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Traditional spacecraft design paradigms rely on stiff bus structures with comparatively
flexible appendages. More recent trends, however, trade deployed stiffness for packaging
efficiency to stow apertures with larger areas inside existing launch vehicles. By leveraging
recent advances in materials and structures, these spacecraft may be up to several orders of
magnitude lighter and more flexible than the current state-of-the-art. Motivated by the goal
of achieving agility despite structural flexibility, this paper proposes a quantitative method
for determining structure-based performance limits for maneuvering flexible spacecraft. It
then uses a geometrically nonlinear flexible multibody dynamics model of a representative very
flexible spacecraft to verify this method. The results demonstrate that, contrary to common
assumptions, other constraints impose more restrictive limits on maneuverability than the
dynamics of the structure. In particular, it is shown that the available attitude control system
momentum and torque are often significantly more limiting than the compliance of the structure.
Consequently, these results suggest that there is an opportunity to design less-conservative,
higher-performance space systems that can either be maneuvered faster, assuming suitable
actuators are available, or built using lighter-weight, less-stiff architectures that move the
structure-based performance limits closer to those of the rest of the system.

I. Introduction

A current paradigm in spacecraft design trades deployed structural stiffness against packaging efficiency to build
higher-performing spacecraft with larger deployed apertures that can be stowed within existing launch vehicles.

Such spacecraft are currently envisioned for a variety of applications including astronomy [1]; planetary [2] and solar
system exploration [3]; space science [4]; communications, power transfer, and remote sensing [5]; and space solar
power [6]. Each application requires attitude slew maneuvers, i.e., maneuvers that change the spacecraft’s orientation.
Large-angle slew maneuvers in particular are commonly used, e.g., for reorienting sensors, antennas, and solar arrays.
Slew maneuvers are an overhead on a mission, meaning they are required for achieving the mission objectives, but
generally represent time lost from actively performing useful mission functions. For this reason, minimizing slew
times has important implications for space mission design. In particular, slewing faster leaves more time available for
executing a spacecraft’s intended mission.
Given the proliferation of applications for flexible spacecraft, a common question duringmission concept development

and preliminary design pertains to how fast these spacecraft can be slewed. In some cases, a rapid slew capability can
even be a prerequisite for feasibility and/or viability of a particular mission concept. For example, in geostationary Earth
orbit (GEO), the space solar power satellites proposed by the Caltech Space Solar Power Project (SSPP) [6] require two
90-deg pitch-axis slews per day to maximize the energy delivered to the electrical grid [7]. In the SSPP concept, the
system efficiency decreases as the slew time increases [8]. All else being equal, slower slew maneuvers result in the
transmission of less energy, thereby increasing the cost of the electricity delivered to the grid. Thus, the slew time
directly impacts the system’s overall economic viability. More generally, as the development of increasingly large and
flexible spacecraft continues, so too does the importance of slew time as a design driver.
A common assumption about flexible spacecraft is that structural compliance limits how fast they can be slewed.

For highly compliant structures, very long slew times can make an otherwise promising mission concept infeasible. As
a result, it is important to demonstrate the feasibility of slewing large flexible spacecraft early in the design process.
However, to the authors’ knowledge, there is no standard framework for rigorously quantifying how fast flexible
spacecraft can be slewed. The most common heuristic states that the minimum slew time must be at least ten times the
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structure’s lowest natural period. Such a heuristic is convenient but may lead to overly conservative, and in some cases,
prohibitively conservative spacecraft designs and mission scenarios.
Motivated by the goal of achieving agility despite structural flexibility, this paper proposes a framework for using

reduced-order models to predict minimum slew times for flexible spacecraft. The reduced-order models lead to simple
analytical and quasi-analytical slew time estimates, which in turn are useful for both requirements definition and for
establishing the feasibility of slewing flexible spacecraft during concept development and preliminary design.
Slew time verification then requires higher-fidelity analysis tools, such as geometrically nonlinear finite element

simulations. There are many academic examples in the literature that apply these types of simulations to flexible
spacecraft with simple structural geometries consisting of beams or plates; see e.g., [9, 10]. These types of simulations
are also often used for modeling solar sails [11, 12] and other advanced concepts [13]. However, they are by no means
standard for simulating the attitude dynamics of flexible spacecraft with complex structural geometries. To that end, this
paper uses geometrically nonlinear finite element simulations of a very flexible spacecraft with a complex structural
geometry both to verify slew time predictions and to promote the more widespread adoption of these types of simulations
in spacecraft engineering practice.

SpacecraftTile

Strip

Fig. 1 Caltech SSPP spacecraft structural architecture originally introduced in [6].

As a case study, this paper analyzes a representative problem based on the Caltech SSPP spacecraft structural
architecture [6] (see Fig. 1) during a 90-deg, nominally rest-to-rest pitch-axis slew maneuver. Such a maneuver is
representative of the maneuvers required to maximize the energy delivered to an electrical grid from an SSPP spacecraft
in GEO [7]. In the SSPP concept, the structural architecture is planar to facilitate packaging and deployment using a
kirigami-inspired folding scheme and is designed to be both modular and scalable, allowing the same basic components
(the photovoltaic-powered radio-frequency tiles and the structural strips) to be used for spacecraft designed for different
applications at different length scales. This paper specifically considers spacecraft with outermost strips that range from
5 m to 50 m long, corresponding to first-mode natural frequencies between approximately 1 Hz and 1 mHz. The SSPP
architecture and its derivatives (see e.g., [14]) are representative of a class of spacecraft structures referred to as bending
architectures [15], i.e., structural concepts that derive their load carrying capability from the bending stiffness of the
structural elements. With its approximately 100 g/m2 areal density, the SSPP concept specifically occupies a middle
ground in terms of stiffness and areal density between membrane-based deployable structures concepts like solar sails
and more traditional spacecraft with deployable solar arrays and antennas.
This paper is organized as follows: Sec. II describes the canonical model for flexible spacecraft attitude dynamics.

Sec. III uses the Craig-Bampton method [16] to develop reduced-order modal models from flexible spacecraft finite
element models that are analogous to this canonical model. Sec. IV proposes a framework for predicting slew times for
flexible spacecraft. Sec. V applies the tools from Secs. III and IV to predict the minimum slew times for a flexible
spacecraft based on the Caltech SSPP spacecraft structural architecture. It subsequently verifies these predictions using
geometrically nonlinear simulations of a high-fidelity finite element model. The paper concludes with a discussion of
the results and their implications in Sec. VI.
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II. Canonical Flexible Spacecraft Model
The classical approach for attitude control system (ACS) analysis and design reduces complex flexible spacecraft

dynamics into three decoupled, single-axis modal models, one for rotation about each axis (roll, pitch, and yaw) [17, 18].
Each model includes a single rigid body mode and one or more dynamically significant elastic modes. In particular,
preliminary analysis and design often rely on single-mode models, i.e., single-axis modal models with a single retained
elastic mode. This is the simplest structural dynamic model that includes both rigid body and flexible modes, and hence,
is taken as the canonical model for flexible spacecraft dynamics. The canonical model takes the form of the unrestrained
spring-mass-damper system with two degrees of freedom (DOFs) depicted in Fig. 2.

Fig. 2 The canonical model of a flexible spacecraft is a floating spring-mass-damper system with two DOFs.

The equations of motion for the canonical model are[
𝑚1 0
0 𝑚2

] [
¥𝑥1
¥𝑥2

]
+

[
𝑐 −𝑐
−𝑐 𝑐

] [
¤𝑥1
¤𝑥2

]
+

[
𝑘 −𝑘
−𝑘 𝑘

] [
𝑥1

𝑥2

]
=

[
𝑢1

0

]
(1)

where 𝑚1 denotes the mass of the spacecraft “bus” with position 𝑥1, 𝑚2 is the mass of the flexible “appendage” with
position 𝑥2, 𝑘 is the spring stiffness, 𝑐 is the viscous damping coefficient, 𝑢1 is the control input on 𝑚1, and dot
notation denotes differentiation with respect to time 𝑡. In practice, 𝑥1 is the bus orientation, 𝑥2 is the modal coordinate
corresponding to the dominant flexible mode (which is not necessarily the lowest-frequency mode), and 𝑢1 is the attitude
control torque. The remaining parameters are related to the rigid and flexible body properties of the spacecraft. Sec. III
shows how to reduce arbitrary finite element models into single-axis modal models and, by doing so, derives expressions
for these parameters. Importantly, even though the focus of this paper is on attitude slew maneuvers, Eq. (1) applies for
either translational or rotational motion. Hence, the parameters and variables in Eq. (1) are to be interpreted in the
generalized sense; e.g., 𝑚1 and 𝑚2 are generalized masses that can represent either masses or moments of inertia.
The classical ACS analysis and design approach treats flexibility as a disturbance acting on the spacecraft bus. Thus,

the parameter of interest for ACS design and analysis is the influence of 𝑚2 on 𝑚1, not the motion of 𝑚2 itself. To
eliminate the motion of 𝑚2, the standard approach is to rewrite Eq. (1) in the Laplace domain and evaluate the transfer
function from 𝑢1 to 𝑥1. Taking the Laplace transform of Eq. (1) with zero initial conditions gives

𝑚1𝑠
2𝑋1 (𝑠) + 𝑐𝑠 (𝑋1 (𝑠) − 𝑋2 (𝑠)) + 𝑘 (𝑋1 (𝑠) − 𝑋2 (𝑠)) = 𝑈1 (𝑠) (2)

𝑚2𝑠
2𝑋2 (𝑠) + 𝑐𝑠 (𝑋2 (𝑠) − 𝑋1 (𝑠)) + 𝑘 (𝑋2 (𝑠) − 𝑋1 (𝑠)) = 0 (3)

where 𝑋1 (𝑠) = L(𝑥1 (𝑡)), 𝑋2 (𝑠) = L(𝑥2 (𝑡)),𝑈1 (𝑠) = L(𝑢1 (𝑡)), and L(·) denotes the Laplace transform that converts a
function of time 𝑡 to a function of the complex frequency 𝑠. Solving Eqs. (2) and (3) for 𝑋1 (𝑠)/𝑈1 (𝑠), taking a partial
fraction expansion, and simplifying yields

𝑋1 (𝑠)
𝑈 ′
1 (𝑠)

=
1
𝑠2

+ 𝑚2/𝑚1
𝑠2 + 2 (1 + 𝑚2/𝑚1) Z𝜔𝑛𝑠 + (1 + 𝑚2/𝑚1) 𝜔2𝑛

(4)

where 𝜔𝑛 =
√︁
𝑘/𝑚2 is the fixed-base natural frequency, Z = 𝑐/

(
2
√
𝑘𝑚2

)
is the fixed-base damping ratio (fraction

of critical damping), and 𝑢′1 is the acceleration input to the system, i.e., 𝑢1 = (𝑚1 + 𝑚2) 𝑢′1 [equivalently, 𝑈1 (𝑠) =
(𝑚1 + 𝑚2)𝑈 ′

1 (𝑠)].
Equation (4) consists of two terms, the rigid body translation of 𝑚1 and a perturbation due to the motion of 𝑚2, i.e.,

due to flexibility. To make this more explicit, let 𝑋1 (𝑠) = 𝑋1,𝑟 (𝑠) + 𝑋1, 𝑓 (𝑠) where the subscripts 𝑟 and 𝑓 denote the
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rigid body and flexible terms, with corresponding transfer functions

𝑋1,𝑟 (𝑠)
𝑈 ′
1 (𝑠)

=
1
𝑠2

(5)

𝑋1, 𝑓 (𝑠)
𝑈 ′
1 (𝑠)

=
𝑚2/𝑚1

𝑠2 + 2 (1 + 𝑚2/𝑚1) Z𝜔𝑛𝑠 + (1 + 𝑚2/𝑚1) 𝜔2𝑛
(6)

Taking the inverse Laplace transforms of Eqs. (5) and (6) then gives

¥𝑥1,𝑟 = 𝑢′1 (7)

¥𝑥1, 𝑓 + 2
(
1 + 𝑚2

𝑚1

)
Z𝜔𝑛 ¤𝑥1, 𝑓 +

(
1 + 𝑚2

𝑚1

)
𝜔2𝑛𝑥1, 𝑓 =

𝑚2
𝑚1

𝑢′1 (8)

From Eq. (8), the perturbation due to flexibility (i.e., the flexible dynamics) can be modeled as a damped harmonic
oscillator with increased natural frequency 𝜔𝑛

√︁
1 + 𝑚2/𝑚1 and damping ratio Z

√︁
1 + 𝑚2/𝑚1 relative to the fixed-base

case. The shifted natural frequency 𝜔𝑛

√︁
1 + 𝑚2/𝑚1 is the free-free natural frequency of Eq. (4).

Classical approaches for flexible spacecraft ACS analysis and design are usually predicated on minimizing the
magnitude of any disturbances induced by flexibility, i.e., by making the magnitude of 𝑥1, 𝑓 and its derivatives “small”.
This entails moving the system sufficiently “slowly” to prevent significant excitation of the flexible mode(s). With this in
mind, a standard practice is to require that the closed-loop ACS bandwidth is at least an order of magnitude below the
free-free natural frequency 𝜔𝑛

√︁
1 + 𝑚2/𝑚1 [17].∗ In this case, the ACS reacts at least an order of magnitude slower

than the natural time scale of the system’s dynamics. Using this approach, it is often possible to neglect flexibility in
ACS design and instead simply design a control system for the rigid body motion, as is done, e.g., in [19].
A similar philosophy is usually adopted for designing slew maneuvers. A nominally rest-to-rest slew maneuver for

a rigid spacecraft, i.e., a spacecraft that can be modeled as a rigid body, leads to residual structural vibrations for a
flexible one. In light of Eq. (4), the spacecraft bus perceives these vibrations as angular position and velocity errors, the
magnitudes of which often appear in ACS pointing error budgets (see e.g., [20]) and are a proxy for pointing stability
and jitter. Here, jitter refers to the classical definition of unwanted mechanical vibrations, as opposed to more nuanced
definitions typically used for space-borne optical systems [21, 22]. A flexible spacecraft ACS with its closed-loop
bandwidth set an order of magnitude below its lowest flexible-mode frequency is incapable of rejecting jitter [17]. For
these reasons, minimizing jitter is imperative for pointing accuracy and stability.
A common heuristic for minimizing jitter states that the slew maneuver duration 𝑇 must be at least an order of

magnitude longer than the natural period 𝑇𝑛 = 2𝜋/𝜔𝑛. However, such a requirement is shown to be misguided in
Secs. IV and V. In particular, “slow” is relative, and depends on both the “shape” of the forcing applied to the system
and the ratio 𝑇/𝑇𝑛. With this in mind, this paper instead proposes using quantitative requirements on the residual (i.e.,
post-slew) amplitude of 𝑥1, 𝑓 and its derivatives (specifically, on ¤𝑥1, 𝑓 ) to calculate feasible slew times. For a given
spacecraft and slew maneuver, specifying a requirement on the residual amplitude of 𝑥1, 𝑓 or any of its derivatives
indirectly specifies a requirement on the minimum slew time. Hedgepeth [23] uses similar arguments to determine
a first-mode natural frequency requirement for slewing flexible spacecraft, although his approach underpredicts the
amplitudes of 𝑥1, 𝑓 and its derivatives; for additional details, see [8].

III. Derivation of Single-Axis Modal Models
Practical applications of the canonical flexible spacecraft model require relationships between the parameters

𝑚1, 𝑚2, Z , 𝜔𝑛, and a flexible spacecraft finite element model. To that end, this section uses the Craig-Bampton
method [16] to rigorously and systematically derive single-axis modal models analogous to the canonical model from
unrestrained (free-free) finite element models. In doing so, it derives a fully coupled 6-DOF generalization of the
transfer function from 𝑢1 to 𝑥1 [Eq. (4)] and shows that the correct set of vibration modes for ACS analysis and design
are the Craig-Bampton method’s fixed-interface normal modes. It also discusses methods for identifying the most
dynamically significant mode(s) and special considerations for symmetric structures. The Craig-Bampton method
generalizes the notion of a “bus” with a flexible “appendage” to arbitrarily complex flexible spacecraft.

∗In practice, this depends on the spacing of the structural modes. For a system with a few well-separated modes, it is possible to achieve higher
bandwidth linear control systems by filtering the structural modes (see e.g., [18] and the references therein). However, this becomes difficult, if not
impossible for large space structures with many closely spaced modes (see e.g., [19]), in which case the aforementioned requirement on closed-loop
bandwidth becomes imperative.
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A. 6-DOF Transfer Function
The derivation of the 6-DOF generalization of the transfer function from 𝑢1 to 𝑥1 [Eq. (4)] starts from the standard

equation of motion for a free-free linear finite element model:

M¥x + C¤x + Kx = Bu (9)

Here, x ∈ R𝑛 contains the nodal displacement DOFs, u ∈ R𝑚 contains the external forces and moments,M ∈ R𝑛×𝑛 is the
symmetric positive definite mass matrix, C ∈ R𝑛×𝑛 is the symmetric positive semi-definite damping matrix, K ∈ R𝑛×𝑛
is the symmetric positive semi-definite stiffness matrix, and B ∈ R𝑛×𝑚 maps the external forces and moments to the
nodal DOFs. In general, each node has six DOFs, three translations and three rotations, from which it follows that
Eq. (9) admits six rigid body modes. The damping model (e.g., Rayleigh or modal) determines the rank deficiency of C;
the number of rigid body modes corresponds to the rank deficiency of K.
For the Craig-Bampton method [16], Eq. (9) is partitioned into 𝑛𝐼 interior (𝐼) and 𝑛𝐵 boundary (𝐵) coordinates, as

follows: [
M𝐼 𝐼 M𝐼𝐵

M𝐵𝐼 M𝐵𝐵

] [
¥x𝐼

¥x𝐵

]
+

[
C𝐼 𝐼 C𝐼𝐵

C𝐵𝐼 C𝐵𝐵

] [
¤x𝐼

¤x𝐵

]
+

[
K𝐼 𝐼 K𝐼𝐵

K𝐵𝐼 K𝐵𝐵

] [
x𝐼

x𝐵

]
=

[
0𝑛𝐼×1
u𝐵

]
(10)

where 0𝑛𝐼×1 ∈ R𝑛𝐼 is a zero vector and 𝑛 = 𝑛𝐼 + 𝑛𝐵. Typically, the 𝐵-set contains DOFs either shared with adjacent
components (when the Craig-Bampton substructure is a component of a larger structural dynamic model) or loaded by
external forces or moments; the remaining DOFs belong to the 𝐼-set [16]. For a flexible spacecraft, the 𝐵-set coordinates
are the six rigid body DOFs of the bus, and hence, correspond to 𝑥1 from the canonical model [Eq. (1)]. The 𝐼-set
coordinates (or the corresponding modal coordinates) are then analogous to 𝑥2 in Eq. (1). With the 𝐵-set coordinates
defined in this way, K𝐼 𝐼 is the full-rank stiffness matrix corresponding to fixed (clamped) boundary conditions at the bus.
u𝐵 then contains the forces (e.g., due to thrusters) and moments (e.g., due to the ACS) acting on the bus. Equation (10)
is simply a permutation of the rows and columns of Eq. (9).
Following Sec. II, the immediate goal is to derive the transfer function H(𝑠) that relates a force or moment on

𝐵 to the corresponding translations and rotations, i.e., to find H(𝑠) = G−1 (𝑠) such that X𝐵 (𝑠) = H(𝑠)U𝐵 (𝑠) where
X𝐵 (𝑠) = L(x𝐵 (𝑡)) and U𝐵 (𝑠) = L(u𝐵 (𝑡)). H(𝑠) is subsequently simplified for the special case of a single-axis slew to
obtain an expression analogous to Eq. (4). The derivation of G(𝑠) closely follows the procedure in [24, p. 187–190] for
the undamped sinusoidal (steady-state) transfer function G( 𝑗𝜔) (referred to as “mechanical impedance” in [24]) where
𝑗2 = −1 and 𝜔 is the frequency of the harmonic forcing.
The derivation of G(𝑠) requires taking the Laplace transform of Eq. (10) (again with zero initial conditions), from

which it follows that(
𝑠2

[
M𝐼 𝐼 M𝐼𝐵

M𝐵𝐼 M𝐵𝐵

]
+ 𝑠

[
C𝐼 𝐼 C𝐼𝐵

C𝐵𝐼 C𝐵𝐵

]
+

[
K𝐼 𝐼 K𝐼𝐵

K𝐵𝐼 K𝐵𝐵

]) [
X𝐼 (𝑠)
X𝐵 (𝑠)

]
=

[
0𝑛𝐼×1
U𝐵 (𝑠)

]
(11)

where X𝐼 (𝑠) = L(x𝐼 (𝑡)). Solving the first equation in Eq. (11) for X𝐼 (𝑠) and substituting this result into the second
equation then yields

G(𝑠) = 𝑠2M𝐵𝐵 + 𝑠C𝐵𝐵 + K𝐵𝐵 − Z𝐵𝐼 (𝑠)Z−1
𝐼 𝐼 (𝑠)Z𝐼𝐵 (𝑠) (12)

where Z𝑘𝑙 (𝑠) = 𝑠2M𝑘𝑙 + 𝑠C𝑘𝑙 + K𝑘𝑙 . Equation (12) obscures the modal properties of the structure, and hence, is
rewritten explicitly in terms of mode shapes and natural frequencies next. Truncating the resulting modal expansion
yields a reduced-order modal model.
The fixed-interface normal modes, i.e., the eigenmodes corresponding to fixed (clamped) boundary DOFs, are the

solutions to the following generalized eigenproblem [16]:

K𝐼 𝐼𝝓𝑖 = 𝜔2𝑖 M𝐼 𝐼𝝓𝑖 (13)

Each fixed-interface normal mode 𝜙𝑖 (for 𝑖 = 1, . . . , 𝑛𝐼 ) is orthogonal toM𝐼 𝐼 and normalized such that 𝝓𝑇
𝑖 M𝐼 𝐼𝝓 𝑗 = 𝛿𝑖 𝑗 .†

The 𝑛𝐼 solutions to Eq. (13) can equivalently be written in the form

K𝐼 𝐼𝚽 = M𝐼 𝐼𝚽𝛀2 (14)
† 𝛿𝑖 𝑗 is the Kronecker delta symbol defined such that 𝛿𝑖 𝑗 = 1 for 𝑖 = 𝑗 and 𝛿𝑖 𝑗 = 0 otherwise.
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where 𝚽 =
(
𝝓1, . . . , 𝝓𝑛𝐼

)
is the matrix of generalized eigenvectors and 𝛀2 = diag

{
𝜔21, . . . , 𝜔

2
𝑛𝐼

}
. Since each 𝝓𝑖 is

orthogonal with respect toM𝐼 𝐼 ,

𝚽𝑇M𝐼 𝐼𝚽 = I𝑛𝐼×𝑛𝐼 (15)

𝚽𝑇K𝐼 𝐼𝚽 = 𝛀2 (16)

where I𝑛𝐼×𝑛𝐼 ∈ R𝑛𝐼×𝑛𝐼 is an identity matrix. Subsequent developments additionally assume that

𝚽𝑇C𝐼 𝐼𝚽 = 2Z𝛀 (17)

where Z = diag
{
Z1, . . . , Z𝑛𝐼

}
is the matrix of modal damping coefficients and Z𝑖 ≥ 0 for all 𝑖 = 1, . . . , 𝑛𝐼 .

The 𝑛𝐼 generalized eigenvectors are linearly independent, i.e., 𝚽 is invertible. Hence, rearranging Eqs. (15)–(17)
results in the following identities:

M𝐼 𝐼 = 𝚽−𝑇𝚽−1 (18)

K𝐼 𝐼 = 𝚽−𝑇𝛀2𝚽−1 (19)

C𝐼 𝐼 = 2𝚽−𝑇Z𝛀𝚽−1 (20)

InvertingM𝐼 𝐼 and K𝐼 𝐼 then yields the following modal expansions [24, p. 187–190]:

M−1
𝐼 𝐼 = 𝚽𝚽𝑇 =

𝑛𝐼∑︁
𝑖=1

𝝓𝑖𝝓
𝑇
𝑖 (21)

K−1
𝐼 𝐼 = 𝚽𝛀−2𝚽𝑇 =

𝑛𝐼∑︁
𝑖=1

𝝓𝑖𝝓
𝑇
𝑖

𝜔2
𝑖

(22)

from which it readily follows that

K−1
𝐼 𝐼 M𝐼 𝐼K−1

𝐼 𝐼 = 𝚽𝛀−4𝚽𝑇 =

𝑛𝐼∑︁
𝑖=1

𝝓𝑖𝝓
𝑇
𝑖

𝜔4
𝑖

(23)

By analogy with Eq. (23),

K−1
𝐼 𝐼 C𝐼 𝐼K−1

𝐼 𝐼 = 𝚽𝛀−2 (2Z𝛀)𝛀−2𝚽𝑇 =

𝑛𝐼∑︁
𝑖=1

𝝓𝑖 (2Z𝑖𝜔𝑖) 𝝓𝑇
𝑖

𝜔4
𝑖

(24)

Substituting Eqs. (18)–(20) into Z−1
𝐼 𝐼
(𝑠) then yields

Z−1
𝐼 𝐼 (𝑠) = 𝚽

(
𝑠2I𝑛𝐼×𝑛𝐼 + 2𝑠Z𝛀 +𝛀2

)−1
𝚽𝑇 (25)

which is equivalent to the following modal expansion:

Z−1
𝐼 𝐼 (𝑠) =

𝑛𝐼∑︁
𝑖=1

𝝓𝑖𝝓
𝑇
𝑖

𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2
𝑖

(26)

Further simplifications require the identity [24, p. 189]

1
𝑠2 + 𝜔2

𝑖

=
1
𝜔2
𝑖

− 𝑠2

𝜔4
𝑖

+ 𝑠4

𝜔4
𝑖

(
𝑠2 + 𝜔2

𝑖

) (27)

and the substitution 𝑠2 → 𝑠2 + 2Z𝑖𝜔𝑖𝑠. Using Eq. (27) to expand the denominator in Eq. (26) and simplifying with
Eqs. (22)–(24) then gives

Z−1
𝐼 𝐼 (𝑠) = K−1

𝐼 𝐼 − 𝑠2K−1
𝐼 𝐼 M𝐼 𝐼K−1

𝐼 𝐼 − 𝑠K−1
𝐼 𝐼 C𝐼 𝐼K−1

𝐼 𝐼 +
𝑛𝐼∑︁
𝑖=1

𝝓𝑖

(
𝑠2 + 2Z𝑖𝜔𝑖𝑠

)2
𝝓𝑇
𝑖

𝜔4
𝑖

(
𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

) (28)
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Substituting Eq. (28) into Eq. (12) and simplifying ultimately results in the following expression for G(𝑠):

G(𝑠) = 𝑠2M∗
𝐵𝐵 + 𝑠C∗

𝐵𝐵 + K∗
𝐵𝐵 − 𝑠2

𝑛𝐼∑︁
𝑖=1

(e𝑖 + 𝑠f𝑖) (e𝑖 + 𝑠f𝑖)𝑇

𝜔4
𝑖

(
𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

) (29)

where e𝑖 =
(
2Z𝑖𝜔𝑖K𝐵𝐼 − 𝜔2

𝑖
C𝐵𝐼

)
𝝓𝑖 and f𝑖 =

(
K𝐵𝐼 − 𝜔2

𝑖
M𝐵𝐼

)
𝝓𝑖 are modal vectors and

M∗
𝐵𝐵 = M𝐵𝐵 − M𝐵𝐼K−1

𝐼 𝐼 K𝐼𝐵 − K𝐵𝐼K−1
𝐼 𝐼 M𝐼𝐵 + K𝐵𝐼K−1

𝐼 𝐼 M𝐼 𝐼K−1
𝐼 𝐼 K𝐼𝐵 (30)

K∗
𝐵𝐵 = K𝐵𝐵 − K𝐵𝐼K−1

𝐼 𝐼 K𝐼𝐵 (31)

C∗
𝐵𝐵 = C𝐵𝐵 − C𝐵𝐼K−1

𝐼 𝐼 K𝐼𝐵 − K𝐵𝐼K−1
𝐼 𝐼 C𝐼𝐵 + K𝐵𝐼K−1

𝐼 𝐼 C𝐼 𝐼K−1
𝐼 𝐼 K𝐼𝐵 (32)

The derivation of Eq. (29) is conceptually straightforward, but the details are involved and are left to [8]. Equation (29)
emphasizes that a force or moment on 𝐵 induces both rigid body and elastic motions. In practice, it is advantageous to
precompute e𝑖 and f𝑖 to avoid unnecessary calculations of computationally expensive matrix-vector products during
repeated evaluations of Eq. (29).
If the 𝑛𝐵 boundary DOFs fully restrain the structure’s 𝑛𝐵 rigid body modes, then M∗

𝐵𝐵
is the rigid body mass

matrix of the unrestrained and undeformed structure (evaluated with respect to 𝐵) and K∗
𝐵𝐵
is the projection of the

unrestrained stiffness matrixK onto the rigid body modes, i.e.,K∗
𝐵𝐵

= 0𝑛𝐵×𝑛𝐵 (otherwise,K∗
𝐵𝐵
is singular but non-zero).

The properties of C∗
𝐵𝐵
depend on the damping model. A particularly convenient choice for the damping model is

stiffness-proportional damping, in which case C = (2Z1/𝜔1)K where 𝜔1 and Z1 are respectively the first-mode natural
frequency and damping ratio. With stiffness-proportional damping, higher-frequency modes are more heavily damped;
specifically, Z𝑖 = Z1 (𝜔𝑖/𝜔1) for 𝑖 = 1, . . . , 𝑛𝐼 . Thus, C∗

𝐵𝐵
= 0𝑛𝐵×𝑛𝐵 and e𝑖 = 0𝑛𝐵×1. Together, these assumptions

reduce Eq. (29) to

G(𝑠) = 𝑠2M∗
𝐵𝐵 − 𝑠4

𝑛𝐼∑︁
𝑖=1

f𝑖f𝑇𝑖
𝜔4
𝑖

(
𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

) (33)

Equation (33) is equivalent to Eq. (8.21) in [24] when 𝑠 = 𝑗𝜔 and Z𝑖 = 0 for 𝑖 = 1, . . . , 𝑛𝐼 .
The modal participation vector f𝑖 is related to the dynamic reaction of the 𝑖th mode on 𝐵 due to an external force or

moment on 𝐵 [24, p. 187–190]. The corresponding modal mass matrixM𝑖 = f𝑖f𝑇𝑖 /𝜔4𝑖 determines the flexible body
accelerations required to dynamically react an external force or moment on 𝐵 and how those accelerations are distributed
among the eigenmodes. The total modal mass matrix is

𝑛𝐼∑︁
𝑖=1

M𝑖 = K𝐵𝐼K−1
𝐼 𝐼 M𝐼 𝐼K−1

𝐼 𝐼 K𝐼𝐵 − K𝐵𝐼K−1
𝐼 𝐼 M𝐼𝐵 − M𝐵𝐼K−1

𝐼 𝐼 K𝐼𝐵 + M𝐵𝐼M−1
𝐼 𝐼 M𝐼𝐵 (34)

which is derived fromM𝑖 = f𝑖f𝑇𝑖 /𝜔4𝑖 and Eqs. (21)–(23). Equation (34) is only a function of the finite element mass and
stiffness matrices, i.e., it is independent of the computed eigenmodes.
A closed-form expression for the transfer function H(𝑠) = G−1 (𝑠) can be derived using the Woodbury matrix

identity [25], or equivalently, repeated applications of the Sherman-Morrison formula [25] (see also [26]). The latter
is useful for developing reduced-order models with only a handful of retained modes because it results in explicit
relationships for the modal interactions.
Using the Woodbury matrix identity to invert G(𝑠) requires rewriting the modal expansion in Eq. (33) as a matrix

product. To do this, let 𝚲(𝑠) = diag
{
𝑠2 + 2Z1𝜔1𝑠 + 𝜔21, . . . , 𝑠

2 + 2Z𝑛𝐼𝜔𝑛𝐼 𝑠 + 𝜔2𝑛𝐼
}
and F =

(
f1/𝜔21, . . . , f𝑛𝐼/𝜔

2
𝑛𝐼

)
, from

which it follows that G(𝑠) can be written as

G(𝑠) = 𝑠2M∗
𝐵𝐵 − 𝑠4F𝚲−1 (𝑠)F𝑇 (35)

Applying the Woodbury matrix identity then results in the following exact expression for H(𝑠) = G−1 (𝑠):

H(𝑠) = 1
𝑠2

M∗−1
𝐵𝐵 + M∗−1

𝐵𝐵F
(
𝚲(𝑠) − 𝑠2F𝑇M∗−1

𝐵𝐵F
)−1

F𝑇M∗−1
𝐵𝐵 (36)

This is the 6-DOF generalization of the transfer function from 𝑢1 to 𝑥1 from Sec. II [Eq. (4)]. Equation (36) is
subsequently specialized for the case of a single-axis, single-mode model in Sec. III.C.
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B. Mode Selection Criteria
Following [24, p. 191–192], Eq. (33) shows how to select “dominant” eigenmodes for general reduced-order models,

i.e., which modes to retain in a truncated modal expansion. Specifically, f𝑖 measures the modal participation of mode 𝑖;
the larger the magnitude of f𝑖 , the larger the dynamic reaction on 𝐵, the larger the modal mass, and the more dominant
the mode. For these reasons, [24] suggests using the magnitude of the 𝑖th term in the modal expansion from Eq. (33) to
rank modes from most dominant to least dominant:

𝑝𝑖 = | |f𝑖/𝜔2𝑖 | |22 = trM𝑖 (37)

Here, | |·| |2 denotes the Euclidean norm. Larger values of 𝑝𝑖 correspond to more dominant modes. The 𝜔4𝑖 in the
denominator of Eq. (37) implies that dominant modes tend to be lower-frequency modes, but in general, the dominant
mode is not necessarily the lowest-frequency mode.
Equation (37) is ill-defined for structures with both translational and rotational DOFs. To remedy this, the coordinate

partition from [27] is used to develop a modified mode selection criterion. Specifically, f𝑖 is partitioned into translational
(𝑇) and rotational (𝑅) DOFs such that f𝑇

𝑖
=

(
f𝑇
𝑖,𝑇

, f𝑇
𝑖,𝑅

)
. The modes are then sorted according to the following criterion:

𝑞𝑖 =
1
2

©«
| |f𝑖,𝑇/𝜔2𝑖 | |22

𝑛𝐼∑︁
𝑖=1

| |f𝑖,𝑇/𝜔2𝑖 | |22

+
||f𝑖,𝑅/𝜔2𝑖 | |22

𝑛𝐼∑︁
𝑖=1

| |f𝑖,𝑅/𝜔2𝑖 | |22

ª®®®®®¬
(38)

where f𝑖,𝑇 f𝑇
𝑖,𝑇

/𝜔4
𝑖
and f𝑖,𝑅f𝑇

𝑖,𝑅
/𝜔4

𝑖
are the translational and rotational blocks of the modal mass matrix M𝑖 , the

summations in the denominators are evaluated using Eq. (34), and again larger values correspond to more dominant
modes. Equation (38) is the average of the 𝑖th mode’s translational modal mass (normalized by the total modal mass)
and rotational modal inertia (normalized by the total modal inertia). Equivalently, it is a normalized measure of the 𝑖th
mode’s dynamic reaction on 𝐵. For models with either translational DOFs or rotational DOFs, but not both, Eq. (38)
reduces to a normalized version of Eq. (37). Importantly, both Eqs. (37) and (38), and hence, the resulting mode
sortings, are invariant to reference frame transformations.
Equation (38) is equivalent to the effective interface mass introduced by Kammer and Triller [27]. Specifically,M𝑖

is equivalent to their matrix [M𝑖]. This is straightforward to show by expanding [M𝑖], substituting Eq. (22), and using
the orthogonality of 𝚽 [Eq. (15)]. With collocated sensors and actuators, effective interface mass, and by extension,
Eq. (38), also measures the relative controllability and observability of each fixed-interface mode [28]. The higher the
value of Eq. (38), the more controllable and observable the mode. Moreover, effective interface mass is closely related
to the balanced singular values [29] from the balanced truncation method of model reduction [30]. For undamped free
vibrations, balanced truncation yields normal vibration modes [31].
For a single-axis modal model, the dominant mode is the mode with the maximum modal mass or inertia per

axis, i.e., the maximum absolute value in the corresponding DOF in f𝑖 . In general, different modes are dominant for
translational and rotational motions about different axes.
Special considerations are required for symmetric structures. These structures have natural frequencies (eigenvalues)

with multiplicities greater than one; the actual multiplicity of a given eigenvalue depends on a structure’s specific
symmetries [32]. Due to the limitations of floating point computations and the accumulation of round-off errors, it is
often difficult to distinguish between symmetric modes with repeated eigenvalues and merely closely spaced modes.
Conveniently, the same criteria used to sort modes can also be used to identify repeated eigenvalues. In particular,
both the magnitude of the modal participation vector f𝑖 and the trace of the modal mass matrixM𝑖 are invariant to the
operations of a symmetry group. Hence, these quantities are both invariant for symmetric modes, meaning symmetric
modes have the same values (to within close numerical tolerances) of both Eq. (37) and Eq. (38). Closely spaced modes,
on the other hand, typically have distinct values of both Eq. (37) and Eq. (38). This has important implications for the
development of reduced-order models for symmetric structures, as discussed further in Sec. III.D.

C. Reduction to Canonical Model
For the case when only the 𝑖th mode is retained in the modal expansion, i.e., the 𝑖th mode is the dominant mode,

Eq. (36) reduces to

H(𝑠) = 1
𝑠2

M∗−1
𝐵𝐵 +

M∗−1
𝐵𝐵

M𝑖M∗−1
𝐵𝐵(

1 − tr
(
M∗−1

𝐵𝐵
M𝑖

) )
𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

(39)
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which uses the definition of the modal mass matrixM𝑖 = f𝑖f𝑇𝑖 /𝜔4𝑖 and the identity f𝑇
𝑖

M∗−1
𝐵𝐵

f𝑖/𝜔4𝑖 = tr
(
M∗−1

𝐵𝐵
M𝑖

)
. In

turn, the relationship between X𝐵 (𝑠) and U′
𝐵
(𝑠) takes the form

X𝐵 (𝑠) =
(
1
𝑠2

I𝑛𝐵×𝑛𝐵 +
M∗−1

𝐵𝐵
M𝑖(

1 − tr
(
M∗−1

𝐵𝐵
M𝑖

) )
𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

)
U′

𝐵 (𝑠) (40)

where U𝐵 (𝑠) = M∗
𝐵𝐵

U′
𝐵
(𝑠). Aside from the modal truncation, Eqs. (39) and (40) are both exact.

From here, several assumptions are required to reduce Eq. (40) to a form analogous to the canonical model [Eq. (4)].
Such a model relates the response of a generalized displacement 𝑋𝐵, 𝑗 (𝑠) to the corresponding scalar control input
𝑈 ′

𝐵, 𝑗
(𝑠) for some 𝑗 = 1, . . . , 𝑛𝐵. For this reason, U′

𝐵
(𝑠) is restricted to a generalized acceleration input about a single

axis, i.e., U′(𝑠) = e 𝑗𝑈
′
𝐵, 𝑗

(𝑠) where e 𝑗 is a standard unit basis vector in R𝑛𝐵 . Similarly, the generalized displacement
X𝐵 (𝑠) is restricted to a translation or rotation about a single axis by left-multiplying both sides of Eq. (40) by e𝑇

𝑗
, i.e.,

𝑋𝐵, 𝑗 (𝑠) = e𝑇
𝑗
X𝐵 (𝑠). Additional assumptions decouple the 𝐵-set coordinates. In particular, it is assumed that the 𝐵-set

coordinates correspond to a node located at the structure’s undeformed center of mass and that the global finite element
reference frame coincides with principal inertial axes. These assumptions diagonalizeM∗

𝐵𝐵
. It follows that

𝑋𝐵, 𝑗 (𝑠)
𝑈 ′

𝐵, 𝑗
(𝑠) =

1
𝑠2

+
𝑀𝑖, 𝑗 𝑗/𝑀∗

𝐵𝐵, 𝑗 𝑗(
1 − tr

(
M∗−1

𝐵𝐵
M𝑖

) )
𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

(41)

where the subscript 𝑗 𝑗 denotes the 𝑗 th main diagonal entry of the corresponding matrix. Lastly, it is assumed that
tr

(
M∗−1

𝐵𝐵
M𝑖

)
≈ 𝑀𝑖, 𝑗 𝑗/𝑀∗

𝐵𝐵, 𝑗 𝑗
, i.e., the matrixM∗−1

𝐵𝐵
M𝑖 has a single dominant main diagonal term. With this assumption,

Eq. (41) simplifies to
𝑋𝐵, 𝑗 (𝑠)
𝑈 ′

𝐵, 𝑗
(𝑠) =

1
𝑠2

+
[ 𝑗 𝑗

𝑠2 + 2
(
1 + [ 𝑗 𝑗

)
Z𝑖𝜔𝑖𝑠 +

(
1 + [ 𝑗 𝑗

)
𝜔2
𝑖

(42)

with mass ratio
[ 𝑗 𝑗 =

𝑀𝑖, 𝑗 𝑗

𝑀∗
𝐵𝐵, 𝑗 𝑗

− 𝑀𝑖, 𝑗 𝑗

(43)

Comparing Eqs. (42) and (4) reveals that 𝑚1 = 𝑀∗
𝐵𝐵, 𝑗 𝑗

− 𝑀𝑖, 𝑗 𝑗 , i.e., the difference between the rigid body mass and the
modal mass, not the rigid body mass itself; 𝑚2 = 𝑀𝑖, 𝑗 𝑗 ; Z = Z𝑖; and 𝜔𝑛 = 𝜔𝑖 . Thus, the parameters in the canonical
model are related to the rigid body mass and the dominant mode’s modal mass, damping ratio, and natural frequency
(where again “mass” is to be interpreted in the generalized sense of either translational or rotational inertia)

D. Canonical Model for Symmetric Structures
The derivation of single-axismodalmodels requires special considerationswhen the dominant eigenmode corresponds

to a repeated eigenvalue. This is particularly important for flexible spacecraft with symmetric structural architectures.
The analysis that follows specifically considers 4-fold symmetric structures, a class of structures that includes solar
sails and the Caltech SSPP spacecraft [6], but the approach and conclusions readily generalize to structures with other
symmetries. 4-fold symmetric structures have eigenvalues with multiplicities of either one or two [32].
When the dominant eigenmode corresponds to a repeated eigenvalue, Eq. (42) underpredicts the magnitude of the

elastic disturbance on the spacecraft bus. Instead of truncating the modal expansion after the dominant mode, the correct
truncation includes both the dominant mode (assumed to be the 𝑖th mode with natural frequency 𝜔𝑖) and the associated
symmetric mode (assumed to be the (𝑖 + 1)th mode with natural frequency 𝜔𝑖+1 = 𝜔𝑖). In this case, f𝑖 = Tf𝑖+1 where T
is an orthogonal matrix corresponding to a symmetry operation [32]. Assuming both modes share the same damping
ratio Z𝑖 = Z𝑖+1, then the truncated form of Eq. (36) is

H(𝑠) = 1
𝑠2

M∗−1
𝐵𝐵 +

M∗−1
𝐵𝐵

(M𝑖 + M𝑖+1) M∗−1
𝐵𝐵(

1 − tr
(
M∗−1

𝐵𝐵
M𝑖

) )
𝑠2 + 2Z𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

(44)

the derivation of which uses f𝑖 = Tf𝑖+1; the invariance of the rigid body mass matrixM∗
𝐵𝐵
to symmetry operations, i.e.,

M∗
𝐵𝐵

= T𝑇M∗
𝐵𝐵

T; the definition of the modal mass matrixM𝑖 = f𝑖f𝑇𝑖 /𝜔4𝑖 ; and the identity f𝑇
𝑖

M∗−1
𝐵𝐵

f𝑖/𝜔4𝑖 = tr
(
M∗−1

𝐵𝐵
M𝑖

)
.

The derivation of Eq. (44) additionally assumes that f𝑇
𝑖

f𝑖+1 = 0 (which reflects that the symmetry operation for a 4-fold
symmetric structure is a rotation by 90 deg) and thatM∗

𝐵𝐵
is diagonal with equal inertias about the axes of symmetry.
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From here, the reduction to the canonical model [Eq. (4)] mirrors the derivation from Sec. III.C with the caveat
that it is now assumed that the matrix M∗−1

𝐵𝐵
M𝑖 contains two main diagonal terms of similar magnitudes. Thus,

tr
(
M∗−1

𝐵𝐵
M𝑖

)
≈ 𝑀𝑖, 𝑗 𝑗/𝑀∗

𝐵𝐵, 𝑗 𝑗
+ 𝑀𝑖,𝑘𝑘/𝑀∗

𝐵𝐵,𝑘𝑘
, which due to symmetry is equivalent to (𝑀𝑖, 𝑗 𝑗 + 𝑀𝑖+1, 𝑗 𝑗 )/𝑀∗

𝐵𝐵, 𝑗 𝑗
.

Since the 𝑖th mode is the dominant mode, 𝑀𝑖, 𝑗 𝑗 > 𝑀𝑖+1, 𝑗 𝑗 . With this assumption, the transfer function from𝑈 ′
𝐵, 𝑗

(𝑠) to
𝑋𝐵, 𝑗 (𝑠) takes the canonical form

𝑋𝐵, 𝑗 (𝑠)
𝑈 ′

𝐵, 𝑗
(𝑠) =

1
𝑠2

+
[ 𝑗 𝑗

𝑠2 + 2
(
1 + [ 𝑗 𝑗

)
Z𝑖𝜔𝑖𝑠 +

(
1 + [ 𝑗 𝑗

)
𝜔2
𝑖

(45)

where the mass ratio is now given by

[ 𝑗 𝑗 =
𝑀𝑖, 𝑗 𝑗 + 𝑀𝑖+1, 𝑗 𝑗

𝑀∗
𝐵𝐵, 𝑗 𝑗

−
(
𝑀𝑖, 𝑗 𝑗 + 𝑀𝑖+1, 𝑗 𝑗

) (46)

Equivalently,

[ 𝑗 𝑗 =

(
1 +

𝑀𝑖+1, 𝑗 𝑗

𝑀𝑖, 𝑗 𝑗

)
𝑀𝑖, 𝑗 𝑗

𝑀∗
𝐵𝐵, 𝑗 𝑗

−
(
𝑀𝑖, 𝑗 𝑗 + 𝑀𝑖+1, 𝑗 𝑗

) (47)

which shows that the elastic disturbance due to the (𝑖 + 1)th mode is proportional to the ratio between its modal mass
𝑀𝑖+1, 𝑗 𝑗 and the dominant mode’s modal mass 𝑀𝑖, 𝑗 𝑗 .

IV. Structure-Based Slew Maneuver Requirements
The canonical flexible spacecraft model from Sec. II (or an analogous reduced-order model from Sec. III) provides a

useful tool for developing slew maneuver requirements, i.e., requirements on the ratio 𝑇/𝑇𝑛 between the slew maneuver
duration 𝑇 and the fixed-base natural period 𝑇𝑛. To that end, this section first uses a bang-bang slew maneuver to
demonstrate that settling time is a poor metric for deriving flexible spacecraft slew maneuver requirements. This
motivates the use of a metric based on the amplitude of the residual disturbance due to the flexible dynamics instead.
A smooth slew maneuver then highlights how tailoring the “shape” of the slew profile can decrease the excitation of
the flexible mode relative to the baseline bang-bang case. The latter is a fairly well-known result in general (see e.g.,
[33–36]) and is the premise underlying the use of input shaping [37, 38] for reducing residual vibrations, but is less
well-used in the definition of flexible spacecraft slew maneuver requirements.

A. Reference Slew Maneuvers
Two reference slew maneuvers are considered in this paper: a bang-bang slew and a smooth polynomial slew, both

of which are nominally rest-to-rest maneuvers through a generalized displacement Δ𝑥 in time 𝑇 . Their accelerations,
velocities, and displacements are depicted in Fig. 3. It is emphasized that these maneuvers are not necessarily appropriate
for implementation on actual flight systems. Rather, they are merely intended to illustrate some of the important design
considerations associated with slewing flexible spacecraft.
A bang-bang slew is the time-optimal, rest-to-rest, single-axis reorientation maneuver for a rigid body with angular

acceleration (torque) constraints [39]. Each “bang” is a step acceleration input of magnitude

¥𝑥max =
4Δ𝑥
𝑇2

(48)

and duration 𝑇/2, as depicted in Fig. 3a. For a rigid body, the first “bang” linearly accelerates the system from rest to a
peak velocity of

¤𝑥max =
¥𝑥max𝑇
2

=
2Δ𝑥
𝑇

(49)

at time 𝑡 = 𝑇/2. The second “bang” then linearly decelerates the system back to rest; see Fig. 3b. The constant
magnitude accelerations yield the quadratic variation in the generalized displacement 𝑥(𝑡) shown in Fig. 3c.
Comparing the bang-bang and smooth polynomial slew maneuvers emphasizes that both the slew profile and the

ratio 𝑇/𝑇𝑛 between the slew maneuver duration 𝑇 and the natural period 𝑇𝑛 determine the disturbance due to the flexible
dynamics. Following [33], the smooth slew maneuver considered here is based on a higher-order (in this case, 7th-order)
polynomial for the generalized displacement 𝑥(𝑡):

𝑥(𝑡)
Δ𝑥

= −20
( 𝑡
𝑇

)7
+ 70

( 𝑡
𝑇

)6
− 84

( 𝑡
𝑇

)5
+ 35

( 𝑡
𝑇

)4
(50)
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(a)

(b)

(c)

Fig. 3 Comparison of rest-to-rest bang-bang and polynomial slew profiles for rigid spacecraft: (a) accelerations,
(b) velocities, and (c) displacements.

This is the lowest-order polynomial that can simultaneous satisfy boundary conditions on 𝑥(𝑡) and its velocity,
acceleration, and jerk (the time derivative of the acceleration). The polynomial coefficients in Eq. (50) correspond to a
rest-to-rest slew through a generalized displacement Δ𝑥 in time 𝑇 with zero-velocity, zero-acceleration, and zero-jerk
boundary conditions. The zero-jerk boundary conditions reduce jerk by flattening the acceleration curve in the vicinities
of the start and end points. Reducing jerk usually reduces the amplitude of the disturbance due to the flexible dynamics
[33–36]. Additionally, momentum control systems are usually jerk-limited [36], meaning hardware limitations may
also mandate the use of low-jerk slew trajectories. The polynomial slew smoothly accelerates and then decelerates a
nominally rigid spacecraft from rest-to-rest.
Compared to the baseline bang-bang slew, the polynomial slew requires higher peak accelerations to achieve the

same total displacement in the same time. In this case, the peak acceleration is

¥𝑥max =
84

√
5Δ𝑥

25𝑇2
(51)

which occurs at times 𝑡 = (5 ∓
√
5)𝑇/10. The peak acceleration is approximately 1.9 times higher than the peak

acceleration for the bang-bang slew and leads to proportionally higher peak structural loads. Larger accelerations also
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lead to larger velocities. The peak velocity occurs at time 𝑡 = 𝑇/2 and is given by

¤𝑥max =
35Δ𝑥
16𝑇

(52)

This is approximately 1.1 times higher than the peak velocity for the bang-bang slew. Thus, for a given slew time 𝑇 , the
polynomial slew requires a higher average acceleration than the bang-bang slew, which in turn results in proportionally
higher average structural loads.

(a) (b)

(c) (d)

Fig. 4 Transient responses of spacecraft bus for an undamped canonical flexible spacecraft [Eq. 1] with 𝒎1 = 𝒎2
during slew maneuvers of duration 𝑻. Positions during (a) bang-bang and (b) polynomial slews. Velocities during
(c) bang-bang and (d) polynomial slews.

To highlight the differences between a rigid spacecraft and a flexible one, Fig. 4 depicts several representative
responses of an undamped canonical flexible spacecraft [Eq. (1)] with 𝑚1 = 𝑚2 to bang-bang and polynomial slews.
The general trend is that the magnitude of the disturbance due to the flexible dynamics decreases as the duration of the
slew increases, i.e., as 𝑇/𝑇𝑛 increases. In other words, as 𝑇/𝑇𝑛 increases, the responses approach the rigid spacecraft
responses from Fig. 3. Compared to the responses to a bang-bang slew, the larger peak accelerations during the
polynomial slew result in larger-amplitude transient oscillations for small values of 𝑇/𝑇𝑛, e.g., for 𝑇/𝑇𝑛 = 1. However, as
𝑇/𝑇𝑛 increases, the amplitude of the oscillations decreases faster for the polynomial slew than it does for the bang-bang
slew. For example, with 𝑇/𝑇𝑛 = 4, the response of the flexible spacecraft to the polynomial slew closely approximates
the response of the rigid spacecraft from Fig. 3. This implies that there is a critical value of 𝑇/𝑇𝑛 beyond which the
disturbance due to the flexible dynamics is always smaller for a polynomial slew than it is for a bang-bang slew.
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B. Slew Maneuver Requirements Based on Settling Times
The settling time, i.e., the time it takes for the amplitude of oscillation to subside below some specified threshold, is

a natural way to specify the minimum slew time for a flexible spacecraft. For second-order linear systems, it is common
to define the settling time using either 2% or 5% of the final (steady-state) response to a specified input [40]. 2% is used
in what follows.
With its base fixed, i.e., with the constraints 𝑥1 = 0 and ¤𝑥1 = 0, the canonical flexible spacecraft [Fig. 2] is simply a

1-DOF damped harmonic oscillator. The 2% settling time 𝑇𝑠 for a 1-DOF damped harmonic oscillator with natural
period 𝑇𝑛 = 2𝜋/

√︁
𝑘/𝑚2 subject to a unit step input is [40]

𝑇𝑠

𝑇𝑛
=
2
𝜋Z

(53)

where Z = 𝑐/
(
2
√
𝑘𝑚2

)
is the damping ratio. From Eq. (53), 𝑇𝑠 increases inversely proportionally to Z .

For a bang-bang slew, the minimum slew time 𝑇 is twice the settling time 𝑇𝑠, i.e., 𝑇 = 2𝑇𝑠. In this way, there is
sufficient time for the response to settle from both the first “bang” before applying the second “bang” and from the
second “bang” before the end of the slew. It follows that the minimum slew time for the canonical flexible spacecraft
[Eq. (1)] takes the form

𝑇

𝑇𝑛
=

4
𝜋Z (1 + 𝑚2/𝑚1)

(54)

where 𝑇𝑛 and Z are again its fixed-base natural period and damping ratio. The derivation of Eq. (54) uses 𝑇 = 2𝑇𝑠
and entails substituting the natural period 𝑇𝑛

/√︁
1 + 𝑚2/𝑚1 and damping ratio Z

√︁
1 + 𝑚2/𝑚1 for the canonical flexible

spacecraft from Eq. (8) into Eq. (53). With a settled response, a spacecraft can immediately resume operations like
science data collection post-slew.

Fig. 5 Minimum bang-bang slew time 𝑻 derived from the 2% settling time for the canonical flexible spacecraft
[Fig. 2] with fixed-base natural period 𝑻𝒏.

Figure 5 plots Eq. (54) as a function of the mass ratio 𝑚2/𝑚1 and the damping ratio Z . Based on the figure, the
very low damping ratios (Z ≪ 1%) characteristic of large flexible spacecraft [41] imply settling times that are typically
between 100 and 1000 times the fixed-base natural period. For example, with a dominant-mode frequency of 0.1 Hz,
𝑚2 = 𝑚1, and 0.5% modal damping, the minimum slew time is approximately 22 min, something comparable to the
slew maneuver durations for existing exploration-class NASA spacecraft (e.g., Juno or Europa Clipper) and smaller solar
sails (e.g., NEA Scout [42]). The situation, however, progressively deteriorates as flexibility increases and damping
decreases. With a dominant-mode frequency of 1 mHz (relevant to some proposed flexible spacecraft concepts, e.g.
[6]), 𝑚2 = 𝑚1, and 0.2% modal damping, Eq. (54) predicts a minimum slew time in excess of 88 h. Thus, settling times
can lead to impractical slew maneuver requirements for very flexible spacecraft.

C. Slew Maneuver Requirements Based on Residual Flexible Dynamics
For a bang-bang slew, the settling time [Eq. (54)] is independent of the magnitude of the step inputs. In light of

Fig. 4, the magnitude of the disturbance due to the flexible dynamics decreases as the slew time increases. As a result,
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for a sufficiently slow slew, the magnitude of this disturbance can be considered negligible even though Eq. (54) may
predict a very long slew time. This implies that a more suitable criterion for determining flexible spacecraft slew
maneuver requirements is a metric based on the magnitude of the residual disturbance due to the flexible dynamics. In
other words, instead of relying on damping to dissipate the flexible dynamics over time, it is preferable to slew the
spacecraft in a way that bounds the residual disturbance due to the flexible dynamics at or below a tolerable level. In
what follows, this residual disturbance is evaluated at time 𝑇 , which for an undamped system is equal to the residual
disturbance for all 𝑡 ≥ 𝑇 . The metric for defining what is tolerable depends on the application. The sequel proposes a
metric that prioritizes spacecraft pointing performance, but other metrics may be more suitable for other applications,
e.g., ones that prioritize shape accuracy.
Slew maneuver loads are generally impulsive, i.e., they are applied over (relatively) short time scales. A structure’s

peak (worst-case) response to an impulsive load is usually reached before damping can dissipate significant energy [43].
Additionally, spacecraft structures are usually very lightly damped; 0.5% modal damping is typical [41]. For these
reasons, it is reasonable to neglect damping for slew maneuver analysis (although the same cannot necessarily be said
for ACS analysis and design). The underlying assumption here is that the feasible slew times decrease with damping. In
other words, the undamped response provides an upper bound on the feasible slew time.

(a) (b)

Fig. 6 Amplitude of the residual velocity | ¤𝒙1, 𝒇 |/(𝚫𝒙/𝑻) for (a) bang-bang and (b) polynomial slew maneuvers.

Generally speaking, an ACS can more easily tolerate angular position errors than angular velocity ones. Unlike
angular position errors, even small angular velocity errors can lead to unwanted effects, e.g., smearing in optical sensors,
that are difficult to correct a posteriori. For this reason, feasible slew times in this paper are calculated from Eq. (8)
using requirements on the residual (i.e., post-slew) amplitude of the velocity ¤𝑥1, 𝑓 . For a bang-bang slew of the canonical
flexible spacecraft, the amplitude of the residual velocity, denoted | ¤𝑥1, 𝑓 |, is

| ¤𝑥1, 𝑓 |
(Δ𝑥/𝑇) =

8
𝜋

𝑚2/𝑚1√︁
1 + 𝑚2/𝑚1

(
𝑇

𝑇𝑛

)−1
sin2

(
𝜋

2
√︁
1 + 𝑚2/𝑚1

(
𝑇

𝑇𝑛

))
(55)

with the upper bound
| ¤𝑥1, 𝑓 |
(Δ𝑥/𝑇) ≤ 8

𝜋

𝑚2/𝑚1√︁
1 + 𝑚2/𝑚1

(
𝑇

𝑇𝑛

)−1
(56)

Figure 6a then plots Eq. (56) as a function of both 𝑇/𝑇𝑛 and 𝑚2/𝑚1. An important takeaway is that lower mass ratios
and higher slew times result in lower residual velocities. The figure maps the design space of possible values for 𝑇/𝑇𝑛
and 𝑚2/𝑚1 that meet a specified requirement on the residual velocity.
Analogous to Fig. 6a, Fig. 6b plots an upper bound for | ¤𝑥1, 𝑓 |/(Δ𝑥/𝑇) as a function of 𝑇/𝑇𝑛 and 𝑚2/𝑚1 for the

polynomial slew. For 𝑇/𝑇𝑛 > 1, Fig. 6b demonstrates that the polynomial slew often reduces the amplitude of the
residual velocity by two orders of magnitude or more compared to the reference bang-bang slew. In other words, the
polynomial slew significantly lowers the excitation of the flexible mode despite its higher peak velocity and acceleration.
Thus, for a given spacecraft and requirement on the amplitude of the residual velocity, the polynomial slew achieves
significantly faster slews than its bang-bang counterpart.
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Equation (56) or the analogous expressions for other slew profiles can be used to rigorously define constraints
on slew maneuver performance. For example, given the slew maneuver and the mass ratio 𝑚2/𝑚1, these types of
expressions define the minimum 𝑇/𝑇𝑛 that meets a specified requirement on the amplitude of the residual angular
velocity. Consequently, there is no universal heuristic for choosing 𝑇/𝑇𝑛; rather, the minimum 𝑇/𝑇𝑛 is a function of the
application, the spacecraft, and the slew maneuver.

V. Minimum Slew Times for a Flexible Spacecraft
This section uses the methods from Secs. III and IV to study feasible slew times for a representative flexible

spacecraft based on the Caltech SSPP spacecraft structural architecture (Fig. 1). The goals of this section are twofold:
(i) to demonstrate the use of simple analytical models to predict minimum slew times, and (ii) to verify these slew times
using geometrically nonlinear finite element simulations. To that end, this section is organized as follows: Sec. V.A
describes the Caltech SSPP spacecraft structural architecture and its finite element implementation; see also Chapter 7
of [8] for more details. Sec. V.B uses reduced-order modal models to predict minimum slew times for SSPP spacecraft
at various length scales. Sec. V.C then uses geometrically nonlinear finite element simulations to verify the predicted
slew time for a 24 m × 24 m SSPP spacecraft with a first-mode frequency of approximately 25 mHz. In the context of
the Caltech SSPP, a 24 m × 24 m spacecraft is significantly more flexible than smaller spacecraft (with outer dimensions
on the order of 10 m or less), but is less complex and lower risk to design, build, and fly than a full-scale flight system.
As a result, such a spacecraft is an intermediate step for demonstrating the requisite attitude dynamics and control
technologies before developing a full-scale flight system.

A. Overview of Caltech SSPP Spacecraft Structural Architecture
The flexible spacecraft studied in this section is based on the ultralight, packageable, and self-deployable spacecraft

structural architecture originally proposed by the Caltech SSPP for space solar power satellites in [6]; see Fig. 1.
The smallest modular unit in the SSPP architecture has typical maximum dimensions on the order of 10 cm

and is referred to as a tile. Each tile is a multi-layer and multi-functional flexible sandwich structure that integrates
photovoltaics, DC-RF converters, and microwave radiators capable of collecting incident solar power and transmitting it
to a receiving station [5, 44].

batten
TRAC longeron

tiles

Fig. 7 Strip architecture and cross-sectional geometry of a TRAC longeron parameterized by the web width 𝒘
flange radius 𝒓 𝒇 , and flange opening angle 𝜽 𝒇 .

The tiles are mounted to slender thin-ply composite structures called strips [45]. Strips are ultralight, ladder-like
structures assembled from two longerons connected by 1-m-long transverse battens spaced 1 m apart; see Fig. 7. Each
longeron is a triangular rollable and collapsible (TRAC) boom [46] with the nominal material and geometric properties
(12.7-mm flange radius, 8-mm web width, and 90-deg flange opening angle) from the numerical model used in a recent
study of strip deployment dynamics [47], which in turn is based on a recent experimental characterization of the TRAC
longerons [48]. These longerons trace their heritage back to the original Caltech SSPP design study [6] and are sized for
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the expected solar radiation pressure load on a 60 m × 60 m spacecraft. The longerons contribute bending and shear
stiffnesses to the strip. Each batten is a pultruded carbon fiber rod modeled as an isotropic beam with a rectangular
cross-section of breadth 3 mm (in the plane of the strip) and height 0.6 mm with the material properties from [47]. The
battens contribute lateral bending stiffness and support the tiles. The strips are stiff in torsion due to the combination
of longerons and battens. Strips have a uniform areal mass density of 100 g/m2 to account for both the tiles and the
underlying structure. To increase the computational tractability of the numerical model, rectangular strips modeled as
elastic beams replace the thin-shell trapezoidal strips described in the original SSPP concept.

Fig. 8 Boom radii as a function of spacecraft size.

Each strip is attached to two diagonal booms. The booms are modeled as isotropic thin-walled cylindrical tubes
with the material properties from [15] (density 1600 kg/m3, elastic modulus 70 GPa, and Poisson’s ratio 0.3) and a wall
thickness-to-radius ratio of 0.03. The thin-walled circular cross-section and isotropic material properties are intended
to approximate the expected stiffness properties of the deployable, closed cross-section composite booms likely to
be used on an actual spacecraft. For mass-efficiency, the booms must not be overly stiff. However, since the inertial
loads induced by slew maneuvers increase as spacecraft size increases, there is a general requirement for stiffer booms
on larger spacecraft. The optimal boom size depends on the loading, spacecraft size, structural limits (e.g., due to
buckling), and deflection limits [15], i.e., the proportion of the deflection in the strips versus the booms. In this case, the
boom radii are taken from the design study in Chapter 7 of [8] and sized to carry 40% of the maximum deflection under
the expected slew maneuver loads. The design study assumes that the inertial loads are the critical load case, as opposed
to, e.g., environmental loads like solar radiation pressure. This is generally the case for fast slew maneuvers of large,
plate-like spacecraft [8]. With the 40% deflection constraint, the maximum boom and strip deflections are approximately
equal, leading to mass-efficient boom designs. Figure 8 plots the boom radii as a function of the spacecraft size. These
radii correspond to linear mass densities between 0.04 kgm−1 and 0.12 kgm−1. The boom radii, linear mass densities,
and resulting bending stiffnesses are comparable to those from other large flexible spacecraft concepts; see e.g., [49, 50].
Note that the “scalloping” in the figures is an artifact of the modeling assumptions. Specifically, larger gaps between the
strips for spacecraft with odd integer side lengths have the effect of decreasing the spacecraft’s average areal density,
which in turn decreases the slew maneuver loads on the structure.
The four booms are arranged with angular spacings of 90 deg and cantilevered to a central hub. The areas between

two adjacent booms define identical quadrants, each containing 𝑛 rectangular strips of width 𝑏 (in this case, 𝑏 = 1 m)
uniformly spaced a distance 𝑑 apart; see Fig. 9. The length ℓ𝑛 of the outermost strip and 𝑏 determine the geometry of
the quadrant. Specifically, the number of strips is

𝑛 =

⌊
(ℓ𝑛/2)

𝑏

⌋
(57)

where ⌊·⌋ denotes rounding down to the nearest integer. Equation (57) assumes that the distance from the central hub to
the edge of the innermost strip is 𝑏/2 (resulting in an innermost strip of length ℓ1 = 2𝑏) and that the outermost strip
attaches to the ends of the booms. This leaves a square hole with sides of length 𝑏 at the center of the spacecraft for the
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strips

diagonal

boom

Fig. 9 Geometry of a quadrant of a complete SSPP-like spacecraft. The corners of each rectangular strip
overlap the strips in adjacent quadrants.

central hub. The spacing 𝑑 between the strips and the length ℓ𝑖 of the 𝑖th strip then follow as

𝑑 = (ℓ𝑛/2 − 𝑛𝑏) /(𝑛 − 1) (58)
ℓ𝑖 = 2 (𝑖𝑏 + (𝑖 − 1)𝑑) (59)

where 𝑖 = 1 and 𝑖 = 𝑛 denote the innermost and outermost strips, respectively. In the numerical model, each strip
is idealized as a beam with its axis coincident with its centerline; Fig. 9 denotes each centerline by a dashed line.
Additionally, the sequel only considers spacecraft with integer-length outermost strips. If the length ℓ𝑛 of the outermost
strip is even, there are 𝑛 = ℓ𝑛/2 strips per quadrant and no spaces between adjacent strips. However, if ℓ𝑛 is odd, then
there are 𝑛 = (ℓ𝑛 − 1)/2 strips per quadrant, leading to spaces between adjacent strips.
The combination of the tiles, strips, booms, and central hub constitute the spacecraft. The central hub includes the

deployment mechanism and spacecraft bus, the latter of which provides the requisite spacecraft functions like attitude
determination and control, command and data handling, propulsion, and communications. The deployment mechanism
is modeled as a lumped mass of 40 kg. This estimate is based on scaling the measured mass plus contingencies
of the engineering model of the deployment mechanism for the DOLCE technology demonstration mission [51] to
accommodate 1-m-wide strips and accounting for future mass optimization. The spacecraft bus is then modeled as a
lumped mass of 80 kg. This estimate is based on state-of-the-art small satellite technology, although in reality the bus
mass may vary widely depending on the requirements of a given mission. The bus moments of inertia are neglected
because they are expected to be small relative to the moments of inertia of the deployed structure.
The spacecraft is modeled as a flexible multibody system using the geometrically nonlinear Timoshenko beam finite

elements from [8] to discretize the booms and strips. These elements are a structure-preserving, quaternion-based
reformulation of the geometrically exact beam finite elements introduced in [52]. The translational and rotational inertia
forces in the finite element model are respectively integrated using full integration and 5-point Gaussian quadrature. To
alleviate shear locking, the internal elastic forces are then integrated using 1-point reduced integration and MacNeal’s
residual bending flexibility correction [53]. With 1-point reduced integration, the internal forces and moments in each
element are constant, leading to force and moment discontinuities between elements. Mesh convergence requires a
reasonably smooth variation in the internal forces and moments across the structure. The results of a mesh convergence
study indicate that convergence occurs with maximum element lengths on the order of 1 m, irrespective of the size of
the structure. For this reason, the finite element mesh uses elements with maximum lengths of 1 m.
To simplify the structural architecture, the model eliminates the diagonal cords used to support the strips in [6],

instead attaching each strip directly to the corresponding diagonal booms using revolute joints with rotation axes parallel
to the booms. For this reason, the spacecraft studied here are referred to as SSPP-like. Mathematically, the flexible
multibody dynamics model is a system of nonlinear differential algebraic equations with holonomic constraints enforced
via the method of Lagrange multipliers [24]. In what follows, the flexible multibody dynamics model is sometimes
referred to as the full finite element model.
Since the strips are slender, thin-shell structures, modeling them as beams requires evaluating their equivalent

beam cross-sectional properties. This is done by applying an energy-equivalence-based homogenization procedure to
high-fidelity strip finite element models; for additional details, see [8]. The equivalent beam properties are inputs to the
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flexible multibody dynamics model. Replacing the strips with beams limits the model to the simulation of macroscale
structural dynamics.
For the modal analysis and the subsequent model reduction, the flexible multibody dynamics model is linearized at

rest in its undeformed configuration with the 6 DOFs at the central hub node fully restrained. A Galerkin projection
onto the null space of the constraint gradient matrix is then used to convert the linearized equations of motion to a
standard form for modal analysis.

B. Minimum Slew Times Predictions
Minimum slew times were evaluated for SSPP-like spacecraft with integer edge lengths from 5 m to 50 m. These

spacecraft have first-mode natural frequencies between 1 Hz and 1 mHz.

Fig. 10 Rotation axes for y-axis slew maneuver.

Due to its improved performance relative to a bang-bang slew, subsequent developments only consider a 90-deg,
single-axis polynomial slew maneuver (Fig. 3) about the y-axis from Fig. 10. The maneuver rotates the spacecraft about
the y-axis from an initial orientation of 0 deg to a final one of 90 deg in time 𝑇 .

Fig. 11 Moment of inertia 𝑱𝒚𝒚 about y-axis as a function of edge length.

Following Sec. IV.C, the feasible slew time calculations are based on undamped canonical flexible spacecraft models
(Fig. 2) derived from the corresponding full finite element models. Each canonical model requires three inputs: the rigid
body moment of inertia about the slew axis (in this case, 𝐽𝑦𝑦), the dominant-mode frequency, and the corresponding
modal inertia. For each edge length, 𝐽𝑦𝑦 is calculated directly from the mass matrix of the corresponding full finite
element model. Figure 11 depicts the resulting 𝐽𝑦𝑦 as a function of edge length.
The dominant-mode frequency and modal inertia are determined from a modal analysis of the corresponding full

finite element model. For a single axis slew, the dominant mode is the mode with the highest modal inertia about the
slew axis. The modal inertia is the main diagonal entry corresponding to the slew axis in the modal mass matrixM𝑖

from Sec. III. Figure 12 compares the first-mode and dominant-mode frequencies as a function of the spacecraft size.
The figure emphasizes that the first mode is not the dominant mode for a single-axis slew; instead, the dominant mode
is either mode 2 or mode 3. Note that the 24 m × 24 m spacecraft has first-mode and dominant-mode frequencies of
approximately 25 mHz and 28 mHz, respectively.
Modes 2 and 3 are symmetric, meaning that they share the same natural frequency and that mode 3 is the same as
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Fig. 12 Comparison of first-mode and dominant-mode natural frequencies. The dominant mode for a slew
maneuver is the mode with the highest modal inertia about the slew axis.

(a) (b) (c)

Fig. 13 (a) first mode, (b) dominant mode, and (c) symmetric mode at dominant-mode frequency for a
24 m × 24 m SSPP-like spacecraft.

mode 2 after a symmetry transformation, as shown in Fig. 13 for the 24 m × 24 m SSPP-like spacecraft. The modes in
Fig. 13 are representative of the first three modes for the range of considered edge lengths. The first mode (Fig. 13a)
excites symmetric bending deflections across all four quadrants. In contrast, modes 2 and 3 excite antisymmetric
bending deflections; mode 2 is identical to mode 3 after a 90 deg counterclockwise rotation about the spacecraft’s
out-of-plane axis. Since modes 2 and 3 are symmetric, each reduced-order model must include the total modal inertia in
both modes 2 and 3. Due to symmetry, these models have two degrees of freedom but include three modes: a rigid body
mode and two symmetric flexible modes.
The reduced-order models are used to predict slew times for SSPP-like flexible spacecraft with integer edge lengths

from 5 m to 50 m. The slew time calculations require two additional inputs: a slew maneuver and a slew performance
metric. In this case, the slew maneuver is the 90-deg polynomial slew from Fig. 3 and the slew performance metric is a
requirement on the maximum amplitude of the residual angular velocity (see Sec. IV). The amplitude of the residual
angular velocity is a measure of the residual flexible dynamics after the completion of the slew. Two requirements on
the residual angular velocity are considered, 0.01 deg/sec and 0.001 deg/sec, which respectively correspond to relatively
coarse and fine pointing requirements. The minimum slew time corresponds to the fastest slew that guarantees that the
residual angular velocity is always less than or equal to the specified requirement. In what follows, the resulting slew
times are referred to as the structure-based slew performance limits.
The structure-based slew performance limits are also compared to slew performance limits associated with the

available angular momentum and torque of reaction wheels for representative attitude control systems. Two reaction

19



(a) (b)

(c) (d)

Fig. 14 Comparison of minimum slew times for polynomial slew maneuver. (a) baseline reaction wheel,
0.01 deg/sec; (b) 5× baseline reaction wheel, 0.01 deg/sec; (c) baseline reaction wheel, 0.001 deg/sec; (d) 5×
baseline reaction wheel, 0.001 deg/sec.

wheels are considered. The first is a baseline wheel with a maximum torque of 0.2 Nm and 100 Nm s of angular
momentum storage. This is representative of large, commercially available reaction wheels. The second is a reaction
wheel with five times the maximum torque and momentum of the baseline wheel. Additionally, it is assumed that only
60% of the total momentum and torque are available for slews. Momentum and torque are allocated with margins for
different ACS functions, including feedforward control (slews), feedback control, and to account for wheel friction
and gyroscopic effects. As a result, only a fraction of the total momentum and torque are ever available for slews. For
example, the Cassini spacecraft allocated 12.5% of its total torque for slews [54]; more agile spacecraft require higher
momentum and torque allocations for slews. However, 60% is likely overly generous because increasing the available
angular momentum for a slew requires increasing the depth of desaturation before the slew. The momentum and torque
limits constrain the maximum angular velocity and acceleration, which in turn constrain the minimum slew time.
Figure 14 depicts the minimum slew times as a function of the spacecraft size. In each sub-figure, the top-most curve

is the most-restrictive constraint on slew performance, and hence, determines the minimum slew time. With the baseline
reaction wheel, Figs. 14a and 14c demonstrate that the slew performance limit is due to either the available torque or
momentum, not the structure, regardless of the requirement on the residual angular velocity. Similarly, with the larger
reaction wheel and the coarser pointing requirement, Fig. 14b shows that the available torque again typically drives the
minimum slew time. The only exception is the case with the larger reaction wheels and the finer pointing requirement;
see Fig. 14d. In this case, the structure-based performance limit constrains the minimum slew time for spacecraft at
length scales below approximately 40 m. Above 40 m, the slew times are again torque-constrained. Even so, below the
crossover point, the structure-based and torque-based performance limits result in comparable minimum slew times.
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Decreasing (i) the fraction of the momentum and torque available for slews, (ii) the maximum momentum and torque,
or (iii) the requirement on the amplitude of the residual angular velocity shifts the corresponding curves in Fig. 14 up.
Based on Fig. 14, the capabilities of each spacecraft’s ACS are often significantly more limiting than the dynamics

of the structure. When this is the case, the results suggest that a lighter-weight, less-stiff, and potentially lower-cost
structure can be used to shift the structure-based performance limit closer to those of the ACS, at least as far as slewing
is concerned. The figure likewise emphasizes that SSPP-like flexible spacecraft can likely achieve slew times on the
order of 10 min or less for 90-deg, single-axis maneuvers, even at length scales as large as 50 m.
This analysis also demonstrates that common heuristics for designing flexible spacecraft slew maneuvers may be

overly conservative. For example, for the 24 m × 24 m spacecraft, the structure-based slew times in Fig. 14 for the
coarse and fine pointing requirements correspond to constraints of 𝑇/𝑇𝑛 ≥ 5.1 and 𝑇/𝑇𝑛 ≥ 9.0, respectively (relative to
the first-mode period, these constraints are 𝑇/𝑇1 ≥ 4.5 and 𝑇/𝑇1 ≥ 7.9). On the other hand, a heuristic-based constraint
may instead require that 𝑇/𝑇𝑛 ≥ 10. Altogether, this further emphasizes how the minimum 𝑇/𝑇𝑛 (or 𝑇/𝑇1) depends on
the pointing requirements, the spacecraft, and the slew maneuver.
To verify these results, the next section compares the predictions from the reduced-order model for the 24 m × 24 m

spacecraft with those from geometrically nonlinear simulations of the corresponding full finite element model.

C. Slew Time Verification
Time-domain simulations of the 24 m × 24 m SSPP-like spacecraft were used to verify the slew time predictions

from Sec. V.B. The simulations considered 90-deg, single-axis polynomial slew maneuvers about the y-axis from Fig. 10
with durations from 1 min to 20 min. A 1-min slew duration is comparable to the spacecraft’s fundamental period of
40.4 s, i.e., 𝑇/𝑇1 ≈ 1; see Fig. 12.
The dynamic simulations integrated the full finite element model using a quaternion-based implementation of the

Lie group generalized-𝛼 method [55, 56] with a time step size of 0.01 s. Larger time steps lead to numerical instabilities
for faster slew maneuvers. The solver uses an infinity-norm-based convergence criterion with an absolute convergence
tolerance of 10−6 for both the generalized force and constraint residuals and uses the optimal scaling strategy from [57]
to avoid numerical ill-conditioning; for additional details regarding the solver implementation, see [8].
The Lie group generalized-𝛼 method includes numerical dissipation specified by the spectral radius at infinity

𝜌∞ ∈ [0, 1] [58]. For flexible multibody systems, this numerical dissipation eliminates the high-frequency numerical
oscillations associated with the solution of numerically stiff differential equations and stabilizes the weak numerical
instability attributed to the constraints [59]. Here, the simulations use 𝜌∞ = 0.7. This results in a low-to-moderate amount
of high-frequency numerical dissipation. However, physically accurate simulations often require both physical damping
to attenuate low frequencies and numerical damping to attenuate higher ones [60]. For this reason, viscoelastic Kelvin-
Voigt damping [61] is incorporated into the finite element model to replicate the very low modal damping characteristic
of large space structures [41]. The Kelvin-Voigt damping coefficients were calculated using the optimization-based
approach from [8] such that the tangent damping matrix in the spacecraft’s undeformed configuration corresponds to
stiffness-proportional damping with 0.25% of critical damping in the first mode.
The simulations were divided into three steps:
1) for 𝑡 < 0, spacecraft at rest in its undeformed configuration;
2) for 0 ≤ 𝑡 < 𝑇 , spacecraft actuated by a body-fixed external moment 𝑀𝑦 (𝑡) = 𝐽𝑦𝑦 ¥\ (𝑡) applied at its central node
where ¥\ (𝑡) is the angular acceleration for the polynomial slew maneuver from Fig. 3; and

3) for 𝑡 ≥ 𝑇 , spacecraft unactuated and undergoing damped free vibrations (the residual flexible dynamics).
The simulations terminate at some time 𝑡 𝑓 > 𝑇 to study the residual flexible dynamics.
Verifying the slew time calculations from Sec. V involves comparing the amplitudes of the residual angular velocities

predicted by the reduced-order model from Sec. V.B with the predictions from the full finite element model as functions
of slew time. For the full finite element model, the amplitude of the residual spacecraft bus angular velocity, denoted Ω,
was calculated from

KE(𝑇) + SE(𝑇) = 1
2
𝐽𝑦𝑦Ω

2 (60)

where KE and SE are the kinetic and strain energies. Thus, Ω is the angular velocity that results from converting the
spacecraft’s residual strain energy into kinetic energy about the slew axis.
Figure 15 compares the results. Based on Fig. 15, the predictions from the reduced-order model show good

agreement with the full finite element model. This indicates that the two symmetric flexible modes in the reduced-order
model are important contributors to the dynamic response and suggests that the elastic deformations remain in the
small-deflection regime despite the large rigid body rotation during the slew maneuver. However, some caution is
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Fig. 15 Amplitude of the residual spacecraft bus angular velocity as a function of slew time.

warranted here. Even though the reduced-order model accurately predicts the residual angular velocity, this by no means
guarantees that the reduced-order model also accurately predicts other figures of merit, e.g., the internal forces and
moments in the structure. Moreover, since the reduced-order model consistently overestimatesΩ, the results demonstrate
that its predictions are both accurate and conservative, at least for the 24 m × 24 m spacecraft. Taken together, Figs. 14
and 15 imply that it is feasible to slew a 24 m × 24 m flexible spacecraft with a first-mode frequency of approximately
25 mHz 90 deg about a single-axis in 10 min or less. This is significantly faster than the current state-of-practice.

VI. Conclusion
This paper has studied the slew maneuver performance of agile flexible spacecraft. Given a spacecraft and slew

maneuver, the paper proposes using reduced-order modal models and a requirement on the magnitude of the disturbance
due to the residual flexible dynamics from a slew to determine constraints on the minimum feasible slew time.
The analysis has highlighted that both the shape of the slew maneuver and the ratio 𝑇/𝑇𝑛 between the slew time 𝑇

and fundamental natural period 𝑇𝑛 determine the magnitude of the disturbance due to the residual flexible dynamics. To
explain this result, it was shown that that even a simple smooth slew maneuver significantly reduces the residual flexible
dynamics, in this case, by several orders of magnitude relative to a baseline “bang-bang” slew. This suggests that there
is an opportunity to use modern robust optimal control [62–64] to design slew maneuvers that are simultaneously robust
to the uncertainties inherent to flexible spacecraft structures (something driven, at least in part, by the inability to test
them in representative 0-g environments before launch), minimize the residual flexible dynamics, and satisfy any other
constraints on the system. Perhaps most importantly, these maneuvers can likely be flown using existing attitude control
systems, making them a potentially low-risk approach for improving the performance of flexible spacecraft.
As a case study, the paper has predicted the slew performance of a representative very flexible spacecraft based on

the Caltech Space Solar Power Project structural architecture [6]. These results have demonstrated that a large flexible
spacecraft with a 25-mHz first-mode frequency can be slewed 90 deg in 10 min or less, at least as far as the structure is
concerned. This is at least one to two orders of magnitude faster than the current state-of-practice.
These results demonstrate that, contrary to common assumptions, structure-based slew performance limits are often

less-restrictive than those associated with other constraints on the system. In particular, they show that an attitude
control system’s available angular momentum and torque are often significantly more limiting than the structure. For
these reasons, existing spacecraft designs are likely overly stiff with overly conservative design margins, which suggests
that there are opportunities to either maneuver flexible spacecraft faster (provided sufficiently capable actuators are
available) or fly less-conservative, lighter-weight, and potentially lower-cost spacecraft structures. However, efforts to fly
such structures must acknowledge that slewing is just one of many important structural design drivers. For example, the
constraints associated with other structural design drivers, like launch loads and propulsive maneuvers, may ultimately
limit the achievable performance gains.
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