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Abstract

This paper studies the snap-through buckling that occurs ahead of the coiled

region in thin, linear-elastic, isotropic coilable cylindrical shells with a sudden

change in the thickness of the shell cross section. The study is focused on

Triangular Rollable And Collapsible (TRAC) booms. It is shown that coiling

of these shells leads to longitudinal compression of the inner flange mid-

surface, which in turn leads to the formation of a buckle in the transition

region between the fully coiled and fully deployed parts of the inner flange.

This buckle grows to reach a steady-state configuration and is then pushed

along the shell without changing its shape when the shell is coiled.
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1. Introduction

Thin sheets of paper, textiles, metal, or plastic are coiled for continuous

manufacture and compact storage. Their coiling mechanics have been exten-

sively studied (Good and Roisum, 2008; Miura and Pellegrino, 2020) and it

∗Corresponding author: sergiop@caltech.edu

Preprint submitted to International Journal of Solids and Structures August 27, 2022



is known that excessive tension, torque, or speed, can lead to coiling defects

that include curled webs, ridges, starring, and internal wrinkles and buckles

(Roisum, 1984). In a related class of problems, known as propagating insta-

bilities, a localized instability propagates spontaneously under load control,

driving a whole structure into a buckled configuration. Problems of this type

include the initiation and propagation of bulges in rubber balloons and steel

pipelines, described in the review paper by Kyriakides (1993). They also in-

clude the localization and propagation of buckles in cylindrical panels loaded

by pressure (Power and Kyriakides, 1994).

The problem studied in the present paper is the buckling that occurs

ahead of the coiled region in thin, coilable cylindrical shells with certain

specific features. This buckle grows to reach a steady-state configuration

and is then pushed along the shell, without changing shape, as the shell is

further coiled. This problem also belongs to the category of propagating

instabilities although its propagation is not spontaneous.

The particular type of shell that is of interest is the Triangular Rollable

And Collapsible (TRAC) boom, where the instability occurs because of a

sudden change of thickness of the cross section.

TRAC booms (Murphey and Banik, 2011) have been used in solar sails

to achieve high packaging efficiency while maintaining desirable structural

performance (Banik and Murphey, 2010). Typically, four such booms are

arranged along the diagonals of a square sail, coiled around a cylindrical

hub during the packaging stage and deployed after the sail is launched into

space. An example is the upcoming NASA Near-Earth Asteroid (NEA) Scout

mission in which Elgiloy booms are used(Lockett et al., 2020).
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Figure 1: Coiling of TRAC boom.

A TRAC boom, shown in Fig. 1, consists of two cylindrical shells of uni-

form thickness and transverse curvature (generically known as tape springs,

(Miura and Pellegrino, 2020)) bonded along a common edge. The bonded re-

gion is called the web, and the two unbonded branches are called the flanges.

In the figure, the boom has been flattened at one end and coiled on a cylin-

drical hub with axis perpendicular to the meridian of the deployed shell. A

tip tension is applied to the boom to ensure that the coiled part of the boom

and the coiling hub are fully in contact (Wilson et al., 2020).

The region of the boom where contact with the hub is first lost is called

the coiling front. The region where the flanges are partially flattened but not

yet coiled onto the hub is called the transition region. It is in this region,

in the inner flange, that the buckle first appears (Leclerc, 2020; Cox and

Medina, 2018) soon after the beginning of the coiling process, see Fig. 2(a).

Further coiling of the shell results in the buckle being pushed along the length

of the shell. Local material damage has been observed to occur as a result

of the buckle formation and propagation.

The above described behavior is also seen in other types of coiling. For ex-

3



Figure 2: Propagating buckle during coiling of (a) TRAC boom, and (b) folded piece of

paper.

ample, when coiling a folded-over sheet of paper using a rolling pin, Fig. 2(b),

a buckle forms in the inner half of the sheet. In this case, the buckle ampli-

tude grows when the pin is turned. This buckle is different from Fig. 2(a), as

in the paper sheet the two “flanges” are originally flat, but in both cases the

buckles can cause material damage, such as delamination and fiber kinking

near the web-flange interface of TRAC booms and inelastic creases in the

paper sheets.

The present paper is organized as follows. First, a series of high-fidelity

numerical simulations of coiling is carried out, to capture the formation of

the coiling buckle and provide deeper insights that lead to understanding

this type of buckling. It is shown that the shear angle at the edge of the

transition region of the shell is an important kinematic parameter to study

this problem. Next, the coiling kinematics of the booms are analyzed and

a simple analytical model to estimate the critical value of the shear angle is

proposed. This model is then used to introduce a simpler buckling problem,

in which a buckling analysis of only the transition region of the shell leads
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to accurate estimates of the critical shear angle. A discussion concludes the

paper.

2. Numerical Study of Coiling Instability

This section presents a high-fidelity simulation of coiling that closely fol-

lows the buckle formation and evolution.

2.1. Model Description

The ABAQUS finite element model to simulate the coiling of a boom, shown

in Fig. 3, was based on Leclerc (2020). The model consists of two main

parts: a rigid hub and an elastic, isotropic boom, modeled as two separate

tape springs whose nodes are tied in the web region.

Although TRAC booms are mostly built from composite laminates, the

present study focuses on isotropic shells in order to avoid the complication of

orthotropic shells. Advantages of this simplification are a greater generality

of the results and the deeper insight that can be achieved. The formation of

buckles in orthotropic booms has been studied in Luo and Pellegrino (2022).

The boom was modeled with 4-node reduced integration Reissner-Mindlin

thin shell elements, S4R, with size of 0.67 mm.

The boom was 470 mm long and had the cross section defined in Fig. 3.

Its cross-sectional properties were derived from Leclerc (2020): web width

w = 8 mm, flange thickness t = 72 μm, web thickness 2t + tb = 144 μm,

flange radius R = 10.6 mm, and subtended angle θ = 105◦. The coiling hub

radius was r = 25 mm. The Young’s modulus of the boom was E = 70 GPa

and the Poisson’s ratio ν = 0.2.
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Figure 3: Finite element model for TRAC boom coiling simulation. There are two coor-

dinate systems, X,Y, Z is global and spatially fixed whereas 1, 2, 3 is curvilinear.

A local material frame aligned with the longitudinal and transverse di-

rections of the boom was defined for the shell elements. The local axes 1,2,3

represent the longitudinal, transverse, and normal directions of the shell, re-

spectively. Therefore, the stresses, strains, and curvatures computed in the

local frame are corotational quantities that are invariant under finite rota-

tions during coiling.

The simulation consisted of two main steps: flattening and coiling. First,

the root of the boom was flattened by applying two transverse tensions of

F = 25 N/mm along the edges of the flanges, together with a tension 2F

on the edge of the web. A flattening pressure of p = 200 kPa was applied

over an 8 mm long root bonding region. This length is sufficient to maintain

alignment of the top and bottom flanges when they are flattened. Once

the two surfaces had come into contact, a no-separation contact condition

prevented them from separating. At the end of the flattening step, the hub

was moved up until it came into contact with the flattened shell. Next, a
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tension of 15 N was applied at the tip of the boom to straighten it. Finally,

relying on the full bonding of the longeron to the hub, the root of the boom

was driven by rotating the hub at a prescribed angular velocity of 0.3 rev/s,

forcing the boom to coil around the hub.

The coiling angle is defined as the angle subtended between the root of

the flattened boom and the coiling front, where the boom loses contact with

the hub.

2.2. Curvature Tensor

To obtain the total curvatures in the coiled configuration, the initial curvature

of the undeformed shell was added to the curvature changes provided by

Abaqus:

κ =

⎛
⎝ κ1 κ12

κ12 κ2

⎞
⎠ =

⎛
⎝0 0

0 −1/R

⎞
⎠+

⎛
⎝Δκ1 Δκ12

Δκ12 Δκ2

⎞
⎠ (1)

where κ1 and κ2 are the curvatures in the longitudinal and transverse direc-

tions, respectively, κ12 is the twist.

With the curvature tensor expressed in the local material frame, its in-

variants and principal values were obtained. The mean curvature is given

by:

κ̄ =
κ1 + κ2

2
, (2)

The Gauss curvature is:

κGauss = κ1κ2 − κ2
12, (3)

The minimum principal curvature is:

κmin =
1

2

(
2κ̄−

√
4κ2

12 + (κ1 − κ2)2
)
, (4)
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and the maximum principal curvature is:

κmax =
1

2

(
2κ̄+

√
4κ2

12 + (κ1 − κ2)2
)
. (5)

Note that the principal directions of curvature for the deformed shell do

not coincide with the longitudinal and transverse directions of the original,

cylindrical surface. They form angles of ≈ 45◦ with the axis of the cylindrical

surface.

2.3. Buckle Formation

Contours of the mean curvature in the inner flange of the boom were plotted

over the deformed configuration of the structure in Fig. 4, at different stages

of coiling.

When the shell had been coiled by about a third of a full revolution,

a buckle began to appear near the free edge of the shell, close to coiling

front, Fig. 4(a). Immediately after its first appearance, the buckle grew in

size and dynamically snapped in the transverse direction, reaching the web-

flange interface, Fig. 4(b-c). Then, the buckle slowly grew until reaching a

steady state after a full revolution of the hub. This transition corresponds

to an increase of the mean curvature from 30 m−1 to 42 m−1, in Fig. 4(c-e).

Figure 4(f) shows the final configuration of both the inner and outer

flanges (only the outline of the outer flange is shown). Note that the buckle

has an elliptical shape. Its long axis forms an angle of roughly 45◦ against

the longitudinal direction. Also note that during the whole coiling process

the outer flange did not buckle.

Figures 5(a-b) show the minimum (convex) and maximum (concave) prin-

cipal curvatures near the buckle, after reaching the steady state. The direc-
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Figure 4: Evolution of mean curvature of inner flange in transition region: (a) initiation of

buckle at 1/3 hub revolution; (b)-(c) snapping and growth of buckle at 1/3 hub revolution;

(d) stable growth of buckle at 1 hub revolution; (e) steady state at 1.5 hub revolution; (f)

coiled boom at steady state, showing outline of outer flange and surface of inner flange.

tions of principal curvature are at about 45◦ to the longitudinal axis of the

shell. The contours of the maximum principal curvature indicate that the

concave bending is concentrated along the ridge of the buckle. Note that the

magnitude of the minimum principal curvature at the upper left corner of

the transition region (180 m−1) is almost twice the maximum principal cur-

vature at the same point (100 m−1). The product of the principal curvatures

gives the Gauss curvature, plotted in Fig. 5(c). This figure shows that the

Gauss curvature is approximately zero, i.e. the surface is almost developable,

everywhere except at the two corners of the buckle, where negative values

indicate saddle-like local geometries.

The variation during coiling of the minimum principal curvatures at the
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Figure 5: Principal values and invariants of curvature tensor at steady state (1.5 hub

revolution).
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ends of the buckle (points A and B) has been plotted in Fig. 6 and this figure

is discussed next. Soon after the start of coiling, the minimum principal

curvature is −150 m−1 at point A and −24 m−1 at point B. When the coiled

length of the shell reaches 50 mm, the curvature at B suddenly increases

to −91 m−1 and then gradually reaches the magnitude of the curvature at

A. Both curvatures increase to −194 m−1 when the coiled length reaches

160 mm, which corresponds to approximately one full turn.

Figure 6: Variation of minimum principal curvature at ends of buckle, showing sudden

jump and steady state.

It should be noted that if buckling is avoided, the largest change of curva-

ture would be 94 m−1 in the transverse direction, due to flattening the shell,

whereas the change of longitudinal curvature would be only 40 m−1. Hence,

the present analysis has indicated that the bending stresses in the shell can

be double the values estimated from a simple analysis that neglects buckling.
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3. Stress Distribution and Shear Deformation

To gain a complementary perspective the in-plane behavior of the inner

flange is analyzed. It reveals the compressive stresses that lead to buckling.

The longitudinal strain and stress on the mid-surface of the inner flange, as

well as the extension of this surface into the web, need to be considered.

Note that the flange mid-surface does not coincide with the mid-surface of

the web and hence the extension of the flange mid-surface into the web is

considered for this part of the study.

It is insightful to study the variation of the longitudinal and shear strains

on this surface as the coiling advances. The longitudinal strain at three stages

of coiling is shown in Fig. 7. Figure 7(a) shows contours of the longitudinal

strain plotted on the undeformed shell geometry, immediately before the

formation of the buckle. A simple estimate gives a uniform, compressive

strain ε11 ∼ −t/2r in the web, whereas the strain in the flange is zero. A

comparison of these values to Fig. 7(a) shows that this estimate is not entirely

correct, because a small portion of the compression in the web has “leaked”

into the flange region, resulting in a relatively small, uniform compression

in the middle of the coiled inner flange. Note that the strain at the end of

the coiled region becomes non-uniform and forms a boundary layer near the

coiling front.

Figure 7(b) shows a snapshot of the same strain component immediately

after the formation of the buckle. Comparison with Fig. 7(a) reveals that

the zone of highest compression in the transition region, marked by a square,

dynamically splits into two separate zones of high (but lower) strain. The

two compression zones, marked by squares in Fig. 7(b), are located at the
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Figure 7: Evolution of longitudinal strain ε11 on mid-surface of inner flange, plotted

on undeformed configuration: (a) immediately before buckling; (b) immediately after

buckling; (c) steady state. Interface between web and flange marked by horizontal dashed

lines. Interface between coiled and uncoiled (transition) region marked by vertical dashed

lines.

web-flange interface and at the free edge of the inner flange. The splitting

of the critical compression zone is a result of the buckling of the transition

region.

Further coiling of the longeron after the buckling event leads to a slightly

higher compression in the transition region, as shown in Fig. 7(c). The buckle

propagates quasi-statically, driven by the hub rotation, and gradually reaches

a steady-state amplitude. Even though the compression in the coiled web

section is relatively high, only a small amount of compression is transmitted

into the transition region.

The longitudinal and shear strains at the steady state are compared in

Fig. 8. The strain profile in the coiled region is almost uniform, except

for boundary layers at both ends of the coiled flange. There is uniform

compression with no shear in the middle of the coiled flange, but also rapid
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changes of both compression and shear in the boundary layers.

Qualitatively, this result resembles the shear-lag effects that are seen

in situations where tension or compression is transmitted through interface

shear (Timoshenko and Goodier, 1951; Clyne and Hull, 2019). Hence, the

term shear-lag zone will be used to refer to this boundary layer effect.

As noted previously, an important feature of the problem at hand is that

the compression in the web leaks to the inner flange through shear-lag. The

variation of the compression in the flange results in the shearing of the flange,

which can be related to the shear angle at the edge of the transition region

of the shell. The in-plane shearing of the shell is the mechanism that leads

to the formation of the buckle.

As the steady state is approached, the high compression region in the

middle of the inner flange extends in length, whereas the two high shear zones

at the ends remain unchanged. This result indicates that the stresses in the

coiled region are approximately self-equilibrated and only a small portion of

the compression flows into the transition region.

The original shear-lag theory was used to model the stress distribution in

open-section, thin-walled beams (Fan, 1939; Timoshenko and Goodier, 1951)

and was later extended to the longitudinal stress distribution in short fibers

in composite (Clyne and Hull, 2019; Nairn, 1997; Fukuda and Chou, 1981;

Wisnom et al., 2007; Liu et al., 2018) and advanced materials (Young et al.,

2018; Yu et al., 2018).

The shear-lag theory for a stiff fiber of finite length, L, embedded in an

elastic matrix (Clyne and Hull, 2019) provides a second order ordinary differ-

ential equation for the variation of the stress, σf , along the fiber coordinate
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Figure 8: Longitudinal and shear strains along the web-flange interface at steady state.

Solid curves are strains from simulation, dashed curves are optimum fits of shear-lag model

(Eqs. 7 and 8).

x, with origin at one end of the fiber:

d2σf

dx2
− n2

ρ2f
σf = −n2

ρ2f
Ef ε̄ (6)

Here, ε̄ is the overall strain in the fiber direction in the composite, ρf , Ef

are respectively the fiber radius and the Young’s modulus, and n is a dimen-

sionless constant that depends on the fiber and matrix properties. In the

present model of boom coiling, the flange corresponds to the fiber and the

web corresponds to the matrix.

The solution of Eq. 6, with the end conditions σf (0) = σf (L), shows that

the fiber stress varies according to the hyperbolic cosine:

σf = Ef ε̄+ A cosh
n(x− L/2)

ρf
(7)
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whereas the matrix-fiber interface shear stress varies according to the hyper-

bolic sine:

τ = −nA

2
sinh

n(x− L/2)

ρf
(8)

where A is an arbitrary constant that depends on a boundary condition.

Equations 7-8 are converted to strains through ε̄ = σf/Ef and γ = τ/G =

2(1 + ν)τ/Ef , to obtain:

εf = ε̄+ Ā cosh
n(x− L/2)

ρ̄
(9)

and

γ = −(1 + ν)nĀ sinh
n(x− L/2)

ρ̄
(10)

where Ā = A/Ef and ρ̄ = ρf/n.

These expressions are compared in Fig. 8 with the strain components

along the coiled web-flange interface, ε11, γ12, obtained from the numerical

simulation, using the parameters ε̄ = −1.232×10−3, Ā = 1.4×10−5, L = 140

mm, ρ̄ = 17.5 mm, ν = 0.2, and n = 1.25. Note that the sign of the

expression for γ has been reversed, to account for the orientation of the local

material frame.

The interface shear and longitudinal strain agree with the shear-lag theory

in the central part of the coiled region. Larger discrepancies occur near the

ends of the coiled region, where the bonding region, on the left, and the

buckle, on the right, affect the stress distribution. The maximum relative

error for ε11 at the two ends is about 25%.

It should be noted that the parameters of the above fitting are for a

specific value of L. In other words, the shear-lag model is not an accurate

16



predictive tool. However, it is a useful step towards the development of the

predictive model presented in the next section.

The main conclusion from the above study is that the compression in the

coiled flange is smaller than in the web, due to leakage through shear-lag.

The mismatch in compression between the coiled web and the flange results

in a length mismatch and hence in the build-up of shear deformation, starting

from the root of the coiled region and increasing along it.

The total shear displacement at the coiling front is denoted by Δ and the

relative displacement between the edges of the two flanges is 2Δ, because a

similar effect occurs also in the outer flange of the boom (which is in tension

and therefore does not buckle). The enlarged view in Fig. 9 shows the relative

slip of 2Δ between the inner and outer flanges at the front of the coiled region.

Figure 9: Relative slip between inner and outer flange.

The average shear angle at the coiling front of each flange, γ, can be

defined as

γ =
Δ

Rθ
(11)
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where Rθ is the width of the flanges.

Detailed estimates of γ can be obtained from the coiling simulation and

can be compared to the extreme value of Eq. 10. Since the interface shear

is related to the magnitude of compression prior to buckling, the value of γ

at the coiling front is a key variable for the present study, which is further

discussed in the following.

4. Analytical Model of Coiling

This section presents a simple, nonlinear spring model of the buckle forma-

tion. The underlying mechanism is the length mismatch between the flanges

and the web, identified in Section 3, for which two limiting cases are identi-

fied. Then, the maximum shear strain γ in the shear-lag zone of the coiled

shell is expressed in terms of the free length of two linear extensional springs

representing the coiled web and flange, as well as rotational stiffnesses that

represent the shear lag zone.

4.1. Coiling Kinematics

The study in the previous section has shown that the buckling during coiling

of a TRAC boom is caused by the shear angle at the front of the coiled region,

resulting from the incompatible coiling kinematics of the web and flanges.

It is convenient to consider the extreme cases of booms in which the

flanges are perfectly glued together, Fig. 10(a), or the web has been sliced

through the middle, Fig. 10(b). In the first case, the inner and outer flanges

are respectively under compression and tension. The neutral surface, which

corresponds to the mid-surface of the web, is stress free and hence there is

zero relative slip between the inner and outer parts of the boom. In the
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second case, the two halves of the web are free to slip against each other,

like the flanges, and hence there are two separate neutral surfaces for the

inner and outer parts of the boom. Therefore, the two parts of the boom

coil as separate shells, whose coiling radii differ by a flange thickness, t, thus

inducing a relative slip between the inner and outer flange.

In both of the cases outlined above, there would be no compression on

the mid-surface of the shells, and therefore no buckling would occur.

Next, consider the coiling of a TRAC boom. This case is intermediate

between the two limiting cases discussed above and is shown in Fig. 10(c).

To accommodate the mismatch between the two neutral surfaces, high shear

stress develops at the web-flange interface, allowing a portion of the compres-

sion at the inner half of the web to be leaked into the inner flange through

the shear-lag mechanism. Compared to the separate coiling scenario, the slip

between the two flanges is smaller in the actual coiling process. More im-

portantly, it is directly related to the shear stiffness of the shell. Differently

from the separate coiling, the slip must be zero at the web-flange interface

for continuity of the displacement field. Thus, the previously defined shear

angle, γ, appears naturally as the work conjugate of the shear stress in the

shear-lag region, and is shown in Fig. 10(c).

4.2. Shear Angle

4.2.1. Upper Bound on Maximum Slip

The maximum possible slip between the inner and outer flanges is determined

by the separate coiling scenario of Fig. 10(b). In this case, the mid-surface

of each flange is a neutral surface and hence does not change its longitudinal
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Figure 10: Schematic showing: (a) perfect coiling of shell made by gluing together two

identical shells; (b) coiling of two separate shells glued together at one end; (c) actual

coiling.

length. The lengths of the coiled inner and outer flanges are respectively:

(
r +

t

2

)
φ, and

(
r +

3t

2

)
φ (12)

where φ is the coiling angle.

Hence, the relative slip between the two flanges is 2Δmax = φt and hence
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the maximum possible shear angle is given by:

γmax =
Δmax

Rθ
=

φt

2Rθ
(13)

This equation shows that the upper bound on the relative slip, as well as

the shear angle between the inner and outer flanges, increase proportionally

to the hub rotation. They are also proportional to the flange thickness, t, as

well as the inverse of the flange width, 1/Rθ.

Of course, in reality the actual shear angle cannot grow indefinitely, as

predicted by Eq. 13. As it was observed in the numerical simulations, the

strains and curvatures reach a steady state after buckling occurs.

4.2.2. Spring Model

A set of linear springs, inspired by the shear-lag model, can capture the leak-

age of compression from the web to the flange, Fig. 11. This model consists

of two extensional springs, ab and a′b′, which capture the average shortening

of the coiled inner half of the web and of the inner flange, respectively. These

springs have strains εw, εf and stiffnesses kw, kf , respectively. To capture the

shear-lag mechanism and allow some compression to leak from the web to

the inner flange, the springs are connected by the rigid rods aa′ and bb′ with

rotational springs at a and b. Hence, the compression in spring ab is trans-

mitted to the spring a′b′ through the rotation of aa′ and bb′, representing the

shearing of a′ab and abb′. The shear stiffness is captured by the rotational

springs ka, kb, with rotations γa, γb. Ls is the length of a− a′ and b− b′, and

L is the coiled length of the boom.

The above-described model can be used to determine γb as a function of

the coiled length L.
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a b

a’ b’

Figure 11: Spring model overlaid on schematic of uncoiled inner flange mid-surface.

Coiling induces a compressive strain in the web, which at the location of

the flange mid-surface, shown in Fig. 10(c), has the value:

ε0 = − t

2r
(14)

Due to the compression leakage to the flange, represented by spring a′ − b′,

the strain in the spring representing the web is reduced to

εw = ε0 +Δε (15)

where Δε denotes the leakage of the longitudinal strain due to the rotational

spring kb. Associated with Δε is a force in the spring a− b, denoted by ΔF ,

and an equal and opposite force in the spring a′ − b′.

Finding γb requires the solution of a statically indeterminate problem,

which involves the combination of kinematic compatibility, static equilibrium,

and constitutive relations to find a unique solution.

The compatibility condition between the extensions due to the rotations

of aa′ and bb′ and the difference in the contraction of springs a−a′ and b− b′

is:

Lsγa + Lsγb = L(εf − εw) (16)
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The constitutive relations for the two extensional springs are:

ΔF = kwLΔε, and −ΔF = kfLεf (17)

Equating these relations eliminates ΔF and gives:

εf = −kw
kf

Δε (18)

On the other hand, ΔF applies a moment on the rotational springs, and

hence is related to the shear angles by:

kaγa = ΔFLs, kbγb = ΔFLs (19)

Substituting Eq. 15 and Eq. 18 into Eq. 16, then combining with Eq. 19,

and solving for γb and Δε gives:

γb = − LLs(
1 + kb

ka

)
L2
s +

(
1
kw

+ 1
kf

)
kb
ε0 (20)

Δε = − ε0(
1
ka

+ 1
kb

)
kwL2

s +
kw
kf

+ 1
(21)

where it should be recalled that ε0 is given by Eq. 14.

To check the validity of Eqs. 20-21, the limiting cases where ka and kb

tend to 0 and ∞ are considered. When ka = kb = k → 0, γb → Lε0/2Ls

and Δε → 0, which corresponds to the case of rotational springs that cannot

transmit any moment (i.e., separate coiling) gives: Δmax = Lε0. When

ka = kb = k → ∞, i.e. the rotational springs are rigid, γb → 0, and Δε →
−ε0/(1 + kw/kf ), which corresponds to the inner flange transmitting the

maximum possible amount of compression. In practice, the compression in

the coiled inner flange is always smaller than the compression in the coiled

web, as observed in the simulations.
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Finally, it is noted that the spring constants are related to the Young’s

modulus of the boom by the relations:

kw = E
wt

L
, and kf = E

θRt

L
(22)

The rotational stiffnesses ka, kb are related to the shear modulus of the

boom, G, and the non-uniformity of the shear stress along the web-flange

interface, Fig. 8, can be captured by introducing two correction coefficients,

ηa and ηb:

Gγa,b =
τ̄

ηa,b
=

ΔF

ηa,bL0t
, with ηa,b ≤ 1 (23)

Here L0 denotes the length of the shear-lag zone, defined as the length of the

interface with a shear strain greater than 10% of the maximum shear strain

near the coiling front, see Fig. 8. τ̄ is the average shear stress in the shear-lag

zone.

Combining Eq. 23 with Eq. 19 to eliminate ΔF , gives the spring constants

for the shell prior to buckling:

ka = ηatLsL0G, and kb = ηbtLsL0G (24)

Substituting the expressions for kw and kf , Eq. 22 and Eq. 18, into the

expression for γb in Eq. 20 gives:

γb = − 2

(1 + ηb/ηa)Ls/L+ L0 (1/w + 1/θR) ηbG/E
ε0 (25)

and substituting E/G = 2(1 + ν) gives:

γb = − 2(1 + ν)

2(1 + ν)(1 + ηb/ηa)Ls/L+ L0 (1/w + 1/θR) ηb
ε0 (26)

where ν is the Poisson’s ratio of the material.
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Every quantity in this expression for γb is evaluated using the properties

of the boom, except for Ls which is taken as a calibration parameter, between

0 and w + θR, and ηa, ηb which are also calibration parameters.

4.2.3. Shear Angle during Coiling

The expression for γb in Eq. 25 can be rewritten as:

γb(L) =
1

Ω/L+Ψ

(
t

2r

)
(27)

with

Ω = (1 + ηb/ηa)Ls (28)

and

Ψ = L0 (1/w + 1/θR) ηbG/E (29)

Note that both of these parameters are only dependent on the material prop-

erties and the shell geometry.

To study the variation of γb during coiling, the length of the coiled region

of the boom, L = φr, can be taken as the independent variable. For small

values of L, γb increases linearly and remains close to its upper bound (Eq. 13,

since Ω ≈ Rθ):

γb ≈ 1

Ω

(
t

2r

)
L (30)

When L is large, γb reaches a plateau (steady state), given by:

γb ≈ 1

Ψ

(
t

2r

)
(31)

This result agrees with the previous observation that the coiling of booms

always reaches a steady state.
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To account for the effect of buckling, two different values of kb are used

in the expression for γb. This corresponds to decreasing ηbuckled to the value

of ηb in Eqs 28-29. A specific value of ηbuckled is obtained by calibration with

the high-fidelity coiling simulations; in the present case ηb decreased from

0.53 to 0.47. As a result, the variation of γb with L will show a jump.

The variation of γb predicted by this model is compared in Fig. 12 with

the he maximum shear strain obtained from the high-fidelity simulation of

boom coiling. In this figure, the circles denote values obtained from the

simulation, whereas the solid curves are the optimum fits using the spring

model of Eq. 27. The model parameters are given in Table 1.

Figure 12: Evolution of maximum shear strain, γmax, against coiled length. Circles are

from coiling simulation. Curves are optimum fits of spring model.

This comparison has shown that the spring model is capable of matching

the maximum shear angle γ obtained in the simulations. Importantly, it
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Fixed Parameters Value Model Parameters Value

Young’s modulus, E 70 GPa Ls 7.85 mm

Poisson’s ratio, ν 0.2 L0

√
3Rθ

Web width, w 8 mm ηa 1

Flange radius, R 10 mm ηb 0.53

Subtended angle, θ 105◦ ηbuckled 0.47

Flange thickness, t 72 μm γc 0.00106

Hub radius, r 25 mm

Table 1: Parameters of spring model.

has been shown that γ reaches a plateau, regardless of whether the flange

buckling occurs or not (see curves 1 and 2 in Fig. 12). It has also been

shown that when the buckle forms there is a jump in the value of γ, due

to the stiffness drop of the rotational spring. In the present case, a jump

of about 21.5% occurred at the buckling limit γ = γc and the value of γmax

instantaneously increased by about 20%.

The spring model has been expressed in terms of six model parameters,

listed in the second column of Table 1. In general, these parameters can

be estimated as follows. The first parameter is the length of the rigid rods

between the two springs and can be estimated as Ls = 0.5Rθ. The second

parameter is the length of the shear-lag zone, which can be estimated as L0 =√
3Rθ for a wide range of flange thicknesses and cross section geometries. The

next three parameters have the values ηa ∼ 1 and ηb ∼ ηbuckled ∼ 0.5. The

final model parameter, γc, is the critical buckling shear angle, and can be

obtained from the simple shell buckling simulation presented in Section 5.
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5. Buckling of Transition Region

Since the overall mechanism for buckling during coiling has been both

explained and modeled, the study now focuses on the buckling event itself.

The present objectives are to understand the type of buckling and to estimate

the critical shear angle, at which the buckle forms.

Since the boom has been deformed into an irregular geometry (i.e. neither

axisymmetric nor cylindrical), its buckling and post-buckling responses can

only be studied through numerical models. However, the high-fidelity coiling

simulations of Section 2 can be avoided by switching from the Lagrangian

approach, previously adopted, to an Eulerian approach. In other words,

regardless of the location of the material points during coiling, a fixed view

of the shell can be adopted, in order to focus on the stability of a specific

region of interest.

The ploy region of a coiled boom is defined as the region in which the

boom transitions from one cylindrical surface (deployed configuration) to

another cylindrical surface (coiled configuration). The length of the ploy

region for an isotropic tape spring can be calculated from (Seffen et al.,

2019):

Lp =
1√
70

b2√
Rt

(32)

where b is the arc length of the cross-section.

For a shell formed by the inner flange and the web of the boom, depending

on the choice made for b, Eq. 32 gives Lp = 52-206 mm. These values were

obtained respectively for b equal to the arc length of the flange of the boom

and twice this value, to reflect the fact that the edge boundary conditions for

the shell are different from Seffen et al. (2019). Since it has been noted by
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Rakow and Reedy (2022) that the cross-sectional variation approaches the

deployed cross-section asymptotically over the length Lp, it is unnecessary

to consider the full ploy length and hence in the present study Lp = 90 mm

was assumed.

The analysis was divided into two parts. The first part computed the

flattening of the edge of the region of interest, using the Abaqus Explicit

solver. Only the inner flange was included in the region of interest, and

the simulation started in the deployed configuration. The second part of

the analysis computed the buckling of the region of interest, modeling the

influence of the coiled and fully-deployed parts of the boom through the use

of suitable boundary conditions and loads.

As in Section 2, S4R shell elements were used for the analysis. A uniform

square mesh with element size of 0.5 mm was chosen for the transition region

and a non-uniform coarse mesh was used elsewhere, to reduce the scale of

the computation. Instead of including the web in the analysis, a clamped

boundary condition was imposed along the edge of the flange.

The left edge of the inner flange was flattened by prescribing the trans-

verse and vertical displacements, ux and uy, of the corner node, see Fig. 13b.

Note that at the end of the flattening stage, the reaction force F is nega-

tive. This means that the corner is under longitudinal tension before the

buckle begins to form. This result matches the coiling simulation, where

the free edge of the inner flange is always under tension. In the follow-

ing step, a shearing deformation of the edge was imposed by increasing the

longitudinal displacement, Δ, of the corner node, Fig. 13c. The buckling

and post-buckling responses of the transition region were characterized by
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the relation between the change in reaction force relative to the end of the

flattening step, ΔF , and the corner displacement, Δ.

Figure 13: Schematic of buckling simulation: a) region of interest; b) configuration for

flattening; c) configuration for buckling.

The relation between ΔF and Δ has been plotted in Fig. 14, which shows

that, under load control, the system undergoes snap-through buckling and

dynamically snaps to point C after reaching point A. The spontaneous jump

from point A to C is consistent with the sudden jump of the shear angle,

shown in Fig. 12. In addition, the reduction of the transition region stiffness

due to buckling corresponds to the reduction of slope from line OA to line OC

(secant stiffness). As the corner is pushed longitudinally, the buckle keeps

growing in magnitude, but the process remains stable (e.g., point C to point

D in Fig. 14).

The concept of “Maxwell load”, based on an energy criterion (Kyriakides,

1993), is an established tool for the analysis of problems involving the prop-

agation of instabilities. For the load-displacement curve shown in Fig. 14,

the Maxwell load can be found by drawing a horizontal line such that the
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Figure 14: Corner load-shortening curve from buckling simulation. Comparisons between

transverse curvature change, Δκ2, from coiling vs. buckling simulation shown as snapshots.

areas enclosed by the curve, above and below the line, are equal. The end

point of intersection between the line and the curve marks the minimum

load under which the buckle can propagate quasi-statically. Note that this

propagation load is lower than the value of ΔF at point A in the figure,

which is the threshold for the buckle to initiate. This instantaneous, un-

stable propagation of the buckle occurs in the transverse direction, and the

buckle propagation in the longitudinal direction is completely passive and is

driven by the coiling hub rotation.

The upper row of snapshots in Fig. 14 shows the contours of the transverse

curvature changes during the coiling simulation of the complete boom. The

lower row shows the corresponding results from the buckling simulation. By

comparing the two sets of results, it is clear that the simplified model cap-
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tures quite accurately the buckling of the transition region during coiling.

Note that the columns A, B, C, and D in the snapshots refer to the cor-

responding points on the load-shortening curve. They represent the buckle

initiation, spontaneous and unstable (snap-through) buckling, end of sponta-

neous buckling, and stable growth of the buckle respectively. It is therefore

concluded that the buckling of the transition region is a snap-through insta-

bility (Bazant and Cedolin, 1991).

The critical shear angle corresponds to point A in Fig. 14, where ΔA =

0.055 mm. However, estimating the critical shear angle for the spring model

requires some care because the assumptions of the spring model and the

buckling model, presented in this section, are different. The spring model

assumes a linear deformation of the coiling front of the shell, whereas no

such restriction is imposed in the buckling model. Therefore, the critical

shear angle for the spring model is computed as the least-square-error fit to

the edge deflection corresponding to point A of the buckling simulation, as

shown in Fig. 15.

This estimate leads to a critical shear angle of 0.00114 rad, which differs

by only 6% from the maximum shear strain of γmax = 0.00106 obtained from

the coiling simulation, Table 1.

6. Discussion and Conclusions

This study of coiling instabilities in linear-elastic isotropic booms that

consist of two curved flanges bonded together to form a flat web of double

thickness, has provided much insight into the formation and propagation

of coiling buckles in TRAC booms, together with models that predict the
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Figure 15: Linear fit to nonlinear edge deflection obtained from buckling simulation.

amplitude of the buckles.

It has been shown that the coiling leads to longitudinal compression of

the inner flange mid-surface. This compression can lead to the formation of

a buckle in the transition region between the fully coiled and fully deployed

parts of the inner flange. The buckle formation is a snap-through instabil-

ity that is associated with a jump discontinuity in almost every observable

variable, including the coiling torque and, once formed, the buckle grows in

amplitude until it reaches a steady state.

The mid-surface compression of the inner flange is uniform in the central

part of the coiled region, and decreases near the coiling front. The corre-

sponding longitudinal strain varies in the same way. The shear strain in the

mid-surface of the inner flange vanishes at the center of the coiled region. It

increases exponentially towards the coiling front where it reaches its largest

magnitude.

The maximum value of the shear strain in the inner flange, at the coiling
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front, has been estimated with good accuracy using a discrete spring model,

whose properties are related to the Young’s modulus and shear modulus of

the inner flange, the width of the web and the transverse arc length of the

inner flange, and the coiled length of the boom. This model has shown that

the shear strain at the coiling front of the inner flange tends to reach a limit

when the coiled length of the boom is increased. The asymptotic limit is

proportional to the ratio of the flange thickness to the radius of coiling.

The value of the coiling front shear strain at which the buckle first forms

can be predicted by carrying out a buckling analysis on a relatively small

region of interest of the shell, which captures the deformation of the transition

region of the inner flange.

The snap-through buckling and the formation of a localized buckle corre-

spond to a decrease in the stiffness of the spring model and a corresponding

increase of the shear strain at the coiling front. The maximum shear strain

predicted by the spring model can then be used to determine the amplitude

of the buckle, using the buckling analysis.

Although the present study has focused on a specific TRAC boom cross-

section, the insight that has been gained is applicable to coilable shell struc-

tures in general. Different boom cross-sections, orthotropic composite shells,

also with thickness variations introduced through ply drops, could all be

studied as extensions of the present study.
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