with parameters ! = 300mm, ' = 10mm and C = 0.1mm. (a) Initial state. (b) Deformed
state before snap-through. (b) Final deformed state.

elements along the length and 4 elements along the arc. Results are shown in Figure 10 for both the adaptive procedure
and the uniform fine mesh. Good agreement is observed for the first case, while the adaptive procedure is slightly less
accurate for the second case. It is observed that the steady-state moment value changes considerably between the two
cases. The speedup factor of the adaptive procedure compared to using a uniform mesh with similar accuracy is given in
Table 2. Similar speedups are obtained for both cases, although in the second case this speedup is achieved with less
accuracy.

D. Influence of element length limit
We now consider tape springs with the properties given in Table 1 and two sets of radii and thicknesses, given in

Table 3. Using Eq. (8), the element length limit is ℎCℎ = 1.2mm for the first case and ℎCℎ = 1.4mm for the second
case. The initial mesh is the same as before, with 4 elements along the length and 4 elements along the arc. Results are
shown in Figure 11 for both the adaptive procedure and the uniform fine mesh. The speedup factor of the adaptive
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Fig. 6 Moment-rotation plots for tape spring with parameters ! = 300mm, ' = 10mm and C = 0.1mm.

6

D
ow

nl
oa

de
d 

by
 S

er
gi

o 
Pe

lle
gr

in
o 

on
 D

ec
em

be
r 

30
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

2-
12

69
 



(a) (b) (c) (d) (e)

Fig. 7 Meshes at different rotation angles from adaptive meshing simulation shown in Figure 6 and uniform
mesh. (a) Initial mesh (16 elements). (b) 2.4° rotation (32 elements). (c) 5.6° rotation (192 elements). (d) 10.4°
rotation (832 elements). (e) Uniform mesh (2048 elements).

.

Table 1 Speedup factors for three tape springs with different lengths.

.

Properties Speedup Factor
' = 10 mm, C = 0.1 mm, ! = 150 mm 3.4
' = 10 mm, C = 0.1 mm, ! = 300 mm 4.7
' = 10 mm, C = 0.1 mm, ! = 600 mm 10.6

procedure compared to using a uniform mesh with similar accuracy is given in Table 3. It is observed that less accuracy
is obtained than in previous cases, although the speedup factor is higher. This hints at the use of a smaller refinement
indicator threshold A0 in order to get more accurate results while keeping good computational speed.

VI. Conclusion
A new adaptive meshing procedure for deployable thin shell structures has been presented. By using one refinement

indicator per element axis, the refinement procedure can be oriented along a particular axis. This is useful since refining
in every direction is not always the optimal choice. In addition, this type of refinement is convenient for use with
isogeometric finite elements that use NURBS shape functions. A refinement limit specific for tape springs has also been
introduced based on an estimate of the boundary layer effect of the fold. Test cases have analyzed the effects of various

Table 2 Speedup factors for two tape spring geometries with the same element length limit.

.
Properties Speedup Factor
' = 6 mm, C = 0.15 mm, ! = 300 mm 2.2
' = 15 mm, C = 0.06 mm, ! = 300 mm 2
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Fig. 8 Moment-rotation plots for tape springs with parameters ' = 10mm, C = 0.1mm and different lengths.
(a) ! = 150 mm. (b) ! = 600 mm.

.

Table 3 Speedup factors for two tape spring geometries with different element length limit.

.
Properties Speedup Factor
' = 15 mm, C = 0.1 mm, ! = 300 mm 4.2
' = 20 mm, C = 0.1 mm, ! = 300 mm 3.6

geometrical parameters.
The proposed adaptive procedure performs well for the tape springs considered. It is particularly efficient when the

tape spring is long relative to its cross-section dimensions. The radius and thickness seem to have little influence on the
accuracy of the adaptive method if the element length limit, as defined by Equation 8, is kept fixed. However, if the
element length limit is increased from the baseline case presented, less accurate results have been observed (although
with even higher speedup factors). This might indicate that the optimal value of the refinement indicator threshold A0
used to mark refinement depends on the element length limit ℎCℎ .

Further work should consider dynamic analysis of tape springs as well as more complex structures. The use of
T-splines should also be considered.
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Fig. 10 Moment-rotation plots for tape springs with ! = 300 mm and different radii and thicknesses. (a)
' = 6 mm, C = 0.15 mm. (b) ' = 15 mm, C = 0.06 mm.
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Fig. 11 Moment-rotation plots for tape springs with ! = 300 mm and variable element length limit. (a)
' = 15 mm, C = 0.1 mm. (b) ' = 20 mm, C = 0.1 mm.
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