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Abstract

The stability of lightweight space structures composed of longitudinal thin-

shell elements connected transversely by thin rods is investigated, extending

recent work on the stability of cylindrical and spherical shells. The role of

localization in the buckling of these structures is investigated and early tran-

sitions into the post-buckling regime are unveiled using a probe that locally

displaces the structure. Multiple probe locations are studied and the probe

force versus probe displacement curves are analyzed and plotted to assess

the structure’s stability. The probing method enables the computation of

the energy input needed to transition early into a post-buckling state, which

is central to determining the critical buckling mechanism for the structure.

A stability landscape is finally plotted for the critical buckling mechanism.

It gives insight into the post-buckling stability of the structure and the exis-
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tence of localized post-buckling states in the close vicinity of the fundamental

equilibrium path.
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1. Introduction1

Thin-shell structures are used extensively in engineering applications. In2

the aerospace sector, they are a key enabler of lightweight air and space3

vehicles. While the use of thin-shell structures dramatically reduces the4

structural mass, their mode of failure is often governed by buckling, which5

is hard to predict. Buckling of thin-shell structures is characterized by a6

sub-critical bifurcation, which means that the structure exhibits a falling7

unstable post-buckling path right after the bifurcation point is reached. This8

sudden drop in load-carrying capabilities leads to a dramatic collapse if the9

post-buckling path never regains stability. Buckling is to be avoided at all10

cost in these cases. However, in recent adaptive structures and materials,11

buckling is no longer seen as failure but as a key shape-changing mechanism,12

which enables switching among multiple functional configurations (Hu and13

Burgueño, 2015; Medina et al., 2020). Whether buckling is used or to be14

avoided, understanding its cause and predicting its occurrence is crucial, and15

this has been the subject of numerous research studies over the past one16

hundred years.17

From the early 1920s, many shell buckling experiments were conducted,18

and experimental buckling loads were consistently observed to be lower than19

linearized classical buckling predictions. This discrepancy was later linked to20

the presence of initial imperfections in the shell geometry (Von Karman and21
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Tsien, 1941; Donnell and Wan, 1950; Koiter, 1945). Indeed, for sub-critical22

bifurcations, there exists a range of loading for which the structure’s fun-23

damental (unbuckled) state is meta-stable, which makes the transition into24

post-buckling extremely sensitive to imperfections and disturbances. On the25

upside, this can also offer opportunities to build complex meta-stable struc-26

tures (Zareei et al., 2020) by using buckled thin-shells as the main build-27

ing blocks. In order to deal with the extremely sensitive buckling behav-28

ior in engineering applications, the design process relies heavily on buckling29

knockdown factors applied to the classical buckling load. Determining the30

adequate knockdown factor, unique for each structure/load combination, is31

of utter importance. It led to the NASA space vehicle design criteria for32

the buckling of thin-walled circular cylinders (NASA, 1965). These crite-33

ria, widely seen as very conservative, have been revisited by NASA’s Shell34

Buckling Knockdown Factor (SBKF) Project, which has focused on testing35

shells with known imperfections and non-uniformities in loading and bound-36

ary conditions (Hilburger, 2012). It has been shown that knowing accurately37

the structure’s initial geometry enables the accurate prediction of the buck-38

ling event (Lee et al., 2016). However, in many applications, measuring the39

shape of the structure before use can be both expensive and in some cases40

impossible, and the traditional buckling and post-buckling predictions rely41

on seeding a linear combination of the first buckling modes as imperfections42

(Riks, 1979; Rahman and Jansen, 2010).43

Another complication arising from unstable bifurcations is the localiza-44

tion of buckling deformations. This is observed for instance for beams on an45

elastic foundation (Wadee et al., 1997) and more importantly for thin-shell46
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structures such as the compressed cylindrical shell (Hunt and Neto, 1991) as47

well as the spherical shell under pressure (Hutchinson, 2016). The nature of48

localization itself generates a large number of post-buckling solutions even49

for a small set of classical buckling modes, since the deformations can localize50

at many different locations on the structure. This is referred to as spatial51

chaos (Thompson and Virgin, 1988). Localization can arise on post-buckling52

branches determined by the buckling modes, as observed in the spherical shell53

under pressure (Audoly and Hutchinson, 2020; Hutchinson and Thompson,54

2017). In addition, localization can also appear on post-buckling paths dis-55

connected from the fundamental path while running asymptotically close to56

it (Groh and Pirrera, 2019). In both cases, localized buckling can be trig-57

gered earlier than the first buckling load if a small amount of energy is input58

into the structure. It has been shown, for the compressed cylindrical shell,59

that a single localized dimple forming in the middle of the structure consti-60

tutes the lowest escape into buckling (Horák et al., 2006) and may therefore61

be the critical buckling mechanism. This mode is not a bifurcation per se,62

but rather a mode ”broken away” from the fundamental path. The single63

dimple state sits on a ridge in the total energy of the system between the64

pre-buckling well and the local post-buckling well and corresponds to the low-65

est mountain pass between these two states in the energy landscape (Horák66

et al., 2006). For the cylinder, the single dimple can evolve to more and more67

complex post-buckling deformations through a series of destabilizations and68

restabilizations, until the cylinder is fully populated by dimples (Kreilos and69

Schneider, 2017; Groh and Pirrera, 2019). This process is called snaking and70

adds additional complexity to the full post-buckling sequence resolution.71
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For all of the reasons mentioned above, predicting buckling is extremely72

difficult for shell structures and often relies on a case by case approach.73

Recent work has focused on the sensitivity of the buckling phenomenon to74

disturbances in thin cylindrical and spherical shells. A non-destructive ex-75

perimental method, first proposed in 2015 to study the meta-stability of76

the fundamental path, focuses on determining the energy barrier separating77

the fundamental path and critical localized post-buckling states (Thompson,78

2015; Thompson and Sieber, 2016; Hutchinson and Thompson, 2017). The79

search for the critical buckling mechanism is carried out by imposing a lo-80

cal radial displacement in the middle of the structure using a probe. This81

method effectively quantifies the resistance of a shell buckling in the single82

dimple mode mentioned earlier. The method has been successfully applied83

to cylindrical shells (Virot et al., 2017) and pressurized hemispherical shells84

(Marthelot et al., 2017). These experiments quantified in particular the on-85

set of meta-stability, often referred to as ”shock sensitivity” (Thompson and86

van der Heijden, 2014) and a comparison with historical test data has shown87

that this specific loading can serve as an accurate lower bound for experi-88

mental buckling loads (Groh and Pirrera, 2019; Gerasimidis et al., 2018).89

More recent work has investigated the interaction between probing and90

geometric defects in cylindrical (Yadav et al., 2021) and spherical shells (Ab-91

basi et al., 2021). These experiments showed that a specific probing strategy,92

called ridge tracking (Abramian et al., 2020), enables the non-destructive de-93

termination of the actual buckling load of an imperfect shell. Probing in the94

immediate vicinity of the dominant imperfection is required. Finally, a sim-95

ilar probing methodology has been applied to circular arches (Shen et al.,96

5



2021a), cylindrical shell roofs (Shen et al., 2021b), and prestressed stayed97

columns (Shen et al., 2022), and the use of multiple probes has enabled the98

exploration of the complete unstable behavior of these structures, beyond99

limit and branching points.100

The present paper applies these recent breakthroughs to more complex101

thin-shell structures, and is inspired by recently proposed spacecraft struc-102

tures that use thin-shell components to build large space systems. In partic-103

ular, modular structural architectures for ultralight, coilable space structures104

suitable for large, deployable, flat spacecraft (Goel et al., 2017; Arya et al.,105

2016) are being investigated in the Space-based Solar Power Project (SSPP)106

at Caltech. In the deployed configuration, each spacecraft measures up to107

60 m × 60 m in size and is loaded by solar pressure. The main building108

block is a ladder-type structure made of two triangular rollable and collapsi-109

ble (TRAC) longerons (Murphey and Banik, 2011), connected transversely110

by rods (battens). Scaled laboratory prototypes of this structure have been111

built (Gdoutos et al., 2020, 2019), and analysis has shown that local buck-112

ling plays a key role in its behavior (Royer and Pellegrino, 2020). The size113

of the structure, together with the complexity of its components and the114

distributed nature of the loading, would make it very challenging to conduct115

experimental studies.116

In order to address these limitations, a simpler structure is proposed in the117

present paper and its behavior under pure bending is studied. This structure,118

shown in Figure 1, is made of longerons and battens like the SSPP structures,119

but the longeron’s complex original cross-section has been replaced by a120

circular-arc cross-section. While this structure and loading are different from121
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the specific structures of interest for the above-described space application,122

it enables us to draw general conclusions on the buckling of space structures123

with thin-shell open cross-sections. The computational analysis presented124

here investigates the buckling behavior of such a structure and assesses if and125

when early transitions into post-buckling can occur, using the novel probing126

methodology. It also serves as a proof of concept for the experimental study127

in Royer (2021).128

The paper is structured as follows. Section 2 describes in more detail the129

structure and the problem. Following a classical buckling analysis, Section 3130

highlights the importance of localization and spatial chaos and justifies the131

use of the newly-introduced probing methodology. In Section 4, probing is132

applied along the entire structure to determine the location at which local133

buckling can appear, and a critical probing scheme is identified. The analysis134

is then generalized in Section 5 to more complex probing scenarios exhibit-135

ing instabilities, and leads to an energy map from which the critical buckling136

mechanism is identified. Finally a stability landscape of shell buckling is137

computed in Section 6 to highlight key characteristics of the critical buckling138

mechanism. It shows qualitative agreement with landscapes previously con-139

structed for cylindrical and spherical shells, and for ladder-type structures140

containing TRAC longerons (Royer and Pellegrino, 2020, 2022).141

2. Computational model of strip structure142

2.1. Geometry and material properties143

The analysis presented in this paper is restricted to the single geometry144

shown in Figure 1. The dimensions were chosen on the basis of a future145
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experiment that will use an existing experimental apparatus.146

The structure, referred as a strip, is composed of two thin-shell longerons147

of length 0.4 m and with circular-arc cross section. The opening angle is148

60 deg, the arc radius is 10 mm, and the shell thickness is 0.1 mm, which149

correspond to a bending stiffness comparable to the SSPP structures. The150

two longerons are connected by six regularly spaced transverse circular rods151

called battens. The batten spacing is 80 mm, which ensures that several152

battens connecting the two longerons. The batten length is 50 mm, and the153

batten cross-section radius is 1 mm.154

A finite element model of the structure is built using the Abaqus 2019155

commercial software. The longerons are modeled with 4-node reduced inte-156

gration shell elements (S4R) and the battens with linear 3D beam elements157

(B31). An isotropic material with Young’s modulus E = 130 GPa, and158

Poisson’s ratio ν = 0.35 is considered for both battens and longerons.159

10 mm
60

400 mm

80 mm

50 mm

º

1 mm

Figure 1: Strip structure composed of two thin-shell longerons connected by battens.
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2.2. Finite element analysis160

The end battens and the longeron end cross-sections are made unde-161

formable and fully coupled to reference points R1 and R2, as shown in Figure162

2. The boundary conditions and loading are applied to these reference points.163

The structure is simply supported at both ends: one reference point is pinned164

(all translations blocked) at one end while the z-translation is allowed for the165

reference point at the other end. Two equal and opposite moments of mag-166

nitude M are applied at the reference points, and an arc-length solver (Riks167

solver in Abaqus standard) is used to statically deform the structure and ex-168

tract the overall moment/rotation curve. In addition, in Section 4, for each169

value of the moment, the top edge of the longeron will be probed by apply-170

ing a transverse nodal displacement Ux at location z, and the probe reaction171

force will be extracted. The two control parameters in these calculations are172

thus the end moment and the probe displacement.173

This strip structure has nonlinear pre-buckling behavior, meaning that174

the computed buckling eigenmodes change as the structure approaches the175

buckling limit. This type of nonlinearity was previously reported for thin176

shell structures (Leclerc and Pellegrino, 2020). Hence, we will need to distin-177

guish between two types of bifurcation buckling analyses and their associated178

modes. We will use the standard terminology, classical buckling loads and179

modes, for results in which the pre-buckling state used in the eigenvalue180

analysis has been linearized, either about the condition at zero load or at181

a non-zero load. Our approach will be making use of these eigenloads and182

eigenmodes to gain insight into the buckling behavior of the strip. How-183

ever, most references to buckling load and modes throughout the paper will184
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Probe

x
y

z

Rigid

Rigid

M

M

R1: Ux = Uy = 0

R2: Ux = Uy = Uz = 0

Figure 2: Schematic representation of finite element model. The end battens and cross-

sections (green) are undeformable. R1 is allowed to translate along the z-axis and to rotate

along all 3 axes, R2 is pinned and is free to rotate. Two equal and opposite moments are

applied at the reference points. For a probing simulation (Section 4), a probe is applied

to the top edge of the longeron (longeron and z location determined by probing scheme).

It consists in an applied displacement on the probe node directed along the x-axis.

be to ”exact” buckling loads and modes computed by analyzing the bifur-185

cation from the nonlinear pre-buckling state. We will mostly refer to the186

”exact” analysis and its outcome with the brief terminology: buckling anal-187

ysis, buckling loads, and buckling modes. However, if there is any ambiguity188

the additional terminology, linearized or nonlinear pre-buckling state, will be189

appended.190

3. Localization and spatial chaos191

3.1. Buckling modes and limit points192

The first step in assessing the buckling behavior of the strip is to carry193

out a classical eigenvalue analysis to determine a sequence of the applied mo-194
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ments and associated modes at which buckling bifurcations from the perfect195

strip occur. This information gives a picture of not only the lowest buckling196

load and associated mode but also of the bifurcation modes lurking above197

the lowest critical mode. Such information gives insight into potentially im-198

portant imperfection shapes and to ”nearby paths” which might play a role199

in the post-buckling behavior.200

The computation of the ”exact” bifurcation moments and modes is itself201

an iterative procedure because the pre-buckling behavior is nonlinear. To202

obtain first estimates of the bifurcation points, the pre-buckling nonlinearity203

is neglected using the ground-state linearity to compute a sequence of the204

lowest bifurcation eigenvalues (ABAQUS and other structural codes have op-205

tions for making such eigenvalue evaluations). These bifurcation estimates206

are then used to guide the search for the bifurcations computed accounting207

for nonlinear pre-buckling behavior. With the full pre-buckling nonlinearity208

accounted for, the strip is then loaded by a moment below the first eigen-209

value, the nonlinear pre-buckling problem is solved, and new estimates of the210

sequence of bifurcation points are computed by linearizing about that state.211

This iterative process is repeated with an increasing applied moment in each212

iteration until the bifurcation moments converge. For the strip, nine bifur-213

cation points are determined in the loading interval before the strip attains214

a limit moment on the fundamental pre-buckling path. As noted earlier,215

to distinguish between a buckling load of the perfect strip computed using216

ground state linearity (traditionally called a ”classical buckling load”) and217

the buckling load computed accounting for pre-buckling nonlinearity, we will218

briefly refer to the latter as the ”buckling load” and is associated eigenmode219
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as the ”buckling mode”. The results of this analysis are shown in Figure 3.220

M = 1400.3 Nmm M = 1440.5 Nmm M = 1444.1 Nmm M = 1444.4 Nmm M = 1450.6 Nmm

M = 1451.8 Nmm M = 1452.5 Nmm M = 1460 Nmm M = 1464.2 Nmm

1 2 3 4 5

6 987

Figure 3: Nine buckling modes with associated buckling moments found on the strip

fundamental path. For each mode, the deformations of both longerons are concentrated

along the longerons’ top edge (edge in compression). These deformations involve both

inward (towards the strip center) and outward displacements. The battens do not exhibit

any appreciable deformation.

Both a classical Newton-Raphson solver and the Riks solver are used to221

trace the response of the structure in its unbuckled configuration. The Riks222

method uses the load magnitude as an additional unknown and solves simul-223

taneously for loads and displacements. The simulation progresses by incre-224

menting the arc-length along the static equilibrium path in load-displacement225

space, enabling the resolution of unstable responses. The Newton-Raphson226
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solver reaches a limit point at M = 1, 464.2 Nmm, while the Riks solver227

bifurcates from the fundamental path to a secondary branch at M = 1, 435228

Nmm. Note that this moment magnitude is between the first and second229

buckling moments in Figure 3.230

3.2. Localization and post-buckling paths231

We wish to trace the post-buckling paths corresponding to several of232

the lowest buckling eigenmoments and study the evolution of the structure’s233

shape along these paths. Of primary interest is the moment/rotation relation234

for the strip when equal and opposite moments are applied at the strip ends235

and the rotation corresponds to the rotation around the x-axis of the end236

located at z = 0 (c.f., Figure 2).237

As a first step, a standard method is used to trace the post-buckling paths238

associated with the first three buckling modes as described next. Each mode239

is seeded in the structure’s initial geometry as a geometric imperfection. The240

maximum amplitude of this initial imperfection is taken between 1% and 10%241

of the shell thickness, t. The Riks solver is used to trace the post-buckling242

response of the imperfect structure.243

The computed paths are shown in Figure 4, and the corresponding de-244

formed shapes are shown in Figure 5. For the second buckling mode, two245

imperfection amplitudes have been used, yielding the two post-buckling paths246

shown.247

The main observation is that, contrary to the bifurcation buckling modes,248

the deformed shapes for all the paths exhibit highly localized deformations.249

For the first and second mode branches, the post-buckling shapes are quite250

different from the initial imperfection. These shapes only exhibit inward251
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Figure 4: Moment vs. rotation curves for the strip. The fundamental path (black) stops at

the limit point M = 1, 464.2 Nmm. The first buckling mode branch (blue) is obtained by

seeding the first mode as imperfection with an amplitude of 8%t. The second branch (red)

is obtained for the second mode imperfection with an amplitude of 8%t. The alternate

second branch (green) is obtained for the second mode imperfection with an amplitude

of 10%t. The third branch (purple) is obtained for the third mode imperfection with an

amplitude of 8%t.

buckling deformations, whereas the buckling modes also exhibit outward252

deformations. For the second mode branch, even a slight variation in im-253

perfection amplitude changes the buckling location. For the second mode254

and third mode, the post-buckling paths undergo destabilization and resta-255

bilization. This phenomenon is referred to as homoclinic snaking and is also256

observed in axially compressed cylindrical shells (Groh and Pirrera, 2019).257

It physically corresponds to the sequential formation of buckles leading to a258

fully buckled shell. Snaking may occur also in the remaining localized paths259
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1 2 3 4

Figure 5: Deformed shapes with magnification of 15X, obtained at the end of the four

post-buckling paths of Figure 4. They consist in localized longeron deformations and

differ from the previously computed buckling modes. All deformations are inward, and

the localization location differs between longerons for the mode 1 branch (labeled 1) and

mode 2 branch (labeled 2).

if the analysis is pushed further. It is interesting to note that it was possible260

to resolve the post-buckling path for the third buckling mode without seeding261

any imperfection in the initial geometry.262

For mode 1 and mode 2, the localization process initiates on the im-263

perfect structure’s fundamental path, before reaching the falling unstable264

post-buckling path. The initial deformation grows proportionally to the ini-265

tial imperfection and then is followed by a transition to a localized mode266

shape before attaining a limit point. At this point, the location of maximum267

deformation has already been determined and, on the falling unstable path,268

the local deformation increases in amplitude without changing location. It is269

important to emphasize that the limit point for the imperfect structure is off-270

set from the perfect structure’s fundamental path, although extremely close271
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to it, due to the eroding effect of the imperfection on the initial stiffness. In272

addition, these limit points appear at values of applied moment lower than273

the first buckling moment which reveals the structure’s imperfection-sensitive274

nature.275

Figure 6 highlights the localization process for each of the first two buck-276

ling modes. The displacement of the longeron top edge in the x-z plane is277

plotted at the limit point, as well as at the first post-buckling restabilization278

point and at the end of the post-buckling path. The normalized buckling279

mode of the perfect strip is also reported as a dashed line, for comparison.280

For mode 1, localization occurs on two levels. At the structure’s scale,281

local deformations only arise in longeron 1, while for longeron 2, the global282

deformation tends to cancel the undulations associated with the initial im-283

perfection away for the point of localization. At the longeron scale, the284

deformed shape goes from a smooth hill to a sharp peak for longeron 2.285

In addition, the localization process is not unique. Different localization286

mechanisms are observed for buckling mode 2, depending on the imperfection287

amplitude, as seen in the deformed shape comparison of Figure 5. The local-288

ization of mode 2 for an imperfection amplitude of 8%t is shown in Figure289

6c-d. It highlights the sequential formation of the longeron 1 and longeron290

2 buckle, characteristic of the snaking process. In the case of buckling mode291

3, the buckling mode shape is relatively localized and resembles the shape292

observed in Figure 5 for the two central buckles. Therefore, no further local-293

ization is observed on the post-buckling path before the snaking process is294

triggered, and four highly localized buckles are formed closer to the longeron295

ends.296
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To conclude this section, we re-emphasize that multiple post-buckling297

paths have been shown to have initially unstable behavior, and in some cases298

the paths re-stabilized at lower loads. Four different imperfections based on299

the first three buckling modes have been considered here; other imperfections300

or linear combinations of buckling modes would give rise to different paths.301

Seeding different imperfections has highlighted qualitatively the importance302

of localization for this thin-shell structure and the fact its deformation can303

easily localize at many different locations. This multiplicity of buckling and304

post-buckling solutions is referred to as ”spatial chaos.” However, not all305

possible localized paths have been considered, and hence it is not known306

which path constitutes the easiest escape into post-buckling. Based on these307

qualitative observations, the next section searches for the critical localized308

path using the probing methodology introduced.309
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Figure 6: (a-b) Localization process for (a) longeron 1 and (b) longeron 2, on the first

mode post-buckling path, for an imperfection amplitude of 8%t. The longeron top edge

displacement in the x-direction is plotted as a function of the z location. The normalized

buckling mode is shown as a dashed line. The evolution of the longeron top edge defor-

mation is reported at the limit point, where the post-buckling path first stabilizes, and at

the end of the post-buckling path. (c-d) Localization process on the second mode post-

buckling path, for an imperfection amplitude of 8%t for (c) longeron 1 and (d) longeron

2.
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4. Probing along the strip length310

4.1. Probing methodology311

The previous section has shown that buckling localization can lead to a312

large number of post-buckling paths. Hence, the focus in the rest of this313

paper is on finding the critical buckling mechanism. Here ”critical” means314

finding the easiest way the structure can buckle or, in other words, finding315

how early the transition into buckling can occur and which deformed shape316

is most likely to arise.317

Two situations may be encountered when end-moments are applied on318

a strip. The first corresponds to an early transition to a path that inter-319

sects the fundamental path, and for which the deformation matches one of320

the buckling modes (at least at the bifurcation point). This situation may321

arise for buckling mode 3, for which no imperfection is needed to resolve the322

post-buckling path. The second situation corresponds to a transition to a323

disconnected equilibrium path, running in close vicinity of the fundamental324

path but without intersecting it (Hunt and Neto, 1991). In both cases, a finite325

input of energy into the system is required to make the structure transition326

early to a secondary equilibrium path. Note that here, ”early transition”327

means that the transition to post-buckling occurs before reaching the first328

buckling moment. A key assumption made here is that the critical buckling329

mechanism will exhibit highly localized deformations. This is generally the330

case for thin-shell structures for which buckling is a sub-critical bifurcation331

and is motivated by the observations made in the previous section.332

The probing method, which uses a probe that displaces the structure333

locally, is used to quantify the amount of disturbance needed to trigger early334
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localized buckling. In this paper, the probing method is explored numerically335

and consists in applying a displacement directed along the x-axis to a node336

on the top edge of the longeron (the probed node), as illustrated in Figure 2.337

The top edge is chosen because it corresponds to the location of the largest338

compressive stress when bending moments are applied to the structure.339

The analysis goes as follows. Two end moments are applied on the perfect340

structure. When the desired moment magnitude is reached, the moment is341

kept constant and the probe displacement is increased. During probing, the342

probe reaction force is computed. This process is repeated for a range of343

moments, up to the first buckling moment, and for various probe locations344

along the longeron’s top edge. The Abaqus static general solver (Newton-345

Raphson) is used for both the bending and probing steps. The analysis346

presented in this section is restricted to probing paths for which the probe347

displacement is monotonic.348

Two features are of particular interest. The first corresponds to the range349

of applied moments for which buckled equilibrium states exist. An equilib-350

rium state is found when the probe reaction force falls to zero. When such351

a situation is encountered, there exist at least two equilibrium configura-352

tions for a given moment and therefore the fundamental path is meta-stable.353

Above the moment for which negative probe forces are first encountered, a354

disturbance may trigger early buckling. The second important feature is the355

critical amount of energy that needs to be provided to the system to reach356

the buckled equilibria. It indicates the level of disturbance needed for the357

structure to transition early into these states.358

Inspired by the types of deformations seen in the buckling modes, and359
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restricting the study to at most a single probe per longeron, five probing360

schemes have been investigated: double outward probing, double inward361

probing, alternate probing, single outward probing, and single inward prob-362

ing, as illustrated in Figure 7. These probing schemes were chosen such that363

it would be possible to trigger the localized buckling modes of Figure 5.364

By characterizing the onset of meta-stability and the critical probe work365

needed to trigger buckling, we will be using probing as an efficient tool to366

navigate through the spatial chaos and to find the structure’s critical buckling367

mechanism.368

Probe

Double Inward

Double Outward

Alternate

Single Inward

Single Outward

Figure 7: Five probing schemes considered in this paper, with arrows representing the

transverse probe displacement.
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4.2. Double inward probing scheme369

The double inward probing scheme is considered first. In this case, con-370

vergence is hard to achieve for probing with applied moments of around371

M = 1, 100 Nmm, because instabilities are encountered. These instabilities372

are analyzed in detail in the next section.373

For moments under 1, 000 Nmm, the probing forces remain positive and374

the contours of constant probe force exhibit local extrema in the probe lo-375

cation / displacement plane. The probe force for two values of the moment376

has been plotted in Figure 8 as a function of the probe location along the377

longeron edge (z-axis) and of the probe displacement. Figure 8a shows the378

probing map for M = 800 Nmm. The probe force is shown as a function of379

the probe displacement along the x-axis (Ux) and the probe location along380

the top of the longeron (x-axis). For ease of visualization, the regions cor-381

responding to probe locations between 0 mm and 50 mm as well as between382

350 mm and 400 mm are not shown since they exhibit large probe forces.383

In these two regions, the probe force vs. probe displacement curve is almost384

linear. For all other probe locations, the probe force increases monotoni-385

cally as the probe displacement increases. However, the map exhibits many386

features, such as regularly spaced local minima of probe force for a given387

probe displacement. The lowest local minimum is attained in the middle of388

the structure (200 mm). The probe force is positive for all values of probe389

displacement. Figure 8(b) shows the probing map for M = 1, 040 Nmm.390

For probe locations ranging from 0 mm to 60 mm and from 340 mm to 40391

mm, the probe force increases monotonically as the probe displacement in-392

creases. For all other probe locations, the probe force increases and then393
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decreases. Regularly spaced local minima of probe force appear, and nega-394

tive values are reached in the middle (200 mm).The spacing between local395

minima corresponds to the batten spacing.396

100 200 300

Probe location (mm)

0

0.5

1

1.5

P
ro

b
e
 U

x
 (

m
m

)

(a)

100 200 300

Probe location (mm)

0

0.5

1

1.5

-0.1

0

0.1

0.2

0.3

P
ro

b
e

 f
o

rc
e

 (
N

)

(b)

Figure 8: Double inward probing map for (a) M = 800 Nmm and (b) M = 1, 040 Nmm.

The spacing between contours is 0.05 N.

In fact, additional simulations showed that the probe force at the center397

first falls to zero for M = 1, 015.5 Nmm. This critical load corresponds to398

the onset of meta-stability, at which early transition into buckling becomes399

possible. Based on the probing scheme, the associated post-buckling shape400

consists of an inward local buckle in the middle of each longeron. This shape401

resembles the third non-linear buckling mode found in Section 3.1.402

4.3. Single inward probing scheme403

The single inward probing scheme is considered next. The probing maps404

for four values of the applied moment are shown in Figure 9.405

Figure 9a shows the probing map for M = 800 Nmm. As the probe406

displacement increases, the probe force increases monotonically, except near407

23



the middle, where a basin of local minima appears (probe displacement of408

1.2 mm). The probe force is positive everywhere.409

Figure 9b shows the probing map for M = 1, 040 Nmm. Local maxima410

of probe force appear and form a hill separating the fundamental path from411

regions with local minima. The local minima are negative near the middle of412

the strip, whereas at other locations they are positive, although very close to413

zero. This map resembles the map obtained for the double inward probing414

scheme.415

Figure 9c shows the probing map for M = 1, 200 Nmm, which resembles416

qualitatively Figure 9b. A local minimum of probe force appears for a probe417

displacement of 0.2 mm, before reaching a second minimum at 0.35 mm, at418

the center of a region of negative probe forces. However, when probing at419

locations other than the middle, the probing path encounters instabilities as420

the probe force decreases after the peak, and the Newton-Raphson solver421

aborts. It leaves the probing map incomplete. The probe displacement for422

which local minima of probe force are attained decreases as the moment423

increases.424

Figure 9d shows the probing map for M = 1, 350 Nmm. The probe insta-425

bilities appear as early as 0.1 mm of probe displacement and cause a severe426

truncation of the map. The probing path for the mid-point of the structure427

exhibits negative probe forces for displacements of 0.075 mm and 0.14 mm,428

indicating the existence of two adjacent buckled equilibrium states. However,429

the overarching goal of the probing method is to compute the minimum en-430

ergy input needed to trigger early buckling for every probe locations, it is431

not yet possible due to the probe instabilities. At the locations where the432
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probing sequence suddenly stops it is impossible to draw any conclusions433

regarding the structure’s meta-stability. It is therefore necessary to resolve434

probing sequences past these instabilities, and this is the subject of Section435

5.436
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Figure 9: Single inward probing maps for (a) M = 800 Nmm, (b) M = 1, 040, (c)

M = 1, 200 Nmm, and (d) M = 1, 350 Nmm. The spacing between contours is 0.02 N for

(a) and (b), and 0.005 N for (c) and (d).

An important observation is that meta-stability appears earlier for this437

type of probing than for the double inward probing scheme. For higher438

25



moment magnitudes, the minimum of probe force is still achieved at the mid-439

point of the structure, with regions of negative probe force spreading over a440

larger portion of the structure. Therefore, there exist multiple locations at441

which buckled equilibrium states are found. This supports the observations442

of Section 3 where we saw that localization for the second mode imperfection443

can occur at multiple locations. However, we see qualitatively that the hill444

of probe force separating the unbuckled and buckled states is lowest at the445

mid-point, which signifies that the minimum energy input required to form446

an inward buckle is also achieved in the middle of each longeron.447

4.4. Outward and alternate probing schemes448

For the double outward probing scheme it is found that there is no value449

of the moment for which the probe forces decreases to 0 N. Instead, as the450

longeron is locally displaced outwards under constant applied moments, the451

probe force always increases monotonically. Typically, the probe force reaches452

1 N for a probe displacement of about 1 mm, which is an order of magnitude453

higher than the probe force obtained with the double inward probing scheme.454

Probing does not reveal any buckled equilibria in this case.455

The alternate probing scheme involves an inward probe on longeron 1 and456

an outward probe on longeron 2. The outward probe force increases monoton-457

ically, as this case is similar to the double outward probing scheme. However458

the inward probe force in the center becomes negative for all probe dis-459

placements, above a certain moment magnitude. Although the disturbance460

introduced by probing can be transferred between longerons, the outward461

probe force never falls to 0 N and hence no buckled equilibria are found.462

Similar behavior is observed for the single inward probing scheme. When463
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the outward probe displacement is increased, the probe force monotonically464

increases, while an inward buckle forms in the unprobed longeron. Similarly465

to the alternate probing scheme, no equilibrium configurations are encoun-466

tered, but the probing path is truncated before the prescribed end displace-467

ment is reached, due to instabilities. These instabilities are analyzed in468

Section 5 and it is shown that buckled equilibria exist if probing is extended469

past instabilities.470

4.5. Critical probe work and initial comparison of probing schemes471

In order to find the critical buckling mechanism for the strip structure,472

the probing schemes presented above need to be compared. The critical473

buckling mechanism corresponds to the minimum amount of energy needed474

to reach buckled equilibria, but special care has to be taken when computing475

the energy barrier to buckling and the critical probe work.476

In previous buckling and probing studies, the energy barrier refers to477

the difference in total potential energy between the unbuckled state and the478

unstable buckled state. As explained in the introduction, the unstable buck-479

led state corresponds to a saddle point (also called mountain pass point) in480

the energy landscape and is attained for a critical value of the probe dis-481

placement, when the zero threshold in probe force is reached. If the main482

loading is kept constant, the probe work reaches a local maximum at this483

critical displacement. We will use the terminology ”critical probe work” to484

refer to this local maximum of the probe work. When the probe displace-485

ment is monotonic during probing (i.e., no folding of the path), and for486

a displacement-controlled main loading, the critical probe work is equal to487

the energy barrier. This scenario is for instance encountered for the probed488
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cylinder under constant end shortening (Virot et al., 2017). However in the489

present study, the energy barrier and the critical probe work can be different490

for two reasons:491

• Moment-controlled loading implies that probing occurs under a con-492

stant value of the end-moment. During probing, the ends of the strip493

rotate and hence the end-moments do work. As a result, the energy494

barrier is greater than the critical probe work since it accounts for495

the end-moments’ additional contribution to the energy of the system.496

However, the constant moments are part of the known conditions the497

structure is subjected to during operation and, since the contribution498

of an unknown disturbance is only represented by the probe, the quan-499

tity of interest is the critical probe work. The study has been repeated500

for a rotation-controlled loading and the results are presented in Ap-501

pendix A. In the latter case, the probe work only contributes to the502

total external work of the system.503

• For unstable probing sequences, a vertical tangent can be reached, be-504

yond which the probing path can fold. In such cases, snap-buckling505

can be triggered before the zero probe force threshold is attained, and506

the value of the critical probe work is computed at the point of vertical507

tangent rather than at the first buckled equilibrium. Such cases are508

presented and analyzed further in Section 5.509

Next, the critical probe work for the two inward probing schemes is dis-510

cussed. Since the probing path does not exhibit any instabilities in the middle511

of the structure, for both schemes, the critical probe work required to reach512
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the buckled equilibrium states can be computed. The critical probe work513

obtained for a central probe location and for both probing schemes is shown514

in Figure 10.515
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Figure 10: Critical probe work as a function of the applied bending moment, for both

single and double inward probing schemes. It is smallest for the single inward probing

scheme.

The single inward probing scheme gives a lower critical probe work than516

the double inward probing scheme for the entire range of moments considered.517

As a result, if buckling is triggered early, it will likely consist of a single518

buckle in the middle of one of the longerons rather than in both longerons.519

When comparing the local maximum of probe force obtained for both probing520

schemes, we also see that it is lowest for the single inward probing scheme,521

regardless of the probe location. It seems therefore that if meta-stability is522

detected at a specific probe location, the single inward probing scheme would523
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also give the lowest critical probe work at this specific location.524

Finally, it has been shown in this section that buckled equilibrium states525

appear for lower values of moments for the single inward probing scheme. As526

snaking appears to play a prominent role for this structure, we would expect a527

sequential formation of single buckles which supports the energy comparison528

between the two probing schemes. For all of these reasons, the rest of the529

paper will focus only on the single inward / outward probing schemes.530

5. Unstable probing sequences531

5.1. Single inward probing532

This section extends the probing simulations to cases in which instabil-533

ities are encountered. The probing displacement is applied similarly to the534

previous part of the study, but an arc-length solver (Riks solver) is now used,535

which allows probing to continue after a vertical tangency (fold) in the probe536

force vs. probe displacement plane has been reached. Additional probing537

sequences are computed for the single inward probing scheme and for all538

probing locations, and the two main types of path instabilities encountered539

are analyzed.540

The results of the analysis for a probe located at 100 mm from the end of541

the structure are shown in Figure 11. For M < 1, 050 Nmm, the probing path542

is stable and the probe force exhibits a local maximum and local minimum.543

However, the probe force is always positive and no locally buckled equilibrium544

solutions exist. For M = 1, 050 Nmm, a vertical tangent is encountered and545

the path folds. The path eventually restabilizes for a value of probe force546

of about −0.1 N. However, the restabilized path is short and does not reach547
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positive probe forces. This suggests that another bifurcation is encountered548

for a probe displacement of about 0.2 mm. This behavior is also encountered549

for higher values of moments, although the corresponding probing paths do550

not restabilize for positive values of probe displacement. Figure 12a shows551

the probing path for M = 1, 050 Nmm with four points 1-4 marking key552

stages of the probing sequence.553
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Figure 11: Probe force vs. probe displacement for a probe located at z = 100 mm and for

four values of applied moment. The loop formed by the folded path becomes smaller as

the moment magnitude increases until it folds on itself for M = 1, 385 Nmm.

The deformed shapes corresponding to these four points are shown in Fig-554

ure 12b. On the stable part of the path (before reaching point 2), displacing555

the probe results in an increase of the local buckle amplitude. After point556

2, the probing path becomes unstable. As the probe displacement decreases,557

the probe force increases until it reaches point 3 and then decreases to 0 N at558
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point 4, which corresponds to a buckled equilibrium solution. This unstable559

path corresponds to the change of location of the buckle formed during the560

stable part of the path. At point 4, the structure is in a buckled equilib-561

rium configuration, but the final buckle location does not correspond to the562

probing location.563

Note that the probe force vs. probe displacement curve has a positive564

slope at point 4 which means that the equilibrium is stable. The critical565

probe work required to reach the localized buckled configuration at point566

4 corresponds to the shaded area in Figure 12a. It is important to point567

out that this area does not correspond to the energy barrier, as explained568

in Section 4.5. In order to compute the energy barrier, i.e. the difference in569

total potential energy between the unbuckled state and the buckled state at570

point 4, the area enclosed by the probing path would have to be considered.571

The area under the curve formed by points 2, 3 and 4 would have to be572

subtracted from the shaded area, and the work done by the end-moments573

would have to be added.574

Path folding has also been encountered in compressed spherical shells575

probed at the apex, under rigid volume control (Thompson and Sieber, 2016),576

and all of the bifurcations that can arise and disrupt a probing sequence577

have been described (Thompson et al., 2017). Two approaches have been578

proposed to explore experimentally these unstable probing sequences. The579

first one consists in introducing feedback control (Thompson et al., 2017).580

If the probe displacement and probe force are chosen as inputs, it is then581

possible to resolve vertical tangents. It is also possible to navigate around582

the fold and avoid unstable probing paths by using the moment and probe583
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displacement as inputs. Another approach consists in using additional probes584

to suppress instabilities (Thompson and Sieber, 2016).585

Next, the probing paths for a probe located at 160 mm from the end of the586

structure are shown in Figure 13. For M = 1, 000 Nmm, the path exhibits587

a local maximum and a local minimum without reaching the zero threshold588

for the probe force. The path is well behaved and can be resolved with589

a Newton-Raphson solver. For M = 1, 050 Nmm, the probe path reaches a590

point of vertical tangency for a probe displacement 0.85 mm. The restabilized591

path extends further and reaches positive probe forces, which indicates the592

existence of a stable equilibrium solution.593

As the moments increases in magnitude, the path folding is replaced by594

path spiraling , which indicates that multiple equilibrium solutions exist. The595

number of equilibrium solutions encountered on the probing path increases596

as the moment increases. For M = 1, 200 Nmm, four equilibrium solutions597

are detected and for M = 1, 300 Nmm the spiraling evolves to reveal five598

equilibrium solutions. Close to the buckling load, at M = 1, 385 Nmm, a599

single path is observed for extremely small values of probe displacement,600

which indicates an extremely low critical probe work.601

The probing path for M = 1, 300 Nmm is shown in Figure 14a, with four602

equilibrium states labeled 1-5. The deformed shapes obtained at these points603

are shown in Figure 14b. As the probe displacement increases, initially the604

probe force increases and then decreases. The probing path becomes unstable605

right before reaching the first equilibrium state (labeled 1). At this point,606

a buckle in stable equilibrium (buckle 1) is formed in the longeron at the607

probe location. The unstable path between states 1 and 2 exhibits negative608
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Figure 12: (a) Probe force vs. displacement for probe at z = 100 mm and M = 1, 050

Nmm. Four key points are highlighted and correspond to the deformed shapes shown in

(b). The solid and dashed lines correspond respectively to the stable and unstable probe

characteristic under displacement control. The shaded area is the probe work needed to

trigger snap-buckling. (b) Mode shapes obtained at points 1, 2, 3, and 4 on the probing

sequence. The stable part of the path (point 1 and 2) corresponds to the growth of the

buckle formed by the probe. On the unstable part of the path (points 3 and 4), the

previously formed buckle shifts location. Deformations have been magnified by a factor

20.
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Figure 13: Probe force vs. displacement for probe at 160 mm and for five values of applied

moment.

probe forces, and the initially formed buckle travels along the longeron’s609

top edge. This situation is similar to the 100 mm probe location, but the610

main difference is that the path restabilizes with a sudden increase in probe611

force. Point 2 is now also an equilibrium state, whereas previously only one612

equilibrium solution was found. Equilibrium state 2 is also stable. From state613

2 to state 3, the probe force increases, and the magnitude of the maximum614

probe force is about twice the one attained before state 1. On this part of the615

path, buckle 1 continues to travel along the longeron, and a second buckle616

(buckle 2) forms at the probe location. The path loses stability at a probe617

displacement of about 0.4 mm and reaches the stable equilibrium 3, for which618

buckle 1 and buckle 2 are sustained, forming a ”train” of 2 buckles. This619

buckle formation shifts location before reaching the unstable equilibrium 4.620
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The path proceeds with a third loop and the 2-buckle formation continues621

traveling, while a third buckle (buckle 3) is formed at the probe location.622

The path reaches equilibrium 5 for which 3 buckles in series are sustained623

in the longeron. Note that point 5 also corresponds to a local minimum of624

probe force and as a result, no more negative probe forces appear on the625

path.626

Two other interesting behaviors are observed. First, closer to the strip627

ends (probe location between 20 mm and 60 mm) some hysteresis is found.628

The probe displacement and probe force first increase, until reaching a limit629

point, after which the probe displacement decreases and the path returns630

to the origin. However, the return path lies below the original, stable path,631

indicating lower probe forces. Physically, this indicates an interaction be-632

tween the longerons: the inward displacement imposed on longeron 1 by the633

probe causes a macroscopic in-plane bending of the full structure, causing634

the unprobed longeron (longeron 2) to buckle. A similar transfer of distur-635

bance between longerons, through the battens, was also encountered for the636

alternate probing scheme. Secondly, for some combination of probe locations637

and moments, the solver stops before the end of the analysis and the full638

probing path cannot be resolved. This is due to the presence of secondary639

bifurcations, and therefore the loss of a unique equilibrium path. While path640

folding and spiraling could be resolved using the Riks solver alone, continuing641

these probing paths after the bifurcation would require an imperfection to be642

added in the initial geometry, or more sophisticated continuation algorithms643

(Groh et al., 2018), which is beyond the scope of this paper. In most cases,644

path folding is observed before reaching the bifurcation point, but the path645
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Figure 14: (a) Probe force vs. displacement for a probe located at z = 160 mm and for

a moment of M = 1, 300 Nmm. The five points highlighted correspond to the deformed

shapes shown in (b), magnified by a factor of 40. The solid and dashed lines correspond

respectively to the stable and unstable probe characteristic under displacement control.

The stable and unstable equilibrium configurations are indicated by green and red dots,

respectively.
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stops before reaching the zero threshold for the probe force. Therefore, no646

equilibrium solutions can be detected. However, it is still possible to compute647

the probe work required to trigger snap-buckling, when the vertical tangent648

is reached.649

5.2. Single outward probing650

No buckled equilibrium solutions were detected when the single outward651

probing scheme was used in Section 4, and the probe force increased monoton-652

ically as the probe displacement increased. Even if buckled equilibrium states653

seemed unlikely for this type of probing, the probing paths had been prema-654

turely terminated by instabilities and therefore no final conclusion could be655

reached regarding their existence. Here, the Riks solver is used to compute656

the probing paths past vertical tangents. Surprisingly, it was found that the657

single outward probing scheme is able to trigger inward buckled equilibria,658

and the two main buckling mechanisms are analyzed below.659

The first buckling mechanism involves the formation of a buckle in the660

unprobed longeron. Probing at a location z = 180 mm under a moment661

of M = 1, 100 Nmm triggers this behavior, and the corresponding probe662

force vs. probe displacement curve is shown in Figure 15a. The structure’s663

deformed shapes obtained at selected points on the path are shown in Figure664

15b. The probing sequence starts with a monotonic increase in probe force as665

the probe on longeron 1 is displaced outwards. The deformed shape at point666

1 shows the large displacement of the probed longeron but no localization is667

observed. However pulling on longeron 1 results in a global in-plane bending668

of the structure, which results in an inward displacement of the unprobed669

longeron 2, since the two longerons are connected by the battens. Past point670
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1, the probe displacement decreases and the inward displacement of longeron671

2 localizes to form a buckle. At point 2, the inward buckle on the unprobed672

longeron 2 is in equilibrium and stable. Once the probe displacement becomes673

negative, the single inward probing scheme is recovered and an inward buckle674

is formed on the probed longeron 1. Path folding is then observed which675

physically corresponds to the buckle on longeron 1 moving along the longeron,676

as described in the previous subsection. The only difference here is that the677

initial outward probing results in an additional inward buckle on longeron 2.678

The second buckling mechanism is rather unexpected, as it corresponds to679

the formation of an inward buckle in the longeron probed outwards. Probing680

under a moment M = 1, 300 Nmm and at a location of 120 mm leads to681

this behavior. The corresponding probe force vs. probe displacement curve682

is shown in Figure 16a and the structure’s deformed shapes at key points of683

the path are shown in Figure 16b. The probing sequence starts again with684

a monotonic increase in probe force as the probe on longeron 1 is displaced685

outwards. The deformed shape at point 1 shows the large displacement of686

the probed longeron, but inward localization is observed farther away from687

the probe, on the same longeron. Past point 1, the path becomes unstable688

and the localized fold present at point 1 corresponds to an inward buckle on689

the probed longeron. The local hump in probe force observed on the unstable690

path corresponds to the buckle traveling until the stable equilibrium at point691

2 is reached. After point 2, the single inward probing scheme is recovered692

and an additional buckle is formed on the probed longeron. Path folding is693

again observed in this case.694

Finally, other types of outward probing paths are encountered for different695
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Figure 15: (a) Probe force vs. displacement for probe at z = 180 mm and M = 1, 100

Nmm. (b) Deformed shapes corresponding to points 1, 2, 3, and 4, magnified by a factor

of 30. The solid and dashed lines correspond respectively to the stable and unstable

probe characteristic under displacement control. The stable equilibrium configurations

are indicated by green dots.
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Figure 16: (a) Probe force vs. displacement for probe at z = 120 mm and M = 1, 300 Nmm.

The four points highlighted correspond to the deformed shape shown in (b), magnified by a

factor of 50. The solid and dashed lines correspond respectively to the stable and unstable

probe characteristic under displacement control. The stable equilibrium configurations are

indicated by green dots.
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probe locations and consist of a superposition of the two simple buckling696

sequences described above. Note that once the first buckle has been formed697

by the outward probing scheme, these paths can exhibit spiraling and lead698

to a complex series of buckles in equilibrium. An analysis of these complex699

situations corresponding to even more equilibrium solutions is beyond the700

scope of this paper.701

The main take away is that both the single inward and single outward702

probing schemes can trigger inward buckling, and no outward buckling has703

been observed in either case.704

5.3. Critical probe work map705

Repeating the analysis described above for all probe locations and mo-706

ments, and for both the single inward and single outward probing schemes,707

leads to the two critical probe work plots shown in Figure 17. Each color708

corresponds to a specific moment magnitude. Dots denote the first zero709

threshold in probe force, corresponding to a buckled equilibrium. In some710

cases, secondary bifurcations are encountered on the probing path before711

reaching the zero probe force threshold. In this case, additional techniques712

would need to be used to trace the full probing path, however, the critical713

probe work has been computed and reported without a dot. If the probing714

path can be fully resolved but never crosses the zero probe force threshold,715

the maximum work done by the probe is also reported without a dot. Since716

the problem is symmetric with respect to the middle transverse axis of the717

strip, only results for half a strip have been presented in Figure 17. No early718

buckling can be triggered for probes between z = 0 mm and z = 20 mm, and719

hence this region is not shown. Finally, it is important to highlight that the720
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probe location does not necessarily coincide with the buckling location.721

The critical probe work for the inward probing scheme is shown in Figure722

17a. Multi-stability is first detected for probing at the mid-point and for M =723

950 Nmm. For higher values of the moment, the meta-stable region extends724

to almost the entire length of the strip. For moments lower than 1, 385 Nmm,725

the minimum critical probe work is always reached for probing at 200 mm.726

For M = 1, 000 Nmm, it is about 0.06 mJ and drops to less than 10−3 mJ727

for M = 1, 350 Nmm. These magnitudes make early buckling extremely728

likely to occur. Closer to the first buckling moment (M = 1, 400.3 Nmm),729

the location of the minimum critical probe work changes. It is attained for730

a probe at 180 mm for M = 1, 385 Nmm and shifts to 160 mm for higher731

values of moments. Note that for this range of high moments, the critical732

probe work drops to practically zero. At M = 1, 400 Nmm, the critical probe733

work first drops to effectively zero (marked as 10−7 in Figure 17).734

The critical probe work for the single outward probing scheme is shown in735

Figure 17b. Qualitatively, it resembles the single inward probing, however the736

critical probe work is consistently higher for this type of probing, indicating737

that inward probing is the critical disturbance for the strip structure. For738

M > 1, 385 Nmm, the minimum critical probe work is similar for inward739

and outward probing. At M = 1, 400 Nmm, the critical work first drops to740

zero (marked as 10−7 in Figure 17) but for a probe location of 60 mm, which741

differs from the single inward probing scheme.742

For both probing schemes and for M < 1, 385 Nmm (99% of the buckling743

moment), the minimum critical probe work occurs for probing in the middle744

of the structure and is extremely low. It can be concluded that early buckling745
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Figure 17: Critical probe work map for (a) single inward and (b) single outward probing

scheme. Dots denote solutions corresponding to the first zero value of the probe force,

corresponding to a buckled equilibrium. These plots show similar trends, except that the

single outward probing scheme requires more energy to trigger inward buckles.
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is most likely triggered by inward probing in the middle of the structure,746

and it is thus the critical disturbance. For this specific case, the probing747

and buckling locations are the same and, therefore, the critical buckling748

mechanism consists of a localized single buckle in the middle of a longeron.749

Finally, rotation-controlled simulations have also been carried out. The750

corresponding critical probe work maps are presented in Appendix A.751

6. Stability landscape for critical localized buckling752

The notion of a stability landscape of shell buckling was introduced (Virot753

et al., 2017) as a way to characterize the meta-stable nature of cylindrical754

thin-shell buckling. The experiments in this original study used soda cans,755

and a local radial displacement was imposed in the middle of the compressed756

can using a small ball probe (called a ”poker” in Virot et al. (2017)).757

The stability landscape is the surface created when the probe force is758

plotted as a function of the probe displacement for various levels of the main759

loading parameter (axial compression or end-shortening of the cylinder). The760

landscape provides a very useful way to quantify the impact of probing on761

the buckling behavior and a general way to study the structure’s buckling762

sensitivity to disturbances. In the cylinder case, the probe location coincides763

with the location of the critical buckling mechanism, which corresponds to764

the formation of a single dimple in the middle of the cylinder. Hence, in this765

case the probing experiment is aimed at triggering this specific mode (lowest766

mountain pass point).767

In the previous section, the critical buckling mechanism for the strip768

structure was identified. It was established that local buckling can first ap-769
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pear as a single inward buckle forming in the middle of one longeron. As a770

result the critical stability landscape of shell buckling for this new structure771

has been constructed and is presented in Figure 18.772
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Figure 18: Stability landscape for the strip critical buckling mechanism (single inward

buckling in the middle), showing a region of negative probe force enclosed by a sta-

ble/unstable buckled equilibrium contour, separated from the fundamental path by a

ridge of probe force. No buckles can be sustained in the structure for moments below

the minimal buckling moment (M = 950 Nmm).

This landscape matches qualitatively the landscape for the compressed773

cylindrical shell, as well as the stability landscape for more structural com-774

plex geometries and loading (Royer and Pellegrino, 2020). Several important775

features are observed (Virot et al., 2017) and are explained here. The point776

of spontaneous buckling corresponds to the state for which the structure777

will undergo buckling without any action from the probe. This point is778

reached when the moment attains the buckling load (accounting for nonlin-779
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ear pre-buckling deformation). However, before reaching this point, buckled780

equilibrium solutions are accessible through probing. These solutions corre-781

spond to the contour for which the probe force is zero (for a non-zero probe782

displacement). It consists of two parts: stable and unstable. For a specific783

value of the moment, corresponding to the lowest value of moment for which784

a buckled equilibrium solution exists, the stable and unstable states coincide.785

This condition represents the onset of meta-stability and the associated state786

is called the minimally buckled state (Virot et al., 2017). This moment value787

is denoted as the minimal buckling moment.788

For the strip structure, the minimal buckling moment is 950 Nmm (68% of789

the buckling moment), and the probe displacement at the minimally buckled790

state is 1.6 mm. Below the minimal buckling moment, no local buckles can791

be sustained in the structure. This load may serve as an effective lower bound792

for experimental buckling loads (Groh and Pirrera, 2019).793

During a moment-controlled experimental probing sequence, where the794

probe is not attached to the structure, the longeron flange will dynamically795

snap as soon as the probe reaches past the unstable equilibrium contour, since796

the probe will experience negative reaction forces. Depending on the moment797

at which probing is carried out, the structure can restabilize and reach the798

stable equilibrium contour. For a moment above a critical value, correspond-799

ing to the snaking point of Figure 18, the structure will not restabilize and800

may completely collapse. The snaking moment is M = 993 Nmm (71% of801

the buckling moment). It is possible to probe the stable post-buckling path802

and compute the critical probe work required for early snaking, following the803

same methodology.804
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It is important to realize that the existence of the stable equilibrium con-805

tour is not guaranteed. It depends on the particular structure under study,806

and also on whether the experiment/simulation is load controlled or displace-807

ment controlled. For example, a spherical shell under external pressure will808

exhibit stable buckled states when loaded under volume-control but has no809

stable buckled states (other than complete collapse) under pressure-control810

(Hutchinson and Thompson, 2017). For the SSPP strip structures described811

in the Introduction, it has been observed that the stable buckled equilibrium812

contour can extend much farther than the first buckling load (Royer and813

Pellegrino, 2020).814

The local maxima of probe force define the ridge of the stability landscape,815

and form a hill of energy between the fundamental path and the unstable816

buckled equilibrium states. At any applied moment, the critical probe work817

is the minimum energy that must be input into the structure for it to locally818

buckle. This quantity is directly related to the buckling sensitivity to distur-819

bances, referred to as ”shock-sensitivity” (Thompson and van der Heijden,820

2014). The ridge meets the fundamental path at the point of spontaneous821

buckling under prescribed probe force (but not under prescribed probe dis-822

placement). Past this point, negative probe forces are encountered as soon823

as the probe is displaced. The local minima of probe force form the valley824

of the stability landscape, defining the limit beyond which probing paths825

restabilize. The valley intersects with the buckled equilibrium contour at826

the minimally buckled state after which the minimum probe force becomes827

negative.828

The ridge and valley intersect at M = 710 Nmm (51% of the non-linear829
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buckling moment), after which the landscape starts exhibiting a negative830

probing stiffness. For higher values of probe displacements, the stability831

landscape is bounded by limit points ending each probing sequence. The832

ridge, valley, and maximum limit points form the landscape’s foldline which833

defines more generally the range of stability for the structure against the sin-834

gle buckle mode of deformation. Snaking, which corresponds to secondary835

modes being triggered, will occur when the maximum limit points are ex-836

ceeded.837

Finally, rotation-controlled simulations have been carried out and yield838

qualitatively the same landscape. The rotation-controlled stability landscape839

is shown in Appendix A.840

7. Conclusion841

This paper has presented a numerical investigation of the buckling sen-842

sitivity of a complex thin-shell strip structure, applying the novel probing843

methodology previously used for cylindrical and spherical shells. The fo-844

cus has been on a single geometry, inspired by novel designs for spacecraft845

structures, with the goal of paving the way for experimental studies (Royer,846

2021).847

First, a classical post-buckling analysis has been conducted, which con-848

sisted in seeding imperfections based on the structure’s buckling modes in the849

initial geometry. This analysis has shown multiple localized post-buckling so-850

lutions originating from a limited set of nine buckling modes, and providing851

evidence that the structure exhibits spatial chaos.852

The probing methodology is well suited to finding the critical buckling853
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mechanism. By probing along the entire structure, it has been found that854

only localized buckling in the inward direction can be triggered before the855

buckling moment is reached. Furthermore, a comparison between single and856

double inward probing schemes highlighted that the longerons will most likely857

not undergo buckling simultaneously and will rather exhibit a sequential for-858

mation of buckles known as snaking, which was also supported by the classi-859

cal post-buckling analysis. However, when probing is not done in the middle860

of the structure, unstable probing sequences were observed and, therefore,861

an arc-length solver was used. This refined analysis highlighted complex862

behaviors such as buckles traveling along the structure and multiple equilib-863

rium paths juxtaposed next to each other. It has been shown that unstable864

outward probing can lead to local inward buckling through an interaction865

between structural components.866

A particular feature of the equilibrium paths obtained in the present867

study, which had not been reported before, is the formation of formation of868

spiral paths that indicate the existence of multiple equilibrium configurations.869

This generalized probing approach has enabled the construction of a crit-870

ical probe work map from which we concluded that a single inward buckle871

forming on a single longeron is the buckling mechanism requiring the least872

amount of disturbance to be triggered before reaching the buckling moment.873

An in depth study of the critical buckling mode has enabled the construction874

of a stability landscape of shell buckling. It highlights the region of stability875

for the buckled structure as well as the region for which restabilization oc-876

curs, between the minimal buckling moment and the snaking moment. This877

stability landscape is qualitatively similar to previous, experimentally based,878
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landscapes for cylindrical shells.879

Although the core of the paper has presented results for moment-controlled880

loading, for which probing occurs under a constant moment, rotation-controlled881

loading has also been studied. It leads to the same qualitative results for this882

structure, as shown in Appendix A.883

More generally, it has been shown that the probing methodology can884

be applied to more complex structures than cylindrical and spherical shells.885

Therefore, the use of such a technique for complex assemblies of thin-shell886

components seems to be possible and could enable an in-depth understanding887

of any structure’s buckling sensitivity. One could think about designing for a888

specific level of disturbance during operations and thus push the structure’s889

capabilities to its fullest. If one does not have a full knowledge of potential890

disturbances, an experimental determination of the minimal buckling load891

seems to provide an excellent buckling criterion. However, more work needs892

to be done to assess how initial imperfections erode the critical probe work893

required to trigger buckling and how they could provide connections between894

the adjacent post-buckling path and the fundamental path. Recent studies895

have suggested that the minimal buckling load varies rather slowly for imper-896

fections of limited amplitude (about 50 % of the shell thickness) (Royer and897

Pellegrino, 2020), whereas the critical probe work is significantly affected. A898

detailed investigation of the role of imperfections on the buckling sensitivity899

will be the subject of a future paper.900
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Appendix A. Rotation-Controlled Study1045

The analysis presented in the paper has been repeated for rotation-controlled1046

main loading. Here the rotation is prescribed at the two ends of the strips, at1047

the reference points shown in Figure 2. The moment-controlled and rotation-1048

controlled studies lead to the same qualitative results. The same buckling1049

modes and unstable probing paths are observed, and the critical probe work1050

maps can be computed. These maps are shown in Figure A.19a for the single1051

inward probing scheme and in Figure A.19b for the single outward probing1052

scheme. The values of applied rotations are chosen such that they corre-1053

spond one-to-one to the moment magnitudes in Figure 17, on the structure’s1054

fundamental path.1055

One important difference here is that the probe work accounts for all the1056

external work since the end moments are not doing any work. For rota-1057

tions (or corresponding moments) between 0.745 deg and 0.894 deg, a higher1058

critical probe work is required to trigger snap-buckling when the loading is1059

rotation-controlled rather than moment-controlled. In this initial range of1060

rotations, the minimum critical probe work is still achieved by probing in1061

the center (z = 200 mm), and therefore the single inward buckling in the1062

middle of one longeron is also the critical buckling mechanism for a rotation-1063

controlled loading. For higher values of rotation, the critical probe work is1064

higher for the moment-controlled case, even if it has a similar order of mag-1065

nitude for both types of loading. Closer to the buckling point, we observe1066

that the critical probe work becomes chaotic across the structure’s length.1067

For the critical buckling mechanism identified above (single inward buckle1068

at z = 200 mm), the rotation-controlled stability landscape can be built1069
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Figure A.19: (a) Critical probe work map for single inward probing scheme. Dots denote

solutions corresponding to the first zero value of the probe force, corresponding to a buckled

equilibrium. (b) Critical probe work map for single outward probing scheme.

and is shown in Figure A.20. It presents the same features as the moment-1070

controlled stability landscape. In both studies, the probing path restabilizes1071

after the minimally buckled state. The minimal buckling rotation is about1072

70% of the classical buckling rotation which is comparable to the minimal1073
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buckling moment which was 68% of the classical buckling moment. Probing1074

becomes unstable close to the snaking point which explains the missing area1075

in the map shown in Figure A.20. It is important to point out that when the1076

applied rotation is held constant, the area under the probe force vs. probe1077

displacement curve is the critical probe work but also the energy barrier1078

between the unbuckled equilibrium and the unstable buckled equilibrium.1079
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Figure A.20: Stability landscape for critical buckling mechanism (single inward buckling

in the middle), and for rotation-controlled loading.
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