

Inorganic Scintillators in High Energy Physics Experiments

Ren-Yuan Zhu

California Institute of Technology

June 22, 2023

Outline

- Physics motivation and crystal calorimeters in HEP.
- Crystal characterization:
 - Transmittance and light attenuation length;
 - Radio-, X- and photo- luminescence;
 - Temporal response and rising/decay time; and
 - Light yield, light output and decay kinetics.
- Crystal radiation damage:
 - Scintillation mechanism, afterglow and radiation induced absorption;
 - Dose rate dependence and color center kinetics; and
 - Radiation damage mechanism.
- Applications for future HEP experiments.

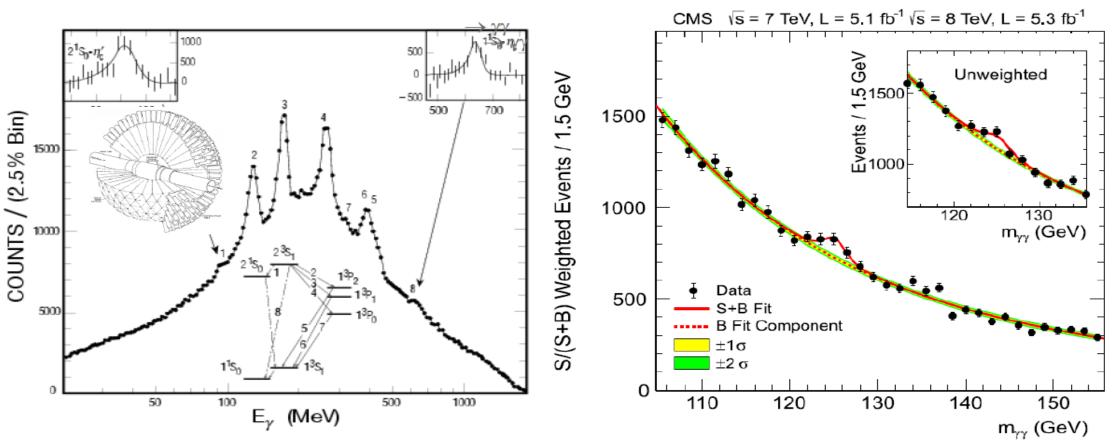
References for further readings

Why Inorganic Scintillators?

arXiv: 2203.06731 and arXiv: 2203.06788

- Precision e/ γ enhance physics discovery potential.
- Performance of total absorption ECAL is well understood for e/γ and jets:
 - The best possible energy resolution;
 - Good position resolution;
 - Good identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout: C/S light or S/L gate.
- On-going Development in Caltech Crystal Lab:
 - Rad-hard LYSO:Ce crystals and LuAG:Ce ceramics (RADiCAL) for HL-LHC and FCC-hh;
 - Ultrafast BaF₂:Y and Lu₂O₃:Yb for TOF and ultrafast calorimetry;
 - Cost-effective crystals/glasses for the proposed Higgs factory (Calvision) and HHCAL.

Precision e/γ Physics in HEP

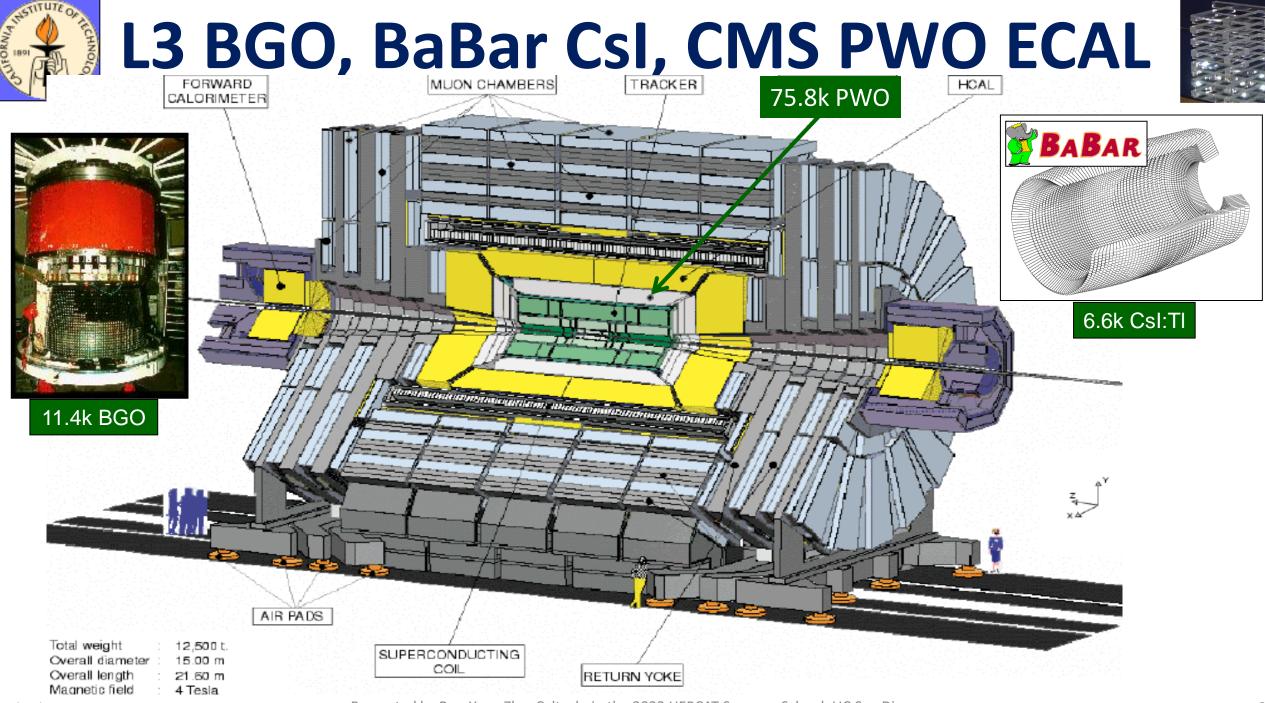


Charmonium system observed by CB through Inclusive photons

Higgs -> $\gamma\gamma$ by CMS through reconstructing photon pairs

CB NaI(TI)

CMS PWO

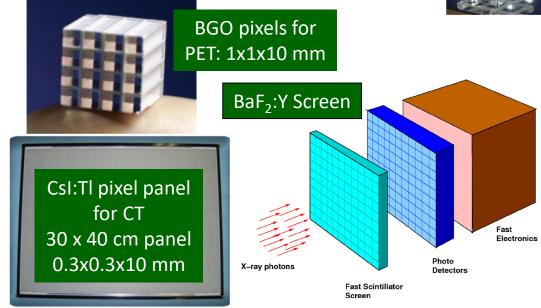


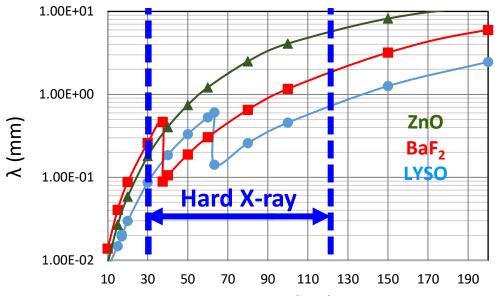
HEP Crystal Calorimeters

CsI:TI, BGO, CsI and PWO with volume from 1 to 11 m³

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-Now	10-Now
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS	BES III
Accelerator	SPEAR	LEP	CESR	LEAR	Tevatron	PEP	KEKB	LHC	BEPC
Laboratory	SLAC	CERN	Cornell	CERN	FNAL	SLAC	KEK	CERN	IHEP
Crystal Type	Nal:Tl	BGO	CsI:TI	CsI:TI	Csl	CsI:TI	CsI:TI	PWO	CsI:TI
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0	1.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29	0.94
Crystal number	672	11,400	7,800	1,400	3,300	6,580	8,800	75,848	6,240
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25	15
Crystal Volume (m³)	1	1.5	7	1	2	5.9	9.5	11	5.3
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2	5,000
Photo-detector	PMT	Si PD	Si PD	WS+Si PD	PMT	Si PD	Si PD	Si APD	Si PD
Gain of Photo-detector	Large	1	1	1	4,000	1	1	50	1
σ _N /Channel(MeV)	0.05	0.8	0.5	0.2	Small	0.15	0.2	40	0.2
Dynamic Range	104	10 ⁵	10 ⁴	10 ⁵	10 ⁴				

Inorganic Scintillators for Imaging

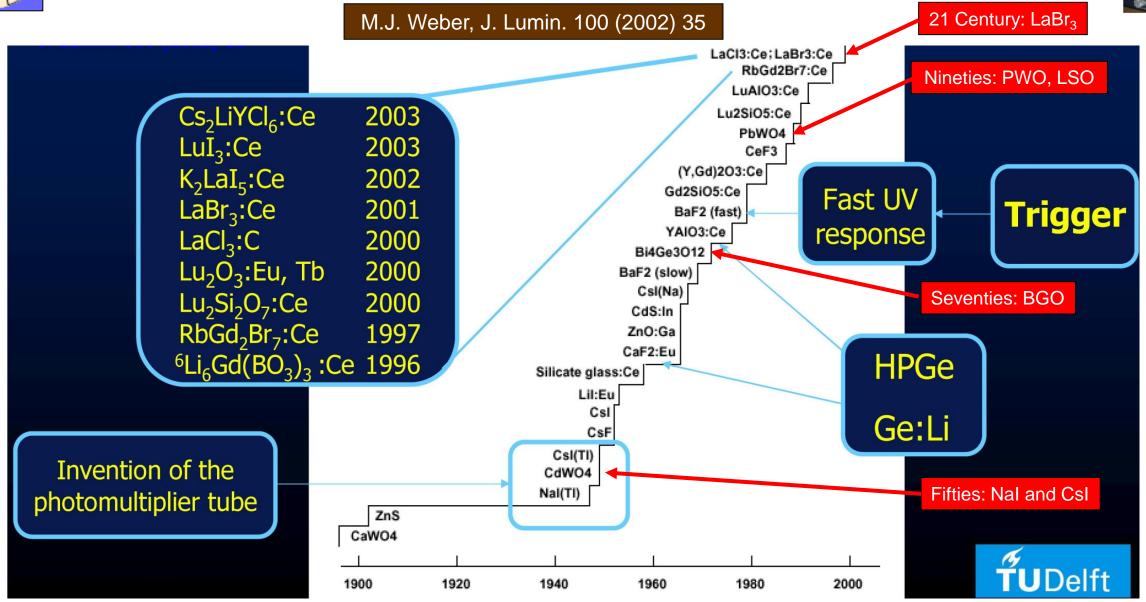

g


TNS 65 (2018) 2097; NIM A 940 (2019) 223; TNS 67 (2020) 1086

- Pixelized detector is standard in medical industry. Laser slicing & micropore provide excellent coverage and position resolution.
- Ultrafast scintillators are needed for GHz Hard X-Ray Imaging at Future FEL facilities.

Performance	Type I imager	Type II imager		
X-ray energy	up to 30 keV	42-126 keV		
Frame-rate/inter-frame time	0.5 GHz / 2 ns	3 GHz / 300 ps		
Number of frames per burst	≥ 10	10 - 30		
X-ray detection efficiency	above 50%	above 80%		
Pixel size/pitch	≤ 300 μm	< 300 μm		
Dynamic range	10 ³ X-ray	≥ 10 ⁴ X-ray		
	Photons/pixel/frame	Photons/pixel/frame		
Pixel format	64 × 64 ^a (scalable to 1 Mpix)	1 Mpix		

• Detection efficiency for hard X-ray requires bulk detector; 2 ns and 300 ps inter-frame time requires ultrafast sensor.



History of Inorganic Crystals

Crystals Used in HEP Calorimeters

Crystal	Nal:Tl	CsI:TI	Csl	BaF ₂	BGO	LYSO:Ce	PWO	PbF ₂
Density (g/cm³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	-
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	-
Light Yield ^{b,c} (photons/MeV)	38,000	63,000	1,400 420	13,680 1,560	8,000	32,000	114 40	-
d(LY)/dT ^b (%/ ⁰C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	-
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV Mu2e S. BELLE	TAPS Mu2e-II	L3 BELLE	COMET CMS BTL PIONEER It device taken ou	CMS ALICE PANDA EIC	A4 G-2

Crystal Samples for Calorimetry

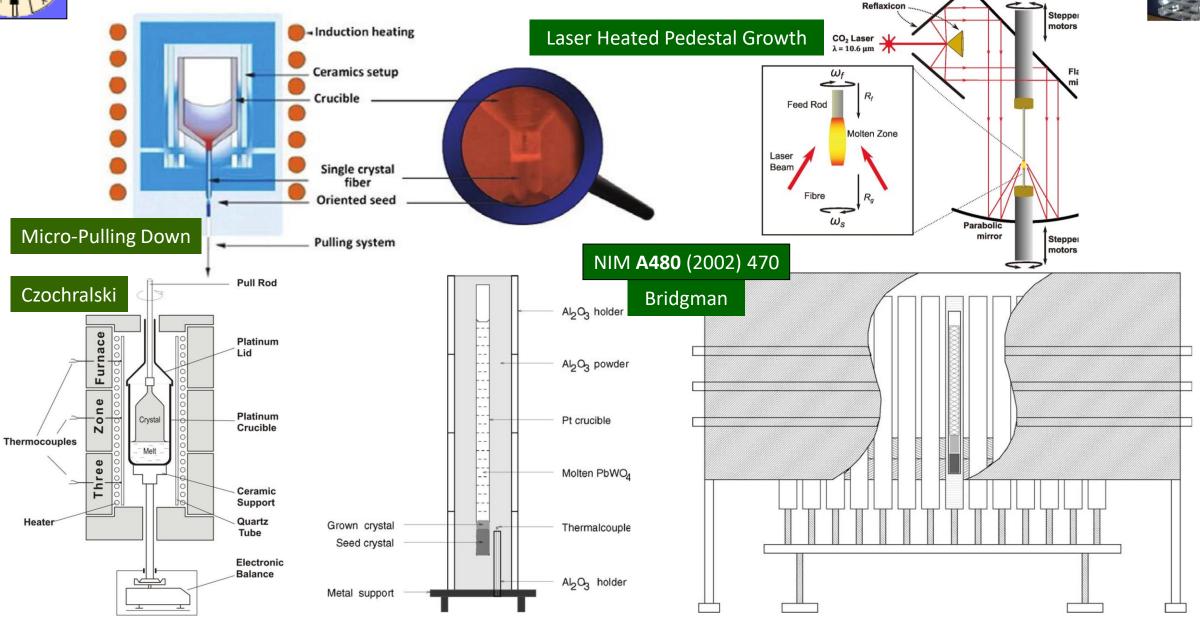
1.5 X₀ Samples:

Hygroscopic: Sealed

Surfaces: Polished

ECAL Crystals:

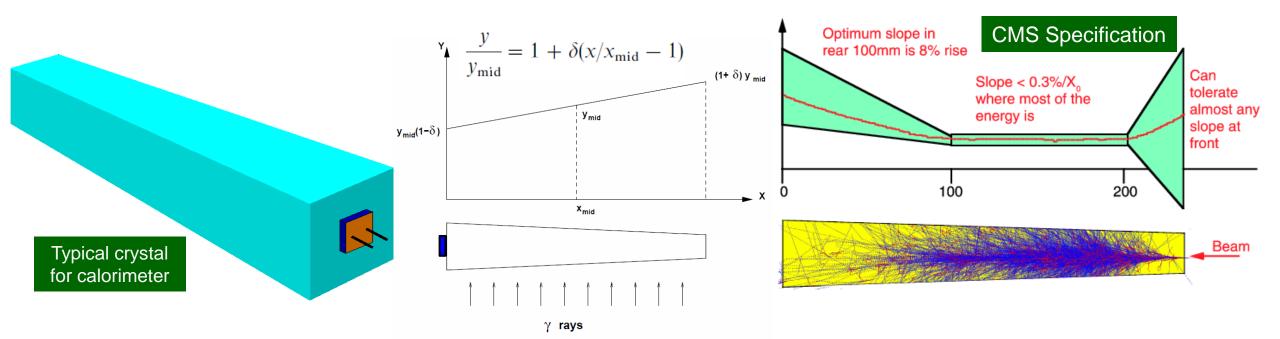
BaBar CsI(TI): 16 X_0


L3 BGO: 22 X₀

CMS PWO(Y): $25 X_0$

Crystal Growth Techniques

Light Yield/Output and Response Uniformity

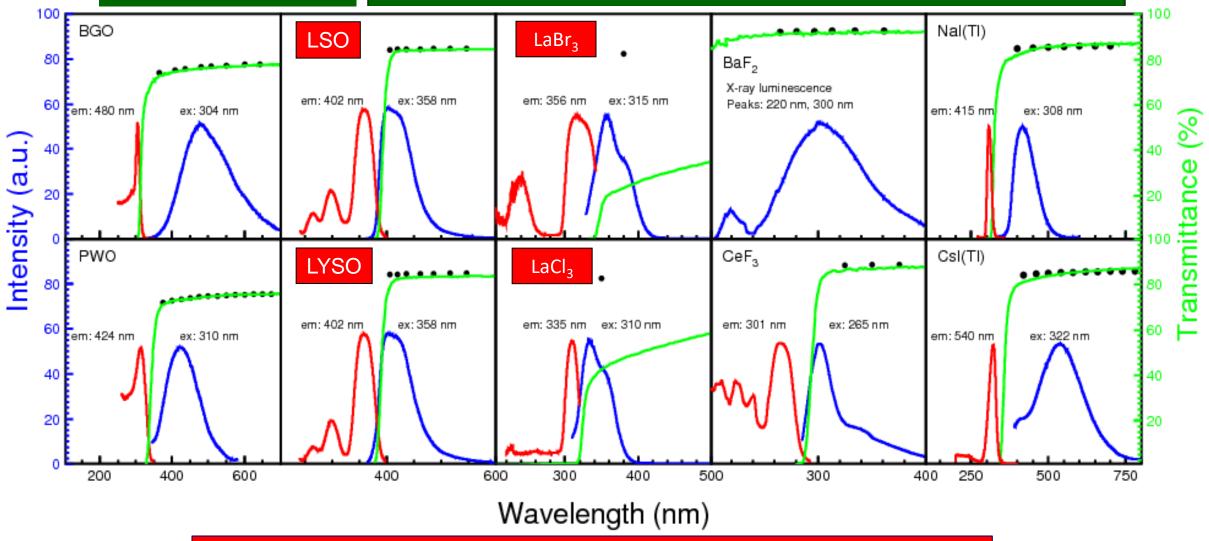


Crystal light yield (LY) in photons/MeV energy deposition: βE_g is the energy required for an e-h pair, S is energy transferred to the luminescence center and Q is its quantum efficiency.

Measured light output (LO) in photoelectrons/MeV depends on crystal LY, light collection efficiency (LC) and the quantum efficiency of the photodetector used for the measurement. Particle Databook

$$LY = 10^6 \ S \cdot Q / (\beta \cdot E_g)$$

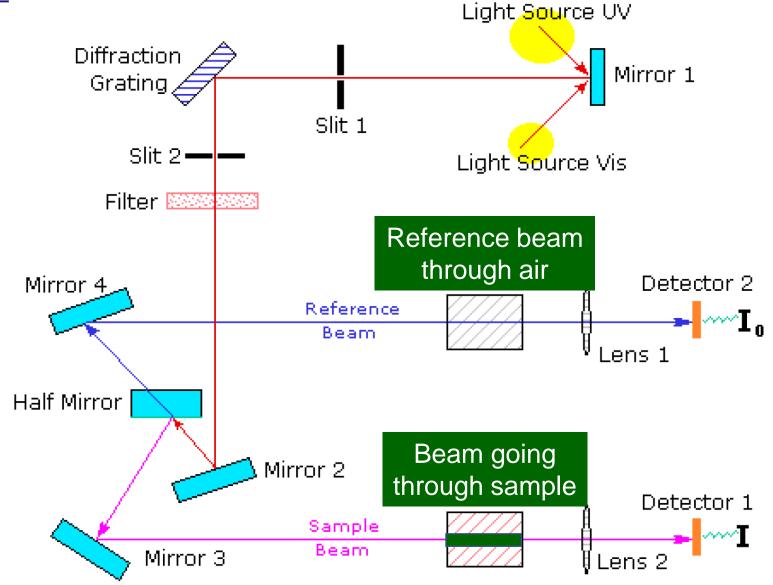
$$N_{\text{p.e.}}/\text{MeV} = LY \cdot LC \cdot QE$$


Excitation, Emission, Transmittance

13

IEEE TNS **59** (2012) 2229

Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422



Self-absorption observed in LSO/LYSO, LaBr₃, La Cl₃ and CeF₃

Transmittance and Absorption

PerkinElmer Lambda 950
UV/VIS/NIR
spectrophotometer with
large sample compartment
to measure transmittance
and absorption

Typical Precision: 0.2 to 0.3%

Watch out:
Birefringence, sample
surface and scattering
centers

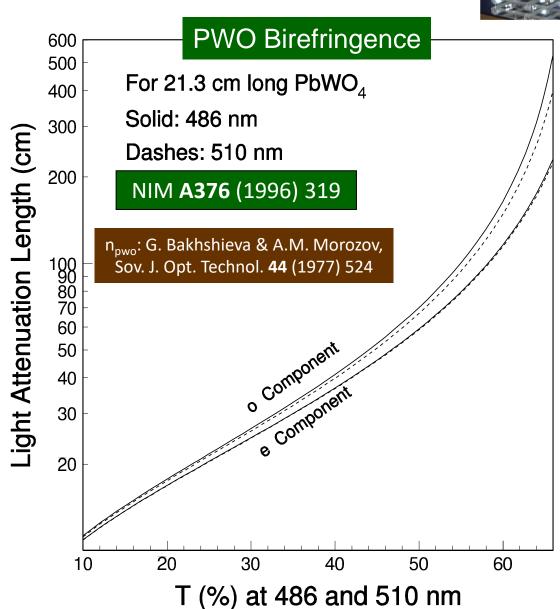
Light Attenuation Length is

Light attenuation length (LAL), or inverse of its light absorption coefficient, extracted from transmittance

 $LAL(\lambda)$

$$= \frac{l}{\ln\left\{\left[T\left(\lambda\right)\left(1 - T_{s}\left(\lambda\right)\right)^{2}\right] / \left[\sqrt{4T_{s}^{4}\left(\lambda\right) + T^{2}\left(\lambda\right)\left(1 - T_{s}^{2}\left(\lambda\right)\right)^{2}} - 2T_{s}^{2}\left(\lambda\right)\right]\right\}}$$
(2)

where $T(\lambda)$ is the longitudinal transmittance measured along crystal length l, and $T_s(\lambda)$ is the theoretical transmittance assuming multiple bouncings between two crystal ends and without internal absorption:

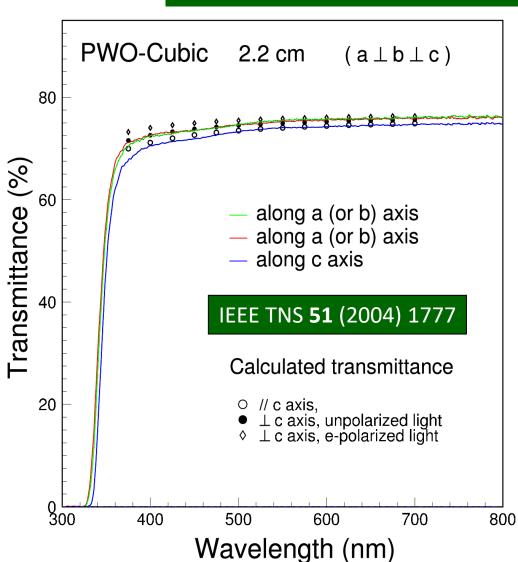

$$T_s(\lambda) = (1 - R(\lambda))^2 + R^2(\lambda) (1 - R(\lambda))^2 + \dots = (1 - R(\lambda)) / (1 + R(\lambda))$$
(3)

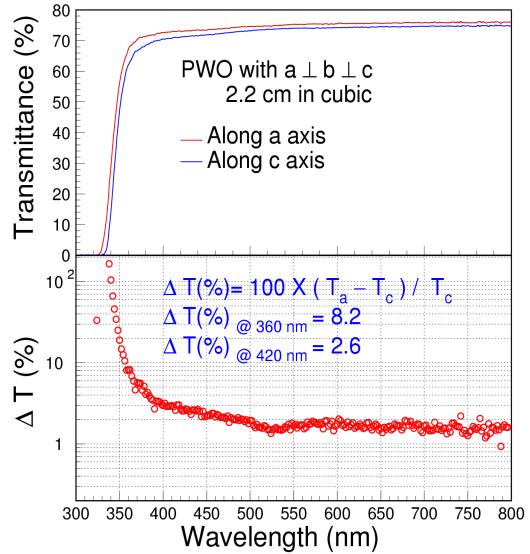
and

NIM **A333** (1993) 422

$$R(\lambda) = \frac{\left(n_{\text{crystal}}(\lambda) - n_{\text{air}}(\lambda)\right)^{2}}{\left(n_{\text{crystal}}(\lambda) + n_{\text{air}}(\lambda)\right)^{2}} \tag{4}$$

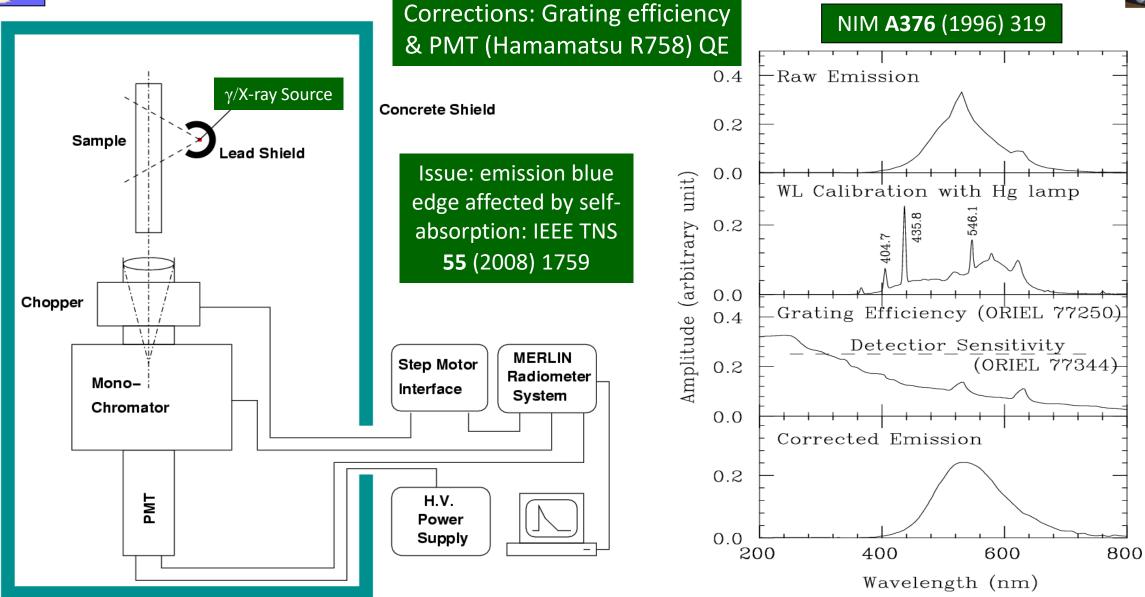
where n_{crystal} (λ) and n_{air} (λ) are the refractive indices for crystal and air, respectively.





Birefringent PWO Crystals

Attention to be paid to the crystal orientation vs. optical axis



Radio/X-Luminescence

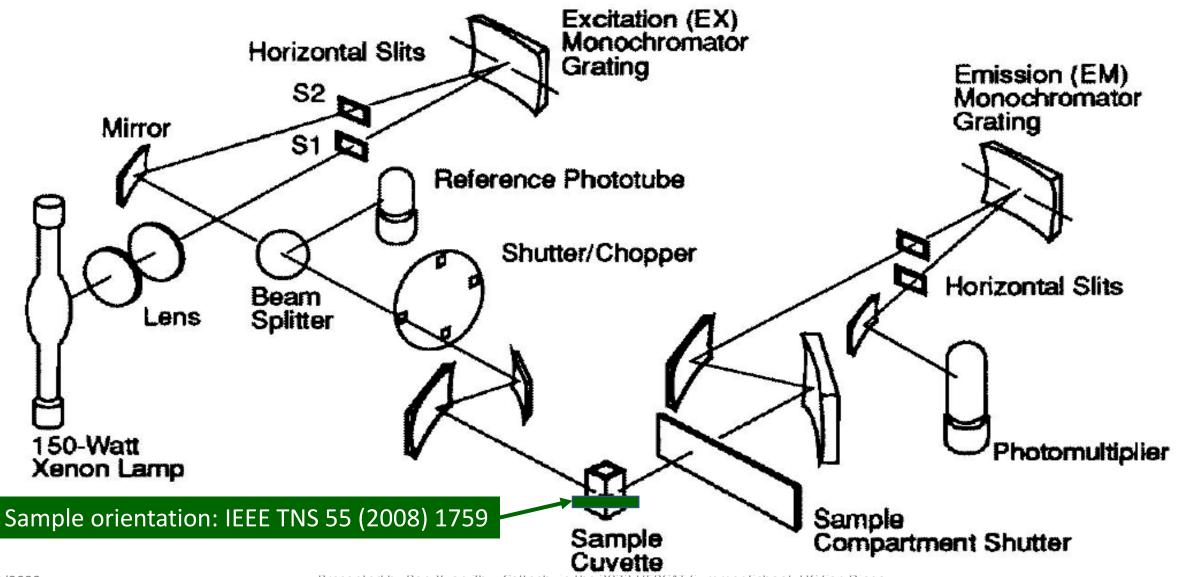
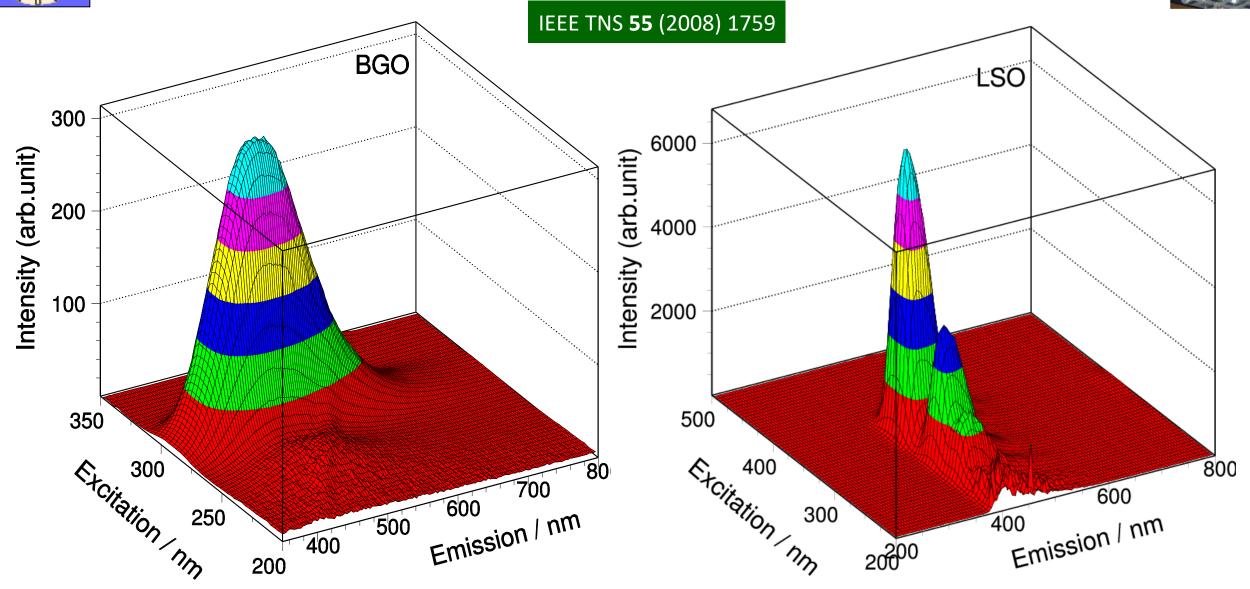
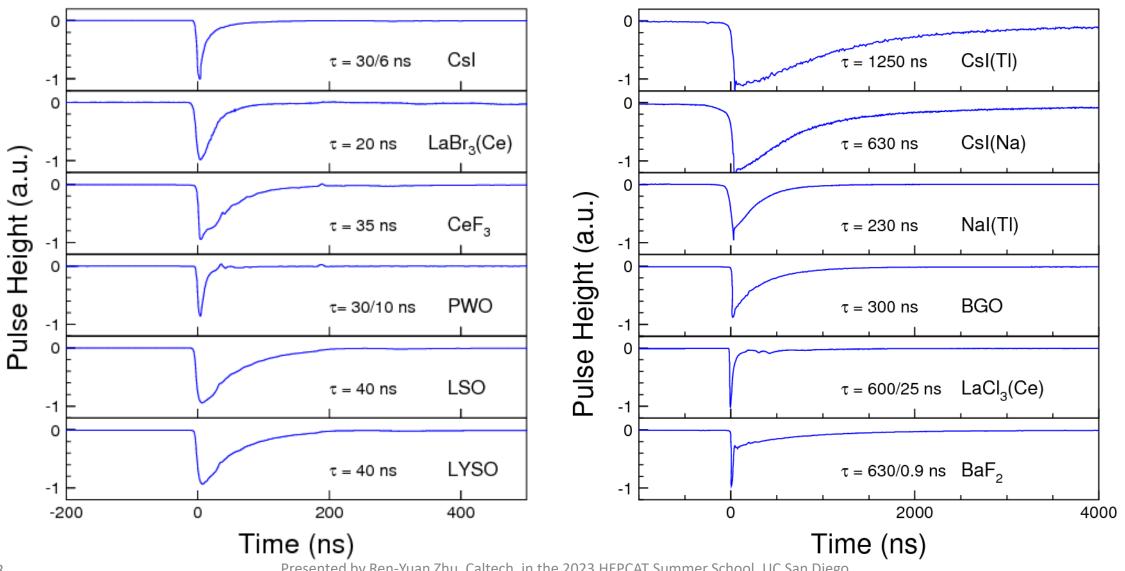


Photo-Luminescence

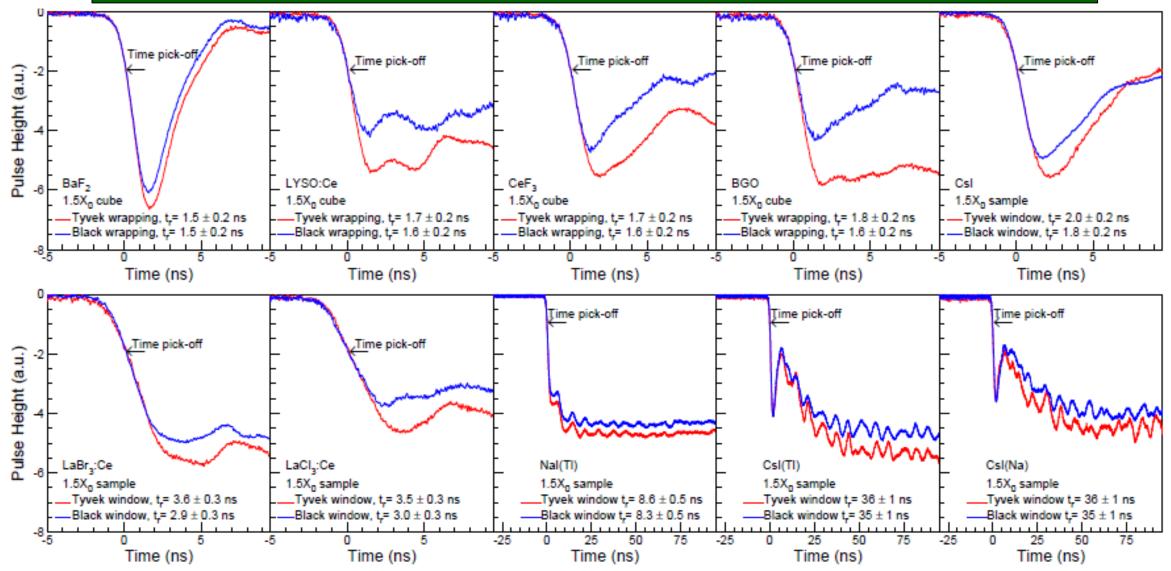

HITACHI F4500 Fluorescence Spectrophotometer

2-D Contour: Emission & Excitation



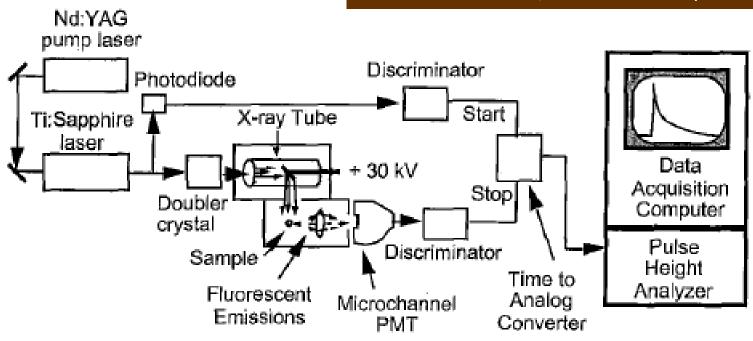
Pulse Shape and Decay Time

IEEE TNS 55 (2008) 2425 Recorded with PMT and an Agilent 6052A (500 MHz) digital scope



Temporal Response: 1.5 X₀ Samples

Agilent MSO9254A (2.5 GHz) DSO and Hamamatsu R2059 PMT (2500 V) with 0.14 and 1.3 ns rise time



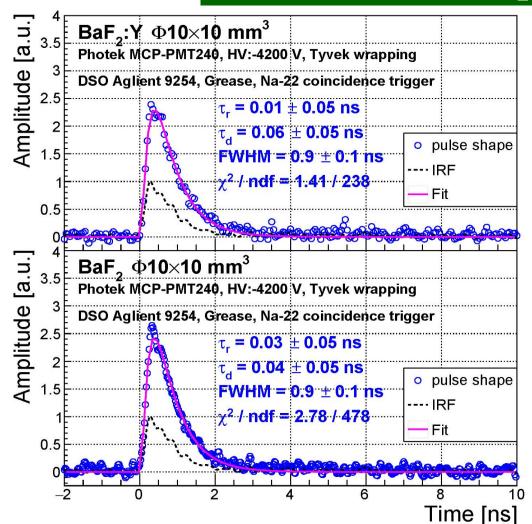
Scintillation Rising Time

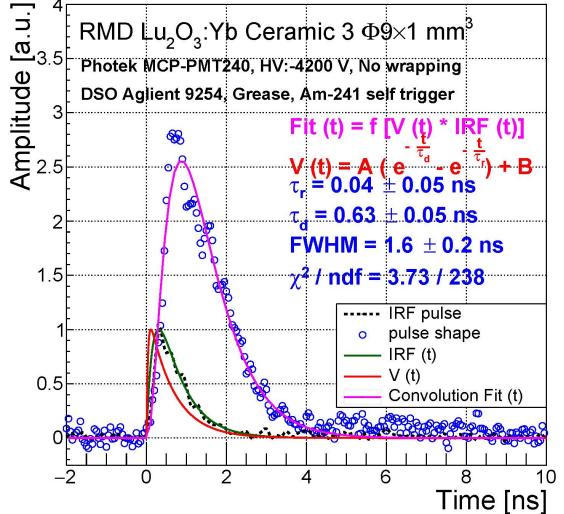

S. Derenzo et al., IEEE TNS 47 (2000) 860-864

Excitation: 60 ps x-ray, Detector: MCP with 45 ps response

< 30 ps: BaF₂, ZnO:Ga; 30 ps: BGO, CeF₃, CsI, LSO; 60 ps: PWO

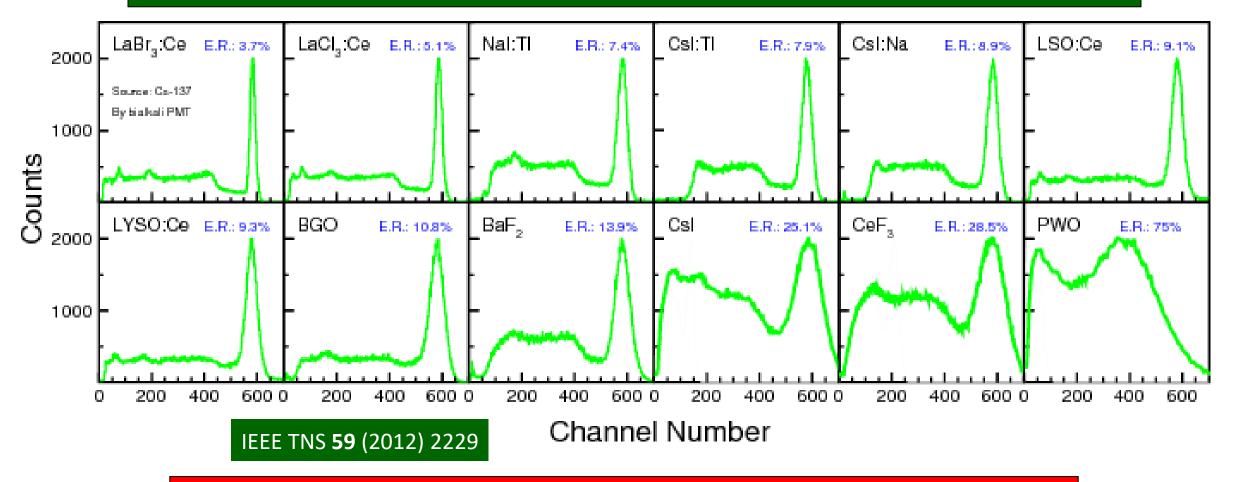
Effects of light propagation noticed: difference between small and large size samples and different wrappings.





Instrumental Response Function

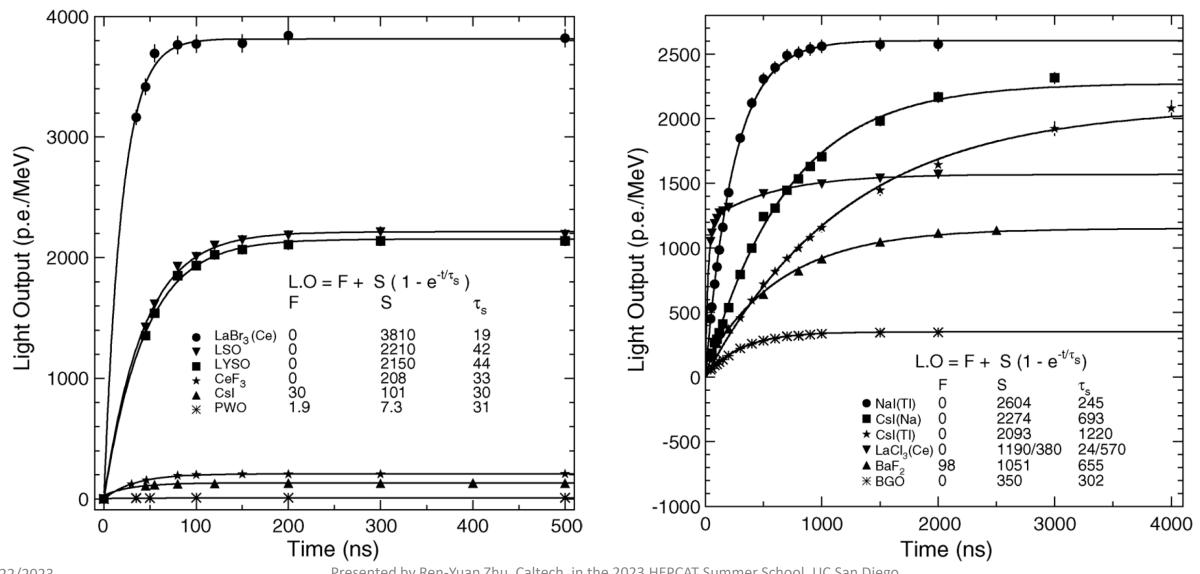
Decay time by MCP: BaF_2 0.5 ns; Lu_2O_3 :Yb 1.1 ns Taking out IRF: BaF_2 <0.1 ns; Lu_2O_3 :Yb 0.63 ns



Pulse Height Spectrum

FWHM: 3 to 80 % by a Hamamatsu R1306 PMT (bi-alkali cathode)

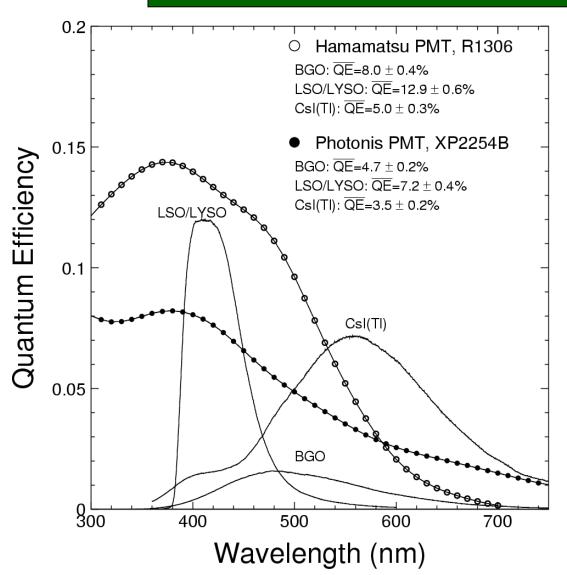
Homeland security application requires 2% for 137 Cs γ –rays

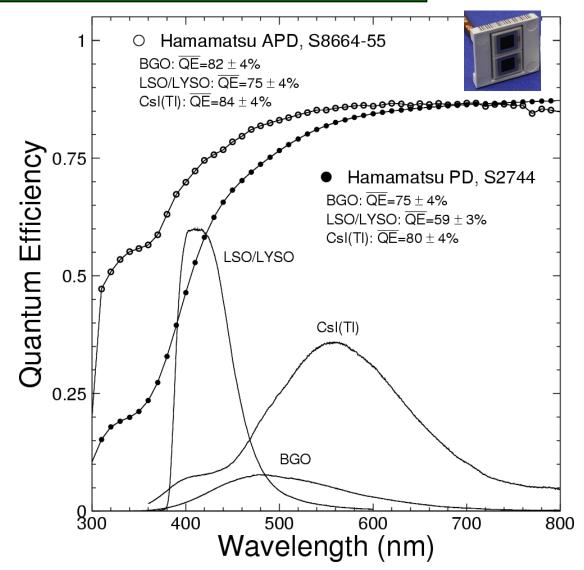


Light Output and Decay Kinetics

IEEE TNS **59** (2012) 2229

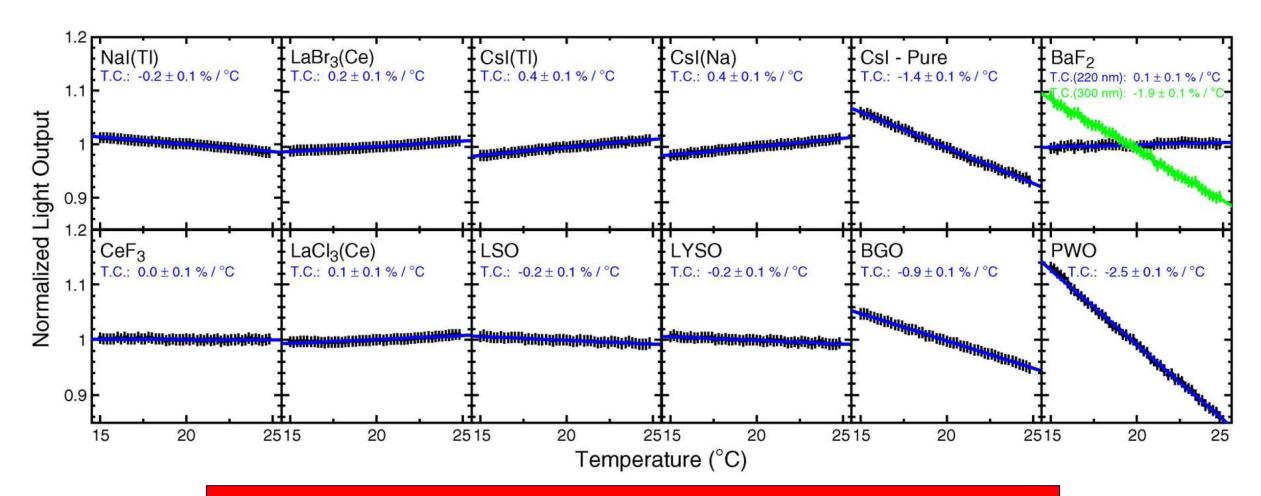
Measured by a Philips XP2254B PMT (multi-alkali cathode)





Emission Weighted QE

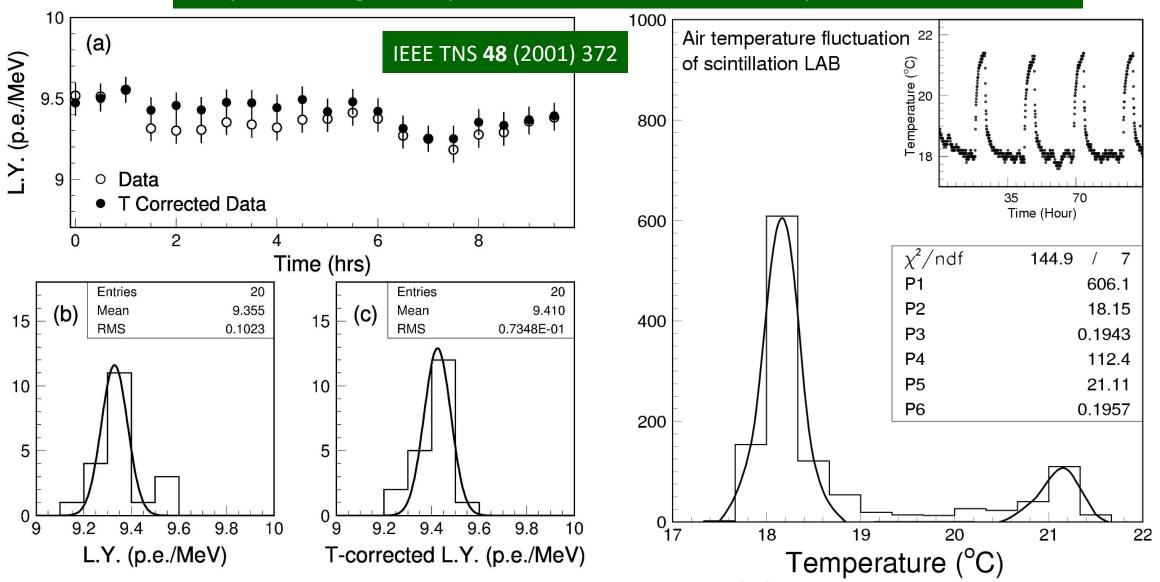
Taking out QE, LY of LSO/LYSO is 4 and 200 times of BGO and PWO



Temperature Coefficient

IEEE TNS **59** (2012) 2229

Temperature Range: 15 - 25°C


Temperature coefficient > 1%/°C: (BGO), CsI, BaF₂ slow and PWO

Maintain 1% Uncertainty for LO

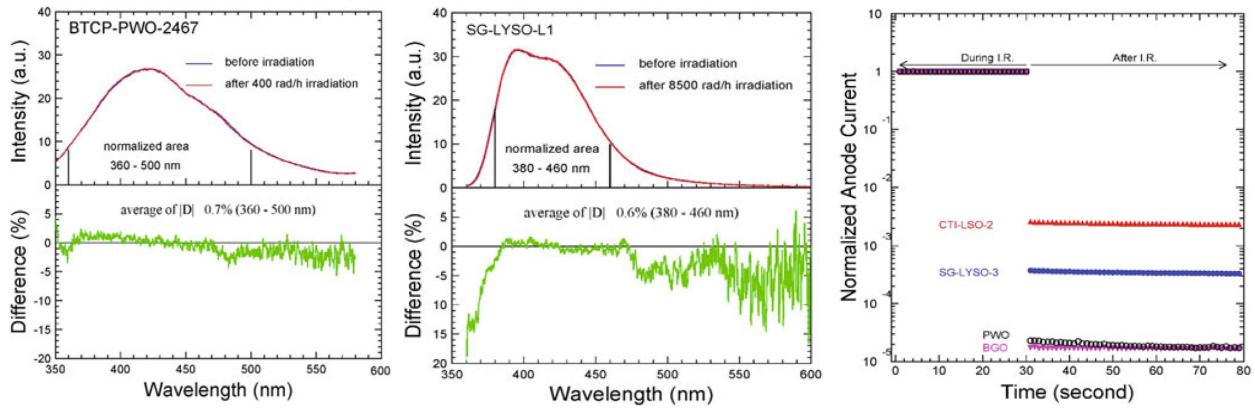
Require stringent experimental control and temperature corrections

Radiation Damage Effects

NIM A413 (1998) 297, https://doi.org/10.1007/978-3-319-47999-6_22-2

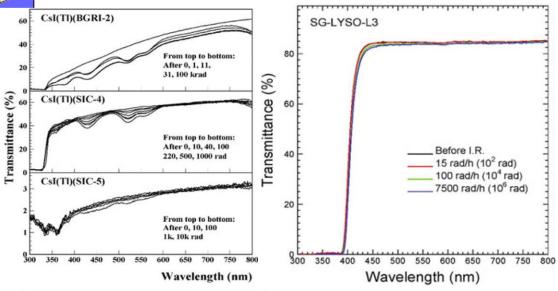
- Scintillation mechanism damage: reduced LY and LO and maybe also LRU;
- Radiation-induced phosphorescence (afterglow): increase dark current, dark counting rate and readout noise;
- Radiation-induced absorption (color centers): reduced light attenuation length,
 LO and maybe also LRU.

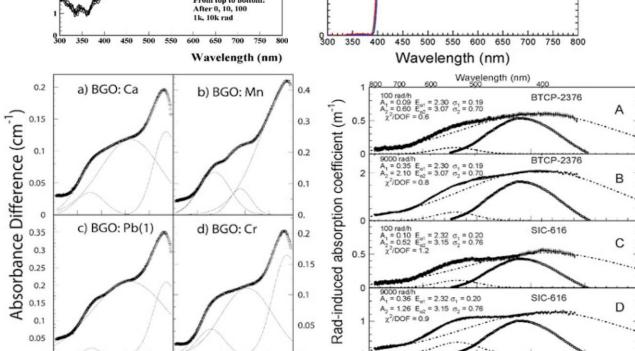
	CsI:Tl	CsI	BaF ₂	BGO	PWO	LSO/LYSO
Scintillation mechanism	No	No	No	No	No	No
Phosphorescence (afterglow)	Yes	Yes	Yes	Yes	Yes	Yes
Absorption (color centers)	Yes	Yes	Yes	Yes	Yes	Yes
Recovery	slow	No	No	Yes	Yes	No
Dose rate dependence	No	No	No	No	No	No
Thermal Annealing	No	No	Yes	Yes	Yes	Yes
Optical Bleaching	No	No	Yes	Yes	Yes	Yes



Scintillation Mechanism and Afterglow

https://doi.org/10.1007/978-3-319-47999-6_22-2


Crystal's scintillation mechanism is not damaged by γ -rays, neutrons and charged hadrons, as shown in no variation in the emission spectra measured before and after irradiations. Radiation-induced phosphorescence is measured as the photo-current after radiation, which is at a level of 10^{-5} for BGO and PWO and 3×10^{-4} for LYSO, and 2×10^{-3} for LSO.



Radiation-Induced Color Centers

https://doi.org/10.1007/978-3-319-47999-6_22-2

$$EWLT = \frac{\int LT(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$$

 $RIAC(\lambda) \ or \ D(\lambda) = 1/LAL_{after}(\lambda) - 1/LAL_{before}(\lambda)$

$$RIAC(\lambda) = \frac{1}{l} \ln \frac{T_0(\lambda)}{T(\lambda)}$$

$$EWRIAC = \frac{\int RIAC(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$$

$$RIAC(\lambda) = \sum_{i=1}^{n} A_i e^{-\frac{(E(\lambda) - E_i)^2}{2\sigma_i^2}}$$

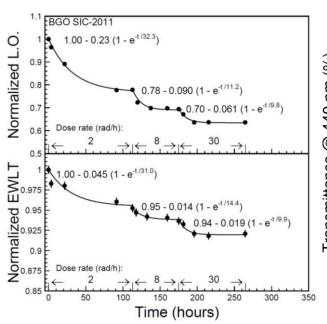
NIM A**302** (1991) 69, NIM A**376** (1996) 319

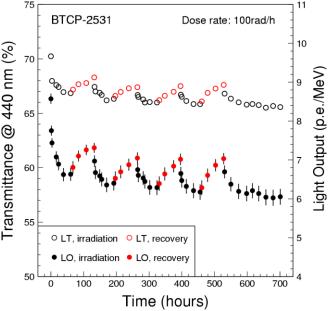
2.5

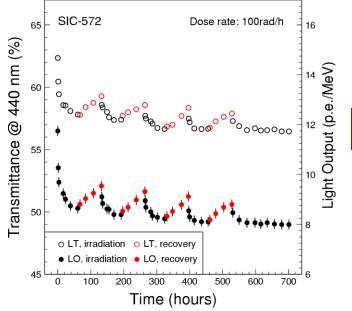
Energy (eV)

Photon energy (eV)

Dose Rate Dependence & Color Center Kinetics

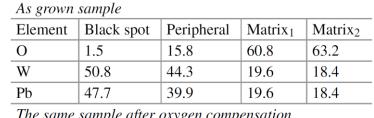

NIM A413 (1998) 297

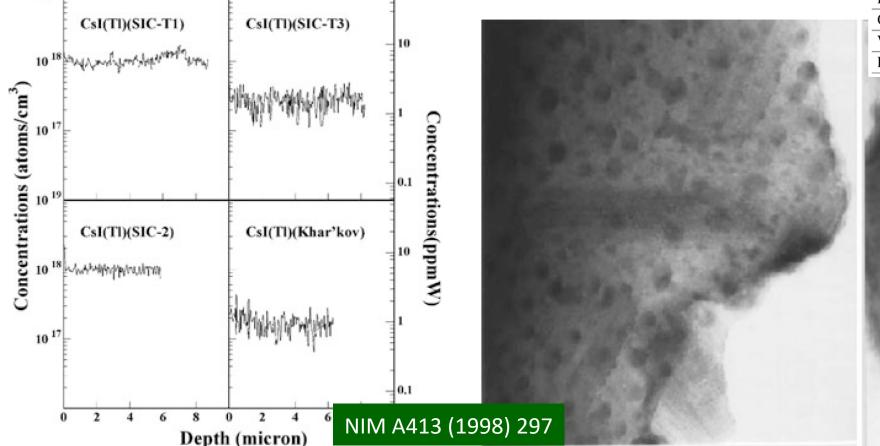

Because of the balance between the color center creation (irradiation) and annihilation (recovery) radiation damage in inorganic scintillators may be dose rate dependent. Assuming the annihilation speed of the color center i is proportional to a_i and its creation speed is proportional to the product of b_i and the dose rate R, color center density reaches an equilibrium when both processes coexist.


$$dD(\lambda) = \sum_{i=1}^{n} \left\{ -a_i D_i(\lambda) dt + \left(D_i^{all}(\lambda) - D_i(\lambda) \right) b_i R dt \right\}$$

$$D(\lambda) = \sum_{i=1}^{n} \left\{ \frac{b_i R D_i^{\text{all}}(\lambda)}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0(\lambda) e^{-(a_i + b_i R)t} \right\}$$

$$D_{\text{eq}}(\lambda) = \sum_{i=1}^{n} \frac{b_i R D_i^{\text{all}}(\lambda)}{a_i + b_i R}$$


JoP **404** (2012) 012025


Radiation Damage Mechanism

SIMS analysis revealed that damage in alkali halides was caused by the oxygen and/or hydroxyl contamination. Localized stoichiometry analysis by TEM/EDS revealed that damage in oxides was caused by stoichiometry-related defects, e.g. oxygen vacancies.

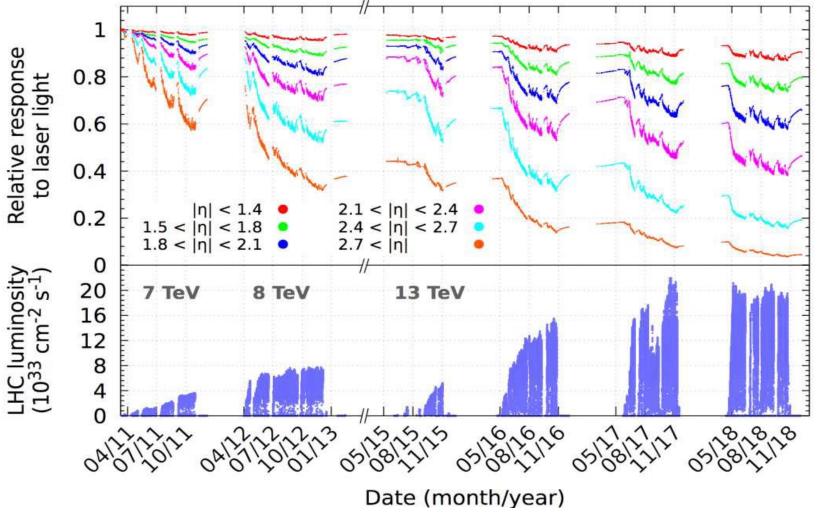
The same sample after oxygen compensation								
Element	Point ₁	Point ₂	Point ₃	Point ₄				
O	59.0	66.4	57.4	66.7				
W	21.0	16.5	21.3	16.8				
Pb	20.0	17.1	21.3	16.5				

2019 DOE Basic Research Needs Study Priority Research Directions for Calorimetry

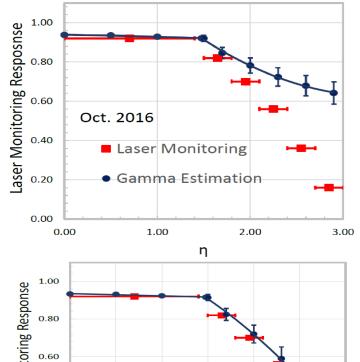
- Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements;
- Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments;
- Develop ultrafast media to improve background rejection in calorimeters and particle identication detectors.

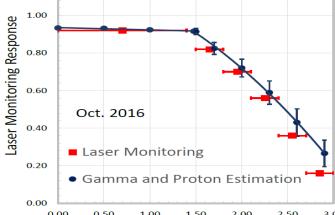
DOE 2019: https://www.osti.gov/servlets/purl/1659761

ECFA 2021: https://cds.cern.ch/record/2784893


Snowmass 2021: https://arxiv.org/abs/2209.14111

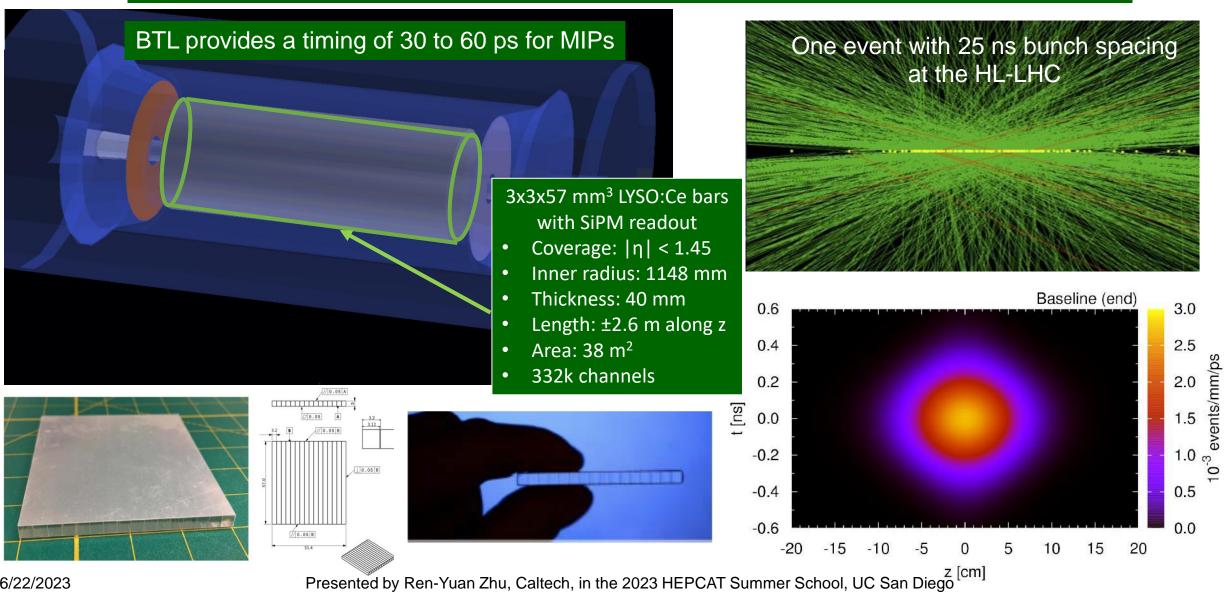
Fast/ultrafast, radiation hard and cost-effective inorganic scintillators




Challenge: Radiation Damage at the LHC

http://www.its.caltech.edu/~rzhu/talks/ryz_161028_PWO_mon.pdf

Neutron damage?


Use materials with monotonic damage: BaF₂, CsI, LYSO:Ce, LuAG:Ce

CMS Barrel Timing Detector for HL-LHC

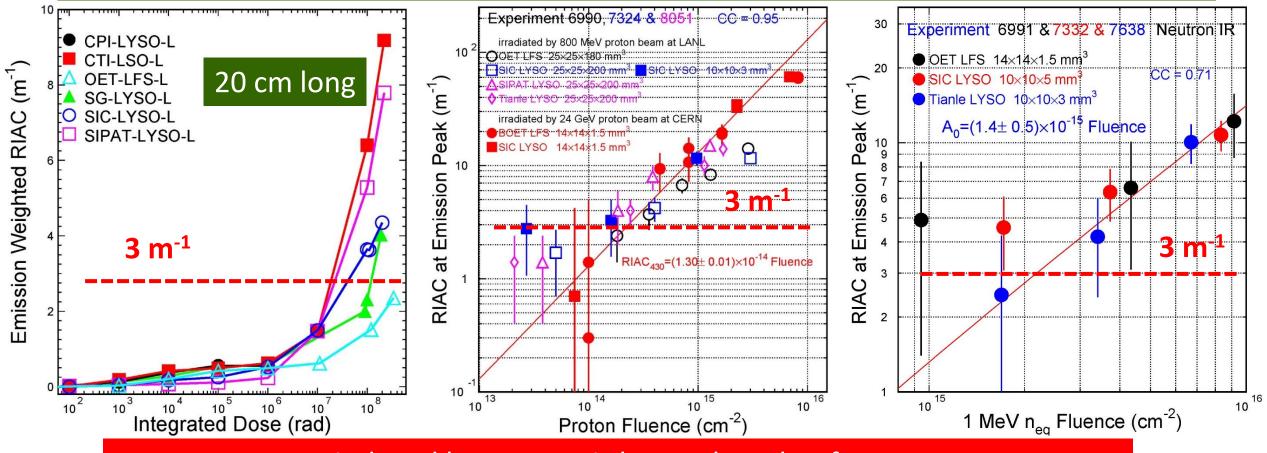
To face challenge of pileup at HL-LHC by using 4D tracking in space and time

Expected Radiation for CMS ECAL

CMS Barrel/Endcaps: 4.8/68 Mrad, 2.5/21×10¹³ p/cm² & 3.2/24×10¹⁴ n_{eq}/cm²

CMS MTD	η	n _{eq} (cm ⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.5E+14	2.8E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.7E+14	3.0E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.9E+14	3.2E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.5E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.0E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.3E+07	9.9E+13	1.1E+06	26	1020
Endcap	3.00	2.4E+15	2.7E+07	2.1E+14	2.3E+06	68	2700

Much higher at FCC-hh: up to 0.1/500 Grad and $3/500 \times 10^{16}$ n_{eq}/cm² at EMEC/EMF Aleksa *et al.*, Calorimeters for the FCC-hh CERN-FCCPHYS-2019-0003, Dec 23, 2019

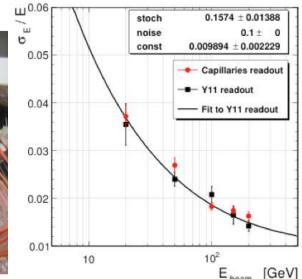


LYSO:Ce Radiation Hardness

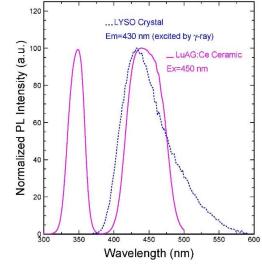
IEEE TNS 63 (2016) 612-619

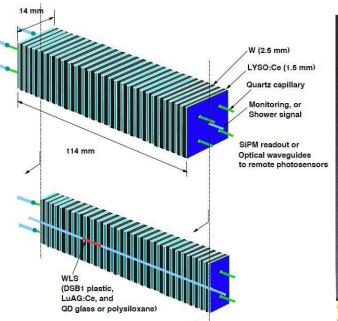
CMS BTL LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, $2.5 \times 10^{13} \text{ p/cm}^2$ and $3.2 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$

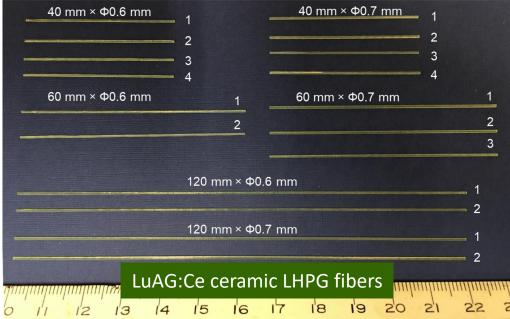
Damage induced by protons is larger than that from neutrons

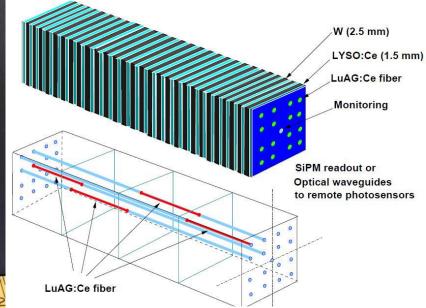

Due to ionization energy loss in addition to displacement and nuclear breakup

RADiCAL: LYSO/LuAG Shashlik ECAL

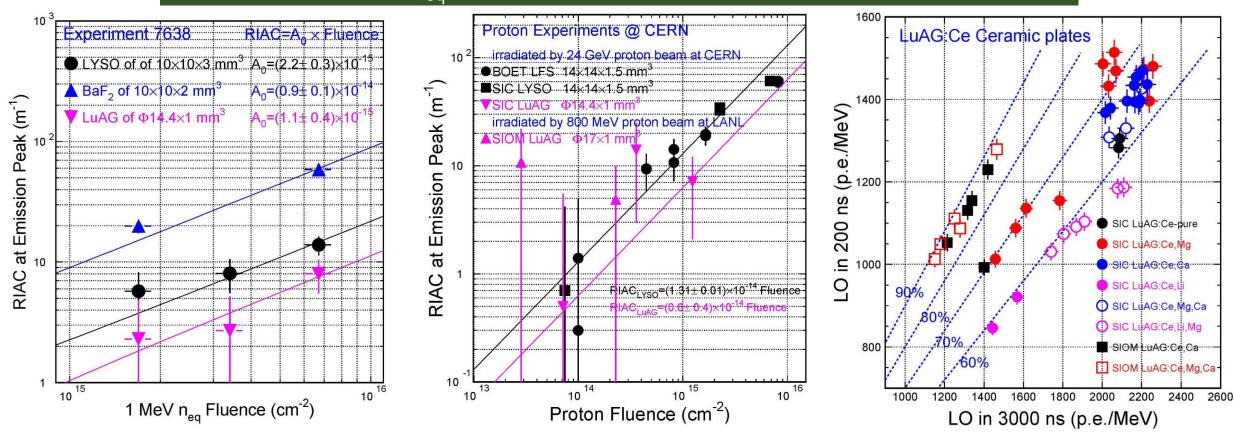







arXiv: 2203.12806 (N35-6)

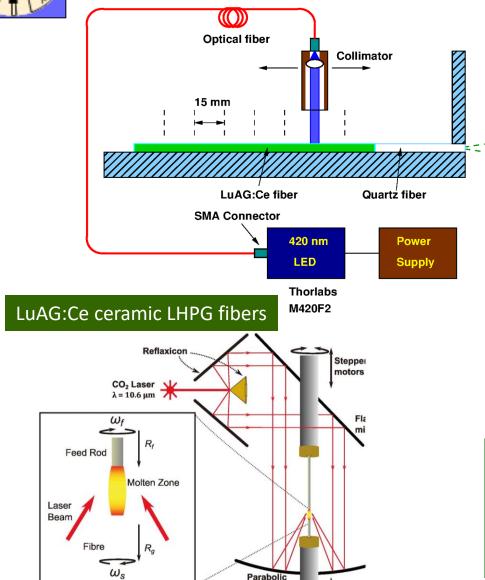
RADiation hard CALorimetry
Reducing light path length to
mitigate radiation damage effect
Using radiation hard materials:
LuAG:Ce ceramics excitation
matches LYSO:Ce emission



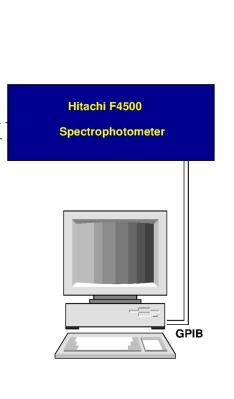
LuAG:Ce Ceramics Radiation Hardness

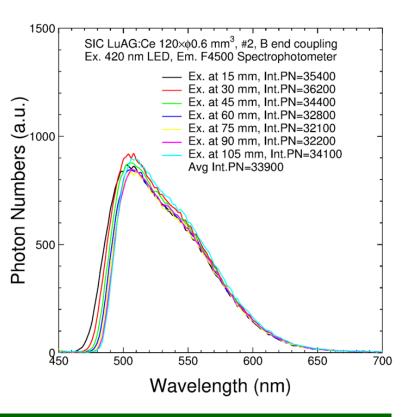
IEEE TNS 69 (2022) 181-186

LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to $6.7\times10^{15}~\rm n_{eq}/cm^2$ and $1.2\times10^{15}~\rm p/cm^2$, promising for FCC-hh


R&D on slow component suppression by Ca co-doping, and radiation hardness by γ/p/n

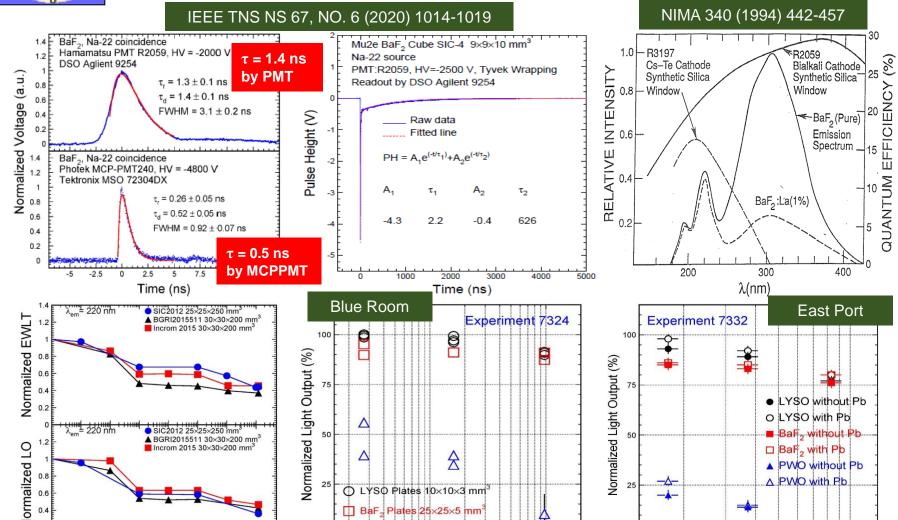
6/22/2023


LuAG:Ce Fiber Light Output and Uniformity



mirror

Stepper



Excellent uniformity observed for Φ0.6 ×120 mm³ LuAG:Ce ceramic fibers excited by a 420 nm LED at different longitudinal location, with a solid coupling to a quartz fiber, mimicking its application in RADiCAL Calorimetry

Ultrafast and Radiation Hard BaF₂

Proton Fluence (p/cm²)

IEEE TNS 65 (2018) 1086-1092

BaF₂ has an ultrafast scintillation component @ 220 nm with **0.5** ns decay time and a much larger slow component @ 300 nm with 600 ns decay time.

Slow suppression may be achieved by rare earth doping, and/or solar-blind photo-detectors

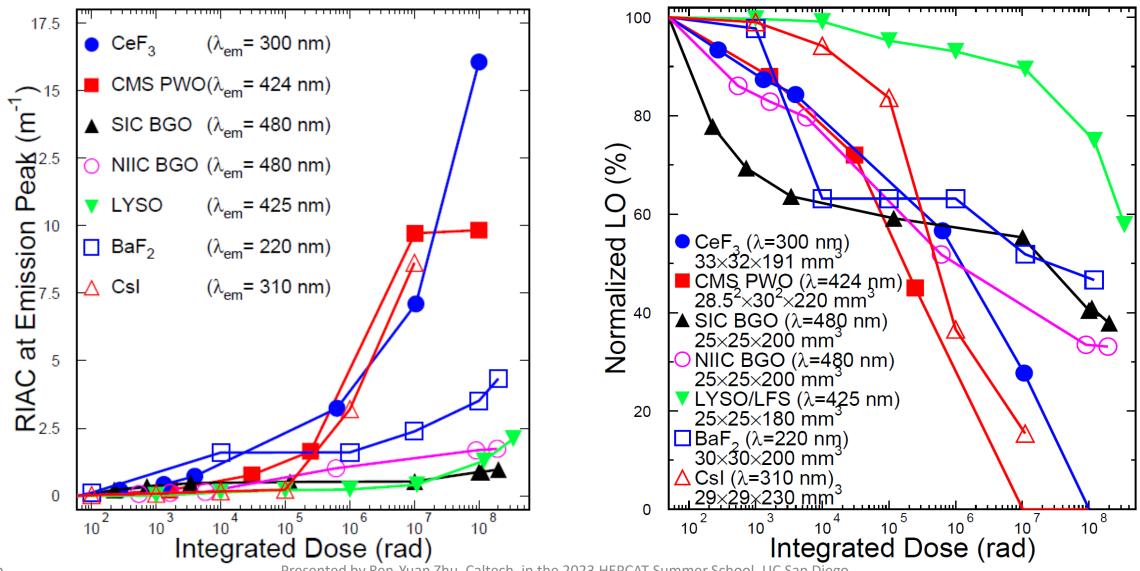
Long BaF₂ shows saturated damage from 10 krad to 1 Mrad, indicating limited color center density against γ-rays

Thin BaF₂ plates tested up to 9.7×10^{14} p/cm² and 8.3×10^{15} n_{eq}/cm²

IEEE TNS **67** (2020) 1018-1024

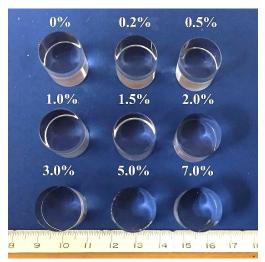
1 MeV n_{ea} Fluence (cm⁻²)

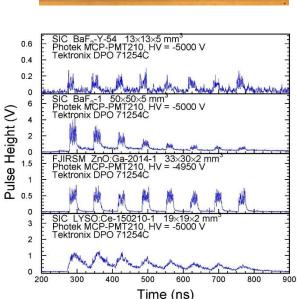
Integrated Dose (rad)

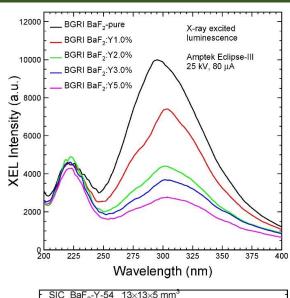

IEEE TNS 63 (2016) 612-619

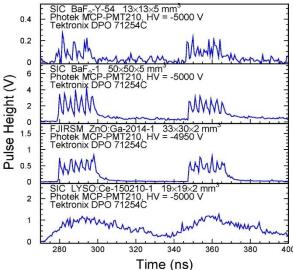
γ-Ray Induced Damage in Long Crystals

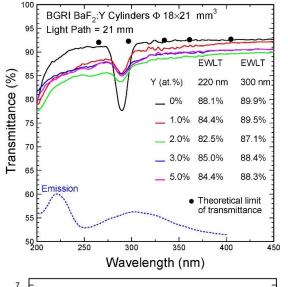
IEEE TNS **63** (2016) 612-619

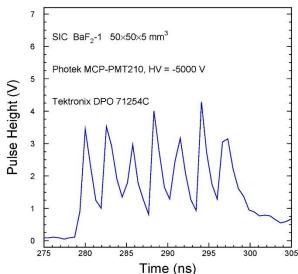


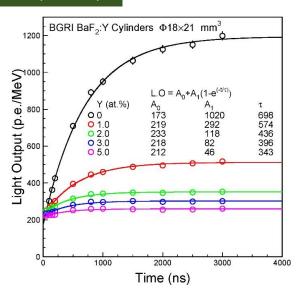



BaF₂:Y for Ultrafast Calorimetry



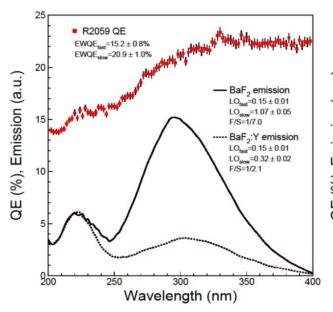

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

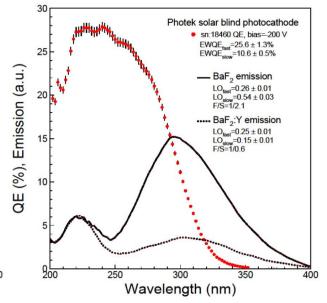


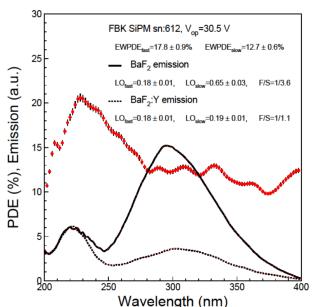


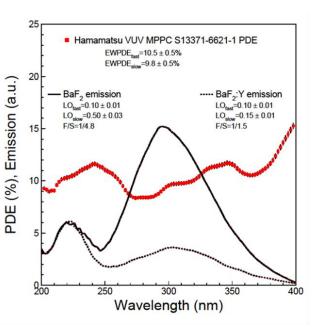
X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

Presented by Ren-Yuan Zhu, Caltech, in the 2023 HEPCAT Summer School, UC San Diego


RIN:y and Photodetector QE/PDE




QE/PDE of four VUV photodetectors for BaF₂ and BaF₂:Y


IEEE TNS 69 (2022) 958-964

Photodetector	EWQE/PDE _{fast}	EWQE/PDE _{slow}	EWQE/PDE _{BaF}	EWQE/PDE _{BaF:Y}	Relative	Relative	Relative
riiotodetectoi	(%)	(%)	(%)	(%)	LO (50 ns)	F _{BaF}	F _{BaF:Y}
Hamamatsu R2059	15.2	20.9	20.0	18.7	1.00	1.00	1.00
Photek Solar-Blind	25.6	10.6	13.0	16.1	1.68	0.65	0.86
FBK SiPM w/UV Filter-I	17.8	12.7	13.5	14.7	1.17	0.68	0.79
Hamamatsu MPPC	10.5	9.8	9.9	10.2	0.69	0.50	0.55

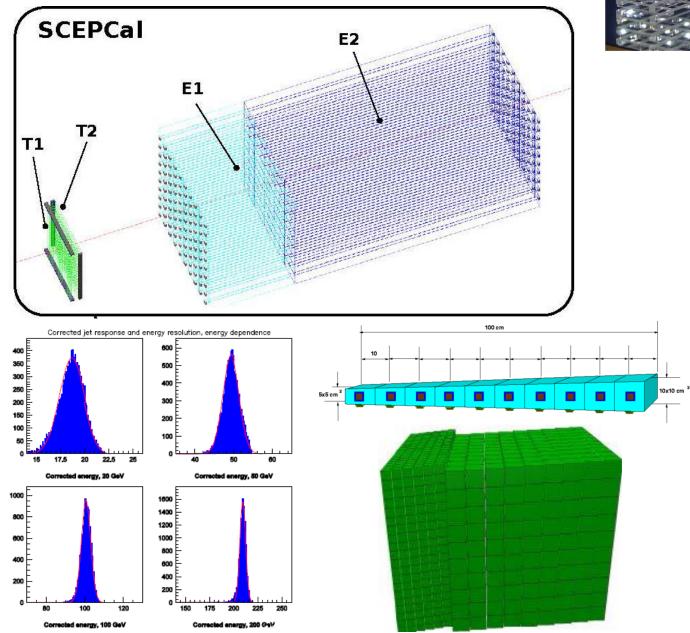
6/22/2023

Presented by Ren-Yuan Zhu, Caltech, in the 2023 HEPCAI Summer School, UC San Diego

Fast/Ultrafast for HEP TOF & X-ray Imaging

arXiv: 2203.06788

	BaF ₂	BaF ₂ :Y	Lu ₂ O ₃ :Yb	YAP:Yb	YAG:Yb	ZnO:Ga	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm³)	4.89	4.89	9.42	5.35	4.56	5.67	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	2490	1870	1940	1975	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	0.81	2.59	3.53	2.51	2.51	1.14	1.45	2.59	1.63	1.37	3.10
R _M (cm)	3.1	3.1	1.72	2.45	2.76	2.28	2.20	2.07	2.15	2.45	2.20	2.01	2.93
λ _I (cm)	30.7	30.7	18.1	23.1	25.2	22.2	20.9	20.9	20.6	23.1	21.5	19.5	27.8
Z _{eff}	51.0	51.0	67.3	32.8	29.3	27.7	27.8	63.7	58.7	32.8	50.6	57.1	32.8
dE/dX (MeV/cm)	6.52	6.52	11.6	7.91	7.01	8.34	8.82	9.55	9.22	7.91	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	370	350	350	380	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.0	1.96	1.87	2.1	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	0.95	0.19 ^d	0.36 ^d	2.6 ^d 4.0 ^d	6.5 0.5	100	35 ^e 48 ^e	9 32	190	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	280	57 ^d	110 ^d	2,000 ^d	2,100	30,000	25,000e	12,000	58,000	10,000	24,000
Decay time ^a (ns)	600 0.5	600 0.5	1.1 ^d	1.1 ^d	1.8 ^d	3.0 ^d 1.0 ^d	110 5.3	40	820 50	191 25	570 130	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	170	34 ^d	46 ^d	980 ^d	43	740	240	391	400	125	318
LY in 1 st ns /Total LY (%)	9.0	64	60	60	43	49	2.0	2.5	1.2	3.3	0.7	1.4	1.3
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.127	0.314	0.439	0.407	0.394	0.185	0.251	0.314	0.319	0.214	0.334


^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by Alpha particles; ^e 0.3 Mg at% co-doping; ^f Lu_{0.7}Y_{0.3}AlO₃:Ce.

Cost-Effective Inorganic Scintillators for FCC-ee

CalVision Crystal Calorimetry

- A longitudinally segmented CalVision crystal ECAL with dual readout combined with the IDEA HCAL promises excellent EM and Hadronic resolution.
- Dense, UV-transparent and cost-effective inorganic scintillators are crucial for the homogeneous hadron calorimeter (HHCAL) concept, promising a jet mass resolution at a level of 20%/VE by dual readout for either Cerenkov and scintillation light or dual integration gate.
- Doped PbF₂, PbFCl, BSO, titanium doped sapphire (Al₂O₃:Ti) crystals and AFO glass investigated. Cost-effective inorganic glasses from US industry are under investigation for Higgs factory.

Cost: Mass-Produced Crystals (Mar 2019)

Scaling to X₀, order of crystal cost: PWO, BGO, CsI, BSO, BaF₂:Y, LYSO

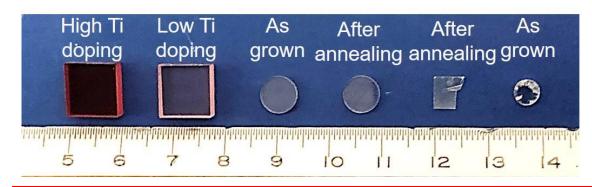
Item	Size	1 m ³	10 m ³	100 m ³	Scaled to X ₀
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09

Inorganic Scintillators for HHCAL

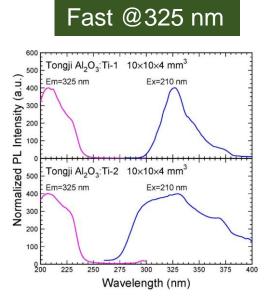
Snowmass 2022 White Paper: https://doi.org/10.48550/arXiv.2203.06788

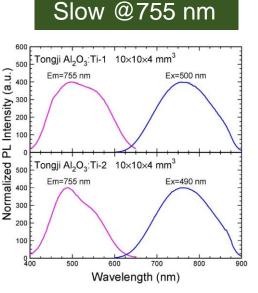
	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire :Ti	AFO Glass	DSB:Ce Glass¹	BGS Glass ²	ABS Glass ³	DSB:Ce,Gd Glass ^{4,5}	HFG Glass ⁶
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	3.8	4.2	4.53	4.7 - 5.4 ^d	5.95
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁷	1420 ⁸	1550	?	1420 ⁸	570
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	3.36	2.62	2.41	2.14	1.74
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.90	3.52	3.33	3.09	2.56	2.45
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	32.8	31.8	28.8	24.2	23.2
Z _{eff} value	71.5	73.8	73.6	76.7	74.7	11.1	41.4	42.9	49.6	51.9	47.2	55.7
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	5.56	5.90	6.42	7.68	8.24
Emission Peak ^a (nm)	480	470	425 420	١	420	300 750	365	440	430	396	440 460	325
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	\	\	\	\	\	1.50
LY (ph/MeV) ^c	7,500	1,500	130	1	150	7,900	450	~500	2,500	800	1,300	150
Decay Time ^a (ns)	300	100	30 10	١	3	300 3200	40	180 30	400 90	1200 260	120, 400 50	25 8
d(LY)/dT (%/°C)°	-0.9	?	-2.5	1	?	?	?	-0.04	0.3	?	?	-0.37
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	?	2.0	2.0	?	2.0	?

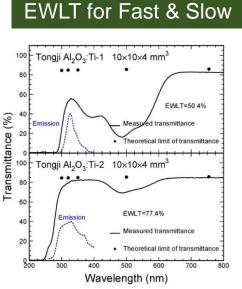
- a. Top line: slow component, bottom line: fast component.
- b. At the wavelength of the emission maximum.
- c. At room temperature (20°C) with PMT QE taken out.
- Gd loaded.

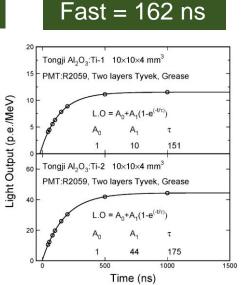

- 1. E. Auffray, et al., J. Phys. Conf. Ser. 587, 2015
- 2. V. Dormenev, et al., NIMA 1015, 2021
- 3. G. Tang, et al., Opt. Mater. 130, 2022
- 4. R. W. Novotny, et al., J. Phys. Conf. Ser. 928, 2017

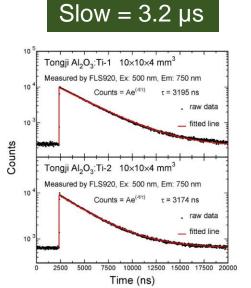
- 5. V. Dormenev , et al., the ATTRACT Final Conference
- 5. E. Auffray, et al., CERN-PPE/96-35, 1996
- 7. R. A. McCauley et al., Trans. Br. Ceram. Soc., 67. 1968
- 8. I. G. Oehlschlegel, Glastech. Ber. 44, 1971


Sapphire: Ti Emission and Transmittance






A weak emission at 325 nm with 150 ns decay time A strong emission at 755 nm with 3 µs decay time


ID	Dimension (mm³)	#	Polishing
Tongji Al ₂ O ₃ :Ti-1,2	10×10×4	2	Two faces
Tongji Al ₂ O ₃ :C-1,2	Ф7×1	2	Two faces
Tongji Lu ₂ O ₃ :Yb	6.4×4.8×0.4	1	Two faces
Tongji LuScO ₃ :Yb	Ф4.8×1.3	1	Two faces

6/22/2023

Summary

- Inorganic scintillator-based total absorption electromagnetic calorimeter has played important role in HEP experiments. Novel inorganic scintillators are discovered and developed by academia and industry for physics experiments, homeland security and medical and scientific imaging.
- The Caltech HEP crystal lab has been actively leading R&D on inorganic scintillators for several decades. The lab is now developing rad-hard, fast/ultrafast and cost-effective inorganic scintillators for several novel calorimeter concepts for future HEP calorimetry and TOF system at the energy and intensity frontiers.
- Young physicists are encouraged to join the Caltech crystal lab for this exciting mission.

Acknowledgements: DOE HEP Award DE-SC0011925