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Large lightweight booms experience thermally induced deformations on-orbit. Deflection
and temperature profiles of a popular deployable geometry with desirable bending stiffness
(thin-shell cylindrical section) are observed experimentally under radiant heating in a vacuum
chamber, as well as predicted via multiphysics simulation. Deflection and temperature plots
exhibit behavior surprising for the simple geometry, and even suggest future improvements in
both modeling areas.

I. Introduction

To fit in current rocket fairings, large structures for space applications (e.g. solar panels and antennae) must be
deployable and lightweight. The structural elements forming the backbone of these structures require strong and

lightweight boom geometries; of these, the tape spring, a cylindrical thin shell with open section, creates a coilable
boom that is stiff in bending [1]. Steel tape springs are a common choice for satellite antennae (not to mention the
ubiquitous steel tape measure), while ultrathin composite tape springs offer similar stiffness with lighter weight. In
the vacuum of space, under radiant heat from the sun, lightweight booms experience rapid temperature changes and
gradients; thermal expansion / contraction within the structure can then cause significant deformations [2]. These
deflections tend to inhibit accurate structural geometry, disturb spacecraft pointing, and contribute to material fatigue –
all of which have afflicted almost two dozen space missions over the last sixty years [3]. As such, the deflection response
of steel tape springs under radiant heating was investigated; careful multiphysics simulations, validated by experimental
measurements, were carried out to understand the surprisingly rich behavior of even the simplest configurations.

An excellent source for understanding thermal effects in space structures is Thornton’s Thermal Structures for
Aerospace Applications [3]; along with overviews of the literature surrounding thermal control in airplanes and spacecraft,
analytical and finite-element solutions to representative problems are derived and analyzed. This work provides the first
step to analyzing thermal deformation of a boom – namely, the derivation of the steady-state temperature field under a
radiant heat load; solving for this field is the first step in a multiphysics simulation, and so provides a useful check on any
preliminary simulation results. Other works provide an insight into the deflection profiles of selected boom geometries,
usually in the context of predicting thermal deflections of proposed or current spacecraft components. For example,
Stohlman and Loper simulated the steady-state deflections of Triangular Rollable and Collapsible (TRAC) booms,
including those used on The Planetary Society’s Lightsail-A, with some analysis of the effects of a vapor-deposited
coating and a simulated composite with low coefficient of thermal expansion [4]. Stohlman also investigated the
deflection of a cylindrical boom geometry in an analysis that coupled the heat transfer finite-element software Thermal
Desktop with the dynamic finite-element software Abaqus, comparing the results to a previous analysis performed
by Blandino [2, 5]. Chamberlain, Kiefer, and Banik also performed an analysis of cylindrical booms, analyzing the
split-cylinder composite booms of the Air Force Research Laboratory’s Roll-Out Solar Array to determine the deflection
and vibration modes induced by sunlight exposure under orbital conditions [6].

These studies provide insight into the potential magnitude of deflections a tape spring might experience, but as with
many thin shells, the deflections and vibrations in question are very sensitive to the specific geometry of the boom;
therefore, an analysis of tape springs in particular is helpful to understand the nature of the problem in general. A tape
spring has bending stiffness orders of magnitude higher than that of an equivalently-sized flat tape while still being able
to coil elastically around a hub. For small curvatures, an almost linear relationship exists with the bending moment,
while for large curvatures (which cause the tape spring to buckle or “snap through”) the moment is constant at a much
lower value [1]. The initial regime of small rotations, i.e. that of high bending stiffness, allows the boom to behave like
a standard beam; the deflections investigated in our study are all of the small-curvature type.
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Modeling and predicting thermal deflections is the first step, albeit a challenging one. The difficulty mainly lies in
the problem’s inherently coupled nature: incoming heat flux on a boom causes a deflection, and the resulting deflection
in turn changes the heating angle and resulting heat flux. In the case of sunlight, boom deflection causes a change in the
local incidence angle of sunlight, which in turn changes the local heat flux and therefore the deflection; however, in front
of a heat lamp, the deflection changes both the angle and intensity of the heat flux, since bending toward or away from
the lamp shortens or lengthens the distance between the two.

Analytical models [? ] give intuitive insights into the main parameters at play; accounting for conduction, radiation,
and gain and loss of solar energy, these models offer a prediction of quasistatic and transient thermal effects for simple
boom geometries (e.g. closed cylinders). However, when the factors of internal boom radiation, longitudinal conduction,
any material anisotropy, or any geometric imperfection are considered, these models quickly become intractable and
must be solved numerically.

Finite-element simulations offer a more powerful approach, able to account for virtually any of the above factors at
the expense of computation time. For deflections of sufficient magnitude, the simulation must couple the thermal and
mechanical analysis to ensure accurate results. Running these multiphysics, coupled, nonlinear simulations, which must
account for solid mechanics of thin shells, heat transfer in shells, and radiative heat transfer at a bare minimum, requires
significant computational power for any realistic deflection simulations.

Experiments offer the most direct means of measuring and observing real thermal deflections, but have their own
limitations. Previous measurements of tape spring thermal deflections have used heat lamps or solar simulators to heat
sample booms, usually under vacuum to prevent convective cooling [2, 3]. If space-like temperatures are simulated,
the vacuum chamber and an interior shroud must be cooled using liquid nitrogen. The two conditions of vacuum and
cryogenic temperatures are incompatible with most photogrammetry cameras and sensors, and thus make full-field
measurements of displacement and temperature difficult. When these two conditions are even slightly relaxed – as they
are in the experiments presented here – significant convective heat losses arise, which both reduce the temperature
gradients and must also be accurately accounted for in any simulation verification.

We choose a geometry and a heating condition to experimentally replicate and simulate – namely, a thin-shell
cylindrical section, or tape spring, and a radiative heat load shining perpendicular to the axis of the tape spring. This
heat load causes thermal gradients to develop on the surface of the tape, which in turn create thermal expansion gradients
that deform the structure; we therefore measure the deformation field and the temperature field as metrics of this
thermoelasticity.

In this paper, we detail the development, performance, and results of an experimental rig that heats and measures a
tape spring in this way, as well as those of a multiphysics simulation intended to replicate the experimental results. We
then compare both results by means of deflection vs temperature plots, which reveal more complex behavior than the
individual plots alone.

II. Experiment

A. Experiment Development
The apparatus used to measure temperature and deflection went through several iterations before arriving at the

setup presented here; the various final choices are the result of various pitfalls and limitations of earlier setups.
Common across all of the apparatuses, however, were the four main components of 1) a tape spring sample mounted

in a clamp, 2) an aluminum frame, 3) a steel baseplate, and 4) a quartz infrared heater (QIH) lamp hung parallel to the
tape spring in the center of the baseplate. These componens are schematically shown in Figure 1.

The tape spring samples were mounted in a "clamp", a 0.5" × 1.5" × 1.5" aluminum block with two through-holes for
1/4"-20 screws, using Epoxamite 103 epoxy resin with slow hardener. The aluminum frame, 25 cm × 30 cm, consisted
of three extruded aluminum members bolted together in a post-and-lintel configuration, with the sample clamp bolted to
the side of the lintel facing the heat lamp. The baseplate, to which the frame was bolted, was simply a 18" × 18" × 0.5"
steel plate with 1/4"-20 threaded bolt holes every inch.

Initially, the sample, aluminum frame, and baseplate depicted in Figure 5(a) were mounted on a lab bench, with no
separation from the surrounding air besides a thin black curtain (mostly for eye protection from the higher lamp power
used in these initial tests). Temperature was measured in two ways: a thermocouple attached to the center of the tape
spring, and a Teledyne FLIR thermal camera imaging the entire tape spring. Deflection was measured at a single point
on the tip using a Keyence laser distance sensor. See Figure 2(a) and (b).

The unsealed, exposed nature of this setup was intended to help prevent any heat building up in the frame or the air
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Fig. 1 (a) The structural components common to all experimental setups: tape spring in "clamp", aluminum
frame, and steel baseplate. The heat lamp (not shown) was placed in the center of the baseplate, parallel with the
tape spring(b) A close-up of the aluminum "clamp", showing the pocket and bolt through-holes. (c) A close-up of
the tape spring root, potted into the clamp and bolted to the aluminum frame. (Picture taken before applying
paint speckles on thermocouple or root.)

surrounding the tape spring; this would hopefully prevent thermal expansions in any other part of the rig, while creating
a much more predictable and stable temperature boundary condition for the simulation. However, preliminary tests
revealed unexpected oscillation in the temperature readings, as shown in Figure 2(c). The period of these oscillations
(seconds to minutes) was well above that of any structural oscillations on such a short tape spring and frame, suggesting
a thermal nature; indeed, the problem was eventually revealed to be unpredictable air currents (such as those from an air
conditioning system or people moving around the lab) randomly cooling the thin tape a few degrees. Even without
random air currents, a consistent natural convection current cooled the tape spring, the heat loss of which was later
predicted to be over a third of the total heat flux on the tape; this is obviously a large departure from replicating the
intended environment, the vacuum of space. For both these reasons, then, it was decided to perform the next experiments
in a vacuum chamber, where we could hopefully eliminate convection entirely.

As a next step, the same rig was mounted inside a large rectangular vacuum chamber at the Jet Propulsion Laboratory.
The roughing pump alone was easily able to provide an atmosphere between 4-7 Pa during tests, which was predicted to
reduce convection to 3% of its atmospheric value – more than enough for our purposes. The 43" × 32" × 22" chamber,
despite having thick steel walls, allowed for tip deflection measurement in the same manner as the benchtop experiment:
the sample tip was aligned with a quartz window mounted in one of the feedthrough ports, and the laser distance sensor
"shot" through the window. See Figure 3(a) and (b) for a visual. Since thermal camera imagery was no longer possible
in this setup, temperature readings were limited to thermocouples placed on the frame. Thermocouples placed directly
on the tape were omitted for those tests to avoid affecting the tape mechanically or thermally.

Owing to the large reduction in convective heat loss, the temperatures reached in the JPL vacuum chamber were
much higher than previous tests. After several tests with unpredictable deflections that were much larger than expected
(see Figure 3(c)), a thermocouple was added to the tape spring, showing that the tape reached a temperature of 89◦C.
This temperature could have affected the potting epoxy, which had been cured at room temperature; as no other portion
of the paint-stripped tape or clamp was sensitive to temperature (being metal), the outlier deflections were blamed on a
delamination or additional curing of the epoxy mount. To correct this, later testing was performed at half or a quarter of
the lamp power level used in the JPL tests (i.e. 25 W or 40 W, instead of 95 W).

B. Final Experimental Setup
Learning from these previous test setups, a third and final experimental setup was constructed, consisting of the

same steel tape spring clamped to an aluminum frame, in turn fixed to a steel baseplate, all contained within an acrylic
thermal vacuum chamber. The setup is schematically shown in Fig. 4 for clarity. It also shows the positions of the
thermocouples used to obtain temperature measurements, as well as the positions of the cameras used to obtain deflection
measurements via Digital Image Correlation (DIC), both of which are detailed in Sections II.C and II.D.

The tape springs tested were sections of a Stanley PowerLock 33-425 tape measure, originally consisting of a 115
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Fig. 2 (a) A previous experimental setup, performed in air with no protection from air currents. Tape spring
samples at the time did not have their original yellow paint removed. (b) An infrared image of the tape spring
during a test, showing the qualitative temperature field. (c) The temperature output of the thermocouple attached
to the tape, showing large thermal variations (at nominally steady-state) caused by air currents.

Fig. 3 (a) Another previous experimental setup, performed in a large steel thermal vacuum chamber at JPL.
Painted tape spring in the picture for visibility; the actual samples tested were stripped of their coating. The
Keyence laser distance sensor "shoots" through the feedthrough window hole behind the tape tip. (b) The same
tape from above, showing the glint of the laser dot pointed at the tip. (c) The deflection readings from various tests,
showing wide variation in magnitude thought to be from potting epoxy overheating and potentially delaminating.
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Fig. 4 The experimental setup, cartooned with vertical axis not to scale. Note the placement of thermocouples
on the middle of the tape spring and the clamp.

µm thick piece of AISI 1095 high-carbon steel coated in yellow paint and a protective layer of Mylar. Immersing the tape
springs in boiling water loosened the outer layer, enabling the paint and Mylar to be cleanly peeled from the samples.
The samples were then potted into the aluminum clamp pocket using epoxy resin. After a 24-hour room temperature
cure, the entire sample was baked in an oven at 93◦C for an hour to raise the epoxy’s thermal tolerance. White paint
speckles were sprayed on the tip and root of the concave side previously coated with black spray paint, as well as on the
two thermocouples mounted later. Finally, the clamp was screwed to the aluminum frame to cantilever downwards.

The tape spring length (25 cm) was chosen to ensure any dynamic effects were on a much shorter timescale than the
heating of the boom, ensuring that the sample deflected according to a steady-state quasistatic response. The short
boom length also ensured that the deflections predicted and ultimately measured were on the order of only 100 𝜇𝑚,
similar to the thickness of the shell and much smaller than the sample length; these deflections are thus considered
small, and the kinematics can therefore be linearized with almost no loss of prediction accuracy.

The tape was heated by a USHIO quartz infrared heater (QIH) lamp, hereafter referred to as the "heat lamp" or
"lamp"∗. Since collimated sunlight is difficult to reproduce in the lab, the heat lamp was chosen as a more convenient
heat flux source. It is worth noting that lamplight is not collimated like sunlight, and therefore falls off in intensity as the
square of the distance from the lamp. While for large deflections (1-10 cm) this would cause the flux on the sample to
change as the sample bent away from the lamp, the small deflections of our sample (10-100 µm) meant that this effect
was negligible.

To heavily reduce convective heat losses, as well as eliminate measurement noise from small air currents, the entire
experimental apparatus was mounted in a rectangular vacuum chamber (approximately 30" by 30" by 18") made of 1”
thick clear acrylic walls — see Figure 5. Though a cylinder would be a more typical choice for a chamber form due to
pressure loading, flat clear walls were a better candidate to perform DIC measurements.

The vacuum chamber walls were reinforced with additional acrylic struts on their exterior to prevent excessive
bending when supporting external air pressure; see Figure 5(b). However, bending was not entirely eliminated; the
refractive effects resulting from this bending required a more accurate calibration scheme, as described in Section II.E.
Current limitations made the vacuum pressure achievable in the chamber around 5% atmosphere.

C. Temperature Measurement
The vacuum chamber walls, being made of acrylic, actually block the band of infrared light used by forward-looking

infrared (FLIR) thermal cameras; lacking the necessary feedthroughs and camera to operate in vacuum, a full-field
temperature measurement was therefore impossible to achieve.

As a substitute, the tape spring and frame were instrumented with thin lightweight thermocouples to directly measure
∗The heat lamp, the source of the heat flux on the tape spring, is not to be confused with the LED lights used to illuminate the setup for DIC

purposes.

5



Fig. 5 (a) The experimental setup in the acrylic vacuum chamber. Note the heat lamp and tape spring hanging
vertically. (b) The same setup, zoomed out to reveal the LED lights and DIC cameras aimed through slits in the
lightbox. Both views are missing the acrylic chamber lid and top lightbox panel for clarity.

surface temperature; the frame used an Omega fast-response type-E thermocouple with a polyimide adhesive pad
(#SA1-E), while the tape spring used a similar model with a thin copper foil pad. Despite the obvious limitations
and potentially invasive nature of the sensing, there was no other reliable and tested option for measuring the tape
temperature. To be compatible with DIC, the backs of both thermocouple’s adhesive pads were speckled, allowing for
the deflection precisely at the thermocouple location to be measured: see Figure 6(b) and Figure 7.

While the thermocouple placed on the clamp used a large standard adhesive pad, much care was taken to ensure that
the thermocouple attached to the tape itself would affect the deflection as little as possible. Accordingly, the chosen
thermocouple used only a thin adhesive copper foil to attach to the sample, trimmed to the smallest area that still avoided
delamination: see Figure 7. In addition, the high-gauge thermocouple wire was carefully relieved of any prestrain and
twisting, secured in such a way as to prevent exerting any bending or twisting force on the sample †.

D. Deflection Measurement via DIC
To obtain detailed displacement measurements before, during, and after heating, Digital Image Correlation (DIC) was

used. Two digital cameras were mounted in the stereoscopic configuration needed to measure out-of-plane deflections,
at a separation angle of approximately 40º; see Figure 6 for the placement of the cameras relative to the sample and
chamber. The particular cameras used were Point Grey Grasshopper cameras GRAS-51S4M-C with a resolution of
2448 × 2048, 3.45 µm pixel size, and a gain range of 0 dB to 48 dB; both were fitted with 12 mm lenses, and both used
an exposure time of around 6 ms.

To illuminate the sample, two RELInc WS3 LED lights were used at quarter power. To avoid DIC analysis errors
caused by nonuniform illumination, shadowing of the tape spring, and glinting reflections, diffuse lighting was achieved
with a lightbox of foam posterboard material constructed around and inside the vacuum chamber. The LED lights
were then positioned such that their light entered from the lightbox sides and bounced off the front lightbox panel; the
resulting light was sufficiently diffuse to eliminate any visibly nonuniform lighting.

The softwares VicSnap and Vic3D v9 were used to calibrate the rig, capture images during the test, analyze the
images, and extract the resulting displacements. A subset size of around 30 pixels and a step size of around 4 pixels was
used, adjusted in order to process the tip, thermocouple, root, and clamp speckled regions simultaneously.

†While the bending stiffness of the tape spring is much higher than that of the thermocouple wire, the twisting stiffness is comparable, making
any residual forces applied by the thermocouple wire an important factor to consider. Carelessly securing the thermocouple wire to the frame was
observed to visibly twist the sample.
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Fig. 6 (a) The angle and distance of the DIC cameras relative to the vacuum chamber holding the experiment,
with (b) a detail of a tape spring sample. Notice the position of the two thermocouples, the middle one being
speckled for DIC measurements.

Fig. 7 (a) The thermocouples affixed to the tape spring (left) and the clamp (right). (b) A detail of their relative
thicknesses; note the thinness of the tape spring thermocouple pad and wire.
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E. Calibration Procedure
While calibrating the stereo rig is normally a straightforward task, the refractive effects and bending of the chamber

walls required additional steps. When a straight, flat tape spring is viewed behind the thick acrylic wall, the residual
curvature of the wall distorts the image of the tape spring, causing the "displacement" measurement of the tape spring to
change by as much as 100 um at points. Even worse, when the chamber is supporting a vacuum, the walls curve inward
even more, causing an additional distortion of this type. As these deflections are of similar or even greater magnitude
than the heat-induced deflections we were attempting to measure, these erroneous refractive deflections had to be
carefully accounted for and removed from the measurement to ensure accurate and trustworthy results. Accordingly, a
calibration procedure was developed to accomplish this.

Since the rig could only be calibrated with the lid off (and therefore under no vacuum), the refractive distortion
correction was performed in two steps: correcting the distortion caused by the chamber walls under atmospheric pressure,
followed by the distortion under vacuum. To address the distortion caused by the residual curvature of the chamber walls
under atmospheric pressure, a calibration using Variable Ray Origin (VRO) was implemented in Vic3Dv9; this consisted
of a typical calibration using a calibration target, followed by a hybrid stereo calibration using a rigid speckled target. To
address the additional distortion of the chamber walls under vacuum, DIC images were taken for five minutes under
vacuum with the lamp still off, their erroneous deflection time-averaged, and then subtracted from the initial atmospheric
state. This correction was then applied to all subsequent DIC images. These two error corrections, combined, gave
deflection profiles that matched well with expectations based on previous experiments and simulations.

To examine the effects of the distortions in greater detail, as well as to confirm the effectiveness of the error-correction
process, the tape spring samples were scanned with a FaroArm coordinate measuring machine. The resulting point
cloud was then compared with the coordinates measured by DIC imaging of a fully-speckled tape spring in three
configurations: outside of the chamber, inside of the chamber wall under no vacuum, and inside of the chamber wall
under vacuum. Each of the DIC point clouds was aligned with the FaroArm point cloud in MATLAB and examined for
discrepancies in the z-direction; Figure 8 shows all three comparisons. While the exact deviations in the z-coordinate
were heavily sensitive to the exact alignment of the two point clouds, the overall shape and bowing of the tape spring
remained readily observable; the DIC registered the tape as concavely bowed relative to the FaroArm data both outside
of the chamber and in the chamber at normal pressure, but once the chamber was put under vacuum, the tape spring
appeared convexly bowed. All of these uncorrected bowings were on the order of 100 microns, but the average deviation
was an order of magnitude less, indicating an ability to accurately account for such refractive effects.

Fig. 8 The comparison of the tape spring point clouds, measuring the approximate discrepancy in z-coordinate
(in mm) between the FaroArm scan and the DIC measurement of the tape spring as positioned (a, top) outside the
chamber, (b, middle) inside the chamber under no vacuum, and (c, bottom) inside the chamber under vacuum.

F. Experimental Procedure
After potting, the tape spring sample was prepared for a test by applying white paint speckles to the clamp, root, and

tip previously painted with black paint in order to get DIC measurements at those regions. The thermocouples were then
placed on the clamp of the sample, as well as carefully placed on the desired location on the tape spring itself.
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Fig. 9 (a) Out-of-plane displacement of the tape tip and thermocouple (placed midway along its length) as
extracted from DIC measurement, and (b) temperature of tape spring at the thermocouple and the clamp for a
typical trial. Gray lines indicate raw data before moving window averaging, giving a sense of the measurement
noise.

With the thermocouple reader logging temperatures of the tape and clamp the entire time, after calibration, five
minutes of DIC images at 1 Hz were taken of the tape spring, in order to get the initial atmospheric state as mentioned
above. The chamber was then subjected to 95 kPa of vacuum, and an additional five minutes of DIC images at 1 Hz
were taken of the tape spring, in order to calculate the vacuum-distortion correction factor as above. The QIH lamp was
then turned on, and the entire system was left to achieve a steady-state while DIC images were taken at rates between .03
and 1 Hz. Once a steady-state had been achieved – defined as the temperature changing less than 1◦ per hour and the
deflection remaining proportionally steady – the QIH lamp was turned off, and the tape spring left to cool down until
steady-state was reached again.

The DIC images were then processed to extract out-of-plane displacements, applying the error corrections described
above to eliminate the refractive effects of atmospheric and vacuum-caused curvatures of the acrylic walls.

Over the course of testing, it became clear that with only around 3% of the lamp heat flux impinging on the tape
spring, the rest of the setup and chamber was also heating significantly; this was confirmed with separate thermocouple
measurements on the clamp, frame, and baseplate‡. Therefore, there was almost certainly additional thermal expansion
of parts of the frame which would show up in the raw deflection reading of the thermocouple. To prevent any of these
potential deformations from affecting the tape displacement measurement, the deflection and slope (i.e. tilt in the same
plane as the out-of-plane deflection measured) at the clamp of the device were averaged, linearly fitted, and subtracted
from the deflections measured on the tape itself. This yielded the tape deflection relative to the clamp, i.e. the deflection
of an ideal experimental design with no deflection besides that of the tape.

A representative experimental result of both deflection and temperature measurements, used in the next section, is
shown in Figure 9.

G. Experimental Challenges
Placing a thin thermocouple on the sample itself, while having a negligible effect on the temperature distribution

of the tape (as verified by simulation and hand calculation§), had a small twisting effect if anchored incorrectly. To
minimize this effect, great care was taken in ensuring the thermocouple lead was anchored in such a way as to cause no
torque on the sample.

A more serious problem lay in the thermocouple adhesive’s sensitivity to heat; the hotter the tape spring got, the
more likely the contact adhesive would loosen and yield an incorrectly lower temperature reading during the later part

‡Frame temperature rises of 5ºC weren’t uncommon during testing.
§The heat conducted by the thermocouple wire, assuming the highest thermally conductive properties, would be on the order of 0.05 W – two

orders of magnitude lower than the power flux on the tape.
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of a test. Over successive tests, the lamp power was reduced until this stopped occurring – namely at a lamp power of 25
W. This low power unfortunately had the side effect of taking much longer to reach a steady-state deflection; while the
tape spring itself reaches a steady temperature within around ten minutes, the frame and surrounding chamber heat
much more slowly under the small difference in heat. Therefore, the tape deflection takes a much longer time to stabilize,
and did not appear to do so in several experimental trials, including the representative trial presented in these results.

In order to photograph the entire tape spring and clamp at once, and also maximize the DIC’s sensitivity to
out-of-plane displacement, the DIC cameras had to be positioned at a sufficiently large incidence angle. Viewing the
tape spring at such an angle meant the cameras needed a large depth of field to have the entire tape spring in focus,
requiring a smaller aperture; this in turn required more light from the set of LED lamps. At the light levels required for
the level of accuracy required, the entire chamber and testing rig would slowly heat to 8ºC above room temperature; this
waiting period and elevated resting temperature was accounted for in both simulation and data analysis.

III. Simulation
A multiphysics finite-element simulation, performed using the software COMSOL, was compared with the

experimental results. The entire experimental setup, including the tape spring, clamp, frame, baseplate, lamp, and
chamber was modeled to ensure accurate conductive and radiative effects, as shown in Figure 12 (a).

The "Solid Mechanics of Shells" module, including a thermal expansion sub-module, was used to model the
deflection of the tape spring, "Heat Transfer in Shells" modeled the heat transfer therein, and "Surface-to-Surface
Radiation" modeled the heat flux of the heat lamp; a multiphysics module then coupled the radiation and heat transfer
modules to complete the energy transfer. "Heat Transfer in Solids", "Heat Transfer in Solids", and "Surface-to-Surface
Radiation" performed the same tasks for the clamp, frame, and baseplate, with the addition of a thermal expansion
sub-module for the epoxy within the clamp¶. The mesh size was variable across the different components, but the tape
spring used a mapped mesh with quad elements approximately 2 mm × 2 mm, i.e. 14 elements spanned the width of the
tape spring. The values of the main geometric and material properties specified in the model are tabulated in Table 1.

The modules were solved for all the finite elements at each timestep; both "Stationary" (i.e. steady-state) and
"Time-Dependent" (i.e. transient) analyses were performed using a linear analysis‖. For the latter, a trial consisting
of 100 minutes of the lamp on and 100 minutes of the lamp off was modeled; for the latter, the heat lamp source was
disabled for the second half of the transient analysis.

Table 1 Tape spring properties; material is AISI 1095 high-carbon steel.

Geometric Material
L 256 mm E 205 GPa
d 30 mm 𝜈 0.29
R 16.94 mm 𝜌 7850 𝑘𝑔

𝑚3

t 0.115 mm k 49.8 𝑊
𝑚·𝐾

𝐶𝑝 461 𝐽
𝑘𝑔·𝐾

𝛼 (CTE) 11 × 10−6 1
𝐾

𝜖 (emissivity) 0.9

A. Accounting for Convection
Despite the low pressures achieved in the vacuum chamber – 95 kPa of vacuum, or around 5% atmosphere – natural

convection from residual air still conducted a significant amount of heat away from the tape spring ∗∗. Correlations that
predict heat loss due to natural convection based on sample dimensions and orientation are well-known in the heat

¶The thermal expansion of the epoxy within the clamp was found to have a non-negligible effect on the tape spring deflection, at least in
simulation.

‖Due to the aforementioned small deflections, both analyses were able to be run without requiring geometric nonlinearity, greatly reducing
simulation time.

∗∗The relationship between convection and chamber pressure is nonlinear; from the calculation to follow, removing 95% of the air in the chamber
only reduces convection by around a factor of four.
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transfer community; for this analysis, the formulation for a vertical plate proposed by Churchill and Chu was chosen[7].
The prediction requires knowledge of the thermophysical properties of air (i.e. dynamic viscosity, density, thermal
conductivity, etc.) at whatever pressure and temperature is present in the chamber ††.

These air properties can in turn be predicted from chemical models of gases based on equations of state and other
empirical measurements; such models have been collected by NIST to make a programming library called REFPROP
[8]. This library is neither open-source nor free; however, a heavily-cited open-source equivalent using the same models
is the library CoolProp, implemented in Python [9]. Given the air pressure and temperature, the library functions
can calculate the thermophysical properties needed for the correlation; the correlation then provides a heat transfer
coefficient, h, which is directly specified in COMSOL as an areal heat loss. h is calculated as

ℎ =
𝑘

𝐿

(
0.68 +

0.67𝑅𝑎1/4
𝐿

(1 + (0.492/𝑃𝑟)9/16)4/9

)
, 10−1 < 𝑅𝑎𝐿 < 109 (1)

where 𝐿 is the vertical length of the sample, 𝑘 is the thermal conductivity of the surrounding air, and 𝑅𝑎𝐿 is the
Rayleigh number given by

𝑅𝑎𝐿 =
𝑔𝛽

𝜈𝛼
(𝑇𝑠 − 𝑇∞)𝐿3 (2)

where 𝑔 is the gravitational acceleration, 𝛽, 𝜈, and 𝛼 are the coefficient of thermal expansion, the kinematic viscosity,
and thermal diffusivity of air, 𝑇𝑠 is the average surface temperature of the tape spring, 𝑇∞ is the average chamber air
temperature, and 𝑃𝑟 denotes the Prandtl number, the ratio of the kinematic viscosity and thermal diffusivity of air given
by 𝑃𝑟 = 𝜈

𝛼
, all values being taken at the air pressure inside the chamber.

For our model tape spring, considering convection occurring on both sides of the tape, the natural convection heat
transfer coefficient was calculated to be approximately 2.48 𝑊

𝑚2 ·𝐾 . Based on the amount of lamp power that directly
impinged on the tape, the fraction of that heat lost to convection is therefore around 13%; this is much less than the
atmospheric control, demonstrating the chamber’s ability to heavily reduce (but not eliminate) the effect of convective
heat loss.

B. Other Thermal Considerations
Conductive heat losses from the tape spring via the clamp, as well as heat flow between the members of the aluminum

frame crossbars, were also accounted for via COMSOL’s default thermal contact model and verified with a simple 1D
heat flow model.

The entire baseplate of the model was assumed to rest on a room temperature table in a room temperature lab;
accordingly, the conductive heat boundary condition for the entire model lay in setting the underside of the baseplate to
remain at room temperature throughout testing, even if the top of the baseplate was around 35◦ during testing. This may
have been responsible for the room temperature reached by the simulation (and not the experiment) at "steady-state", as
shown in the Results section, Figure 12.

The radiation boundary condition was similar. The walls of the acrylic chamber were assumed to remain at slightly
above room temperature through the entire test, as they did in the experiment; therefore, all radiation heat loss from the
tape spring and frame was to a sink slightly above room temperature. Note that the acrylic walls were modeled as purely
radiative surfaces, having no mass or specific heat.

Prior simulations revealed the inadequacy of approximating the lamp flux as parallel rays from an infinitely far
source; therefore the heat lamp was modeled by a collection of n point sources positioned at the correct distance away
from the tape spring. It was found via iteration that n = 17 point sources, each emitting 1/17 of the total lamp power,
were able to mimic a finite heat source.

Steady-state and transient analyses were then performed, and after accurately accounting for the mentioned convective
and conductive heat losses, the experimental temperature results were modeled to an at least qualitatively accurate
degree. Fig. 10 shows the projected steady-state temperature profile of the tape spring.

††Even though these values change during the course of a test, the lamp was only lit when 95 kPa of vacuum had been reached, and the steady-state
value of average tape temperature was known from experiment, meaning that we could simply calculate the value based on these steady-state quantities.
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Fig. 10 (a) The full COMSOL model of the experiment at a steady-state temperature (chamber walls hidden for
clarity) with (b) a detail of the tape spring temperature profile (in ºC) and (c) the deflection profile (in µm). Note
the temperature gradient at the root and tip.

IV. Results and Discussion
The following plots contain time stamps indicated by 𝑡0 through 𝑡8. These time stamps correspond to events where

something changes in the experiment/simulation (e.g. the lamp turning off), or halfway points between such events.
This is intended to facilitate comparisons across all the plots without regard to exact times.

Fig. 11 The thermocouple deflection vs. time (left), thermocouple temperature vs. time (center), and
thermocouple deflection vs. thermocouple temperature (right) for the experiment tape spring. Corresponding
times across all three plots marked with points 𝑡0 through 𝑡8.

A. Experimental Results
The most obvious plots are shown in Figure 9 – tip displacement vs. time, thermocouple displacement vs. time, and

the thermocouple temperatures vs. time. Plots of the thermocouple displacement vs. the thermocouple temperature
alongside these two are shown in Figure 11.

As time increases from 0, a cycle around the deflection vs. temperature curve begins at the lower left-hand corner,
curves upward, slowly travels toward the upper-right for a bit, then curves down and leftward to the start in a clockwise
direction.

We can observe that the curve does not trace a straight line, but has a "hysteretic" appearance; however, there is in
fact no hysteresis occurring – see explanation below. However, we can observe that the tape quickly returns to the intial
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temperature (vertical axis) and very nearly returns to the initial deflection after enough time has passed (horizontal axis).
The points on the curve also show the relative rates of change of the temperature and deflection; the different spacing
between points 𝑡2 and 𝑡4 vs points 𝑡6 and 𝑡8 show the difference in the speed at which the deflections are changing. Thus,
the non-straight nature of this curve allows for a quick and easy visualization of how a test progressed over time.

Fig. 12 The mid-tape deflection vs. time (left), mid-tape temperature vs. time (center), and mid-tape deflection
vs. mid-tape temperature (right) for the COMSOL tape spring model.

B. COMSOL Results
Similar trends can be found in the results of the COMSOL transient simulation.
The COMSOL model reaches the point 𝑡2 roughly four times faster than the real experiment, suggesting a difference

in thermal conductivity either somewhere in the frame or baseplate. While the simulation would take a prohibitively
large amount of computational time to reach a true steady state, the initial heating period shows a similar trend to the
experimental data, even replicating the clockwise loop.

An interesting observation lies in the dropping of the COMSOL "steady-state" temperature to below that of the initial
conditions. As mentioned in the Simulation section, the baseplate was assumed to rest on a room-temperature table in a
room-temperature lab, just like the experimental one; however, the simulation did in fact reach that steady-state, while
the experimental rig did not. This is almost certainly due to the lack of modeling of the acrylic walls as solid objects; in
modeling them as radiative surfaces alone, they were not able to absorb lamp heat during the test and thus supply the
baseplate with any heat when the lamp was turned off.

As for the S-shaped nature of the COMSOL curves, they would be the result of deflection changing faster than
expected when the lamp was turned off or on. The lamp was turned on or off instantaneously in the COMSOL model,
while in reality the lamp took at least 1.5 s to heat up and 10 minutes to fully cool off (as was later measured by a
FLIR camera). This would slightly slow the change of temperature for the experiment, potentially removing this effect.
Incorporating the finite lamp illumination time (perhaps by ramping the lamp power with a linear approximation) would
be an interesting part of future simulations.

C. Explanation of "Hysteretic" Curves
An explanation of the hysteretic shape of these curves requires a small detour into the nature of the transient

temperature field. (The transient deflection field is a direct result of the transient temperature field, so we will focus on
the latter.)

As a contrasting example, consider a beam, clamped at one end, with a point load 𝑃 at the tip; the point load varies
as a function of time, and the tip deflection 𝑤 and the moment at the root 𝑀 are dependent variables. For simplicity, we
will only consider the quasistatic case – i.e. we will neglect any dynamic effects. Since the moment is the product of the
point load times the cantilever length (𝑀 = 𝑃(𝑡)𝐿), and the deflection is 𝑤 =

𝑃 (𝑡 )𝐿3

2𝐸𝐼 , plotting 𝑀 vs 𝑤 would yield a
straight line, with different values of 𝑃 falling on that line. Note that the curve would enclose no area; this is because
each point load results in a unique 𝑤 and 𝑀 independent of time.
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This means that the solution can be decomposed into a spatially-varying function (i.e. a function purely of 𝑥, the
position along the beam) and a time-varying function (i.e. one purely dependent on time); in other words, the “shape”
of the deflection is independent of the time history that produced it. Therefore, the function of 𝑡 is able to be separated
from the rest of the solution. It is also helpful to think of the time-independence as resulting from the linear nature of
the loading and response: for small deflections, the beam behaves as a linear spring, with a linear increase in point load
resulting in a linear increase in tip deflection.

This would also be the expectation for a simple system responding to a temperature change; for example, uniform
heating of a solid one-dimensional bar would result in a one-to-one relationship between bar temperature and axial
thermal expansion in much the same manner.

This lies in direct contrast to the temperature response to the heating of a tape spring. The heat load can be considered
as approximately uniform (i.e. linear along the length with a slope of zero), and the conductive heat loss, without any
convection or radiation to cool it, from Fourier’s Law would result in a linear drop in temperature from a maximum at
the tip to the boundary temperature at the root (i.e. a linear function of 𝑥 along the length). However, convection and
radiation both involve nonlinear functions of temperature, meaning that the responses are not path-dependent. This
results in a time-dependent “shape function” of temperature, one that changes with time based on the set of initial
conditions that produced it.

Indeed, the deflection at any point on the tape spring is an integrated combination of the thermally induced
deformation from the root to the point in question, meaning that there is an infinite number of temperature fields that
could yield a certain deflection – even while the measured thermocouple temperature remains the same. Which one
of these fields appears on the tape spring is a function of the time and the heating conditions of the boom. Suddenly
turning the heat lamp on from a steady-state of being off is one of these heat conditions; suddenly turning the heat
lamp off from a steady-state of being on is another. These conditions cause two different paths to be followed by the
deflection vs. temperature response: the first on the way up, and the second on the way down. Thus, a hysteretic path
shape is created, even though there is no energy loss in this process.

V. Conclusions and Future Work
From seemingly simple experiments involving heating a steel tape spring and comparing the results with multiphysics

simulations, we have characterized a rich set of deflections and thermal behaviors, involving apparent hysteretic behavior.
These observations yielded insights into the temperature profiles of a thermally loaded boom, as well as potentially
unexpected deflection behavior.

Characterizing the full-field deflection of the tape spring experimentally did in fact help confirm previous simulation
predictions. A direct observation of the variation of deflection of various points along the tape spring, accomplished via
DIC, permitted more accurate assessments of the relations only hinted at by previous predictions.

The series of experimental setups leading to the current one gave insight into the various factors that make replication
of heat-flux-driven bending on Earth challenging, while the current setup still leaves areas for improvement. Many factors
contributed to the difficulty of the setup to reach a steady-state, including lack of contact-free thermal measurement,
incorporation of epoxy, and even the illumination needed for DIC measurements. These will be addressed in future
experimental setups.

Testing in vacuum unfortunately only partially eliminated a large modeling uncertainty. The heat flux leaving the
tape spring via convection was calculated to be around 13% of the total heat leaving the tape spring; this value would
ideally be much lower for results that would more effectively mimic the space environment.

The heating of the tape spring in these experiments was always introduced perpendicular to the axis of the tape
spring; rotating the tape spring about its axis (or equivalently, revolving the lamp) will induce different, non-symmetric
temperature profiles, as well as the possibility of twisting (a circumstance carefully avoided in the tests presented here).
A more comprehensive survey of these effects, performed in an experimental rig free of the various limiting factors
herein described, will be the focus of continuing research.

Finally, the simulations involved are being further improved, and have even helped improve the experimental rig.
For example, a large source of modeling uncertainty lay in the relatively large aluminum frame holding the tape spring;
being the same distance from the lamp, it also heated up, but due to the large variance of emissivity with surface
finish, the amount of heat absorbed was difficult to predict, even with thermocouple data at certain points. In addition,
every bolt and connection in the frame constituted a thermal contact whose thermal conductance is not fully known.
While reasonable results were achieved after much iteration, it would be ideal to have a setup in which these unknown
connections were minimized or absent.
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