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This paper studies the stability of space structures
consisting of longitudinal, open-section thin-shells
transversely connected by thin rods. subjected to a
pure bending moment. Localization of deformation,
which plays a paramount role in the non linear
post-buckling regime of these structures and is
extremely sensitive to imperfections, is investigated
through probing experiments. As the structures are
bent, a probe locally displaces the edge of the thin
shells, creating local dimple imperfections. The range
of moments for which the early buckling of the
structures can be triggered by this perturbation is
determined, as well as the energy barrier separating
the pre-buckling and post-buckling states. The
stability of the local buckling mode is then illustrated
by a stability landscape, and probing is then extended
to the entire structure to reveal alternate buckling
modes disconnected from the structure’s fundamental
path. These results can be used to formulate efficient
buckling criteria and pave the way to operating these
structures close to their buckling limits, and even
in their post-buckling regime, therefore significantly
reducing their mass.
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1. Introduction2

Thin shell structures are widely used in engineering applications. They enable lightweight3

structures of high stiffness and play a paramount role in the development of aerospace vehicles.4

As new applications are proposed and more advanced capabilities are sought, thinner shells are5

being designed and built. Recently progress in high-strain composites used in deployable space6

structures has accelerated this trend, with thin shell booms being used to support very large7

spacecraft structures [1,2].8

However, one of the main challenges in using thin shell structures is the unpredictability of9

their buckling behavior. This complication lies in the physics of the buckling event. For thin10

shells, buckling is part of a family of instabilities called sub-critical bifurcations, which exhibit11

a rapidly falling post-buckling response in load/displacement space. If the post-buckling path12

does not regain stability, the structure loses its ability to carry loads. In many cases, the unstable13

post-buckling path is energetically close to the pre-buckling path (also called fundamental path),14

making the structure meta-stable near the bifurcation point. It is then possible for a small15

disturbance to transition the structure early into the post-buckling regime, overcoming the16

difference in total potential energy between the two states. The energetic proximity between17

the pre-buckling and post-buckling states also makes the structure extremely sensitive to18

imperfections, as first discovered in early experiments on cylindrical shells [3–5]. For a real19

structure, a small imperfection could easily erode the energy barrier between these two states,20

found in a theoretically perfect structure. The imperfection thus behaves like a connecting21

mechanism between these two states, causing the bifurcation point to be encountered earlier than22

theoretically predicted. This phenomenon becomes more pronounced as the thickness of the shell23

decreases.24

In order to still be able to use these structures in practice, engineers try avoid buckling at25

all cost. For axially compressed cylindrical shells and pressurized spherical shells, numerous26

experiments were conducted and a lower bound on the statistical distribution of experimental27

buckling loads was determined. The difference between the theoretical buckling load and this28

empirical lower bound, called knockdown factor, has been the basis of practical cylindrical and29

spherical shell design for many years. It led to the NASA space vehicle design criteria for the30

buckling of thin-walled circular cylinders [6]. The classical knockdown factor design approach31

is powerful but has two major limitations. First, it is widely seen as very conservative, as it is32

based on the imperfections of shell structures built and tested many years ago, and therefore33

limits the potential mass savings of modern thin shells. Recent efforts by NASA’s Shell Buckling34

Knockdown Factor (SBKF) Project have developed more realistic knockdown factors [7]. Second,35

each knockdown factor is only valid for a unique structure/loading combination and is therefore36

difficult to generalize to other kinds of structures and applications. It has been shown that37

knowing accurately a structure’s initial geometry enables the accurate prediction of the buckling38

event [8,9]. However, in many applications, measuring the shape of a structure can be expensive39

and in some cases it is impossible.40

In addition to imperfection sensitivity, localization of buckling deformations makes thin-shell41

buckling even harder to predict. It causes significant differences between theoretical buckling42

eigenmodes and experimentally observed deformed shapes. Localization arises in two situations.43

The first corresponds to post-buckling localization and is a manifestation of the extremely44

non-linear response of the structure beyond the bifurcation. In this case, the onset of the45

buckling eigenmode appears at the exact point of bifurcation, and greatly affects the structure’s46

geometric stiffness. As the loading is increased, the deformation of the structure concentrates at47

specific locations, given by the peak eigenmode amplitude and/or by dominant imperfections.48

In this case, the buckling mode initially triggers a global, but very small deformation that49

gradually becomes more and more localized. This type of localization is for instance observed50

in beams on an elastic foundation [10] and in spherical shells under external pressure [11–51

13]. Another localization scenario is observed when a global post-buckling mode is created52
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through the sequential formation of localized buckles. It features a series of destabilizations53

and restabilizations of the post-buckling path, known as snaking [14]. Interestingly, the first54

localized buckle can appear on post-buckling paths disconnected from the fundamental path,55

while running asymptotically close to it [15]. This phenomenon is observed in cylindrical shells56

for which a single dimple, "broken away" from the unbuckled state, evolves into a fully periodic57

buckling mode through snaking [15,16]. It has been shown that for the cylindrical shell, the58

single-dimple state sits on a mountain pass in the energy landscape, between the pre-buckling59

and post-buckling states, and is the lowest critical escape mechanism by which the structure60

can buckle [17]. Since the location at which deformations localize depends heavily on the61

imperfections present in the structure, a large number of different post-buckling solutions can62

be generated by a small set of theoretical eigenmodes. This situation is referred to as spatial63

chaos [18].64

The imperfection sensitivity driving the buckling behavior is then twofold. It erodes the65

energy barrier between pre-buckling and post-buckling states, causing early buckling, and it66

also creates a high number of possible post-buckling paths, through localization. For these67

reasons, predicting buckling is extremely difficult for shell structures and often relies on a case68

by case approach. Recent work has focused on the sensitivity of the buckling phenomenon to69

disturbances in thin cylindrical and spherical shells. A non-destructive experimental method to70

study the meta-stability of the unbuckled state has been proposed. It focuses on determining71

the energy barrier separating the fundamental path from the critical localized post-buckling72

state [19–21]. The search for the load at which the critical buckling mechanism can be triggered73

is carried out by imposing a local radial displacement in the middle of the structure using74

a probe. This method effectively quantifies the resistance of shell buckling against the single75

dimple imperfection mentioned earlier. The method has been successfully applied to cylindrical76

shells [22] and pressurized hemispherical shells [23]. These experiments quantified in particular77

the onset of meta-stability, often referred to as "shock sensitivity" [24], and a comparison with78

historical test data has shown that this specific loading can provide an accurate lower bound to79

experimentally observed buckling loads [15,25], thus leading to more realistic knockdown factors.80

A similar probing methodology has also been applied to circular arches [26], cylindrical shell81

roofs [27], and prestressed stayed columns [28], and the use of multiple probes has enabled the82

exploration of the complete unstable behavior of these structures, beyond limit and branching83

points.84

This paper extends the experimental probing methodology, previously used for cylindrical85

and spherical shells, to more complex structures that are inspired by ultralight coilable space86

structures, recently developed by the Caltech Space Solar Power Project (SSPP) [29,30]. Previous87

analysis showed that local buckling plays a key role in these structures [31,32] and motivates88

the need for an experimental buckling characterization. Due to the complexity of an actual SSPP89

structural component, as well as reproducing its actual load conditions, the present study focuses90

on the simpler structure studied analytically in [33] and loaded under pure bending. Similarly91

to the space application, the structure in the present study is composed of two open cross-92

section thin-shell components connected by transverse rods. While the structure and loading are93

different, the problem studied in the present paper is more general and its conclusions are more94

broadly representative of the buckling of structures featuring thin-shell open cross-sections.95

An important characteristic of the structure studied in this paper is that its post-buckling path96

restabilizes and, therefore, the maximum moment that can be carried by the structure is greater97

than the first buckling moment [31,32]. This behavior offers a unique opportunity to study the98

behavior closer to the buckling event than ever before. In fact, it has been suggested that the SSPP99

structures could be allowed to operate in the post-buckling regime.100

To achieve these goals, the present paper shows that by using the experimental probing101

methodology, the meta-stable behavior of the structure close to buckling can be fully102

characterized. This knowledge can be used to derive efficient buckling criteria based on103

disturbance levels, or the minimum load at which meta-stability arises. The methodology can then104
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be extended to navigate spatial chaos in the post-buckling regime, where competing paths can be105

identified and a range of possible post-buckling responses determined. The overall philosophy is106

embracing buckling rather than avoiding it, in order enable the design of much lighter structures.107

The paper is structured as follows. Section 2 describes the test structure and a novel108

experimental setup to carry out probing tests under bending. Following a classical buckling109

analysis, Section 3 highlights the importance of localization and spatial chaos by comparing finite110

element simulations with the experimental buckling response. In Section 4, probing experiments111

study the formation of the buckling mode and characterize its meta-stable behavior. In Section 5,112

probing along the entire structure determines alternate locations at which local buckling can113

appear, and the formation of alternate buckling modes is studied through additional probing.114

The consequences of the appearance of these alternate modes on the global bending response are115

then highlighted, and Section 6 concludes the paper.116

2. Test structure and experimental setup117

The test structure, referred to as a strip, consists of thin-shell longerons (tape springs [34])118

connected by transverse battens. It is shown in Figure 1. The longerons were made from119

Craftsman 1-in stainless steel tape measure, which has similar size and thickness to the cross-120

section used in structures for space applications but is much more readily available available. The121

thickness is t= 110 µm and the length L= 714 mm, plus 6 mm on each end for embedment in the122

end plates. The longeron cross-section is a circular arc with 14 mm radius and 75 deg subtended123

angle, with 3 mm straight extensions on the extremities, Figure 1b. The battens were cut from124

a pultruded carbon fiber rod of diameter d= 2 mm, to lengths l= 50 mm of which 3 mm were125

embedded in the rivets on each end. The measured Young’s modulus of the longerons is E1 = 208126

GPa and the Poisson’s ratio ν = 0.3. The battens Young’s modulus is E = 140 GPa.127

To build a strip, four battens were inserted into metal rivets placed into tight-fitting holes at128

a spacing of 145 mm in the longerons. Blobs of epoxy were used to achieve a full connection129

between the longerons and the battens. The ends of the longerons were inserted and glued into130

6 mm thick acrylic plates with 0.2 mm wide laser cuts following the shape of the longeron cross-131

section. The acrylic plates serve as the interface between the structure and the bending machine.132

(a)

(b) (c)

14 mm
37.5o

3 mm

(d)

Figure 1: (a) Test structure with stainless steel longerons connected by carbon fiber rods. (b) Front
and (c) back connection between batten, rivet, and longeron. (d) Longeron cross-section.

133

The bending machine is shown schematically in Figure 2. The machine employs two134

perpendicular linear guides with air bearings that both translate and rotate, to guarantee that no135

parasitic reaction forces can arise. Only a pure bending moment is applied to the test structure. A136

detailed description is available in Ref. [35].137

There are two slider assemblies, consisting of several components mounted on identical air138

bearings. The actuated slider, on the left, consists of a DC motor (Harmonic Drive FHA-8C)139
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Counterweight

Linear guide

Test structure

Air bearing

Sensor
DC motor

Offload bracket

Linear actuator

Probe

(a)

Fp

Up

(b)
Figure 2: (a) Bending machine and probing stage. (b) Probing details, Up, Fp are vertical.

which rotates the test structure around the axis of the slider assembly. The rotation profile follows140

a smooth s-curve with maximum angular velocity set to 0.05 deg/s to limit dynamic effects.141

An incremental encoder with a resolution of up to 800, 000 counts per revolution measures the142

applied rotation (around the axis of the slider assembly). A force/torque sensor (ATI Mini40)143

is attached to the motor’s rotating end and can measure bending moments up to 2 Nm. An144

aluminum bracket is mounted on the sensor and provides an interface to attach the test structure.145

The passive slider, on the right, has an aluminum tube instead of the DC motor. An offload bracket146

allows the right-hand side of the structure to translate along the axis of the slider assembly. It uses147

a hanging mass and pulley to compensate for half of the mass of the test structure and half of the148

mass of the bracket’s translating assembly. Note that the axes of the slider assemblies are vertical149

at the beginning of each test, but then rotate by small angles during the test.150

To avoid parasitic moments caused by gravity, a counterweight is mounted on top of each151

slider assembly and its height is adjusted to balance the assembly around the axis of the air152

bearing. Note that, although only the moment at one end of the test structure needs to be153

measured, sensors are mounted on both ends. The average of the two end bending moments154

is the value reported in this paper.155

The test structure is perturbed by a "probe" that locally displaces a longeron. The probing156

apparatus is composed of a motorized linear stage (Newport MFA-CC) providing a positioning157

accuracy of ±3 µm. A force sensor (ATI Nano17) is mounted on the moving part of the stage and158

supports a Teflon wedge that comes into contact with the longeron edge when probing is applied.159

The sensor measures the probe force with a resolution of 1/320 N, and an incremental encoder160

on the motorized stage measures the probe displacement with a resolution of 0.0177 µm.161

When the structure is bent into an arc, the inner side of the arc is under compression and the162

outer side is under tension. The maximum compressive stress occurs on the inner edges of both163

longerons. The probe wedge axis is perpendicular to the longeron edge and there is a point contact164

between the longeron and the wedge. As the longeron is probed by moving the wedge vertically165

up, the longeron cross-section flattens.166

3. Classical buckling analysis and experiment167

(a) Buckling eigenmodes168

The first step in understanding how buckling unfolds is to conduct a buckling eigenvalue169

analysis, with the goal of detecting the bifurcations that exist on the structure’s pre-buckling170

path (fundamental path). This analysis gives insights into the buckling loads/rotations and also171

unveils the additional buckling modes that can be found above the first bifurcation. Knowing the172

buckling modes is important, since the buckling modes and the imperfections with the greatest173

influence on buckling are related. The buckling modes also identify the deformed shapes to be174

expected once the structure has buckled.175
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A finite element model was set up in Abaqus 2018, to replicate the structure’s geometry,176

materials, and the bending machine’s boundary conditions. Computation of the "exact" buckling177

eigenmodes and moments, requires an iterative procedure, because the fundamental path of thin178

shell structures can exhibit significant geometric nonlinearity [36]. The first iteration follows179

a classical buckling analysis. A linear perturbation is applied to the stress-free structure and180

buckling moment estimates are computed. The strip is then loaded by a bending moment, under181

the first buckling moment estimate, and the problem is linearized about this new pre-stressed182

state, taking into account pre-buckling nonlinearities. This process is repeated until the first183

buckling moment estimate converges to its "real" value.184

(a) (b)

(c) (d)

Figure 3: Buckling eigenmodes determined through finite element simulations. (a) First (Mcr =

1.604 Nm), (b) second (Mcr = 1.759 Nm), (c) third (Mcr = 2.003 Nm), and (d) fourth (Mcr = 2.009

Nm) eigenmodes.

The above analysis yielded four bifurcation points, and the corresponding buckling185

eigenmodes are shown in Figure 3. The first two eigenmodes are dominated by long wavelength186

deformations spanning the entire length of the longerons, and therefore can be described as global187

modes. The last two eigenmodes feature short wavelength deformations modulated in amplitude188

by a long wavelength deformation. Note that, in Figure 3, the amplitude of these deformations is189

arbitrary since the eigenmodes have been normalized. From this analysis, a first buckling moment190

of approximately Mcr = 1.6 Nm (corresponding to a rotation of 2.1 deg) would be expected, as191

well as a post-buckling deformed shape resembling the first eigenmode, Figure 3a.192

However, the classical buckling eigenvalue analysis has two main limitations. First, it does193

not take into account the imperfections of the real structure, which can change the order of the194

bifurcations, and prioritize one buckling eigenmode over another. The post-buckling deformed195

shape often results from a linear combination of the first few buckling modes, if the corresponding196

buckling moments are relatively close. Second, thin shells exhibit buckling mode localization, as197

explained in Section 1. In most cases, even for a perfect structure, the computed eigenmode is198

only valid at the bifurcation point, and deformations localize at one or more preferred locations199

as soon as the structure transitions to its post-buckling regime.200

(b) Moment/rotation response and post-buckling localization201

A set of five bending experiments were carried out, with a maximum rotation θmax = 3 deg . The202

mean and standard deviation of the moment/rotation responses are shown in Figure 4a.203

The figure shows that the response is linear until the structure bifurcates for θcr = 1.74 deg204

and Mcr = 1.25 Nm. The structure undergoes a snap-back and restabilizes at Mcr = 1.09 Nm.205

Note that the experimental buckling moment is 22% lower than the first theoretical bifurcation,206

which highlights the imperfection sensitivity of the structure. In the experiment, the snap-back207

occurs over a small range of rotations, and a quasi-static response (vertical tangent) would be208

observed for a lower rotation rate. The post-buckling regime is stable for both moment and209

rotation-controlled cases, and the response is weakly non-linear. In further tests, presented in210
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Figure 4: (a) Mean experimental moment/rotation curve and standard deviation for five bending
experiments. (b) Comparison between experiment and FEA near bifurcation point. Post-buckling
modes obtained by FEA when seeding imperfections based on (c) second and (d) first buckling
eigenmodes. (e) Experimental post-buckling shape.

Section 5(d), the maximum rotation was extended to θmax = 10 deg to confirm that the stable211

post-buckling regime extends to larger bending moments.212

To compare the experimental response with finite element simulations, the post-buckling paths213

corresponding to the first two eigenmodes were computed with a standard method [37,38]. Each214

mode was seeded in the structure’s initial geometry as a geometric imperfection with amplitude215

set to 30% of the shell thickness. The modified Riks solver available in Abaqus was used to trace216

the stable and unstable part of the post-buckling response. These paths are shown in Figure 4b217

together with the experimental response. The corresponding deformed shapes at the end of the218

two post-buckling paths are shown in Figure 4c (second mode) and 4d (first mode).219

In both cases, the post-buckling shapes exhibit significant differences with the buckling220

eigenmodes. They feature highly localized deformations extending inward (towards the221

structure’s longitudinal axis) and forming a series of alternating buckles. The buckle locations222

coincide with the inward peak deformations found in the eigenmode. It is noticed that here the223

localization phenomenon prioritizes inward deformations, as no outward buckles are found. The224

post-buckling paths feature a snaking sequence, characterized by a series of destabilization and225

restabilization events. Snaking physically corresponds to the sequential formation of buckles.226

For the post-buckling path corresponding to the second mode, the structure bifurcates at higher227

moments than for the first mode, as expected from the eigenvalue analysis. The central buckle228

formation corresponds to the first post-buckling fold, directly connected to the unbuckled path,229

while the side buckles form in the second and third folds.230
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The post-buckling shape corresponding to the first mode forms in a similar way. The structure231

bifurcates around M = 1.58 Nm and the first fold corresponds to the formation of one of the232

two buckles. When the second destabilization point (called snaking point) is reached, the second233

buckle starts to form. However, the simulation is stopped before the path restabilizes, as the234

two buckles compete, causing the solver to oscillate between forming one buckle or the other.235

Continuing the simulation was not attempted here, but it would be possible, e.g., by tweaking236

the initial imperfection.237

Next, the simulation results and the experiment are compared. The deformed shape obtained238

experimentally, after applying a rotation of θ= 3 deg, is shown in Figure 4e. It matches exactly the239

post-buckling shape found in simulation for the second eigenmode imperfection even if, in theory,240

the lowest bifurcation corresponds to the first eigenmode. Note that top and bottom longerons241

are interchangeable in Figure 4c-d since no gravity is applied in the simulation. In addition,242

significant differences exist between the two post-buckling paths. The experimental post-buckling243

restabilizes at a higher moment, and the post-buckling stiffness is also higher.244

This result highlights the limitations of a purely simulation-based design and analysis245

approach for the structures studied in this paper. In particular, the transition to buckling246

happens at a significantly lower moment, due to the structure’s imperfection sensitivity. Only247

two types of geometric imperfections are considered here, but any linear combinations of the248

four eigenmodes would potentially yield a different post-buckling solution corresponding to a249

different localization mechanism, which is a characteristic of spatial chaos [39].250

Note that it would be possible to find all of the potential post-buckling paths for the perfect251

structure using an advanced computational method, such as path-following [40]. However these252

methods are not usually available in commercial finite element software, and can only be matched253

with experiments if the real imperfections in the structure are known. Indeed, in reality, various254

post-buckling modes compete and the structure’s imperfections determine which path connects255

to the unbuckled state. This path does not necessarily coincide with the solution given by the256

lowest eigenmode, and many paths can run close to the unbuckled path without ever intersecting257

it. These alternate modes can be accessed if a small perturbation is applied to the structure,258

causing early buckling. This meta-stable behavior is explored in the next section, using probing259

experiments.260

4. Probing the experimentally observed post-buckling mode261

This section focuses on the formation of the post-buckling mode that is obtained without applying262

any perturbations to the structure. This specific mode is referred to as the main post-buckling263

mode.264

When a rotation of θcr = 1.74 deg was imposed, the bifurcation point was reached and the265

structure experienced a snap-back, during which three buckles formed simultaneously. They are266

shown in Figure 4e, and are referred to as the Top-edge Central (TC) buckle, the Bottom-edge267

Right (BR) buckle, and the Bottom-edge Left (BL) buckle.268

In reality, the formation of these buckles follows a specific snaking sequence, resembling269

the simulated post-buckling paths of Figure 4b. However, in a rotation-controlled experiment,270

unstable portions of the response are not captured, and hence the snaking sequence is hidden271

by the snap-back event. The formation of the first local buckle triggers the formation of the272

second buckle and subsequently of the third one. These buckles interact with each other through273

global structural deformations (torsion, in-plane and out-of-plane bending). However, close to274

the buckling load, the structure is meta-stable and equilibrium configurations featuring one or275

more of these local buckles can be attained if a small perturbation is applied to the structure. Of276

particular interest is the lowest rotation/bending moment at which these buckles can be found in277

equilibrium, and the energy barrier that needs to be overcome to form them.278

The three buckle locations (TC, BR and BL) were individually probed. For a fixed rotation, the279

longeron’s edge in compression was locally displaced at each of the three buckle locations, and280

the probe reaction force was measured. The rotation increment was initially set to 0.05 deg and281
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(a) (b)

(c)

Probe BL Probe BR

Probe TC

(d)

Ridge
Valley

Stable equilibrium 1B
Unst. equilibrium 1B

Cliff

Stable equilibrium 2B

Unst. equilibrium 3B

Stable equilibrium 3B

Minimum buckled state 1B

Fold region
Bifurcation

Minimum buckled state 2B
Minimum buckled state 3B

(e)

Figure 5: Stability landscapes for (a) TC, (b) BR, and (c) BL probe location. (d) Schematic of strip
structure with three probe locations. (e) Legend.

refined to 0.02 deg when probing near the ridge and valley. Note that the chosen probing scheme282

is compatible with the kinematics of the buckle formation, and hence does not affect the natural283

deformation of the structure.284

The three stability landscapes obtained from these tests, which display the probe force as a285

function of the rotation and the probe displacement, are shown in Figure 5. They give insights286

into which combinations of buckles can be observed before the bifurcation point and identify the287

critical buckle responsible for the transition into the post-buckling regime. This representation288

was first introduced in 2016 [22] for cylindrical shells and here has been extended to more complex289

structures.290

(a) Top-edge central probing (TC)291

The top-edge central buckle location (TC) was probed first and the results of this experiment are292

shown in Figure 5a.293

For θ < 1.29 deg, the probe force Fp increases monotonically as the probe displacement Up294

is increased, and the probe force is close to linear with respect to the probe displacement when295

the applied rotation is small (θ < 0.5 deg). When the rotation is increased, the probe force versus296

probe displacement characteristic is no longer monotonic, and a region of negative probe stiffness297

appears, resulting in two important features of the stability landscape. The local maximum of298

probe force forms the ridge (dashed and dotted line) and the local minimum forms the valley299

(dashed line). In a force-controlled probing experiment, the structure would undergo a snap-300

through instability and kinetic energy would be released. For probe displacements larger than301

the critical valley displacement, the probe force increases monotonically again.302
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As the rotation is increased, the probe force in the valley decreases until reaching Fp = 0 N303

for θ= 1.5 deg. This point corresponds to the smallest value of the rotation at which a single304

local buckle (labeled 1B) can be formed and can remain in equilibrium at the probe location.305

This value is referred to as the single-buckle minimal buckling rotation and corresponds to306

the minimally buckled state found at the end of the valley. Tracing the ridge, the displacement307

decreases as the rotation increases until the ridge disappears at the point of spontaneous buckling308

(bifurcation point), for θcr = 1.74 deg. The stable (solid green) and unstable (solid red) single-309

buckle equilibrium contours, for which Fp = 0 N, originate from the single-buckle minimally310

buckled state. Above the minimal buckling rotation, the structure undergoes a snap-through311

instability when the probe displacement reaches the unstable equilibrium contour. At this point,312

the probe loses contact with the longeron and Fp = 0 N. Contact is restored when the probe313

displacement reaches the stable equilibrium contour. The region in which there is no contact314

between the probe and the longeron is referred to as the lake. If the probe were able to apply315

tension in addition to compression, the landscape would feature negative probe forces in the316

lake.317

Probing has revealed three types of equilibria, accessible if a disturbance provides enough318

energy to the structure. The energy barrier separating the unbuckled and buckled states can be319

computed by integrating the probe force as a function of the probe displacement. An analysis320

of the energy barrier is presented in Section 4.d. For Up < 2.3 mm and θ < 1.64 deg, the single321

buckle equilibria (labeled 1B) are found. However, for 1.58< θ < 1.62 deg, the probed structure322

undergoes instabilities (fold region in Figure 5a) past the stable single dimple equilibrium contour.323

A probe characteristic featuring this instability is shown in Figure 6 for θ= 1.6 deg. This type of324

instability is called a cusp catastrophe [41].325

When the probe reaches the cliff (in purple in Figure 5), the structure undergoes a snap-back326

and the probe force drops. Hence, the cliff corresponds to limit points at which the tangent to327

the probe characteristic is vertical. At this point, the probing path becomes unstable, folds, and328

eventually restabilizes at lower values of the probe force. In the displacement-controlled probing329

experiment, the unstable portion of the path cannot be captured and the structure directly snaps330

to the lower (and stable) part of the fold.331

When retracted, the probe follows the entire stable probe characteristic until the probe force332

reaches Fp = 0 N. The equilibrium contour for the two stable buckles (2B), shown in orange in333

Figure 5 and marked on Figure 6a, is then found. On this contour, buckles appear at the TC and334

BR locations. Note that the structure would naturally evolve to the two-buckle stable contour if335

the probe is removed after the cliff. If the probe displacement is further decreased, the probe loses336

contact with the longeron and the two buckles remain in equilibrium. Because kinetic energy is337

released during the snap-back event for the unstable probing characteristic, and during the snap-338

through even for the "well behaved" probing characteristic, the energy barrier to return to the339

undeformed configuration may be different from the buckling energy barrier. A comparison of340

these two quantities could be the subject of future work. The shaded region represents the top341

view of the fold (or cusp). The smallest rotation at which the two buckles equilibria are found is342

θ= 1.58 deg and is referred to as the two buckles minimal buckling rotation.343

Finally, returning to Figure 5 for θ > 1.62 deg, equilibria featuring the full buckling pattern344

(3 buckles) are found. For a fixed rotation within the range 1.62< θ < 1.64 deg, the TC buckle345

is created first. However, as the probe displacement is increased past the unstable three buckles346

(3B) equilibrium contour (dotted red), the structure experiences a snap-through and the probe347

loses contact with the longeron until it reaches the stable three buckles equilibrium contour348

(dotted green). For θ > 1.64 deg, any probing past the single-buckle equilibrium contour results349

in a direct snap-through to the three buckles equilibrium contour. If the stable single buckle is350

formed, and the rotation is increased without any probing, the structure will follow the single-351

buckle equilibrium contour until θ= 1.64 deg, for which the three buckles pattern forms. This352

rotation is referred to as the snaking rotation. This observation reveals that the snaking sequence353
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Figure 6: Loading and unloading probe force/displacement characteristic, for θ= 1.6 deg, at (a)
TC and (b) BL probe location. The BR response closely resembles (a).

is only composed of two folds corresponding to the buckling of the top longeron, followed by the354

buckling of the bottom longeron, even if the buckling pattern features three buckles.355

(b) Bottom-edge right probing (BR)356

The structure was unloaded and the probing experiment was repeated for the bottom edge right357

buckle location (BR). The results are shown in Figure 5b, which is discussed next.358

The BR stability landscape exhibits the same features as the TC landscape. At θ= 1.37 deg, the359

ridge and valley start. The valley ends at the single-buckle minimum buckling state, θ= 1.56 deg,360

which is the point where the unstable and the stable single-buckle, at location BR, equilibrium361

contours start. At the point of spontaneous buckling, corresponding to θcr = 1.74 deg, the BR and362

TC probing behaviors are different. For the BR location, the ridge does not intercept the unbuckled363

state (Up = 0 mm) and ends abruptly. The unstable single buckle contour is therefore offset from364

the unbuckled state. Such a buckling mode is often referred to as a broken away mode [15].365

This important observation suggests that while the TC buckle can be formed at the bifurcation366

point, the BR buckle can only appear later in the snaking sequence, for the unperturbed structure.367

When perturbations are applied, the BR buckle can be triggered earlier, if the energy barrier368

separating the unbuckled state and the unstable single-buckle state is overcome. For 1.58<369

θ < 1.66 deg, a two-buckle pattern can be formed in the unstable probing region (fold region).370

Similarly to the TC probing, once the probe displacement exceeds the cliff, the probe characteristic371

follows a different path when retracted, and the two buckles equilibrium contour features the TC372

buckle in equilibrium with the BR buckle. Finally the three buckles pattern can be formed through373

large amplitude probing, for 1.66< θ < 1.68 deg. Above the snaking rotation, for θ= 1.68 deg,374

the structure experiences a snap-through to the stable three-buckle contour as soon as the probe375

displacement exceeds the unstable single-buckle contour.376

(c) Bottom-edge left probing (BL)377

Lastly, the probing experiment was repeated for the bottom edge left buckle location (BL), and378

the results are shown in Figure 5c.379

For this probing location, the ridge and valley appear at θ= 1.55 deg, later than for the BR380

and TC probing. The single buckle minimal buckling rotation is found at θ= 1.67 deg, i.e.,381

close to the point of spontaneous buckling. Similar to the BR probing, the stability landscape382

appears truncated at the bifurcation rotation, and the unstable single-buckle equilibrium contour383

is disconnected from the unbuckled state. This feature suggests that, similarly to the BR buckle,384

the BL buckle can only be formed through snaking or a perturbation. The difference in behavior385
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between BR and BL probing is most likely caused by local imperfections at the probe locations,386

and at the strip supports.387

For 1.59< θ < 1.74 deg, the stability landscape features a cliff beyond which the probe snaps-388

back. Similarly to the TC and BR probing locations, once the cliff displacement is exceeded,389

equilibria are found when the probe retracts. For 1.59< θ < 1.61 deg, the TC buckle is in390

equilibrium, without the BL buckle being present. The TC buckle quickly evolves to the fully391

formed buckling pattern above the three-buckle minimum buckling rotation, θ= 1.61 deg. Note392

that the-three buckle equilibria can be obtained at rotations lower than the BL buckle minimum393

buckling rotation. Contrary to the two previous probing locations, once the stable single BL buckle394

is formed and the structure follows its stable equilibrium contour, the fully formed buckling395

pattern will not appear prior to reaching the point of spontaneous buckling.396

(d) Energy barriers and early formation of buckling patterns397

The stability landscapes have shown that the three buckles belonging to the main post-buckling398

mode can appear in the structure before the bifurcation point is reached. These equilibria are399

attained if a perturbation that provides enough energy to overcome a critical threshold is applied400

to the structure. The energy barriers for the three probing locations (TC, BR and BL) were401

computed for all of the buckle combinations identified in the previous subsection.402

In Figure 7a, the solid line corresponds to the energy needed to go past the unstable TC contour403

and snap to the stable TC equilibrium. The dashed line is obtained by adding the energy required404

to reach the cliff. The dotted line for 1.62< θ < 1.64 deg is obtained by adding the energy needed405

to reach the unstable TC, BR and BL contour. Finally, for θ > 1.64 deg, the dotted line corresponds406

to the energy needed to reach the unstable TC contour, after which the structure snaps to the407

stable TC, BR and BL contour. Figures 7b and 7c are constructed in a similar way.408

For a fixed rotation, the work done by the probe is found by integrating the probe force as a409

function of the probe displacement. The energy barrier to form a specific combination of dimples410

corresponds to the maximum value of the probe work between the unbuckled state (Up = 0 N)411

and the corresponding buckled equilibrium. The energy barriers for the three probing locations412

are shown in Figure 7.413

Focusing first on the energy barriers for the TC probing location, Figure 7a shows that for 1.5<414

θ < 1.64 deg, forming the TC buckle requires the smallest amount of energy. However if more415

energy is provided to the structure, the TC and BR buckle configuration can be obtained, which416

transitions to the full buckling pattern above the three buckles minimum buckling rotation of θ=417

1.62 deg. Above the snaking rotation of θ= 1.64 deg, probing past the unstable TC equilibrium418

always results in the three buckles pattern formation. The energy barrier decreases continuously419

until reaching 0 mJ at the bifurcation point, confirming that the TC buckle appears first in the420

snaking sequence.421

A similar energy barrier distribution is observed for the BR probing location, as shown in422

Figure 7b. The lowest energy barrier branch corresponds to the single BR buckle formation which423

transitions to the full buckling pattern above the snaking rotation of θ= 1.68 deg. The highest424

energy barrier branch corresponds to the same buckle combinations found for the TC probing425

location. The TC and BR buckle disappear to form the full buckling pattern for θ= 1.66 deg.426

In theory, this rotation should coincide with the three buckles minimal buckling rotation found427

for the TC probing. In practice, the relative difference between the two rotations is less than 2%,428

and this small discrepancy can be due to small variations in the structure’s initial configuration429

for the two probing experiments. It should also be noted that the small amplitude of the BL430

buckle makes its detection difficult. When the rotation increases, the three buckles energy barrier431

decreases slowly and plateaus without reaching the 0 mJ threshold. This result confirms that432

the BR buckle cannot be formed through a fundamental path bifurcation, and hence is indeed a433

broken-away mode.434

Finally, the energy barriers for BL probing are shown in Figure 7c. Two energy barrier branches435

are found. The lowest energy barrier branch starts at the single buckle minimum buckling436
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Figure 7: Energy barriers to form specific combinations of buckles before the bifurcation point, for
(a) TC , (b) BR, and (c) BL probing. (d) Transition diagram that combines plots (a-c).

load and ends at the bifurcation point, corresponding to the formation of the single BL buckle.437

Contrary to the TC and BL probing, no full buckling pattern snaking is observed on this energy438

barrier branch. As previously observed, the energy barrier does not fall to 0 mJ at the bifurcation439

point, and the single BL buckle is broken away from the unbuckled state. The high energy barrier440

branch starting at θ= 1.49 deg forms the single TC buckle, which evolves to the full buckling441

pattern at the three buckles minimal buckling rotation, θ= 1.61 deg. Note that, as mentioned442

before, this specific rotation is in theory identical for the three probing schemes, and here agrees443

well with the three buckles minimum buckling rotation found for the TC probing location.444

The energy barriers for the three probing locations have been combined Figure 7d to create445

a transition diagram that defines several regions in the (Eb-θ) plane. The boundaries are given446

by the minimum energy barrier required to achieve critical buckle configurations. For a given447

rotation and energy barrier level, the critical buckle configuration corresponds to the largest set448

of buckles that can remain in equilibrium. For instance, for θ= 1.7 deg, the single BL buckle has a449

higher energy barrier than the TC and BR and BL buckle configuration. Since the single BL buckle450

also belongs to this larger set found at a lower energy barrier, it is not a critical configuration.451

In this representation, the probing location is removed and hence the energy barrier should be452

interpreted as a lower bound on the energy required for any perturbation to trigger buckling,453

regardless of where it is applied on the structure.454

Above the single TC minimal buckling rotation (θ= 1.5 deg), and below the TC snaking455

rotation (θ= 1.64 deg), single buckle configurations (TC or BR) correspond to the lowest energy456

barriers. Above the TC snaking rotation, the three buckle configuration (TC and BR and BL) is the457

easiest to trigger.458
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5. Probing alternate post-buckling modes459

(a) Search for critical buckling locations460

The previous section has focused on studying the main post-buckling mode. The probing461

locations were determined after performing an initial buckling test, in which the location of462

the local peak displacement had been identified. Obviously, this approach requires the structure463

to buckle in order to determine the probing locations, which it is not an issue for the present464

structure, since the post-buckling regime is stable and the structure remains in its elastic domain465

after buckling. However, for other types of structure, such as cylindrical shells, buckling is likely466

to damage the structures and cause them to permanently deform. Therefore, several studies have467

attempted to determine the locations of localized buckling deformations, through specific probing468

methodologies and without triggering any buckling.469

Recent work on cylindrical shells has shown that probing can be used to track the stability470

landscape’s ridge and, by extrapolation, find the bifurcation point [42] without ever buckling the471

structure. It has also been envisioned that a similar approach can be used to trace the valley of the472

stability landscape and, by extrapolation, the minimum buckling load can be determined [22].473

A common challenge is determining the location at which the localized buckling will first474

appear. In recent experiments, a defect was introduced in a soda can to pin the location of buckling475

[42] and therefore uniquely identify the location of probing. Even if the introduced imperfection476

was small, weakening the structure in this way may not be acceptable for engineering components477

such as rocket fuel tanks [7]. Recent analysis has shown that probing away from the dominant478

imperfection can lead to inaccurate buckling load predictions [43,44].479

The approach adopted in the present study is different, as probing at different locations was480

carried out, without assuming any prior knowledge of the expected post-buckling shape. A481

characteristic of the specific structure under study, which simplifies this approach, is that the482

maximum compressive stresses in the structure occur along the edges of the longerons, and hence483

only a one-dimensional spatial scan of a longeron edge is required.484

(b) Probing along longeron’s edge and broken-away modes485

Probing of the bottom longeron was carried out under fixed rotations of the structure, ranging486

from θ= 1.5 deg to θ= 1.7 deg. Note that these values are below the rotation that causes487

spontaneous buckling of the structure. 17 equally spaced locations, along the edge of the488

longeron under compression and starting and ending half-way between the acrylic plates and489

the end battens (the size of the probing stage did not allow probing near the acrylic plates),490

were investigated. The maximum probe displacement was initially set to Up−max = 3 mm but491

excessive motion of the vertical linear bearing was observed for probe locations over 625 mm and492

hence the displacement was reduced to 1.5 mm.493

The distance between probe locations was 36 mm and the measured probe forces were494

interpolated between probe locations to construct the map of the probe force as a function of495

the probe displacement and location, shown in Figure 8b for θ= 1.65 deg. The schematic of the496

strip in Figure 8a is aligned with Figure 8b such that the probe coordinate directly corresponds497

to its physical location on the strip. The maximum probe force has been capped at 0.45 N and all498

dark red regions in Figure 8b correspond to probe forces above this threshold.499

A periodic pattern of alternating local probe force maxima and minima is observed, with the500

maxima corresponding to probe locations aligned with a batten. This observation indicates that501

there is only one buckle forming between two battens, at a location close to (or at) the midpoint.502

Two features are of particular interest in plots of this type. First, a zero probe force minimum503

would indicate a buckle that can be sustained in equilibrium at a specific probe location, and for a504

specific value of the rotation. These minima are referred to as equilibrium points. As a reminder,505

Figure 8b has been obtained for θ= 1.65 deg and there are no negative minima in this specific case506

since the probe would lose contact with the structure as soon as the force reaches zero. Second,507



15

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc0000000
..................................................................

Probe location

0 mm 714 mm

(a)

0 100 200 300 400 500 600 700
Probe location (mm)

0

0.5

1

1.5

U
p (m

m
)

0

0.1

0.2

0.3

0.4

F p (N
)

(b)

Figure 8: (a) Schematic of edge probing experiment and (b) map of probe force as a function of
probe displacement and location, for θ= 1.65 deg.

a positive local minimum (non-monotonic probe force profile) may indicate that a buckle could508

form at a probe location, but for higher values of the rotation. This situation can be encountered509

when the stability landscape valley is detected (see Figure 5 for instance) below the minimum510

buckled state. These positive local minima are referred to as valley points.511

It is interesting to analyze the equilibrium points and valley points in Figure 8b. An512

equilibrium point is detected at location BR and a valley point is found at location BL. They513

correspond to the buckles already studied in the previous section, and stem from the TC buckle514

forming through a snaking sequence. Additional buckling locations are revealed. In particular,515

an equilibrium point is located at a probe location of 510 mm. This buckle does not appear in the516

main snaking sequence, and is therefore not connected to the fundamental path. It is a broken-517

away mode which can only be triggered if a disturbance is applied to the structure. An important518

observation is that the location of this mode corresponds to the buckles observed in Figure 4d,519

which was predicted by the FEM but so far not observed experimentally. At a probe location of520

213 mm, the probe force profile features a valley point. However, probing for higher values of521

the rotation (the results for such cases are not included in the paper) indicates that this minimum522

is always positive for rotations below the spontaneous buckling. Finally, a last valley point is523

encountered at a probe location of 357 mm. It is also a broken-away mode and corresponds524

to the mirror symmetry of buckle TC for the bottom longeron. While in the simulation top525

and bottom longerons are interchangeable, gravity may bias the experimental behavior of the526

structure towards the formation of TC rather than its bottom longeron counterpart. introduce an527

additional compressive stress component on the top longeron, therefore biasing the experiment528

behavior towards the formation of TC rather than its bottom longeron counterpart.529

Repeating the experiment on the top longeron yielded an almost identical contour map (not530

shown). Local buckling equilibria were found at the probe location TC (as expected from Section531

4) and at 213 mm, similar to the alternate mode discussed above. Broken away modes were found532

for the left and right probe locations (counterpart of BL and BR on the top longeron) and belong533

to the snaking sequence triggered by the bottom central buckle.534

The spacing between probe locations used in the present study is rather coarse, although535

adequate for the specific structure. Other structures may require a finer discretization. Simulations536

could be harnessed to compute the probing region of influence and thus determine an appropriate537

spacing. Also, the density of probe locations in specific regions of interest could be increased as538

the test progresses.539
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(c) Triggering alternate buckling modes (BA and TA)540

The previous experiment determined two alternate locations at which buckling can be triggered.541

One on the bottom longeron at a probe location of 510 mm, and another one on the top longeron542

at a probe location of 213 mm. These probe locations are called Bottom-edge Alternate (BA) and543

Top-edge Alternate (TA).544

This section presents the results of probing conducted at these two locations, for 1.2< θ <545

2 deg. The initial rotation increment was 0.05 deg, refined to 0.02 deg for θ > 1.55 deg. The546

corresponding stability landscapes are shown in Figure 9.547
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Figure 9: Stability landscapes for (a) BA, (b) TA probe locations and (c) energy barriers. (d)
Schematic of strip structure showing probe locations. (e) Legend.

The BA probe location is discussed first. The stability landscape, shown in Figure 9a, is548

similar to the landscapes for the TC, BL, and BR probe locations for rotations below the point of549

spontaneous buckling. It features a ridge and a valley, both starting at θ= 1.31 deg. The minimum550

buckling load to sustain the BA buckle is θ= 1.59 deg. The minimally buckled state marks the551

start of the single-buckle stable and unstable equilibrium contours. At the structure’s bifurcation552

point of θ= 1.74 deg there is still a significant hill of probe force separating the unbuckled state553

and the unstable equilibrium contour. At this critical rotation, and in the absence of the BA buckle,554

the structure’s main post-buckling mode forms, as previously seen in Figure 4e. For θ > 1.74555

deg, Up = 0 mm corresponds to the end of the main post-buckling snaking sequence from the556

unbuckled state, as probing is applied to the buckled structure. For larger rotations the probing557

behavior changes significantly. The initial probe characteristic is steeper and the ridge is offset to558

Up = 0.8 mm, with a large region of higher probe forces. When the probe displacement increases559
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further, the structure experiences a snap-back and the unstable three buckles (BA, BL and TA)560

equilibria are found.561

This new landscape topology can be explained as follows. Once the structure deforms into its562

main post-buckling mode, the formation of buckle BA requires buckle BR to disappear, which563

requires larger probe forces to be applied at the probe location. Notice that if the BA buckle is564

formed before the bifurcation point, the buckled equilibrium evolves to the three buckles (BA, BL565

and TA) configuration for θ > 1.74 deg.566

Next, the TA probe location is considered. The stability landscape for this case is shown in567

Figure 9b. The landscape features a ridge and a valley, both starting at θ= 1.39 deg and a single568

buckle minimum buckling rotation of θ= 1.66 deg. The TA buckle is also a broken away mode569

and at the bifurcation point the unstable equilibrium contour is farther away from the unbuckled570

state than it was for the BA buckle. This observation suggests that the TA buckle is harder to571

trigger.572

For θ > 1.66 deg the behavior is similar to that observed for the BA location. There is a large573

region of high magnitude probe forces between the unbuckled state and the unstable equilibrium574

contour, which physically corresponds to the probe force required for the TC buckle to disappear575

and the TA buckle to form. The TC buckle is the largest among the three buckles found in the main576

post-buckling mode and hence the amount of probe work needed to remove it is also largest.577

The main difference between the BA and TA probe locations is the nature of the stable578

equilibria encountered while probing. Probing at the BA location leads to the formation of the579

BA buckle only, whereas probing at the TA location triggers the three buckle configuration. For580

θ < 1.62 deg, the probe characteristic features a cliff, similar to the TC, BR, and BL landscapes581

(Section 4). When the cliff is reached, the structure experiences a snap-back caused by a fold (cusp582

catastrophe), and the bottom left buckle (BL) is triggered. However no equilibrium solution is583

found for the BL buckle when retracting the probe. Instead, the structure converges to the two584

buckles minimally buckled state for θ= 1.62 deg. This state marks the start of the two buckles585

stable and unstable equilibrium contours on which the TC and BL buckles can coexist. The stable586

single buckle and unstable two buckles equilibrium contours meet at the snaking rotation of587

θ= 1.67 deg. Finally, the two buckles equilibria evolve to the three buckles equilibria (TA, BR,588

and BL) for θ > 1.68 deg.589

Similarly to the analysis of Section 4, the probe force/displacement characteristic was590

integrated to compute the energy barrier for the various buckle configurations. The results are591

shown in Figure 9c. For both probing locations, the energy barrier features two regimes, before592

and after the formation of the main post-buckling mode. For θ < 1.74 deg, the energy barrier593

is low (Eb < 0.05 mJ). For θ > 1.74 deg, the energy barrier increases by almost an order of594

magnitude. As explained previously, this increase can be explained by the additional amount595

of energy that needs to be provided to the structure to make the BR and TC buckles disappear.596

Note that the energy barrier for the single TA buckle has not been reported in Figure 9 since it597

only corresponds to a very small range of rotations (0.01 deg).598

It is concluded that probing at BA yields a lower energy barrier, over the entire range of599

rotations and therefore this is the critical alternate mode which is the most likely to appear if600

a perturbation is applied to the structure.601

The present analysis has highlighted that it is possible to form alternate buckling modes,602

disconnected from the unbuckled state, and that switching between paths in the post-buckling603

regime is achievable but requires significantly more energy. The energy barriers for the TA and604

BA probe locations are compared to the energy barrier for the TC probe location, in Figure 10a.605

As a reminder, TC is the critical buckle for the main post-buckling mode, as it requires the least606

amount of energy to be formed. The energy required to form the BA buckle is about twice the607

energy required to form the TC buckle, and can only be formed for θ > 1.6 deg, whereas the TC608

buckle can be formed for θ > 1.5 deg.609

Similarly to Section 4, the energy barriers in Figure 10a can be combined to obtain a transition610

diagram whose boundaries correspond to the critical buckle configurations, as shown in Figure611
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10b. This diagram identifies three regions: two with higher energy barriers that correspond to612

probing at the TA location, and the critical alternate mode BA with lower values of the energy613

barrier. This alternate transition diagram has been superimposed on the main post-buckling614

transition diagram (dotted lines) of Figure 7d. The resulting figure represents the competition615

between buckle configurations, characteristic of the structure’s meta-stable state close to the616

spontaneous buckling rotation. Comparison of the energy barriers for the alternate modes and617

the main transition shows that a larger disturbance is required to reach the alternate modes.618
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Figure 10: (a) Energy barrier comparison between TC, BA, and TA probe locations and (b)
transition diagram characterizing the formation of alternate buckling modes. The transition
diagram for the main post-buckling mode is shown in dotted lines.

(d) Large rotation response619

In Section 3 it was found that the strip’s main post-buckling path is stable and that the structure620

is able to withstand bending moments larger than the spontaneous buckling moment. The621

maximum load-bearing capacity of the structure before failure is of interest, where failure is622

defined as the structure’s stiffness decreasing to zero, which corresponds to a horizontal tangent623

in the moment/rotation characteristic.624

Without any disturbance applied to the structure, the main post-buckling mode – consisting625

of local buckles at locations BR, BL, and TC— appears when the spontaneous buckling rotation626

is exceeded. The full main post-buckling response is shown as a solid line in Figure 11a. As the627

rotation is increased, the amplitude of the buckles gradually increases, until a global in-plane628

bending of the strip can be observed. The maximum moment is Mmax = 2.35 Nm, for θ= 8.7 deg.629

Beyond this critical rotation, the structure experiences a snap-back, which physically corresponds630

to a large increase in the TC buckle amplitude that makes the cross-section almost flat locally. The631

deformed shape is shown in Figure 11b. Note that this specific mode of failure has been observed632

previously for similar structures [31,32].633

The previous subsection has demonstrated that the BA buckle can be in equilibrium on the634

structure. Next, a small perturbation was applied to the structure and probing was conducted635

at the BA probe location such that the critical alternate buckle would be formed right before636

reaching the spontaneous buckling rotation. The purpose of this test was to understand whether637

this specific buckle can be the start of an alternate snaking sequence, to the the TC buckle that638

triggered the main snaking sequence. In other words, can the competition between two local639

buckles, TC and BA, yield significant differences in the structure’s global response?640

Beyond the point of spontaneous buckling, additional buckles form simultaneously at641

locations BL and TA, and the buckle BA remains. Next, the rotation was increased to trace the642

entire post-buckling characteristic, and the results are shown as a dotted line in Figure 11a.643

The main and alternate post-buckling paths are practically identical until θ= 2.6 deg. At this644
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Figure 11: (a) Full post-buckling response obtained for the main (connected by bifurcation) post-
buckling path, and the alternate (broken away) post-buckling path. (b) Schematic of paths leading
to main and alternate post-buckling deformed shapes. (c) Main and (d) alternate post-buckling
deformed shape.

rotation, an additional buckle forms on the top longeron, in the middle of the rightmost batten645

pair. After this rotation is exceeded, the main and alternate post-buckling responses diverge, with646

the alternate post-buckling path showing a decreased stiffness. It ultimately yields a lower value647

of the maximum moment, Mmax = 2.15 Nm, for a higher value of rotation, θ= 9.5 deg. The648

deformed shape obtained at the end of the alternate post-buckling path is shown in Figure 11d.649

At θ= 9.5 deg, the structure experiences a snap-back corresponding to the sudden increase in the650

TA buckle’s amplitude. Similarly to the deformed shape for the main post-buckling, the cross-651

section becomes locally flat also in this case. For the main deformed shape, the two alternating652

buckles are separated by double the batten spacing, whereas for the alternate deformed shape the653

spacing between the buckles is equal to a single batten spacing. This difference in spacing allows654

the structure to feature four buckles for the alternate snaking sequence whereas it only features655

three for the main sequence.656

These experiments have highlighted two competing post-buckling sequences, stemming from657

the TC and BA buckles. Based on the stability landscapes and energy barriers in Sections 4 and658

5, multiple post-buckling paths leading to these two sequences have been sketched in Figure 11b.659

With the current experimental setup, it would be possible to record the bending moment while660

probing, and therefore locate these paths exactly in the moment/rotation plane.661

Globally, it has been shown that if a small amount of energy disturbs the structure and662

triggers the BA buckle, the maximum moment decreases by 9% and the bending stiffness above663

θ= 1.6 deg is decreased. The deformed shapes of the structure are also different. While both664

characteristics are stable and the difference in behavior can be seen as minor, it will not necessarily665

be the case in all structures. Generally, a competition between local buckles can potentially cause666

significant differences in post-buckling response and stability.667
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6. Conclusion668

Bending experiments were conducted on a thin-shell structure consisting of two open cross-669

section longerons connected by transverse battens. Similar structures are being developed for670

use in large deployable spacecraft [45,46]. An important characteristic of these structures is671

that they feature a stable post-buckling regime under bending, and therefore they can carry672

loads significantly larger than their initial buckling load. This characteristic opens new design673

possibilities in which structures are designed to reach close to their initial buckling load, and674

possibly even enter the post-buckling regime. Through this approach, the mass efficiency could675

be greatly improved by adopting lower than standard safety factors.676

This paper has used experimental probing to characterize the structure’s meta-stability close to677

the buckling load. By locally displacing the longeron’s edge under compression while recording678

the probe force for various values of the imposed end rotation, stability landscapes were679

constructed and the stability of local buckles forming in the structure was characterized. Of680

particular interest was the minimum rotation at which buckles can appear in the structure, and681

the level of disturbance that can lead to buckle formation prematurely.682

A transition diagram, derived from the experiments, has defined regions in the (Eb-θ) plane683

for which specific combinations of buckles can appear. If buckling is to be avoided, the transition684

diagram can serve as a tool to derive tight lower bounds on the allowable end rotation,685

allowing buckling criteria tailored to specific perturbations and imperfections present in the real686

environment. For instance, in an environment where perturbations are limited and quantifiable,687

one can set a bound on the minimum allowable energy barrier and use the transition diagram688

to find the corresponding value of the maximum allowable rotation. The diagram also allows689

relaxed buckling criteria to be adopted if a limited number of buckles is allowed to form during690

operation. However, in an environment where perturbations are hard to quantify, one could use691

the minimum buckling rotation as a conservative buckling criterion.692

Probing applied along the length of the longerons has led to the detection of two broken-away693

modes. These modes are disconnected from the structure’s fundamental path, although they are694

accessible through a disturbance applied to the structure. These modes directly compete with the695

main post-buckling mode. For the specific structure presented in this paper, the energy barrier696

to trigger the alternate modes is about twice that required for the main critical buckle. However,697

tests on other structures has shown that the two energy barriers can be almost identical, and hence698

these alternate modes cannot be neglected.699

Probing these alternate modes yielded an alternate transition diagram that was superimposed700

on the main buckling transition diagram to obtain a complete picture of the structure’s meta-701

stability close to buckling. The analysis also showed that the alternate buckles can also be702

triggered after the main post-buckling mode has appeared, although this transition requires a703

greater amount of energy to be provided.704

Finally, large rotation experiments were performed and it was found that the formation of705

the critical alternate buckle triggers a full snaking sequence featuring four buckles, as opposed706

to three buckles in the main post-buckling snaking sequence. These two competing responses707

yielded different maximum moments at the point of failure.708

This study has highlighted the importance of characterizing the structure’s response for all709

possible buckling modes, if a structure is to be used in its post-buckling regime. It has been710

emphasized that in order to design and operate thin-shell structures near their buckling point,711

or even in their post-buckling regime, finite element simulations are helpful but not sufficient712

to characterize all of the possible responses. The finite element analysis of Section 2 did in fact713

predict the two competing post-buckling shapes observed in the experiments. However, while714

the lowest bifurcation and therefore the connected path was in theory obtained for the first715

eigenmode imperfection, the solution obtained for the second eigenmode imperfection was in716

fact observed only in the experiments. Intrinsic imperfections in the real geometry biased the717

structure to follow mainly its second eigenmode.718
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According to the framework developed in this paper, an engineer would consider the whole719

set of theoretical post-buckling solutions and for each one focus on characterizing its stability and720

the energy needed to trigger it. This approach paves the way to highly optimized buckling criteria721

tailored to specific applications.722

Lastly, it should be noted that imperfection-insensitive structures have been proposed as an723

approach to reducing buckling uncertainty. Exemplar designs have been developed for particular724

structures, such as cylindrical and spherical shells [47,48]. The probing methodology of the725

present paper could serve as an efficient tool to design imperfection insensitive structures.726
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