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Abstract

This paper presents a general semi-analytical study of the mass efficiency of coil-

able plate-like space structures. A bending architecture based on four diagonal

booms that support parallel strips is compared to a cable-stayed architecture

in which vertical booms and cable stays support the diagonal booms at the

tip. Limiting conditions of global buckling, local buckling, material failure, and

excessive deflection define the design space for each architecture. Considering

pressure loads spanning several orders of magnitude, the optimal areal density

of structures of size varying from a few meters to hundreds of meters is deter-

mined for both architectures. Design charts for optimal designs are provided for

a range of sizes, loads, and deflection limits. It is shown that the cable-stayed

architecture is always lighter than the bending architecture, from a few percent

to over 30%.
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Nomenclature

EI Flexural stiffness

H Height of vertical booms

Ĥ Normalized height

L Side length of structure (span)

M Max. bending moment

mb Mass of booms

n Number of strips per quadrant

P Pressure

r Boom radius

R Longeron radius

t, tf Boom wall thickness, longeron flange thickness

wj Max. cable sag

ws Max. strip deflection

wn Boom tip deflection

w Total max. deflection

εf Failure strain

ρb,cs Areal density of booms and cables

ρs Areal density of strips

ρtotal Total areal density

θ Longeron subtended angle

Subscripts

[ ]b Bending architecture or boom

[ ]cs Cable-stayed architecture

[ ]i ith strip of quadrant

[ ]s Strip

Superscripts

[ ]d Excessive deflection or diagonal boom

[ ]g Global buckling

[ ]f Material failure

[ ]l Local shell buckling

[ ]lim Design limit

[ ]v Vertical boom
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1. Introduction

Deployable space structures are required to be extremely lightweight and

packageable into small volumes. These objectives can be pursued through dif-

ferent structural concepts and architectures.

Exquisite solutions to this problem have been developed for many specific5

applications (Miura and Pellegrino, 2020) and their superiority has typically

been demonstrated by showing higher mass efficiency over an expected range

of scales, loading environments, etc. However, there has been a lack of broader

studies providing general trade-offs between different structural architectures

across a wide range of scales and environments, which limits the potential for10

significant advances in future space exploration.

Recent advances in structural materials and manufacturing technologies have

broadened the range of practically feasible structural architectures. Coupled

with space exploration mission concepts with unprecedented requirements, cur-

rently on the horizon, the potential importance of such broader studies has15

greatly increased.

For a practical impact, it is important to focus these studies on advanced

architectures that are at the cutting edge of achievable performance, although

this increases the complexity of these studies. Advanced architectures combine

different load-carrying modes, which have to be optimized with suitable ana-20

lytical formulations. The present study shows a systematic way of doing this,

considering two different architectures for coilable space structures that are cur-

rently under development for large solar arrays (KISS, 2022) and space solar

power stations (Gdoutos et al., 2020).

The first architecture will be described as the bending architecture and is25

schematically shown in Fig. 1(a). It is a square structure of size L×L, composed

of long and narrow, parallel strips that can support photovoltaic and/or RF

power radiation films. The strips are bending-stiff structures supported by four

diagonal booms, also loaded in bending, through four diagonal cables. Each

cable is connected to the central hub and to the tip of a boom. Bending of the30
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booms and strips is the main load-carrying mode for this structure when it is

loaded by a transverse pressure, and the structure can be efficiently packaged

through a combination of origami-inspired folding and coiling, schematically

shown in Fig. 2 (Arya et al., 2016).

The second architecture considered in this paper, inspired by cable-stayed35

bridges (Fairclough et al., 2018) and large deployable space structures for solar

reflectors (Hedgepeth, 1981) and antennas (Campbell, 1981; Belvin, 1984), uses

cable stays to increase the stiffness of the diagonal booms. It will be described

as the cable-stayed architecture. The specific architecture considered in this

paper includes two vertical booms of length H connected by cable stays to the40

diagonal boom tips, Fig. 1(b). When a transverse pressure is applied to this

structure, the top vertical boom and the four stays connected to it support the

diagonal booms against downward deflection, while the bottom stays become

slack. The bottom vertical boom and the stays connected to it support the

diagonal booms when the direction of the pressure is reversed.45

Figure 1: (a) Bending and (b) cable-stayed architectures for square space structure loaded by

a pressure P . The side length is L and the height of the vertical boom for the cable-stayed

architecture is H.

Comparing the performance of the bending and cable-stayed architectures is

the goal of this paper. The objective of the present study is to quantify the mass

reduction that can be achieved by introducing the cable stays, which decrease
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Figure 2: Schematic of packaging concept.

the bending deformation of the diagonal booms and thus increase the lateral

stiffness of the structure, while taking into account the mass increase associated50

with the axial compression applied to the booms by the stays. To avoid buckling,

these booms have to be made thicker and with a larger diameter. Specific

questions arising are if the performance advantage for cable-stayed architectures

will be general, or limited to a range of loads or structural spans, and how

significant is the mass advantage. These questions will be addressed in the paper55

by comparing the areal densities of the lightest possible structures that can be

designed with both architectures, for varying load magnitude and structural

span.

A difference between the present paper and existing work is that previously

only the scaling of the design parameters for a specific architecture has been60

considered. Heard et al. (1981) compared deployable vs. in-space erectable

for plate-like trusses of two specific sizes and subject to a specific vibration

frequency constraint. Greschik and Mikulas (2002) studied 100 m solar sails with

a bending architecture and a specific film architecture. Banik and Maji (2016)

considered tensioned blanket solar arrays with either one or two deployable65

booms.

The paper is organized as follows. Section 2 presents the overall approach,

which consists in defining for each architecture a set of design parameters, and to

5



derive the pressure loads that correspond to buckling, material failure, and ex-

cessive compliance. Section 3 focuses on the strips that form the four quadrants70

in both architectures. Finite element simulations are combined with analytical

expressions to predict the pressures that cause local shell buckling or excessive

deflection of the strips. The strip design limits and the optimal areal density

for a wide range of structural spans are derived. Sections 4 and 5 present the

analytical formulations for obtaining the design limits for the booms and cables75

for the bending and cable-stayed architectures, respectively. Minimal mass de-

signs for each architecture, including the strips, are then obtained. Section 7

compares the mass efficiency of the optimized architectures and identifies the

superior architecture for a range of lengths and loads. It also presents and

compares optimal designs based on both architectures, for a specific example.80

Section 8 concludes the paper.

2. Approach

An integrated design approach was adopted, setting identical metrics, limits,

and parameter spaces between different architectures. Concurrent optimization

of major structural elements then occurs within these constraints. This ap-85

proach allows the peak performance of each architecture to be compared against

one another without bias due to differing design conditions.

This approach was inspired by a paper on compression structures by Budi-

ansky (1999), which compared the mass efficiency of different types of columns.

Budiansky compared columns with solid square or circular cross-sections, to90

columns based on metal-foam-filled tubes, to tubes whose walls are foam-core

sandwiches, and also to tubes made from panels with hat stiffeners. Budi-

ansky derived a common set of structural indices applicable to each type of

cross-section. These indices were based on the column’s geometry, material

properties, and compressive strength. He then used these design parameters95

to minimize the weight, which were subsequently compared to ascertain the

relative performance of each column type.
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There are two similarities between the problem studied by Budiansky and the

present one. First, each design is characterized by several parameters, making

the overall design space very large and hence suggesting that the simultane-100

ous “brute force” optimization of all design parameters would not be the best

approach. Second, basic analytical or semi-analytical structural mechanics so-

lutions are available for many of the quantities of interest, making it possible to

derive inverse relationships that can be used to implicitly satisfy design condi-

tions (inequalities), etc. A further benefit of adopting a semi-analytical approach105

is that, since we are interested in comparing solutions across a wide range of

spans and loads, the detailed evaluation of many specific designs would not be

feasible.

The design of the strips is considered first, since the strips are an element

common to both architectures and their design is independent from the other110

load carrying elements. A mass efficient design is chosen for the strips, using

coilable thin shells that form stiff, lightweight frames. Once the strips have

been optimized, the design of the diagonal booms and cords for the bending

architecture is considered. Then, the design of the diagonal booms and cords,

and of the vertical booms for the cable-stayed architecture completes the initial115

part of the study. For each component type, its contribution to the areal density

of the complete structure is derived and the sum of these contributions yields

the overall areal density of each structure.

It is important to note that only the mass of the structural elements is

included in the calculation of the areal densities. The mass of the deployment120

devices and the functional elements, such as the solar cells and the electrical

blankets for a solar array, is not included.

Each design problem is formulated in terms of finding the maximum pressure

that can be carried without reaching a specific type of failure (global buckling,

local buckling or material failure) of that component, making reasonable as-125

sumptions for the buckling modes which, of course, would require a detailed

verification at a later, detailed design stage. Additionally, a limit on the maxi-

mum acceptable compliance of the structure is set at a global level.

7



A uniform pressure P over the whole structure is the assumed external load-

ing, with a six degree of freedom rigid-body constraint applied at the center130

of the structure. In reality, the structure would be part of a spacecraft system

that operates under dynamic conditions, and the actual loads on the structure

would result from solar pressure, gravity gradients and inertial forces due to

station-keeping maneuvers. The magnitudes of these loads depends on the spe-

cific application. Inertial loads depend on the areal density of the structure as135

well as the design of the attitude control system of the spacecraft (Hedgepeth,

1981). For generality, it is assumed that all of these effects can be captured

through an equivalent static pressure.

Table 1 presents the notation that is used for the values of the pressure P

that correspond to each specific mode of failure. Note that the subscripts b,140

cs, and s denote the bending architecture, the cable-stayed architecture, and

the strips, respectively. Also, the superscripts g, l, f , and d for the bending

architecture denote global buckling, local shell buckling, material failure, and

excessive deflection, respectively. For the cable-stayed architecture, the super-

scripts g, l, f denote global buckling, local shell buckling, and material failure,145

respectively, and d and v denote the diagonal and vertical booms, respectively.

Material failure of the strips due to pressure is not considered, as the buckling

or deflection limits are always reached first.

Table 1: Pressure values corresponding to each design limit.

Strips
Bending:

Boom

Cable-stayed:

Vertical Boom

Cable-stayed:

Diagonal Boom

Global Buckling N/A P g
b P v,g

cs P d,g
cs

Local Buckling P l
s P l

b P v,l
cs P d,l

cs

Material Failure N/A P f
b P v,f

cs P d,f
cs

Deflection P d
s P d

b N/A N/A

The flowchart in Fig. 3 outlines the procedure for obtaining the minimum

areal densities of both architectures for mass efficiency comparisons.150

8



It should be noted that the structures considered in this study are four-

fold symmetric around a vertical axis and they also have four vertical planes

of mirror symmetry. Hence their analysis has been simplified by exploiting

symmetry considerations.

3. Design Limits for the Strips155

The strips are arranged to form four identical quadrants, with n strips of

equal width, W , in each quadrant, as shown in Fig. 4. The innermost strip

has length L1 =
√
2W and the outermost strip has length Ln = n

√
2W = L.

To form a gap-free surface, the strips need to be of trapezoidal shape (Gdoutos

et al., 2020) but in the present analysis their shape is simplified to a rectangle, as160

shown in Fig. 4. With this assumption, the pressure loading is mirror-symmetric

with respect to the center line of each rectangle.

To achieve a high stiffness-to-mass ratio, a strip architecture with edge

longerons that can be elastically flattened and coiled was chosen. A ladder-

type structure consisting of two Triangular Rollable and Collapsible (TRAC)165

longerons (Murphey and Banik, 2011; Royer and Pellegrino, 2020) transversely

connected by regularly spaced battens is particularly well suited for the present

application. The longerons are thin composite shells consisting of two flanges

connected to a web, Fig. 5, and the battens are rods with a rectangular cross-

section. More details are provided in Appendix A.170

It is shown in Appendix B that for the chosen longerons the strip buckling

moment varies with the angle θ according to Fig. B.22. Hence, the strip buckling

pressure can be obtained from:

P l
s =

8M l
s

WL2
i

(1)
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Figure 3: Procedure for obtaining optimal areal densities.
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Figure 4: Definition of strip lengths and area allocated to each strip for loading analysis.

Figure 5: Schematic of ith strip consisting of longerons and battens.

3.1. Deflection Limit

The strips were modeled as simply supported beams of flexural stiffness EIs

equal to twice the stiffness of a longeron (Leclerc, 2020) and given by:

EIs = 4

(
A11 − A2

12

A22

)[
dt̄2 +

R2

2
sin θ (R cos θ − 4 (R+ t̄))

+
3Rθ

2

(
R2 +

4Rt̄

3
+

2t̄2

3

)] (2)

where t̄ = 1
2 (tf + tGFPW ) and A11, A12, and A22 are the in-plane extensional

stiffness terms in Table A.3. Substituting the parameters defined in Appendix

A, EIs is only a function of the subtended angle θ.
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The pressure corresponding to a given maximum deflection at mid-span, ws,

under a uniformly distributed loading P d
s W , is given by:

P d
s =

384EIsws

5WL4
i

(3)

3.2. Design Limits175

The pressure limit, P lim
s , for a strip is found by considering the smallest

among two pressure values. The third limit, material failure, has already been

taken into account, by choosing a value of the flange radius that allows flattening

and coiling of the strip, Eq. A.1. Therefore:

P lim
s = min

{
P l
s, P

d
s

}
(4)

Here it is noted that both values are lowest for the longest strip in the structure

and hence Li = L is used to calculate these limits.

As an example, a deflection limit of ws = 0.1L for the outermost strip was

considered. Figure 6 shows plots of P lim
s as a function of L, for θ = 45◦, 90◦,

and 135◦. The smallest span considered is L = 6 m which corresponds to a180

structure with only three strips per quadrant. Designs limited by buckling are

denoted with dashed lines, identifying strips that would buckle before reaching

the specified deflection limit. In most of the design space the strip designs are

deflection limited; buckling becomes dominant only for shorter spans and larger

subtended angles. Note that the range of spans for which the strips are limited185

by buckling grows with increasing values of θ.

A more complete understanding of the contribution of the strips to the over-

all mass of the structure is provided by the areal density of strips that reach the

performance limits. It is obtained from:

ρs =
4

L2

n∑
i=1

(
2ml

s +mb
s

)
i

(5)

where ml
s, m

b
s are the mass of a single longeron and of all the battens, respec-

tively, in the ith strip. They are given by:

(
ml

s

)
i
= Li

[
2 (Rθ + d) ([nρt]CF + [nρt]GFPW ) + d[ρt]GFPW

]
(6)
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Figure 6: Strip pressure limit as a function of span for longeron subtended angles θ = 45◦, 90◦,

and 135◦. The deflection limit is ws = 0.1L.

(
mb

s

)
i
=

⌊
Li

Lbs

⌋
ρCF bhLb (7)

In Eq. 6, nCF and nGFPW are respectively the number of unidirectional carbon

fiber and glass fiber plain weave plies in the flange laminate. The lamina den-

sities are ρCF = 1200 kg/m3 and ρGFPW = 1900 kg/m3. In Eq. 7,
⌊

Li

Lbs

⌋
is the

number of battens in the ith strip.190

The areal density of the strips has been plotted in Fig. 7, in terms of L and

θ. Note that a red line separates the regions of the design space dominated by

different pressure limits. An upper limit of θ = 180◦ has been set in the plot.

This limit accounts for the difficulty of coiling longerons with large subtended

angles, and sets an implicit limit on the maximum pressure loading, which195

depends on the length of the strip.

The previously made observations regarding Fig. 6, that the strips are limited

by local shell buckling for shorter spans and larger subtended angles, and are

deflection limited elsewhere, are still valid. In general, increasing the longeron
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Figure 7: Areal density of strips as a function of span and longeron subtended angle. The red

line marks the transition from deflection to buckling. Black lines mark order-of-magnitude

variations of the pressure limit. The deflection limit is set to ws = 0.1L.

angle and decreasing the span increases the pressure limit. Figure 7 also shows200

that to maintain the same pressure limit as the span increases, the strip’s angle

and mass must be scaled with the span.

4. Design Limits for Bending Architecture

This section presents an analysis of the forces in the booms and diagonal

cables, which leads to a set of formulas to calculate the contribution of booms205

and cables to the overall areal density of the structure.

4.1. Analysis of Diagonal Booms and Cables

A standard reference architecture for studying the performance metrics of

deployable booms is the tubular architecture (Mikulas et al., 2006). A particu-

larly relevant architecture for the present study, known as Collapsible Tube Mast210

(CTM) or Omega Boom (Miura and Pellegrino, 2020), has been the main choice
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for solar sails developed by the German Space Agency (DLR) and the NASA

Langley Research Center (Block et al., 2011; Fernandez, 2017). Its cross-section

is not exactly circular but can be closely modeled by a circle.

A diagonal boom, shown in Fig. 8, is modeled as a cantilevered thin-walled215

circular tube with cross-sectional radius r and thickness t. The tube is isotropic,

with elastic modulus E and Poisson’s ratio ν, density ρ, and second moment

of area Ib = πtr3. A diagonal cable, shown below the boom in the figure,

is attached to the root and the tip of the boom. Since these structures are

lightly loaded, extensional deformations are small and hence both booms and220

cables can be modeled as inextensible. Furthermore, limits on the maximum

allowed deflections are imposed during the presents design process, and therefore

standard small deflection assumptions are valid for the analysis.

Figure 8: Bending architecture boom and cable parameters, boundary conditions, and reaction

forces from strips under pressure loading P .

In Section 3.1 the strips were modeled as beams attached (simply supported)

to the diagonal cables. The attachment nodes are denoted by red dots in Figs 4225

and 8. There are n attachment nodes per cable, corresponding to the n strips

in a quadrant. The node closest to the root (i = 1) supports the innermost

strip and subsequent nodes correspond to strips farther out. The last node is at
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the tip (i = n) and corresponds to the outermost strip, of length Ln = L. The

spacing between the nodes is
√
2W .230

The uniformly distributed loading PW on the beams is resisted by vertical

reactions at the ith node:

Vi =
1

2
PWLi (8)

where Li = 2iW . Since each node is connected to two identical strips, in

adjacent quadrants, the vertical reaction is doubled, as shown in Fig. 8. The

accompanying displacement of the cable is wi.

It is assumed that there are no horizontal reaction components and the

cable deflections are purely vertical. Hence, the horizontal component of the235

cable tension, Th, is uniform throughout the cable. More details on the profile

of the diagonal cables are provided in Appendix C.

Next, the analysis considers the diagonal boom, which is fixed at the root

and is loaded by the cable tip reactions VB (vertical) and HB (horizontal), with

HB = Th. The vertical tip force, VB , is found by considering the moment

equilibrium of the cable with respect to the root of the boom:

VB =
−wnTh√
2Wn

+
n∑

i=1

2PW 2i2

n
(9)

The vertical deflection of the boom, wb, is calculated by considering the

bending deflection due to VB , as well as the amplification factor 1
1−Th/Tcr

that

accounts for the additional deflection caused by the axial compression Th (Tim-

oshenko and Gere, 1961). Therefore, wb is given by:

wb (x) =
1

1− Th/Tcr

[
VBx

2

6EIb

(
3
√
2

2
L− x

)]
(10)

where Tcr is the fixed-free Euler buckling load:

Tcr =
π2EIb
2L2

(11)

The maximum value of Eq. 10 occurs at the tip (x =
√
2L/2) and has the

expression:

wn =
1

1− Th/Tcr

(√
2VBL

3

12EIb

)
(12)
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The final step in the analysis of the bending architecture is to calculate the

horizontal component of the cable tension, Th. Moment equilibrium of a free

body of the cable extending from the root to the node n− 1 yields:

Th =
PL3

2
√
2wnn3

n−1∑
i=1

i2 = HB (13)

The combined mass of boom and cables, mb, is expressed in terms of the

ratio between the mass of the cable, mc
b, and the mass of the booms, mb

b:

mb = 4
√
2πrtρL

(
1 +

mc
b

mb
b

)
(14)

It is also convenient to define the linear mass density of the structure, mb/L.

Note that the linear mass density is not directly related to the density of a

specific element of the structure, but is a useful metric nonetheless.240

The boom thickness can be expressed as a function of the linear mass density

and the ratio of the boom thickness and radius, t
r (which can be taken to be

constant). Therefore, the following expression is obtained:

t =

√√√√
(
mb

L

) (
t
r

)
4
√
2πρ

(
1 +

mc
b

mb
b

) (15)

Once t has been found by solving Eq. 15, the corresponding r is calculated

for the chosen t
r .

4.2. Boom Design Limits

There are four design limits for the diagonal booms of the bending architec-

ture.245

The first limit corresponds to global buckling of the boom, which occurs

when the axial compression, HB = Th, reaches the critical buckling load for a

cantilevered beam-column. The corresponding pressure limit, P g
b , is found by

equating Eq. 13 to Eq. 11 and solving for P . The resulting expression is:

P g
b =

6
√
2π3En2r3twn

L5 (n− 1) (2n− 1)
(16)

The second limit corresponds to local buckling of the boom, which occurs

when the maximum compressive stress reaches a critical value. The maximum

17



stress in the boom is the sum of the bending and axial stresses due to VB and

HB , respectively, and hence is given by:

σb =
Mb

πr2t
+

HB

2πrt
(17)

The maximum bending moment occurs at the root and is given by:

Mb =

√
2

2
LVB + wnHB (18)

The critical stress for combined bending and axial compression of a thin-

walled circular cylinder is obtained from an interaction equation (Peterson et al.,

1965) that incorporates knockdown factors that account for shell imperfections:

σcl =
1

γb

(
Mb

πr2t

)
+

1

γc

(
HB

2πrt

)
(19)

Here, σcl is the critical buckling stress of a cylindrical shell and has the

expression (Brush and Almroth, 1975):

σcl =
Et

r
√
3 (1− ν2)

(20)

The knockdown factors for a cylindrical shell under pure bending, γb, and

under pure axial compression, γc, are based on empirical curves in NASA SP-

8007 (Peterson et al., 1965) and are a function of the radius to thickness ratio:

γb = 1− 0.731
(
1− e

−1
16

√
r
t

)
(21)

γc = 1− 0.901
(
1− e

−1
16

√
r
t

)
(22)

Substituting Eqs. 9, 13, 20, and 18 into Eq. 19 and solving for P results in

the critical pressure P l
b that induces local buckling of the boom:

P l
b =

8
√
6πEn2rt2wnγbγc

L3
√
1− ν2 (rγb (1− 3n+ 2n2) + 2wnγc (1 + 3n+ 2n2))

(23)

The third limit corresponds to failure of the material at the point of highest

stress in the boom’s cross-section. The failure stress σf can be expressed as a

function of the elastic modulus E and the failure strain εf :

σf = Eεf (24)

18



Then, equating σb in Eq. 17 to σf in Eq. 24, with Mb given by Eq. 18 and

vb, HB related to P by Eq. 9 and Eq. 13, leads to an equation that can be solved

for P . The solution of this equation gives the pressure P f
b that causes material

failure at the root of the boom:

P f
b =

24
√
2πEn2r2twnεf

L3 (r (1− 3n+ 2n2) + 2wn (1 + 3n+ 2n2))
(25)

The last design limit is related to the compliance of the structure. The

maximum deflection of the boom, wn is given by Eq. 12. The pressure P d
b that

causes the specific tip deflection wn is found by substituting VB , given by Eq.

9, into Eq. 12. Then, solving for P gives:

P d
b =

12
√
2π3En2r3twn

L5 (2 + 4n2 + n (π2 − 6))
(26)

5. Design Limits for Cable-Stayed Architecture

This section provides a set of formulas to calculate the forces in the booms

and cables and estimate their contribution to the overall areal density of the

structure.

5.1. Analysis of Booms and Cables250

It is assumed that in the cable-stayed architecture all booms have the same

cross-sectional radius rcs and thickness tcs, Fig. 9. Hence, the second moment

of area of the booms has the expression Ics = πtcsr
3
cs. The material properties

of the booms are chosen identical to the booms of the bending architecture.

Also, it is assumed that the booms, diagonal cables, and cable-stays are all255

inextensible and the deflection of the diagonal cables is assumed to be small. It

follows from these assumptions that the diagonal booms are loaded in a purely

axial mode, and all internal forces can be obtained from equations of equilibrium

for any given maximum cable displacement.

The analysis follows similar lines to Section 4.1 and gives the following main

results.
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Figure 9: Components of cable-stayed architecture (a) horizontal booms and cables, (b) cable-

stays, and (c) vertical boom.
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The cable deflection converges to a cubic polynomial when the number of nodes

n → ∞ and the maximum deflection converges to:

w(x) → 3wjx

L3

√
3

2

(
L2 − 2x2

)
(27)

where j = nint
(

n√
3

)
and nint denotes the nearest integer function.

Horizontal component of diagonal cable tension:

Th =
PL3

2
√
2wjn3

⎛
⎝ n∑

i=1

i2

n
(n− j)−

n∑
i=1+j

i (i− j)

⎞
⎠ (28)

Vertical and horizontal components of stay tension:

VB =
PL2

2n3

n∑
i=1

i2 (29)

HB =
VBL√
2H

(30)

5.2. Boom Design Limits260

There are six design limits for the diagonal and vertical booms in the cable-

stayed architecture.

The first limit corresponds to global buckling of the diagonal booms. The

diagonal booms are constrained in plane by the cable stays, but are able to

buckle out of plane, as shown in Fig. 10. Therefore, their critical buckling load

is calculated for the same fixed-free conditions considered in Eq. 11:

Nd
cr = π2EIcs

2L2
(31)

Equating Nd
cr in Eq. 31 to the sum of Th in Eq. 28 and HB in Eq. 30,

and solving for the pressure provides the following expression for the pressure

at which the diagonal booms will buckle:

P d,g
cs =

6
√
2π3EĤtcsr

3
csn

3wj

L4
(
LĤj (n2 − j2) + nwj (1 + 3n+ 2n2)

) (32)

where Ĥ = H
L .
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Figure 10: Buckling modes of diagonal booms in (a) perspective and (b) end views.

The second limit corresponds to global buckling of the vertical booms. They

are modeled as fixed-pinned columns and their Euler critical load is given by

(Timoshenko and Gere, 1961):

Nv
cr = π2 EIcs

(0.699H)2
(33)

Setting Nv
cr in Eq. 33 equal to the axial compression of 4VB in the vertical

booms, given by Eq. 29, and solving for P yields the following expression for

the pressure at which the vertical booms will buckle:

P v,g
cs =

6.140 π3Etcsr
3
csn

2

L4Ĥ4 (1 + n) (1 + 2n)
(34)

The third and fourth limits correspond to local buckling of the diagonal and

vertical booms, respectively. The procedure to obtain these limiting pressure

values is similar to that outlined in Section 4.2 but in the present case the

booms are loaded purely axially. The maximum stresses due to the axial forces

HB +HC and 4VB , respectively, are given by:

σd
cs =

Th +HB

2πrcstcs
(35)

σv
cs =

4VB

2πrcstcs
(36)

Substituting Eqs. 28, 30 and 29 respectively for Th, HB and VB in Eqs. 35 and

36 and then equating the resulting expressions to the critical buckling stress
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for a cylindrical shell, Eq. 20, one obtains the following expressions for the

values of P that result in the local buckling of the diagonal and vertical booms,

respectively:

P d,l
cs =

8
√
6πEĤn3t2cswjγc

L2
√
1− ν2

(
LĤj (n2 − j2) + nwj (1 + 3n+ 2n2)

) (37)

P v,l
cs =

2
√
3πEt2csn

2γc

L2
√
1− ν2 (1 + n) (1 + 2n)

(38)

where the knockdown factor γc has been introduced to account for imperfections.

The fifth and sixth limits correspond to material failure. The stresses in

Eqs. 35 and 36, with Eqs. 28, 30 and 29 substituted respectively for Th, HB and

VB , are equated to the failure stress in Eq. 24. Then, solving for P provides

the following expressions for the pressure corresponding to material failure, re-

spectively for the diagonal and vertical booms:

P d,f
cs =

24
√
2πEĤn3rcstcswjεf

L2
(
LL̂vj (n2 − j2) + nwj (1 + 3n+ 2n2)

) (39)

P v,f
cs =

6πErcstcsn
2εf

L2 (1 + n) (1 + 2n)
(40)

The smallest of the pressure limits in Eqs. 32, 34, 37, 38, 39, 40 is the actual

limiting pressure for any specific design based on the cable-stayed architecture:

P lim
cs = min

{
P d,g
cs , P v,g

cs , P d,l
cs , P v,l

cs , P d,f
cs , P v,f

cs

}
(41)

Here it should be noted that excessive compliance of the booms is not a mean-265

ingful limit for the cable-stayed architecture.

6. Optimal Designs

Designs based on the two architectures combine optimally designed strips

and booms. The strips’ longerons have the orthotropic properties in Table A.3

and are designed according to Section 3.2. The booms are assumed isotropic270

with modulus E = 70 GPa, density ρ = 1600 kg/m3, and failure strain εf = 0.01.
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6.1. Optimal Bending Architectures

The limiting pressure for the booms is the smallest among the pressure limits

given by Eqs. 16, 23, 25 and 26:

P lim
b = min

{
P g
b , P

l
b , P

f
b , P

d
b

}
(42)

Since the largest deflection of the strips occurs at the center of the outermost

strip, the maximum deflection for the bending architecture is obtained by adding

the maximum strip deflection, ws, to the boom tip deflection, wn. A deflection

limit of 0.1L, which may be acceptable for a solar array design, is chosen:

w = ws + wn = 0.1L (43)

where different deflections of the strips and the booms can be considered as part

of the design optimization.

As an example, wn = 0.05L has been chosen and the areal density needed275

to achieve this deflection limit together with specified values of P lim
b has been

computed for a range of side lengths. The procedure outlined in Appendix C

for scaling the boom thickness and radius with respect to mb

L was applied. Note

that the minimum length considered was L = 6 m, to match the strip length

limit in Section 3.2, and that all booms within the design space were found to280

be limited by excessive compliance.

The results have been plotted in Fig. 11. The contribution of the booms

and cables to the overall areal density of the structure is represented by the

equivalent area density ρb, defined as:

ρb = mb/L
2 (44)

which has been plotted in Fig. 11.

Figure 12(a) presents the areal density of the booms and cables for three

different values of the pressure limits, 10−2, 10−3, and 10−4 Pa, and for the boom

tip deflection wn = 0.05L. To satisfy Eq. 43, the maximum strip deflection limit285

is set to ws = 0.05L and the corresponding areal density of the strips is found

using the procedure outlined in Section 3.2. Figure 12(b) shows plots of ρs vs.
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Figure 11: Areal density of booms and cables for bending architecture. Black lines mark

order-of-magnitude variations of the pressure limit. The max. boom deflection and cable sag

are 0.05L.

L for the same three values of the pressure. Figure 12(c) shows a plot of the

total areal density, also for the same pressures.

It should also be noted that, although there is no upper limit on the areal290

density of the booms and cables, the total areal density of the strips is con-

strained by the limit of 180◦ on the longeron subtended angles. This effectively

results in a constraint on the maximum pressure/span that can be carried by

the structure.

The effect of varying the allowable deflections of the booms and strips, while295

keeping the total maximum deflection equal to 0.1L, has also been considered.

By specifying wn

L , the corresponding maximum strip deflection ws was found

from Eq. 43. Then, the procedure outlined in Section 3.2 was used to find the

corresponding strip design limits. The results are shown in Fig. 13, where the

contours provide the total equivalent areal density as a function of span and non-300

dimensionalized maximum boom deflection, for three different pressure limits.
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In each plot, the specific boom deflection that corresponds to the highest

mass efficiency has been identified by a red dot, for the full range of spans and

for each chosen pressure. These optimal designs mostly correspond to an even

distribution of the boom deflection vs. the strip deflection, but for the longest305

spans (on the right-hand side of the design space) the strip deflection tends

to dominate and hence stiffer boom designs are required to satisfy the design

limits.

6.2. Optimal Cable-Stayed Architectures

The mass of the horizontal and vertical booms, the diagonal cables, and the

cable-stays is denoted by mcs and is given by:

mcs = 4πrcstcsρL
(√

2 + Ĥ
)(

1 +
mc

cs +mcs
cs

md,v
cs

)
(45)

where the cable mass mc
cs and cable-stay mass mcs

cs are assumed to each be one

tenth of the boom massmd,v
cs , i.e.

mc
cs+mcs

cs

md,v
cs

= 0.2. Equation 45 can be rearranged

to express the boom thickness tcs in terms of the linear mass density mcs

L (note

that, as already noted for the bending architecture, the linear mass density is

not the linear density of a specific structural element) the non-dimensionalized

vertical boom length, and the boom’s thickness to radius ratio:

tcs =

√√√√√
(
mcs

L

) (
tcs
rcs

)
4πρ

(√
2 + Ĥ

)(
1 +

mc
cs+mcs

cs

mh,v
cs

) (46)

Equation 46 provides the scaling of the boom thickness in terms of mcs

L and310

Ĥ with a constant thickness to radius ratio. Once tcs has been determined, the

corresponding rcs can be calculated from tcs
rcs

.

A specific example is used to illustrate the design space. Consider a cable-

stayed structure with L = 20 m and choose the maximum cable sag wj = 0.05L,

the thickness–to-radius ratio tcs
rcs

= 0.03, and set the linear mass density to315

mcs

L = 0.1 kg/m. These values of the linear mass density and thickness to

radius ratio are reasonable for tubular booms (Greschik and Mikulas, 2002).

The limiting pressure from Eq. 41 has been plotted in Fig. 14 as a function

of the only remaining design variable, Ĥ. The plot shows the interaction of
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Figure 12: Areal densities for bending architecture (a) booms and cables, (b) strips, and (c)

total vs. span L for three pressure limits. The max. boom deflection, cable sag, and strip

deflection are 0.05L and the total max. deflection is 0.1L.
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Figure 13: Total areal density for bending architecture vs. span and non-dimensionalized max.

boom deflection for the pressure limits of (a) 10−2 Pa, (b) 10−3 Pa, and (c) 10−4 Pa. The

red dots indicate the minimum density designs. The total max. deflection limit is 0.1L.
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two limiting conditions, i.e. global buckling of either the horizontal or vertical320

booms. The transition occurs at Ĥ = 1.683. For Ĥ > 1.683 the vertical boom

will buckle at lower pressures than the horizontal boom, and vice versa. The

most important result from this plot is that it identifies an optimal design which

carries the largest pressure, P lim
cs = 0.0238 Pa. The corresponding value of the

non-dimensionalized vertical boom height is Ĥ = 0.392.325

cs

Figure 14: Pressure limit P lim
cs for cable-stayed architecture booms as a function of non-

dimensionalized vertical boom length, for span L = 20 m and linear mass density mcs
L

= 0.4

kg/m. The max. cable sag is set to wj = 0.05L.

The same analysis to find the optimal boom designs was repeated for the

range of spans 6 ≤ L ≤ 200 m and the results are shown in Fig. 15 as a contour

plot of the limiting pressure as a function of L and Ĥ. The optimal Ĥ for each

span is shown by a black line. The red line in the plot marks the transition

between the global buckling of the horizontal and vertical booms. Since the330

optimal designs correspond to values of Ĥ lower than the buckling transition,

they are all limited by global buckling of the horizontal booms.

Note that the value of the optimal Ĥ remains almost constant when L is in-

creased. This is because the boom radius and thickness have to remain constant

as the linear mass density has been fixed.335

29



H

-6

-4

-2

cs
lim

P

Figure 15: Pressure limits for cable-stayed architecture booms as a function of span for mcs
L

=

0.4 kg/m and max. cable sag wj = 0.05L. The red line marks the transition between two

different limiting conditions. The black line indicates the maximum pressure.

For a more general characterization of the optimal designs, a range of linear

mass densities was considered, in order to allow a wider range of pressure limits.

This was done by repeating the analysis that generated Fig. 15, for a range linear

mass density values and selecting from each analysis the optimal value of P lim
cs .

All designs were found to be limited by global buckling of the horizontal boom,

as was already the case in Fig. 15. Then, the corresponding equivalent areal

density (of the booms and cables only) was calculated from:

ρcs = mcs/L
2 (47)

and the density variation has been plotted in terms of L and mcs

L in Fig. 16.

Since the linear mass density has been allowed to vary, the boom radius and

thickness can also vary. Hence, by following one of the constant-pressure black

lines, one follows the evolution of the optimal design when L is increased.

The above analysis has obtained the optimal boom and cable designs for340

the cable-stayed architecture. Next, this result was combined with the optimal
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Figure 16: Areal density of optimal cable-stayed architecture booms and cables as a function

of span and linear mass density. The black lines mark order-of-magnitude variations of the

pressure limit. The max. cable sag is wj = 0.05L. All designs are limited by global buckling

of the horizontal booms.

design for the strips, presented in Section 3.2.

The total maximum deflection limit was set to wcs = 0.1L, which is identi-

cal to the deflection limit for the bending architecture, in Section 6.1. However,

since the tip deflection of the diagonal booms is zero in this architecture (re-345

call that the booms, the diagonal cables, and the cable stays are all assumed

inextensional) the location of the maximum cable sag is at the node nearest

to x = L/
√
6 (see Eq. 27 in Section 5.1) along the diagonal x axis, while the

maximum strip deflection is —as before— at the center of the outermost strip.

The distribution of deflections between the diagonal cables and the strips along350

with the applied pressure and the values of all design parameters need to be

considered to determine the total maximum deflection. This analysis was car-

ried out by choosing a specific value for the maximum cable sag, wj as shown

in Fig. 9 (a), and then determining the specific strip design such that the to-

tal maximum deflection is 0.1L. In practice, this involves finding the longeron355
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subtended angle for which the strip deflection has the required value. The same

pressure used in the analysis of the booms was also used for the analysis of the

strips.

The deflection at the center of a general strip i can be expressed in terms of

a coordinate x along the diagonals. The strip length is Li =
√
2xi and the strip

deflection is:

wi (x) =
5PWx4

i

96EIs
(48)

Adding the deflection of the diagonal cable, given by Eq 27, gives the total

deflection at the center of strip i:

wcs (xi) =
3wjxi

L3

√
3

2

(
L2 − 2x2

i

)
+

5PWx4
i

96EIs
(49)

Setting wcs in Eq. 49 equal to deflection limit wcs = 0.1L and solving for the

strip longeron stiffness gives:

EIs (xi) =
25PWL3x4

i

48
(
L4 − 15

√
6L2wjxi + 30

√
6wjx3

i

) (50)

For any optimal boom and cable design, the corresponding values of P lim
cs ,

wj , and L are inputted into Eq. 50. Then, the required bending stiffness for the360

strips is chosen as the maximum over all values of i: max {EIs (xi)}. The choice
of this value ensures that the condition wcs = 0.1L is satisfied for all strips.

Finally, equating max {EIs (xi)} to Eq. 2 and solving for θ yields the value of

the longeron subtended angle, θds , needed to satisfy the total maximum deflection

limit. In practice, it is faster to consider x instead of xi, hence using a continuous365

form of Eq. 50 to find θds .

To complete, the above design based on the deflection limit for the strips is

compared to a design that meets the buckling limit. For any specified pressure

limit P lim
cs and span L, the required maximum bending moment occurs at the

center of the outermost strip. Then, the corresponding value of the longeron

subtended angle, θls, is obtained from Fig. B.22. Hence, the actual value of the

longeron subtended angle is the largest of the two values:

θlims = max
{
θds , θ

l
s

} ≤ 180◦ (51)
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Once θlims has been determined, the areal density of the strips, ρs, is computed

with Eq. 5, and the computation is repeated over a range of spans, pressures,

and deflection limits.

Finally, the areal density of the booms, cables, and cable-stays is added to

the areal density of the strips over the full range of pressure limits and spans:

ρtotalcs = ρcs + ρs (52)

The results of these calculations have been plotted in Fig. 17 for the pressure370

limits 10−2, 10−3, and 10−4 Pa, assuming that the maximum cable sag is 0.05L

and the total maximum deflection limit is 0.1L. Similarly to the bending archi-

tecture, there is no limit on the values of ρcs, but the total areal density ρs and

ρtotalcs are constrained to the spans for which θ ≤ 180◦.

This analysis has been repeated by varying the maximum deflection ratio375

between the strips and the diagonal cables. The results are shown in Fig. 18,

again for three values of the pressure limits. The minimum total areal densities

for each span have been marked with red dots. These points identify the most

mass efficient values of
wj

L until the upper limit for the span is reached for

each pressure limit. Overall, these optimal designs tend to favor larger cable380

displacements and smaller strip deflections.

7. Comparison

The total areal densities of the optimized designs based on the bending and

cable-stayed architectures have been presented in Fig. 13 and Fig. 18, for a

range of spans, for three different pressure limits, and for a total maximum385

deflection limit set to ten percent of the span. The same results have been

summarized in Fig. 19(a), where any designs with a boom thickness lower than

0.1 mm are indicated by a dotted line. These designs are confined to shorter

spans and lower pressure limits. Note that, for a given pressure limit, initially

the areal density increases linearly with the span. At some point, the curve390

reaches a vertical asymptote, indicating a rapid increase in density, when the
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Figure 17: Areal density of cable-stayed architecture’s (a) booms and cables, (b) strips, and

(c) total vs. span for three pressure limits. The max. cable sag is 0.05L and the total max.

deflection limit is 0.1L.

34



cs
total 2

Figure 18: Total areal density for cable-stayed architecture as a function of span and non-

dimensionalized max. cable sag for the pressure limits (a) 10−2 Pa, (b) 10−3 Pa, and (c) 10−4

Pa. The red dots indicate the minimum areal density for each span. The total max. deflection

limit is 0.1L.
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architecture reaches its limit. This is associated with the limit on the strip

longeron angle θ < 180◦.

Figure 19(a) shows that the cable-stayed architecture is more efficient than

the bending architecture. The difference in efficiency between the two archi-395

tecture has been highlighted by plotting the areal density ratio, in Fig. 19(b).

This ratio is closer to one for the shorter spans considered and tends to further

decrease for longer spans, with the exception of the case P = 10−2 Pa. The

general trend, for structures with smaller deflection limits, is that the superior

performance of the cable-stayed architecture tends to get even better for longer400

spans.

The maximum possible span for a given pressure is governed by the longerons

reaching the maximum subtended angle θ = 180◦. This occurs at the same span

for both architectures, although in the case of the cable-stayed architecture

reaching the angle limit occurs suddenly, whereas in the bending architecture405

the areal density starts to increase more rapidly, as stiffer and heavier booms

are used to compensate for the increasing compliance of the strips. This can be

clearly seen in Fig. 13(b) and (c) where, beyond a certain value of L, the optimal

designs are forced to rapidly decreasing tip deflections in order to maintain

the overall deflection limit. This behavior is not observed for the cable-stayed410

architecture because the optimal specified cable sag
wj

L remains fairly constant

over the entire range of spans, as can be seen Fig. 18.

In Fig. 19(a), the circles indicate designs for which the strips are limited

by local shell buckling while a curve without circles indicates that the strips

have reached the deflection limit. Note that the cable-stayed architecture is415

more susceptible to strip buckling than the bending architecture, and buckling

generally occurs for larger pressures and values of L closer to the maximum

value.

The diagonal booms of the bending architecture are limited by deflection,

whereas the booms of the cable-stayed architecture are limited by global buck-420

ling.

The effects of lowering the maximum deflection limit to 0.05L and also 0.01L
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Figure 19: Total areal densities for bending and cable-stayed architectures, and their ratios,

for the pressure limits of 10−2 Pa, 10−3 Pa, and 10−4 Pa. The total max. deflection limit is

(a, b) 0.1L, (c, d) 0.05L, and (e, f) 0.01L. Designs with boom thickness less than 0.1 mm

are shown with dotted lines. Designs limited by buckling rather than excessive deflection are

shown by circles.

37



were considered and the results are shown in Figs. 19(c) and (e), respectively.

The corresponding areal density ratios are shown in Figs 19(d) and (f). Note

that the areal density trends and the boom design limiting conditions described425

above for the 0.1L deflection limit are unchanged at these lower deflections.

It is interesting to compare the areal density trends when the total maximum

deflection limit is decreased from 0.1L to 0.01L, Figs 19(a) vs. (e) and Fig. 19(b)

vs. (f). For the smaller deflection, the cable-stayed architecture becomes even

more mass efficient than the bending architecture.430

This is because lowering the deflection limit imposes stricter restrictions on

mass minimized designs for the bending architecture, whose booms are always

limited by excessive deflection. The booms must have larger cross-sections to

withstand the same pressure loading with smaller deflections, which increases

the required mass. The areal density for the cable-stayed architecture also in-435

creases as the deflection limit is lowered, but by a lesser amount when compared

to the bending architecture. Lowering the deflection limit also decreases the

maximum acceptable lengths for both architectures when the strips are limited

by excessive deflection. This is because at the maximum longeron subtended

angle of 180◦, the strips reach the lowered deflection limit at smaller lengths.440

Finally, the number of design points where the strips are limited by buckling

decreases as the deflection limit is lowered because they will become excessively

deflected before buckling.

7.1. Example

Two optimal designs for a structure with span L = 40 m that is required445

to carry a pressure P = 10−3 Pa with a deflection limit of 0.1L = 4 m are

presented.

The corresponding designs are chosen for the bending and cable-stayed ar-

chitectures in Fig. 19(a). The values of the boom length, radius, and thickness,

as well as the strip longeron angle and total areal density are listed in Table 2.450

The higher mass efficiency of the cable-stayed architecture leads to an opti-

mal design with areal density of 23.8 g/m2 compared to the bending architec-
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ture’s 28.4 g/m2. The cable-stayed architecture’s boom radius, thickness, and

longeron angle are smaller than those of the bending architecture, resulting in

greater mass efficiency despite the additional mass introduced by the vertical455

booms and cable-stays.

Table 2: Geometry, areal density, and design limiting conditions for optimal bending and

cable-stayed architectures with L = 40 m, P lim
s,b,cs = 10−3 Pa, and w = 0.1L.

Architecture
H

(m)

r, rcs

(mm)

t, tcs

(mm)

θ

(deg)

ρtotalb,cs

(g/m2)

Bending N/A 20.1 0.6 130.2 28.4

Cable-stayed 18.5 14.5 0.43 104.1 23.8

For both designs, the strips are limited by excessive deflection. The bending

architecture booms are also limited by excessive deflection while the cable-stayed

architecture is limited by global buckling of its diagonal booms. The deflected

shapes under the pressure 10−3 Pa are shown in Fig. 20. There are n = 20460

strips per quadrant and the total maximum deflection of 4 m is confirmed to be

at the center of the outermost strips (i = 20) for the bending architecture and

the center of strip i = 18 for the cable-stayed architecture.

Figure 20: Deflected shapes of optimal (a) bending and (b) cable-stayed architectures from

Table 2.
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8. Conclusion

It is generally known that structures that carry loads by bending have lower465

mass efficiency than structures loaded purely in tension/compression, however

in practical applications it is important to quantify the difference. The present

comparison between different structural architectures has done this, in a way

that is both quantitative and systematic. It has also provided a general approach

and methodology to enable more rational choices between different structural470

concepts and thus improve the design process in the future.

The present study has focused on two structural concepts for large square

space structures. A detailed procedure has been presented, and summarized in

Fig. 3, for considering all of the relevant design limits and obtain the optimal

values of the design parameters. It has made it possible to accurately estimate475

the best achievable areal density for these structures.

It has been shown that the cable-stayed architecture is more mass efficient

than the bending architecture across the whole design space considered in the

study. The difference in efficiency is not constant, but varies with the load mag-

nitude and span of the structures as shown in Figs. 19(b, d, f) and, specifically,480

it increases for larger spans and pressures. Lowering the maximum deflection

limit imposes a harsher mass penalty on the bending architecture and this fur-

ther raises the relative performance of the cable-stayed architecture. Upper

limits on span are found to be driven by excessively deflected strips and this

limit becomes more restrictive as the architecture’s load carrying capacity in-485

creases. The cable-stayed architecture is also more susceptible to strip buckling

than the bending architecture at larger pressure limits. For the booms, the

bending and cable-stayed architecture are limited by deflection and by global

buckling of the horizontal booms, respectively.

These results are of practical importance in several different ways. First,490

the efficiency gain afforded by the more complex, cable-stayed architecture is

relatively small in many cases, and may not be justified in a comprehensive trade

study. For example, the mass efficiency gain is less than 12% for structures with
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span up to 50 m designed for a pressure load of 10−4 Pa and for a deflection

limit of 10%L. Second, the specific areal density values that have been obtained495

in the present study, e.g. less than 15 g/m2 for the above case, set a challenge

for the implementation of future deployable structures. Then, an important

question will be how to test such ultralightweight structures in the presence of

gravity.

As a final point, it is noted that in the present study it was assumed that500

the diagonal booms are circular in both architectures, but it should be noted

that this assumption results in a penalization of the cable-stayed architecture.

Because the stays constrain the tip deflection of a boom within the plane defined

by the boom and the stay, but do not constrain the out-of-plane deflection of

the tip, the buckling load in Eq. 31 was calculated for fixed-free end conditions.505

By increasing the out-of-plane stiffness of the diagonal booms, e.g. by choosing

booms with a lenticular cross-section instead of a circular one, a fixed-supported

end condition would result and hence the buckling load of the boom would be

increased significantly. With this small change, the mass efficiency gain would

be increased to 22% for the above considered case, of structures with span510

up to 50 m designed for a pressure load of 10−4 Pa and a deflection limit of

10%L. Even higher gains would be obtained for lower deflection limits and

higher pressures.
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Appendix A. Details of Strips

Specific dimensions and properties for the strips were based on the Caltech

SSPP structure (Royer and Pellegrino, 2020). The strip width, defined as the585

distance between the longeron inner edges was chosen as W = 1.0 m. The

length of the battens was increased to 1.012 m, to provide 6 mm overlaps with

the longeron webs. The dimensions of the batten cross-section were h = 0.6 mm

and b = 3 mm. The longeron web width was set to d = 8 mm and the flange

thickness to tf = 85.5 μm.590

The radius R of the flange cross-section was chosen as the smallest value

that allows flattening of the longerons, in order to allow coiling of the longerons

(Leclerc and Pellegrino, 2019). A transverse strain limit εf = 1% was assumed

for the flange laminate, which was reduced to 0.5% to allow for strain localization

during coiling of the longerons. Hence, the longeron radius was obtained from

the strain-curvature relation for transverse bending of the flange:

R =
tf
2εf

= 8.5 mm. (A.1)

The universal value R = 8.5 mm was assumed throughout this study, for all

values of the structural span L.
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The remaining geometric parameter is the angle θ subtended by the flanges

of the longerons, which is chosen as the primary design variable for the strips.

The flange layup is [±45GFPW /0CF /±45GFPW ], where GFPW denotes a595

glass fiber plain-weave ply and CF denotes a unidirectional carbon fiber ply.

The single ply thicknesses are tCF = 35.5 μm and tGFPW = 25 μm. In the webs,

an additional ±45◦GFPW ply is added between the two flange laminates. The

unidirectional carbon fiber composite for the battens is the same as that used in

the flanges. The laminate ABD stiffness matrices Leclerc and Pellegrino (2020)600

are presented in Table A.3. Note that B=0.

Table A.3: Laminate stiffness coefficients.

A11 A12 A22 A66 D11 D12 D22 D66

N/mm Nmm

Flange 5,432 619 942 737 1.076 0.482 0.781 0.459

Web 11,369 1,512 2,269 1,727 28.2 4.32 7.44 4.93

The longeron laminate was kept fixed throughout this study, although thicker

laminates may be advantageous for structures with longer spans.

Appendix B. Buckling of Strips

The transverse pressure P on the strips puts the upper flanges of the longerons605

under compression and, due to the small thickness of the flanges, local buckling

can occur.

The values of P at which buckling of the flanges occurs were calculated, for

strips of lengths L = 1−20 m and for subtended angles θ = 45−180◦. with the

Abaqus/Standard 2020 finite element software. Geometric nonlinearity in the610

prebuckling regime was accounted through an iterative solution of the buckling

problem, following Royer and Pellegrino (2020).

The longerons and battens were modeled with 4 node reduced integration

shell elements (S4R) and linear 3D beam elements (B31), respectively. The finite

element mesh was uniform with an element size of 2 mm for both the shell and615
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beam elements. The strip was constrained against translation in all directions

at one corner (pinned), and in the vertical direction only at the remaining three

corners. In addition, in-plane translations were constrained at two corners, to

prevent rigid-body rotations around the pinned corner. No rotational degrees

of freedom of the structure were constrained.620

Figure B.21: Finite element model of a strip, showing (a) uniform pressure P̃ on longerons

and battens in and (b) equivalent pressure P on whole strip.

In the finite-element analysis, a uniform pressure P̃ was applied on the

top faces of the longeron webs and battens, over a total area Ã as shown in

Fig. B.21(a). The equivalent pressure on the complete strip, Fig. B.21(b), ac-

counts for a non-structural infill panel attached to the battens and was calcu-

lated from:

P = P̃
Ã

A
(B.1)

The equivalent pressure that causes local buckling of a strip, P l
s, was com-

puted for strips of different lengths and longeron subtended angles θ. The

bending moment at mid-span was calculated from:

M l
s =

1

8
P l
sWL2

i (B.2)

and it was found that for a wide range of lengths the maximum buckling moment

is effectively independent of the strip length.

This is an important result for the design of the strips, as varying the strip

length does not vary the local buckling moment. Hence, since the longeron sub-
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Figure B.22: Buckling moment of strips of any length greater than 5 m, and for a range of

subtended angles.

tended angle is the primary design variable for the strips, the buckling bending625

moment was computed for a specific strip length and for the range of angles

45◦ ≤ θ ≤ 180◦, in 5◦ increments. The resulting variation of the buckling

moment is shown in Fig. B.22.

Appendix C. Cable Profile in Bending Architecture

The vertical cable displacement at the ith node, wi, is related to the dis-

placements of the two adjacent nodes by an equation of equilibrium for a section

of the cable:

2wi − wi+1 − wi−1 =
2
√
2iPW 3

Th
(C.1)

where w0 = 0 at the root attachment point and wn is equal to the boom tip630

deflection, given by Eq. 12. To match the tip deflection, wn is specified as

an input along with the pressure P . Then the unknowns for the cable include

the deflections w1, ..., wn−1 and the horizontal tension component Th. They are

obtained by solving n−1 equilibrium equations based on Eq. C.1, together with

Eq. 12.635
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The cable displacements have to be such that the total maximum deflection

of the structure formed by the strips, cables and booms is equal to the deflection

design limit.

Figure C.23(a) shows three configurations of a cable hanging from a boom.

The two extreme configurations correspond to: a lightly tensioned cable that640

deflects more than the boom tip (wn−1 > wn), and a highly tensioned cable

that deflects less than the boom tip (wn−1 < wn). The latter design requires a

heavier boom to carry the higher cable force while avoiding boom buckling.

To keep a consistent cable profile, a mass efficient design is obtained for the

case wn−1 = wn and this is the choice made for the rest of the paper. While645

the lightly tensioned cable configuration (wn−1 > wn) yields a lighter boom,

the mass savings are small, and the cable deflection becomes asymptotically

unbounded as it approaches the limit shown by the dashed line in Fig. C.23 (a).

To avoid this effect, the wn−1 = wn configuration is chosen.

Figure C.23(b) shows a plot of the linear density of the structure for different650

spans, for the following specific design parameters: t
r = 0.03, P = 10−4 Pa, and

wn = 0.05L. The booms were chosen isotropic for simplicity, with E = 70

GPa and ρ = 1600 kg/m3. These values are comparable to composite materials

commonly used in deployable booms. The cable mass was set to one tenth of

the boom mass (i.e. mc
b/m

b
b = 0.1), which is a conservative estimate for a cable655

design that undergoes small axial strains.

In Fig. C.23(b), the solid line corresponds to the above described mass ef-

ficient design. The designs with higher cable tension correspond to the region

above the solid line and correspond to heavier boom-cable systems. The dashed

line shows the designs for which the cable deflection wn−1 → ∞ as the cable660

tension Th → 0. Below this limit lie imaginary solutions for the cable displace-

ment.
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Figure C.23: (a) Three design approaches for boom-cable system. (b) Linear mass density of

a boom and cable pair in the bending architecture as a function of L, when varying the max.

cable deflection with respect to boom tip deflection. The pressure loading is P = 10−4 Pa

and the max. boom deflection is wn = 0.05L.
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