
rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:
structural engineering, discrete

geometry

Keywords:
kirigami, reconfigurable structures,

inverse design

Author for correspondence:
Sergio Pellegrino

e-mail: sergiop@caltech.edu

Kirigami Tiled Surfaces with

Multiple Configurations

Charles Dorn
1
, Robert J. Lang

2
and Sergio

Pellegrino
3

1
Graduate Aerospace Laboratories, California Institute

of Technology, 1200 E. California Blvd., Pasadena, CA

91125, USA

2
Lang Origami, Altadena, CA 91001, USA

3
Graduate Aerospace Laboratories, California Institute

of Technology, 1200 E. California Blvd., Pasadena, CA

91125, USA. orcid.org/0000-0001-9373-3278

This paper presents new kirigami patterns consisting
of tiles connected by sub-folds that can approximate
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with many kinematic degrees of freedom, allowing
them to achieve configurations that approximate the
specified target surfaces. Kinematic simulations verify
the existence of continuous paths between the target
surfaces. A prototype pattern with six target surfaces
is fabricated using 3D printed components.
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1. Introduction

Origami and its variants, such as kirigami, offer a platform for transforming a flat sheet into three-
dimensional surfaces by folding. Although rigid folding cannot change the intrinsic Gaussian
curvature of a sheet, a set of rigid tiles with “hidden connections” lying in a plane, can
approximate surfaces with different Gaussian curvature [1]. The inverse problem of synthesizing
fold patterns capable of transforming a flat sheet into a surface with specified curvature has
attracted significant interest in recent years. An extension of the inverse problem is to create
fold patterns capable of achieving surfaces with different curvatures, which has received little
attention despite its broad potential for application. This paper presents the synthesis of kirigami
fold patterns capable of approximating multiple specified target surfaces, with different Gaussian
curvature.

A significant body of work has focused on synthesizing fold patterns capable of realizing
curved surfaces from a flat sheet. The early work of Resch [2] [3] proposed several origami
patterns that can achieve curved surfaces. Subsequently, various computational methods have
been developed for fold pattern synthesis. One means of achieving surfaces with specified
curvature is by generalizing patterns such as the Miura-ori [4] [5] and Resch’s patterns [6]. General
algorithms such as TreeMaker [7] and Tachi’s Origamizer [8] can create fold patterns to achieve
an arbitrary 3D shape. Alternatively, kirigami patterns, which allow cuts to be made in the sheet,
can be designed to realize arbitrary 3D surfaces [9] [10].

The problem of creating fold patterns capable of achieving multiple configurations, sometimes
referred to as pluripotent patterns, is less well studied. Existing pluripotent patterns rely on
switching the mountain-valley fold assignments to achieve multiple target shapes. Universal
origami [11] [12] and kirigami [13] patterns exist that can approximate any arbitrary shape, but
they are limited to step-approximations of the shapes. Smoother approximations of multiple
target surfaces are achieved by [14], where quadrilateral crease patterns are systematically
designed to realize multiple target shapes. While a generic quadrilateral mesh is rigid, a generic
triangular lattice is not only flexible with many degrees of freedom, but the number of distinct
branches of motion increases exponentially with the number of vertices in the pattern [15].

This paper presents a way to design kirigami patterns that can achieve multiple target surfaces,
with different Gaussian curvature. The patterns consist of an arrangement of tiles connected by
sub-folds and, although the patterns cannot vary their intrinsic curvature, the apparent surfaces
approximated by the tiles can achieve a wide range of Gaussian curvatures. Unlike existing
pluripotent patterns, the physical mechanism for the transformation used in this research is
changing the angles of the sub-folds.

The geometric synthesis of these patterns is framed as a tile arrangement problem, involving
identical tiles that are required to approximate all of the target surfaces. A set of geometric
constraints is formulated to ensure compatibility between the arrangements corresponding to
the target surfaces. Once the tile arrangements have been computed, the fold pattern synthesis is
completed by adding sub-folds between adjacent tiles in any one of the arrangements. Then, since
the tile arrangements corresponding to each target surface are already compatible, the pattern
can be reconfigured into all of the target arrangements. The resulting patterns are rigidly foldable
with many kinematic degrees of freedom, allowing rigid folding paths between the target surface
configurations. Kinematic simulations are presented to demonstrate the reconfiguration between
the target surfaces. The fold patterns have a relatively simple geometry, which is desirable from a
manufacturing standpoint. A demonstration prototype is constructed that can achieve six target
shapes. The prototype is built from 3D printed plates connected by steel pin hinges.

The patterns proposed in this work open the door to applications that require multiple
operating configurations. Origami-inspired structures that use folding to morph between two
target configurations have been developed for medical stents [16] and deployable structures [17].
There is a wide range of applications for morphing structures that can adapt to different operating
conditions. Examples include antennas [18] [19], optical sensors [20], and other electronics [21].



3

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................
The remainder of the paper is organized as follows: Section 2 introduces the general concept of

the proposed patterns and Section 3 discusses the mechanism for changing apparent curvature.
Constraints on gaps between tiles are derived in Section 4. Section 5 presents the pattern synthesis
method. Section 6 explores pattern connectivity followed by examples in Section 7. A prototype
pattern is presented in Section 8. Finally, Section 9 concludes the paper.

2. Preliminaries

Given a set of target surfaces, Fig. 1(a), consider a set of tiles connected by sub-folds, Fig. 1(b) where
the tiles are highlighted in green and the sub-folds in gray.

Tiles

Sub-folds

reconfigure

close 
sub-folds

reconfigure

close 
sub-folds

close 
sub-folds

(a).1

(a).2

(a).3

(b)

(c).1 (c).2 (c).3

(c).4

Figure 1: (a) Target surfaces with different Gaussian curvature; (b) Kirigami pattern that can
approximate these surfaces; (c) reconfigurations of kirigami pattern into target surfaces and a
flat configuration.
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This chosen architecture results in loops of tiles connected by sub-folds, and allows the pattern

to approximate a wide range of surfaces. The apparent surface is defined as the surface tangent
to the tiles, i.e. disregarding the sub-folds. The pattern of tiles and sub-folds is designed such
that varying the sub-fold angles allows the apparent surface to approximate each target surface,
Fig. 1(c). By closing the sub-folds, a flat apparent surface is achieved where the edges of adjacent
tiles are coincident. Note that, although in the present paper it has been chosen to design patterns
that are flat when all sub-folds are closed, different choices could also be made.

The presence of holes inside the loops plays an important role in the choice of this pattern, by
introducing many kinematic degrees of freedom (DOF), and allowing a rich configuration space
accessible by rigid folding of the sub-folds. Including holes in a pattern increases the number of
boundary edges in the pattern and increases the degrees of freedom. The equation for the number
of internal kinematic degrees of freedom of a general fold pattern was derived by Tachi [22]:

DOF =B � 3H + S � 3�
X

k�4

(k � 3)Pk, (2.1)

where B is the number of edges on the boundary, H is the number of holes, S is the number of
redundant constraints (states of self stress), and Pk is the number of k-gon faces in the pattern.

This paper considers patterns with triangular or square tiles that are connected by trapezoidal
sub-folds. For such patterns, Eq. (2.1) can be expressed as

DOF =B � 3H + S � 3� 2Ng �Nt,sq, (2.2)

where Ng is the number of sub-folds and Nt,sq is the number of square tiles in the pattern.
Consider, for example, a loop of four square tiles connected by sub-folds, as shown in Fig. 2.

There are B = 24 boundary edges (16 on the external boundary and 8 on the internal boundary),
H = 1 hole, Ng = 4 sub-folds, and Nt,sq = 4 square tiles. Generically, there are no states of self
stress (S = 0) in the loop, which can be verified using the kinematic model in Appendix A. Thus,
Eq. (2.2) gives:

DOF = 24� 3⇥ 1 + 0� 3� 2⇥ 4� 4 = 6 (2.3)

and hence the loop has 6 internal degrees of freedom. Note that the presence of the hole has
increases the number of degrees of freedom since there are 8 boundary edges along the hole,
which is larger than the �3H term associated with introducing the hole. In other words, if the
hole was filled in, the DOF would be reduced.

Figure 2: A loop of square tiles connected by sub-folds with 6 kinematic degrees of freedom.

3. Intrinsic vs. Apparent Curvature

Gauss’s Theorema Egregium states that the Gaussian curvature of a surface is invariant under
isometric transformations [23], which applies generally to both smooth and discrete surfaces. In
the context of discrete surfaces, rigid folding is an isometric transformation and hence the discrete
Gaussian curvature of a fold pattern is an intrinsic property, which cannot be changed through
folding.
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However, the patterns presented in this work are capable of approximating surfaces with

different Gaussian curvature, which motivates the distinction between the intrinsic and the
apparent discrete Gaussian curvature of a fold pattern.

Before defining the discrete curvature, the Gaussian curvature of a smooth surface can be
defined by considering the Gauss map of a contour on the surface. Consider a closed loop C on a
smooth surface, as shown in Fig. 3a. The Gauss map of C is constructed by mapping the surface
normal vector along C onto the unit sphere, shown in Fig. 3b. Then, the Gaussian curvature at a
point P on the surface is defined as the ratio of the spherical area A(C0) enclosed by C

0 on the
Gauss map to the area A(C) enclosed by C on the surface, as C approaches P [23]:

KP = lim
C!P

A(C0)
A(C)

. (3.1)

Note that A(C0) is the signed area and the direction of the mapping matters.

C

(a)

C’

(b)

Figure 3: Definition of the Gauss map. (a) Contour C on a smooth surface, with the normal vector
shown at one point. (b) Gauss map C

0 of the contour with the corresponding normal vector at one
point shown.

The definition of Gaussian curvature in Eq. (3.1) does not directly apply to discrete surfaces;
since the curvature of a discrete surface is concentrated at points, the ratio of A(C0) to A(C) is
singular in the limit of a shrinking contour. This motivates the definition of the discrete Gaussian
curvature K as the area on the Gauss map of the trace of a closed loop on the surface:

K =A(C0). (3.2)

A discussion of the discrete Gaussian curvature can be found in [24] and Gauss maps in the
context of origami are discussed in [25]. This definition of the discrete Gaussian curvature is
meaningful even for discrete surfaces with holes, which is relevant to the patterns presented in
this paper. An example of the Gauss map of a set of flat tiles forming a loop is shown in Fig. 4.
Note that this definition of discrete Gaussian curvature is an integrated quantity, not a point-wise
measure of curvature. Reference [24] discusses estimates of point-wise curvature from discrete
curvature.

The discrete Gaussian curvature of Eq. (3.2) can be used to define the intrinsic curvature of
the presented kirigami patterns by examining the loops in a pattern. The area enclosed by the
Gauss map of a discrete loop is equal to the angular defect � of the loop [26], which is obtained
by cutting and flattening the loop, as shown in Fig. 5 for example loops of tiles connected by sub-
folds with positive, zero, and negative intrinsic curvature. The case with zero intrinsic curvature,
shown in Figure 5b, is developable since it can be flattened without cutting. Developability is often
desirable for manufacturing, since many fabrication techniques involve cutting an initially flat
sheet.
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C

(a)

C’

(b)

Figure 4: Gauss map of a loop on a discrete surface. (a) Discrete loop C, with the normal vector of
one face shown. (b) Gauss map C

0 of the loop, with the corresponding normal vector of one face
shown.

γ2 < 0

γ5

γ4

γ3

γ6

γ1 > 0

A

B

C

D

Δ > 0

(a)

Δ = 0

(b)

Δ < 0

(c)

Figure 5: Loops of tiles with different intrinsic curvature. (a) Cut and flattened loop with positive
intrinsic curvature. The isosceles trapezoid formed by gap 1 is highlighted in red. (b) Flattened
loop with zero intrinsic curvature (developable). (c) Cut and flattened loop with negative intrinsic
curvature.

It will be shown in Section 4 that for all of the kirigami patterns developed in the present
study the edges of adjacent tiles are coplanar in all configurations and form isosceles trapezoids. These
trapezoidal gaps, as well as the tiles themselves, define the intrinsic and apparent Gaussian
curvatures of a loop.

For the flattened loops shown in Figure 5 the intrinsic Gaussian curvature can be obtained
by considering the tiles as well as the geometry of the gaps between the tiles. In Figure 5a,
the trapezoid for gap 1 is defined by the tile vertices A,B,C, and D, highlighted in red. The
orientation of this gap determines how it contributes to the angular defect � of the loop. If
the short side of the trapezoid lies on the outside of the loop, the gap contributes positively to
the angular defect, which is the case for the highlighted trapezoid. If the gap is a rectangle, the
contribution to � is zero. Finally, if the short side of the trapezoid lies on the inside of the loop,
its contribution to � is negative.

For loops with six equilateral triangle tiles the angular defect is zero, and hence the intrinsic
discrete Gaussian curvature of the loop, K, is related only to the six gaps and can be obtained
from:

K =�=
6X

k=1

�k (3.3)
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where �k is the angle of the isosceles trapezoid corresponding to gap k, as defined in Fig. 5. As
previously noted, the sign of each angle depends on the orientation of the trapezoid: �k > 0 if
||BD||> ||AC|| and �k < 0 if ||BD||< ||AC||.

Therefore, to form a developable loop, either all of the gaps must be rectangles, in which case
�k = 0 8k, or there must be present gaps of both orientations, such that the sum of the angles is
zero. This is the case of greatest interest, because it allows a range of apparent curvatures to be
achieved, and is discussed next.

While the intrinsic discrete Gaussian curvature is based on the angles of the sub-folds, and
hence is invariant, the apparent discrete Gaussian curvature is the curvature of the surface formed
by the tiles joined by trapezoids across the gaps, disregarding the sub-folds. Figure 6a shows a
loop of tiles connected by sub-folds. In Fig. 6b the sub-folds have been removed and the resulting
gaps have been filled with isosceles trapezoids. These added faces are highlighted in blue and the
points A,B,C,D that correspond to the tile edges for one gap are labeled.

Remove sub-folds, add 
trapezoids

A
C

D
B

A
C

B
D

(a) (b)

Figure 6: The apparent curvature is defined after filling the gaps between tiles with trapezoidal
faces, highlighted in blue.

The apparent angular defect �a of a loop of tiles, connected by the blue trapezoids,
corresponds to the apparent discrete Gaussian curvature Ka of the loop and is defined by a
natural extension of the intrinsic curvature in Eq. (3.3):

Ka =�a =
6X

k=1

�k (3.4)

where �k is the angle of the trapezoid corresponding to gap k, which is defined in Figure 6.
The sign of �k is positive for trapezoids with the shorter side out and negative for the opposite
orientation.

Note that the sign of �k matches the sign of �k for all values of k and, therefore, each gap
contributes either positively or negatively to both the intrinsic and the apparent curvature.
However, the magnitude of �k varies as the angle of the sub-fold is changed. Therefore, the
apparent curvature can be changed by varying the sub-fold angles. Furthermore, if a loop contains
gaps of both orientations, the apparent curvature can assume both positive and negative values.

Figure 7 shows the same loop with positive, zero, and negative apparent curvature, illustrating
the mechanism of apparent curvature change. This loop contains three gaps of each orientation.
In Fig. 7a, the gaps with �k < 0 are nearly closed (�k ⇡ 0) while the gaps with �k > 0 are kept
open, so the sum of the gap angles, which is the apparent curvature, is positive. If all sub-folds
are closed, then �k = 0 for all gaps and a zero apparent curvature is obtained, as shown in Fig. 7b.
Finally, Fig. 7c shows a configuration where the gaps with �k < 0 are open, leading to a negative
apparent curvature.
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(a) (b) (c)

Figure 7: Three configurations of the same loop of tiles, with apparent curvature changes achieved
by varying the sub-fold angles. (a) Positive , (b) zero and (c) negative apparent curvatures.

This mechanism for curvature change can be replicated for patterns consisting of many loops,
which can be used to design surfaces with multiple curvatures. Each individual loop in the
pattern can vary its apparent curvature, allowing a wide range of apparent surfaces, with different
curvatures, to be created.

4. Gap Conditions

The geometry of the gaps between the tiles has to satisfy two types of compatibility conditions.
The first condition ensures that a sub-fold fits between a pair of adjacent tiles, such that the edges
of the tiles become coincident when the sub-fold is closed. The second condition ensures the
compatibility of two gaps, meaning that the same sub-fold can span both gaps by varying only
the fold angle. These conditions on the gaps between two tiles are used, in Section 5, to constrain
the tile arrangement synthesis.

(a) Single sub-fold conditions

Consider two flat rigid tiles in three-dimensional space. The relative position of the tiles is such
that a single sub-fold can be fitted in the gap between the tiles and when the sub-fold is closed
the edges of the tiles become coincident. Figure 8 shows an example of tiles that satisfy these
conditions, when the sub-fold is fully closed and AB and CD coincide, Fig. 8c.

B

A C

D

(a)

A

B

s1

s2

C

D

(b)

A, C

B, D

s1
s2

(c)

Figure 8: Two tiles with a gap that satisfies the single sub-fold conditions. (a) Definition of edges
AB and CD (top view). (b) A single sub-fold (gray) connecting edges AB and CD (top view). (c)
When the sub-fold is closed, edges AB and CD become coincident (perspective view).

To develop general constraints on the relative positions of the tiles, it is required that points C
and D coincide with points A and B after a rotation about some axis s through an angle �, which
closes the sub-fold. Consider an arbitrary point s1 on the axis of rotation s, the length of vector
As1 from A to s1 and the length of vector Cs1 must be equal since these segments coincide when
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the sub-fold is closed. The same argument can be made for a point s2, leading to the conditions:

||As1||= ||Cs1||

||Bs2||= ||Ds2||.
(4.1)

Therefore, s must lie in the planes P1 and P2, which perpendicularly bisect line segments AC and
BD, respectively.

There are three possible cases concerning the planes P1 and P2, as shown in Fig. 9. In case
1, P1 and P2 intersect along a line. In this case, the only candidate axis of rotation is the line
of intersection of the two planes. However, different rotation angles � are generally required to
bring C to A and D to B. In case 2, planes P1 and P2 are parallel, and hence there is no possible
rotation axis. Finally, in case 3 planes P1 and P2 are coincident, and hence there are infinitely
many candidate rotation axes, which is the case of interest.

A

B

D

C
s

P2

P1

(a)

A

B D
P2

P1
C

(b)

A

B D

C

P2

P1

(c)

Figure 9: Three cases of a pair of tiles in 3D space. (a) Case 1: planes P1 and P2 intersect along a
unique line s. (b) Case 2: planes P1 and P2 do not intersect. (c) Case 3: planes P1 and P2 coincide.

Two conditions are needed to ensure that P1 and P2 coincide. First, points A, B, C, and D

must be coplanar, which can be enforced by requiring the triple product of three vectors meeting
at vertex A is zero:

BA⇥CA ·DA= 0. (4.2)

This condition requires the volume of the parallelepiped generated by BA, CA, and DA is zero.
Equation (4.2) could be equivalently expressed in terms of three vectors meeting at points B, C,
or D.

The second condition arises from symmetry. Within the plane of points A, B, C, and D,
the edges AB and CD must be mirror symmetric with respect to the bisecting plane. Therefore
A, B, C, and D form an isosceles trapezoid, which is equivalent to stating:

||AD||= ||BC||. (4.3)

The conditions in Eqs. (4.2) and (4.3) ensure that the edges AB and CD can be made to coincide
through the rotation of a sub-fold.

(b) Gap compatibility

Two gaps are defined as compatible if they can be obtained by rotation of the same sub-fold. In
the pattern synthesis process, this will be the key condition that allows multiple shapes to be
achieved with the same fold pattern.

Consider a pair of tiles connected by a sub-fold. Figure 10a shows a top view of the same pair
of tiles, with two different sub-fold angles. To establish a condition on A,B,C,D,C

0 and D
0 that

ensures the compatibility of Gap 1 and Gap 2, consider the perpendicular projections of Gap 1
and Gap 2 onto a plane perpendicular to the sub-fold axis, s, Fig. 10c. The solid lines from s to
A and from s to B, and from s to C and s to D in Gap 1 are the projections of the faces of the
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sub-fold. Similarly, for Gap 2 the solid lines are the projections of the sub-fold faces. The dotted
lines representing segments AC, BD, AC

0, and BD
0 are true lengths, since they are parallel to the

projection plane.

A

Gap 1

B D

Cg1

g2

A'

Gap 2

B' D'

C'G1

G2

(a)

A

B
D

C

s

(b)

A

Gap 1
B D

Cg1

g2

A'

Gap 2
B' D'

C'G1

G2

φ

s s
φ'

(c)

Figure 10: Diagrams for deriving gap compatibility constraints. (a) Two gaps from the top view.
(b) Perspective view one gap. (c) Diagram of the sub-fold viewed along the sub-fold axis, looking
along the arrow shown in (b). Note that the dashed lines are true length as they are parallel to the
viewing plane. Solid lines are projections onto the viewing plane.

By examining Gap 1 in Figure 10c, it is observed that

sin

✓
�

2

◆
=

g2 � g1

2||AB||p
(4.4)

sin

✓
�

2

◆
=

g2

2||sB||p
(4.5)

where || ||p denotes the length of the projection. Similarly, by examining Gap 2,

sin

✓
�
0

2

◆
=

G2 �G1

2||AB||p
(4.6)

sin

✓
�
0

2

◆
=

G2

2||sB||p
. (4.7)

Assuming that Gap 1 and Gap 2 are two different configurations of the same sub-fold, for different
angles � and �

0, the projected lengths ||AB||p and ||sB||p are the same for Gap 1 and Gap 2. By
combining Eqs. (4.4)- (4.7), the following relation between the two gaps is obtained:

g2 � g1

g2
=

G2 �G1

G2
. (4.8)
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The condition in Eq. (4.8) is equivalent to the statement that g2�g1

g2
is invariant as the sub-fold

changes angle. Equation (4.8) can be used as a condition on any two gaps, to ensure that they can
be realized with the same sub-fold.

5. Pattern Synthesis

The objective is to compute a single tile arrangement that can be reconfigured into multiple
target surfaces with different Gaussian curvature, by varying the the sub-fold angles. The tiles are
simultaneously arranged on all of the target surfaces, while ensuring that the following conditions
are satisfied for all target configurations:

(i) Adjacent tiles can be connected by a single sub-fold (Eqs (4.2) and (4.3)).
(ii) Corresponding gaps between tiles in each target configuration are compatible (Eq. (4.8)).

An overview of the pattern synthesis process is presented in Fig. 11. First, a set of initial guesses
of the tile arrangements is generated, for each target surface. The initial guesses can be generated
systematically using any discretization of the target surfaces. A flat target surface is included,
to achieve a developable pattern. The constrained optimization problem uses the initial guesses
as a starting point, and outputs valid arrangements of the tiles on each target surface. Then, the
sub-folds are added to the arrangement corresponding to the flat target surface, completing the
developable fold pattern.

Target surfaces
Initial guesses

(constraints are violated) Optimization output

Add sub-folds to one 
tile arrangement

Place tiles 
on surfaces

Constrained 
optimization

Compatible 
arrangements

Recon!gure Fold pattern

Compatible 
arrangements

Figure 11: Overview of pattern synthesis process. First, an initial guess is created by arranging
tiles on each target surface. By solving a constrained optimization problem, compatible tile
arrangements corresponding to each target surface are computed. Then, sub-folds are added to
connect adjacent tiles in one of the tile arrangements. By adding sub-folds to a flat target surface
arrangement, a developable pattern is created that can be reconfigured to achieve the other tile
arrangements.
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(a) Constrained optimization problem

The set of tile arrangements is parameterized by

V =

2

66666664

v1
...
vj
...

vNs

3

77777775

(5.1)

where V 2R3nvtNtNs is a vector of tile vertex coordinates in all of the Ns arrangements. The
vector vj 2R3nvtNt contains the vertex coordinates of an arrangement of Nt identical tiles
corresponding to the target surface Tj(x, y) :R2!R. Various tile shapes can be considered and
the number of vertices per tile is nvt. There are Ns tile arrangements, each corresponding to one of
the Ns target surfaces. Each arrangement of tiles has Ng gaps, which determines the connectivity
of the tiles.

To generate a set of tile arrangements, a constrained optimization problem is posed to
minimize a cost function E subject to a set of equality constraints:

min
V

E(V ) subject to Ctiles(V ), Cgaps(V ), Ctarget(V ) (5.2)

where the choice of E depends on the specific application. A suitable option for the cost function
is proposed in Section 5c.

The constraints have been divided into three sets: Ctiles, Cgaps, Ctarget. For brevity of
notation, it is omitted that all constraints are functions of V .

The first set of constraints, Ctiles, defines the shape of the tiles. In the case of equilateral triangle
tiles, denote by Lmj the length of tile edge m in arrangement j. The length of all tile edges in all
arrangements is set equal to L0 and hence,

C
triangle
tiles = {Lmj =L0, m= 1, ..., 3Nt, j = 1, ..., Ns}. (5.3)

Additional constraints are needed to define square tiles. Again, the length of edge m in
arrangement j is set equal to L0. The length of the diagonal LD

ij of each tile i in arrangement j is
set equal to

p
2L0. An additional constraint is added to enforce the coplanarity of the four vertices

of each tile. Therefore, for square tiles with edge length L0 and corner points (q1, q2, q3, q4), the
constraint set is:

C
square
tiles = {Lmj =L0, m= 1, ..., 4Nt, j = 1, ..., Ns (5.4)

L
D
ij =
p
2L0, i= 1, ..., Nt, j = 1, ..., Ns (5.5)

(q2q1 · q3q1 ⇥ q4q1)ij = 0, i= 1, ..., Nt, j = 1, ..., Ns}. (5.6)

Equations (5.4) and (5.5) define the side lengths and diagonal length of the square, and Eq. (5.6)
enforces the planarity of the tile. Other tile shapes would be formulated in a similar way.

The second set of constraints, Cgaps, ensures a valid set of gaps in all tile arrangements.
Following Section 4, Cgaps ensures that a single sub-fold can be inserted in the gap between
pairs of adjacent tiles and that corresponding gaps in each of the target surface tile arrangements
are compatible. The gap constraints can be written as

Cgaps = { (BA⇥CA ·DA)kj = 0, k= 1, ..., Ng, j = 1, ..., Ns, (5.7)

(||AD||= ||BC||)kj , k= 1, ..., Ng, j = 1, ..., Ns, (5.8)
✓
g2k � g1k

g2k

◆

j
=

✓
g2k � g1k

g2k

◆

j=1
, k= 1, ..., Ng, j = 2, ..., Ns} (5.9)

where k indexes the gaps in target arrangement j. Equations (5.7) and (5.8) enforce the condition
that a single sub-fold fits to each gap. Equation (5.9) ensures the compatibility of corresponding
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gaps in the arrangement of the tiles for each target surface. The third set of constraints, Ctarget,
ensures that each target surface is closely approximated by its corresponding tile arrangement
configuration. Sections 5b-5c, below, discuss appropriate target surface constraints.

(b) Ideal constraints

A tile arrangement that achieves the closest possible approximation of the target surfaces is
defined as ideal; each tile is tangent to the target surface at the tile center. Then, the constraint
set Cideal

target is defined to strictly enforce that the arrangements are all ideal.
The centroid coordinates of tile i in target arrangement j are (x̄ij , ȳij , z̄ij). The unit normal

vector of the tile is n̂t
ij 2R3. The target surface j, defined by the function Tj(x, y), has unit normal

vector n̂s
j(x, y)2R3. In this work, it is assumed that analytical expressions for the target surfaces

are known, although similar constraints could be formulated in terms of a set of numerically
defined target surfaces. The constraints that force all arrangements to be ideal approximations of
the target surfaces are:

C
ideal
target = {z̄ij = Tj(x̄ij , ȳij), i= 1, ..., Nt, j = 1, ..., Ns (5.10)

✓ij = 0, i= 1, ..., Nt, j = 1, ..., Ns} (5.11)

where the angle ✓ij is the angle between the unit normal vector n̂t
ij of tile i in arrangement j and

the unit normal vector n̂s
j of surface Tj , evaluated at the tile center:

✓ij = cos�1
⇣
n̂t
ij · n̂s

j(x̄ij , ȳij)
⌘
. (5.12)

The first constraint, Eq. (5.10), ensures that the tile centers lie on the target surface. Equation (5.11)
ensures that the tile normal is aligned with the surface normal at the center of the tile, so that the
tile is tangent to the surface.

Although it is difficult to make general statements about the existence of feasible solutions to
systems of nonlinear equations, a constraint and free variable counting argument can be used to
determine if the system is generically overdetermined or underdetermined. When subject to the
ideal constraints, each tile effectively has three free parameters to fix its orientation in space. The
centroid coordinates x̄ and ȳ of each tile are free, but z̄ follows from Eq. (5.10). If Eq. (5.11) is
satisfied, the only remaining free parameter is a rotation about the tile normal vector. Therefore,
considering all Nt tiles in Ns arrangements, there are effectively 3NsNt free variables. Since Ctiles

and Ctarget have already been accounted for while counting the free variables, the number of
free variables can be compared to the number of gap constraints. From Eqs. (5.7) - (5.9), there are
(3Ns � 1)Ng gap constraints. If the number of gap constraints is greater than the number of free
variables, the system is overdetermined and in general there will be no solution.

Table 1 summarizes the number of free variables versus gap constraints if the ideal target
constraints are enforced. The freedom in the tile arrangement problem, denoted by F , is defined
as the number of free variables minus the number of gap constraints. If F > 0, the problem is
underdetermined and feasible solutions should exist, while F < 0 indicates that the problem is
overdetermined.

Whether or not the system is overdetermined depends on the connectivity of the tiles,
particularly the number of tiles Nt, the number of gaps Ng , and the number of target surfaces
Ns. Section 6 analyzes the freedom in the tile arrangement problem for tiles with different
connectivity. The analysis suggests that the ideal target constraints are often too restrictive and
tend to over-constrain the system. This motivates the relaxation of some target constraints,
discussed in the next sub-sections.

(c) Relaxed constraints and cost function

Depending on the connectivity of the tiles, the ideal target constraints may over-constrain the tile
arrangement problem. In such cases it is of interest to consider relaxing the constraints to obtain
feasible solutions. A relaxed target constraint set is proposed that maintains the constraint that
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Table 1: Count of free variables and constraints for three target constraint cases.

Free variables Gap constraints F = Free variables � Gap constraints
Ideal target
constraints

3NsNt (3Ns � 1)Ng 3NsNt � (3Ns � 1)Ng

Relaxed target
constraints

5NsNt (3Ns � 1)Ng 5NsNt � (3Ns � 1)Ng

Relaxed target
constraints and
developability

5(Ns � 1)Nt + 3Nt (3Ns � 1)Ng 5(Ns � 1)Nt + 3Nt � (3Ns � 1)Ng

the tile center must lie on the target surface, but relaxes the constraint that the tile normal must
be aligned with the surface normal. The resulting constraint set is then,

C
relax
target = {z̄ij = Tj(x̄ij , ȳij), i= 1, ..., Nt, j = 1, ..., Ns}. (5.13)

A similar constraint counting argument to that presented in Section (b) can be applied to
the relaxed constraints. The placement of each tile has five free variables: two free variables to
describe the tile center coordinates x̄ and ȳ and three angular orientation variables, since the tile
normal vector is no longer constrained. The count of free variables and gap constraints for the
relaxed target constraint case is included in Table 1.

Since the tile normal vectors are no longer required to be aligned with the surface normal
vector, the deviation between the tile and the surface normals can be incorporated in the cost
function, in Eq. (5.2). A suitable cost function is:

E =Enormal + wEgap. (5.14)

Here, the first term in the cost function is

Enormal =
���
���
h
✓11, ..., ✓ij , ..., ✓NtNs

i���
��� , (5.15)

which is the norm of a vector whose entries are the angles between the tile normals and the surface
normals, ✓ij , defined in Eq. (5.12), for all tiles and in all target arrangements. This term penalizes
the misalignment between the tiles and the target surface. However, including only Enormal in
the cost function would allow optimal solutions with undesirable tile spacing. For example, some
gaps between adjacent tiles could be very large and others very small. To address this issue, a
second term, Egap, has been introduced in Eq. (5.14) to control the gap sizes. This term is defined
as:

Egap = ||G�Gtar||, (5.16)

where G2R2NgNs is a vector of gap lengths g1 and g2 for each gap of each arrangement. It is
given by:

G=
h
g111, g211 ..., g1kj , g2kj , ..., g1NgNs

, g2NgNs

i
, (5.17)

where k indexes gaps of arrangement j. Therefore, the term Egap penalizes the deviation from a
specified vector of target gap sizes Gtar 2R2NgNs . The relative weighting between the two terms
in the cost function in Eq. (5.14) is the parameter w.

(d) Including the developability target

A developable pattern can be obtained by including a flat surface among the targets. However,
it should be noted that in the case of the relaxed target constraints, the tile arrangement
corresponding to the flat target surface may not be exactly planar. Therefore, a third set of target
constraints C

relax,dev
target is proposed that treats the flat target surface with ideal constraints and
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all other target surfaces with relaxed target constraints. Let target surface 1 be flat; the relaxed
developable constraint set is then:

C
relax,dev
target = {z̄ij = Tj(x̄ij , ȳij), i= 1, ..., Nt, j = 1, ..., Ns (5.18)

✓ij = 0, i= 1, ..., Nt, j = 1}. (5.19)

Again, the free variables and gap constraints can be counted. By requiring that tile
arrangement 1 is satisfied exactly (ideal target), there are 3Nt free variables associated with
the tiles in arrangement 1 and 5Nt(Ns � 1) free variables associated with the other target
arrangements. The count of free variables versus gap constraints is presented in Table 1.

Since the flat target arrangement is restricted to lie exactly in the plane, a developable pattern
can be made by adding sub-folds to a flat tile arrangement. This results in a planar configuration
that defines the fold pattern.

(e) Implementation

The constrained optimization problem of Eq. (5.2) can be implemented numerically to compute
the optimal arrangements that satisfy the constraints. Standard nonlinear optimization algorithms
can be used to perform the optimization. The fmincon utility in Matlab was used to compute
optimal tile arrangements in the examples presented in this paper, and the specific codes that
were developed are included in the supplementary material.

First, the type of tile, the number of tiles and their connectivity are chosen. Then, depending
on the chosen connectivity and whether or not the pattern is to be developable, the appropriate
target constraint set is chosen, following Sections 5b-5d.

Next, the numerical part of the pattern synthesis process begins. An initial guess of the tile
arrangements for each target surface is made. Since the initial guess may violate the constraints,
it can be created by placing tiles on any arbitrary discretizations of the target surfaces. First, a
uniform grid of equilateral triangles or squares, depending on the tile shape, is created in the xy-
plane. A discretization of each target surface can be created by mapping the vertices of that grid
to each target surface Tj(x, y). Then, a tile is placed in the center of each face of the discretized
target surface to produce an initial guess of the tile arrangement for each target surface. If needed,
the tiles in the initial guess can be repositioned based on trial and error.

In all of the examples of Section 7, the cost function proposed in Eq. (5.14) was used to derive
optimal tile arrangements. The target gap size Gtar is specified for each gap. Upon computing
an optimal arrangement of tiles, the sub-folds must be added to one of the tile arrangements to
complete the pattern.

To create a developable pattern, the sub-folds can be added to the flat arrangement of tiles
in the plane of the tiles. In this case, care should be taken to ensure that the gaps of the flat
tile arrangement are larger than corresponding gaps in the other arrangements, which can be
achieved by setting a larger target gap size in the cost function for the flat tile arrangement.

To create a non-developable pattern, sub-folds can be added to any of the tile arrangements.
In this case, the size of each sub-fold can be chosen freely. For example, the distance from point
s1 of Fig. 8 to the plane of the tile edges can be chosen.

After inserting the sub-folds, the pattern synthesis is complete and numerical simulations can
be used to verify that the resulting pattern can be reconfigured into each of the target surface
arrangements.

In conclusion, it is noted that, since the constrained optimization problem involves
computations with nonlinear constraints, a limitation of the design process is that it is difficult to
predict if feasible and high quality solutions will exist. For example, if the optimization algorithm
fails to compute a feasible design, it is difficult to establish if no solution exists or if a more robust
algorithm is needed. Additionally, if a feasible solution is found, there is no guarantee that it is
locally or globally optimal. While it is difficult to make generic statements about the existence of
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solutions, through the constraint counting analysis of Section 6, we build insights into when a
feasible solution is expected for various tile connectivities.

6. Tile Shape and Connectivity

The shape and connectivity of the tiles determine the number of constraints in the optimization
problem of Eq. (5.2), which have to be decided before implementing the pattern synthesis process.
This section provides insight into the role of tile connectivity by analyzing the freedom F in
the tile arrangement problem in relation to the number of the degrees of freedom of patterns of
different size, with either equilateral triangle or square tile patterns.

The number of target surfaces, Ns, the number of tiles, Nt, and the number of gaps, Ng ,
determine whether the tile arrangement problem is overdetermined or underdetermined. From
Table 1, for the ideal target constraint set:

Fideal = 3NsNt � (3Ns � 1)Ng (6.1)

and for the relaxed constraints with the developability constraint,

Frelax,dev = 5(Ns � 1)Nt + 3Nt � (3Ns � 1)Ng. (6.2)

The ratio F/Ns has been plotted in Fig. 12 for various sizes of six-fold rotationally symmetric
patterns with equilateral triangle tiles, beginning with a single loop of tiles. For example, the
patterns with 7 and 13 loops are shown in Fig. 12a. In Figure 12b, F/Ns has been plotted for
both the ideal constraints and the relaxed constraints including the developability constraint. The
two limiting cases of two target shapes (Ns = 2) and an infinite number of target shapes have
been considered. In both cases, the ideal constraint set leads to an overdetermined system (F < 0)
for all of the patterns considered, with the exception of a single loop. However, for the relaxed
constraints F > 0 and its value increases as the pattern size is increased. Note that the relaxed
constraints without the strict developability constraint would provide even greater freedom. Even
in the limiting case as the number of target surfaces Ns goes to infinity, there is freedom in the tile
arrangement problem with the relaxed constraints. This suggests that solutions may be possible
for a high number of target shapes, though the quality of the possible solutions would need a
separate study.

Square tiles arranged in a square grid have also been considered. Example patterns with 4
loops and 9 loops are shown in Fig. 13a. Like the triangular tile cases considered previously,
the ideal target constraints lead to an overdetermined constraint set except for the single loop,
as shown in Fig. 13b. However, this time the relaxed constraints including the developability
constraint lead to an underdetermined constraint set only for the smaller patterns. This is because
for patterns with square tiles the number of gaps Ng grows more rapidly than the number of tiles
Nt.

Along with the freedom in solving the tile arrangement problem, the connectivity of the tiles
determines also the number of kinematic degrees of freedom of the fold pattern, which was
computed with Eq. (2.2) assuming that there are no states of self stress. In fact, it was verified,
using the bar-hinge kinematic model in Appendix A, that the patterns presented in this paper
generically have no states of self stress. The number of kinematic degrees of freedom versus the
number of loops have been plotted in Figs 12c and 13c for the triangle and square tile patterns.
The figures show that, for both tile patterns, the number of degrees of freedom increases as the
pattern increases in size.
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(c)

Figure 12: Analysis of connectivity of equilateral triangle tile patterns with six-fold rotational
symmetry. (a) 7 loop and 13 loop patterns. (b) Ratio between freedom of tile arrangement problem
and number of target shapes, plotted against number of loops. (c) Kinematic degrees of freedom
plotted against number of loops.

7. Examples

The pattern synthesis process is demonstrated for a set of six target surfaces, shown in Fig. 14 and
with the following equations:

T1 : ẑ = 0

T2 : ẑ =
p

20� x̂2 � ŷ2

T3 : ẑ =
1
6

⇣
x̂
2 � ŷ

2
⌘

T4 : ẑ =
4
3
sin

✓
3
4
x̂

◆
cos

✓
3
4
ŷ

◆

T5 : ẑ =
1
32

(x̂3 � 3x̂ŷ2)

T6 : ẑ = 5

r
3
2
� x̂2

32
� 5ŷ2

68

(7.1)

where x̂= x/L0, ŷ= y/L0, ẑ = z/L0.
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Figure 13: Analysis of connectivity of square tile patterns with four-fold rotational symmetry. (a)
4 loop and 9 loop patterns. (b) Freedom of tile arrangement problem plotted against number of
loops. (c) Kinematic degrees of freedom plotted against number of loops.

Surface T1 is flat, with zero Gaussian curvature, and is included in order to ensure that the
tile patterns are developable. Surface T2 is spherical, with positive Gaussian curvature. Surface
T3 is a hyperbolic paraboloid, with negative Gaussian curvature. T4 is a sinusoidal surface, and
hence includes both regions of positive and negative curvature. Surface T5 is known as a monkey
saddle, with negative curvature everywhere except at the origin, where it has zero curvature.
Finally, T6 is an ellipsoidal surface with positive curvature.

Figure 14: Target surfaces used in the pattern synthesis examples.
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Three different kirigami patterns have been synthesized, that match some or all of these

target surfaces. After the pattern synthesis process computes a fold pattern, it is verified through
kinematic simulations that the pattern is rigidly foldable and continuous kinematic paths connect
all target configurations. Appendix A formulates a kinematic bar-hinge model that captures the
rigid folding kinematics. Also included in Appendix A is a kinematic pathfinding algorithm used
to simulate the folding between target configurations. Animations of the folding simulations for
each example are included as supplemental materials.

(a) Triangular tiles, three target surfaces

The first example considers the pattern with 13 loops of equilateral triangle tiles, as shown in
Figure 12a, and targets the surfaces T1, T2 and T3. Following the analysis of the freedom in
the tile arrangement problem, Section 6, the relaxed developable target constraints are adopted.
Subject to these constraints, the free variable and constraint count of Table 1 gives F/Ns = 38 free
parameters.

The tile arrangement optimization problem was implemented according to Section 5. For T1,
the target gap size was set to 0.8L0 where L0 is the side length of the tiles. A smaller target gap
size of 0.4L0 was used for T2 and T3 to ensure that when the sub-folds are added to the flat tile
arrangement, the T2 and T3 configurations can be achieved.

To explore the solution space, the weight w in the cost function of Eq. (5.14) was varied from
1/30 to 30, and the resulting solutions are shown in Fig. 15. The tile arrangement corresponding
to the target T3 is shown in Fig. 15a. For w= 1/30, the tiles align closely to the surface, but the tile
spacing is irregular. Conversely, w= 30 produces closer to uniform tile spacing at the cost of tiles
poorly aligned to the target surface. A balance is achieved with w= 1. Figure 15b is a plot of the
tile alignment and distance to the target gap size of the optimal tile arrangements as w varies. In
practice, the selection of w will depend on the specific application. In the present case, w= 1 was
selected. The corresponding mean and maximum tile misalignment and distance from target gap
size are summarized in Table 2 for each target surface tile arrangement.

Table 2: Mean and maximum angles between tiles and surface normals for target surfaces in first
example

Target surface T1 T2 T3

mean(✓) (degrees) 0 6.94 8.50
max(✓) (degrees) 0 10.22 10.91
mean(|G�Gtar|) 0.09L0 0.07L0 0.08L0

max(|G�Gtar|) 0.29L0 0.30L0 0.37L0

After computing the tile arrangements, fully-open (flat) sub-folds were added to the flat tile
arrangement, resulting in the planar fold pattern in Figure 16a. This fold pattern can then be
folded into the T2 and T3 configurations. Upon closing the sub-folds, a flat apparent surface is
obtained, denoted as T0. Note that the T0 configuration does not correspond to a target surface,
but it is guaranteed to exist by the gap constraints of Section 4. The four configurations of the
pattern are shown in Fig. 16.

For a more detailed insight, in Fig. 16 one loop of triangles has been highlighted in blue.
The pattern can be flattened so the intrinsic curvature of the loop is zero, as shown in the
T1 configuration. To achieve zero intrinsic curvature, trapezoidal gaps of both orientations are
present in the loop, as discussed in Section 3, and the angles of the trapezoidal gaps around
the loop sum to zero for developability. The apparent curvature of the highlighted loop varies
between the target configurations. In the T2 configuration, the pattern exhibits positive apparent
curvature and the blue loop has an apparent angular defect of �a = 6.0�. The T3 configuration
exhibits negative apparent curvature and the blue loop has an apparent angular defect of �a =

�7.1�.
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Figure 15: Analysis of optimal tile arrangements with varying cost function weight w for the 13
loop triangular tile example with 3 target surfaces. (a) Optimal tile arrangements corresponding
to three values of w. (b) Characterization of the optimal tile arrangement for varying w, measured
by the mean misalignment between tile and surface normals and mean distance to target gap size.

T1

T0

T3
T2

Δa = 6.0o

Δ = Δa = 0o

Δa = 0o

Δa = -7.1o

Figure 16: Example of developable kirigami pattern with equilateral triangle tiles designed to
achieve target surfaces T1, T2 and T3.

(b) Square tiles, two target surfaces

This second example demonstrates the pattern synthesis for square tiles. A pattern with two target
surfaces, T2 and T3, was considered, omitting the flat target surface to create a non-developable
pattern. A pattern connectivity with nine loops was considered. With Nt = 16, Ng = 24, and
Ns = 2, the relaxed constraints (without developability) lead to a tile arrangement problem with
F/Ns = 20 free parameters.
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Target gap sizes of 0.8L0 and 1.2L0 were used for the spherical and saddle tile arrangement,

respectively. The cost function weight was taken as w= 0.25, favoring normal vector alignment
over gap spacing. In Table 3, the mean and maximum tile misalignment and deviation from the
target gap size are listed for the optimal tile arrangements.

Once the tile arrangements had been computed, sub-folds were added to the T2 arrangement.
The size of the sub-folds was determined by specifying the distance from s1 to plane ABCD

in Fig. 8. This distance was chosen as 0.5L0 for all sub-folds, resulting in the pattern shown in
Fig. 17.

T2 T3

T0

Figure 17: Example of non-developable kirigami pattern with square tiles, designed to achieve
two target surfaces.

While the example shown in Fig. 17 exhibits only two target configurations, square patterns
with more than two target configurations can also be designed. However, for the surfaces
considered in the present study it was observed that the quality of the patterns tends to decrease
sharply if more than two target surfaces are considered (e.g., solutions exhibiting large and
irregular tile spacing, as well as large tile normal misalignment, were obtained).

Table 3: Mean and maximum angles between tiles and surface normals for the square tile pattern
with two target surfaces in the second example

Target surface T2 T3

mean(✓) (degrees) 7.92 10.43
max(✓) (degrees) 9.07 11.95
mean(|G�Gtar|) 0.23L0 0.25L0

max(|G�Gtar|) 0.49L0 0.76L0

(c) Triangular tiles, six target surfaces

In the final example, the capability of the pattern synthesis process to achieve all six target
surfaces is demonstrated. Again, triangular tiles forming 13 loops were considered. For the target
constraints, the relaxed developable set was used. In the cost function, the target gap size was set
to 0.8L0 for the T1 tile arrangement and 0.4L0 for all other tile arrangements. The cost function
weight was set at w= 1. After computing the optimal tile arrangements, fully-open sub-folds
were added to the T1 tile arrangement to ensure developability. The resulting pattern is shown in
Fig. 18 in the configurations corresponding to target surfaces T1 through T6 along with T0 where
the sub-folds fully closed.

Table 4 lists the mean and maximum offsets between tiles and target surface normal vectors,
along with the mean and maximum distances from the target gap size. Compared to the case
with only three target shapes, the normal vector offset and the distance to the target gap size of
T1, T2, and T3 are slightly larger. Additionally, it is observed in Table 4 that T4 and T5 exhibit
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T1

T0

T2 T3

T4 T5 T6

Figure 18: Pattern with equilateral triangle tiles designed to approximate six target surfaces,
T1, T6.

larger errors than the other surfaces, indicating that complex curvature distributions are more
difficult to approximate. Since both problems had been set up with identical target gap sizes and
cost function weights, this result indicates that adding extra target shapes sacrifices the quality of
the tile arrangements. However, this generally would depend on the specific target surfaces, tile
connectivity considered, and cost function parameters.

Table 4: Mean and maximum angle between tile and surface normal for the six target pattern

Target surface T1 T2 T3 T4 T5 T6

mean(✓) (degrees) 0 7.59 8.55 11.15 9.38 6.25
max(✓) (degrees) 0 11.18 14.04 19.33 15.99 11.29
mean(|G�Gtar|) 0.12L0 0.07L0 0.08L0 0.10L0 0.11L0 0.06L0

max(|G�Gtar|) 0.31L0 0.27L0 0.38L0 0.36L0 0.26L0 0.20L0

8. Prototype

A physical prototype of the triangular tile pattern with six target surfaces was designed and built,
with the aim of capturing the folding kinematics and demonstrate its reconfigurability. The model
was constructed from 3D printed (Nylon 12) plates connected by steel pin hinges. This fabrication
concept is appealing because it offers clean rigid-folding kinematics since the plates are stiff and
the pin hinges have a well-defined axis of rotation. Although the entire model consists of many
individual pieces, assembly simply requires sliding in the pin connections. It should also be noted
that while this prototype is developable, the fabrication concept is not restricted to developable
patterns.

Photos of the hinge design are shown in Fig. 19 for two tiles connected by a sub-fold. The pins
have diameter of 1 mm and the plates are 2.5 mm thick, making the plates sufficiently stiff to
exhibit nearly-rigid-folding kinematics. To accommodate the thickness of the plates, both faces
of the sub-fold are split in half. A slender arm reaches from one face of the sub-fold to the other,
Fig. 19(a), to ensure alignment of the hinge. With this design, the sub-fold is capable of fully
closing and the zero-thickness kinematics assumed in the design are preserved despite using
plates of finite thickness in the prototype.
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(a)

(b)

4 cm
2.5 mm

(c)

Figure 19: Photos of hinge between two tiles connected by a sub-fold. (a) Exploded view of 3D
printed plates and pin hinges; (b) sub-fold partially open; (c) sub-fold closed.

A prototype of the entire pattern was created by applying the sub-fold design concept of Fig. 19
to each sub-fold in the pattern. The prototype is shown in Fig. 20 in each of the six target surface
configurations, as well as the T0 configuration with the sub-folds fully closed.

T1

T6

T0

T3
T2

T4
T5

Figure 20: Photos of prototype in six target surface configurations and T0 configuration with the
sub-folds closed.

Since the pattern has 84 kinematic degrees of freedom, positioning the pattern into each
target surface configuration is a challenge. Therefore, a 3D printed support structure for each
configuration was used. The support structure consists of triangular posts that support each tile in
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the target configuration, through slots on the underside of each tile. Figure 21 shows the support
structure with and without the prototype for the T3 (saddle) configuration. Once the prototype
had been properly positioned on the support, a drop of glue was placed on each hinge to lock
its angle, thus allowing the prototype to hold its configuration when it was removed from the
support structure. The bond of the glue on each hinge was then be snapped, freeing the hinges so
the next target configuration could be achieved.

(a) (b)

Figure 21: A 3D printed support structure was used to position the prototype in a target surface
configuration. (a) Support structure for the T3 (saddle) configuration. (b) Prototype positioned on
the support structure.

9. Conclusions

This paper has presented the synthesis of a new family of pluripotent kirigami patterns. These
patterns are capable of approximating multiple target surfaces of different Gaussian curvature.
The patterns consist of a set tiles connected by sub-folds, and the apparent curvature of the
surface comprised of the tiles only can be reconfigured. Changing the sub-fold angles serves as
a mechanism for changing the apparent curvature of the pattern, leading to patterns capable of
achieving a large range of apparent curvatures.

A numerical framework for pattern synthesis has been presented, in which arrangements
of the tiles corresponding to each target surface are simultaneously computed by solving a
constrained optimization problem. The constraints are formulated to ensure that sub-folds can be
added between adjacent tiles and that each arrangement is compatible with the others. Additional
constraints are included to ensure the arrangements closely approximate the target surfaces
and both developable and non-developable patterns can be created. Upon computing a tile
arrangements, the sub-folds are added to connect adjacent tiles in one arrangement, completing
the pattern synthesis. Since all tile arrangements are compatible, the pattern can be reconfigured
into each of the target surface tile arrangements.

The fold patterns that are synthesized in this way are relatively simple and are straightforward
to manufacture, as demonstrated by the 3D printed prototype that has been presented. Although
no guarantee is provided by the theory of Section 5 regarding the possibility that reconfiguration
between all target configurations can be achieved continuously and without any physical
interference, in all patterns presented in this paper this behavior was observed from the kinematic
simulations and was also verified in the prototypes.

A major challenge that remains at the end of this study is the automatic reconfiguration of
the presented structures. Due to their many degrees of freedom, the patterns have a rich space of
configurations, which makes their reconfiguration more challenging. This topic will be addressed
in a follow-on publication. At this stage, it is noted that the actuation of foldable structures with
many degrees of freedom is an open and active area of research [27]. Several concepts have been
explored, using smart materials [28], pressurization [29], and multi-stability [30]. The patterns
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proposed in this paper further motivate further work investigating means for actuating patterns
with many kinematic degrees of freedom.

Variations of the proposed design problem that could be explored in future work include
relaxed tile constraints that allow for irregular tile shapes and thus provide more freedom in
the design, and thickness accommodation, for example, through inequality constraints on the
minimum allowable fold angles.

Data Accessibility. Matlab codes to generate the patterns presented in this paper are included in the
supplemental materials.
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Appendix A

Kinematic simulations are used to verify that the patterns are rigidly foldable and that continuous
paths exist between configurations corresponding to each target surface.

A.1 Bar-hinge kinematics

The kinematics of rigid folding structures are captured by a pin-jointed rigid bar model [30] [31].
To develop a set of kinematic constraints, each edge in the fold pattern is treated as a rigid bar.
Then, rigid bars are added to triangulate any non-triangular face. The bars added to triangulate
the faces are treated as rigid hinges, enforcing planarity of the faces. The corresponding constraint
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set is:

e(x) = l(x)� l0 = 0 (A 1)

✓(x) = 0 (A 2)

where the fold pattern containing nv vertices is parameterized by vertex coordinates x2R3nv .
The lengths l2Rnb of the nb bars are fixed at l0 2Rnb . In other words, the bar extensions e should
be zero. The rotations ✓ 2Rnh about the nh bars added to triangulate non-triangular faces are also
set to zero.

The gradients of the kinematic constraints of Eqs. (A 1) and (A 2) are defined as:

(Cb)ik =
@li

@xk
(A 3)

(Ch)jk =
@✓j

@xk
. (A 4)

The compatibility matrices Cb and Ch for the rigid bars and rigid hinges, respectively,
are explicitly computed in [30]. Upon linearization about a configuration x0, the kinematic
constraints can be written as:

"
Cb

Ch

#
d= 0 (A 5)

where d=x� x0 is a displacement from configuration x0 and the compatibility matrices are
evaluated at x0.

The singular value decomposition of the constraint gradient matrix [32] is
"
Cb

Ch

#
=UV W T

. (A 6)

The right singular vector matrix W is composed of two sub-matrices:

W =
h
W rc Wm

i
(A 7)

where W rc has rc columns and rc is the rank of the compatibility matrix. The matrix Wm has
m columns, which form an orthogonal basis of the m-dimensional null space of the compatibility
matrix. The number of kinematic degrees of freedom is defined as m, which corresponds to the
number of linearized mechanisms of the structure.

A.2 Pathfinding algorithm

The objective of the kinematic simulations is to verify the existence of a path between
configurations of the fold pattern corresponding to each target surface. To simulate rigid folding
between configurations, a kinematic pathfinding algorithm is outlined. Several pathfinding
techniques have been developed to simulate rigid folding of origami [33], [34], [35]. Specifically,
we follow [35] to perform pathfinding simulations.

In the problem at hand, the initial configuration of the pattern x1 is known. A path from x1

to a configuration corresponding to a target surface is desired. The tile vertices vt 2R3nvt of the
target configuration are known; they are computed for each target surface in the tile arrangement
problem presented in Section 5.

Following [35], a step toward the target triangle vertices is given by:

di
j =

(
(vt)j � xi

j j  nvt

0 j > nvt
(A 8)
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By projection of di onto the null space of the compatibility matrix, a first-order-compatible

displacement is:

di
m =Wm|i(Wm)Ti d

i (A 9)

where Wm|i is Wm evaluated at configuration xi. Finally, an incremental step toward the target
surface that satisfies the linearized constraints is:

x̃i+1 =xi + ⌘d̂
i
m (A 10)

where

d̂
i
m =

di
m

||di
m||

(A 11)

and ⌘ is the step size. Since the step was taken within the space of linear mechanisms, it will
induce higher order errors. Correction steps can iteratively be applied until the constraints of
Eqs. (A 1) and (A 2) are satisfied. The correction step is taken orthogonal to the null space of the
constraints,

dc(x̃
i+1) =�W rc|i (V rc)

�1
i (Urc)

T
i

"
e(x̃i+1)

✓(x̃i+1)

#
. (A 12)

A pathfinding algorithm is summarized in Algorithm 1. The algorithm returns a set of
configurations {xi} along the path from the initial to the target configuration.

Algorithm 1 Kinematic pathfinding algorithm

1: while ||di||> ✏1 do
2: Compute d̂

i
m from Eqs. (A 9)-(A 11)

3: x̃i+1 xi + ⌘d̂
i
m

4: while

�����

"
e

✓

#�����> ✏2 do

5: x̃i+1 x̃i+1 + dc(x̃i+1)

6: e l(x̃i+1)� l0
7: ✓ ✓(x̃i+1)

8: end while return xi+1 = x̃i+1

9: i i+ 1

10: end while

The inner while loop increments the steps along the path, terminating when the configuration
is at the target configuration. The inner while loop applies a correction after each step to correct
for higher order constraint violations.

When applied to the patterns presented in Section 7, the algorithm had no issue finding paths
between the target surface configurations. The step size ⌘ was manually selected for each path
based on trial and error. Animations of the reconfiguration simulations between target surface
configurations can be found in the supplemental materials.


