
PONG: Probabilistic Object Normals for Grasping
via Analytic Bounds on Force Closure Probability

Albert H. Li†, Preston Culbertson‡, Aaron D. Ames†,‡

Abstract— Classical approaches to grasp planning are deter-
ministic, requiring perfect knowledge of an object’s pose and
geometry. In response, data-driven approaches have emerged
that plan grasps entirely from sensory data. While these data-
driven methods have excelled in generating parallel-jaw and
power grasps, their application to precision grasps (those using
the fingertips of a dexterous hand, e.g, for tool use) remains
limited. Precision grasping poses a unique challenge due to its
sensitivity to object geometry, which allows small uncertainties
in the object’s shape and pose to cause an otherwise robust
grasp to fail. In response to these challenges, we introduce
Probabilistic Object Normals for Grasping (PONG), a novel,
analytic approach for calculating a conservative estimate of
force closure probability in the case when contact locations are
known but surface normals are uncertain. We then present a
practical application where we use PONG as a grasp metric
for generating robust grasps both in simulation and real-
world hardware experiments. Our results demonstrate that
maximizing PONG efficiently produces robust grasps, even for
challenging object geometries, and that it can serve as a well-
calibrated, uncertainty-aware metric of grasp quality.

I. INTRODUCTION

Grasp synthesis has been a canonical problem in robotic
manipulation since the field’s inception. Despite decades of
work, dexterous grasps are still challenging to synthesize,
since multifinger hands have complex kinematics and high-
dimensional grasp parameterizations. Broadly speaking, two
types of approaches toward dexterous grasp synthesis exist.
Analytic approaches evaluate grasp quality using a metric
[1] and then maximize it using any optimization technique.
Though analytic methods offer principled guarantees, they
suffer from two problems: (i) they usually assume perfect
knowledge of an object’s geometry, and (ii) they are typi-
cally hard to optimize efficiently while enforcing kinematic
and collision constraints [2]. In response, many learning-
based methods account for uncertainty with data but lack
guarantees, often checking constraints are satisfied post hoc
via rejection sampling rather than enforcing them during
synthesis [3], [4], [5]. To ensure sample efficiency, large
amounts of high-quality data are required, which may be
difficult to generate or collect.

Ideally, a grasp synthesis method should be uncertainty-
aware, computationally-efficient, and generalize to a broad
class of object geometries. To that end, our contributions
are as follows. First, we develop a novel analytic theory

† A. H. Li and A. D. Ames are with the Department of Computing and
Mathematical Sciences, California Institute of Technology, Pasadena, CA
91125, USA, {alberthli, ames}@caltech.edu.

‡ P. Culbertson and A. D. Ames are with the Department of Civil and
Mechanical Engineering, California Institute of Technology, Pasadena, CA
91125, USA, {pculbert, ames}@caltech.edu.

M
o
re

U
n

ce
rt

a
in
→

Fig. 1: PONG synthesizes uncertainty-aware dexterous precision grasps by
extending the concept of force closure to the probabilistic setting. In this
example, we artificially impose uncertainty in the target object’s surface
normals, and PONG computes a locally-optimal grasp with fingertips near
the equator, the region with the least uncertainty.

of probabilistic force closure, PONG: Probabilistic Object
Normals for Grasping. Given known contact locations and
a model of surface normal uncertainty, PONG computes a
lower bound on the probability that a grasp is force closure,
which we maximize to synthesize uncertainty-aware preci-
sion grasps. We demonstrate PONG’s effectiveness by using
it as a curvature-aware grasp metric in both simulation1 and
hardware experiments, where we treat the object’s curvature
as a proxy for uncertainty about its surface geometry. We
show in simulation that, as PONG increases, the failure rate
in grasps decreases dramatically. In hardware, even under
challenging real-world conditions and using approximate,
learning-based object models constructed only from visual
data, we can achieve a nearly 70% grasp success rate.

A. Related Work

While this paper presents a novel analytic treatment of
the probability of force closure (PFC), prior work has stud-
ied PFC from data-driven and empirical perspectives. For
example, [6] notes that the traditional Ferrari-Canny epsilon-
ball metric is sensitive to uncertainty in the object pose;
they generate a Monte Carlo estimate of PFC via simulation,
and use this to rank grasps by robustness. Gaussian process
implicit surfaces (GPISs) [7] have also been an influential
way to represent the object geometry itself as uncertain, and
have been deployed successfully for parallel-jaw grasping
[8], dexterous grasping with tactile sensors [9], [10], and
for control synthesis [11]. While GPISs can reason jointly
over both uncertain contact points and normals, they have
several drawbacks, including being difficult to supervise from
sensor data (requiring ground-truth signed-distance labels),

1Open-source implementation available at github.com/alberthli/pong.

https://github.com/alberthli/pong

poor scaling with respect to amount of data, and lack of
expressivity (due to the strong smoothness prior imposed on
the object surface by typical choices of the kernel function).

An alternate approach is to instead directly learn proba-
bilistic grasp metrics from data. For example, Dex-Net 2.0
predicts the robustness of a batch of planar parallel-jaw
grasps, then selects the most robust one [12]. A similar
idea has been applied to multifinger hands in a gradient-
based optimization setting with joint limits by leveraging the
differentiability of neural networks [13], [14].

This paper is most similar in spirit to recent work on
differentiable approximations of analytic metrics for fast
gradient-based grasp synthesis. Proposed methods include
solving sequences of SDPs [15]; solving a sum of squares
program [16]; optimizing a differentiable relaxation of the
force closure condition [17], [18]; solving a bilinear opti-
mization program with a QP force closure constraint [19];
and maximizing an almost-everywhere differentiable proxy
for the Ferrari-Canny metric in a bilevel setting [20]. The
common theme of these works is the use of nonlinear
optimization to enforce (or penalize) kinematic, collision,
and contact constraints. Our metric, PONG, is computed by
solving LPs, allowing it to serve as an objective for similar
bilevel programming approaches to grasp synthesis.

B. Preliminaries

We consider grasp planning for a fixed-base, fully-actuated
rigid-body serial manipulator with a multi-finger hand. De-
note the robot configuration q ∈ Q. Assume the hand has nf
fingers contacting the object at points {xi}nf

i=1 with inward
pointing surface normals {ni}nf

i=1. Denote the forward kine-
matics maps xi = FKi(q) with corresponding (translational)
Jacobians J i(q) ∈ R3×n. Denote the single rigid object O
with surface ∂O.

As shorthand, let Cx := conv({xl}l) denote the convex
hull of a finite set of points indexed by l. Define the wedge
operator [·]× : R3 → so(3) such that [a]× b := a × b for
a, b ∈ R3. We parameterize grasps with an optimized feasible
configuration q∗, which means no undesired collisions while
contacting the object. We model the fingers as point contacts
with Coulomb friction.

Recall that under the Coulomb friction model, a contact
force f satisfies the no-slip condition if for a fixed friction
coefficient µ, ∥ft∥ ≤ µ · fn, where t and n denote tangent
and (positive) normal components of force f respectively.
We call such forces Coulomb-compliant. A force applied at
point x induces the torque τ = x× f , which in turn induces
a corresponding wrench w = (f, τ).

The friction cone at a point x is the cone centered around
the surface normal n consisting of all Coulomb-compliant
forces that can be applied. It is common to consider a
pyramidal approximation of this cone [21] with ns sides. We
call its edges basis forces and the induced wrenches basis
wrenches. We emphasize that the basis wrenches depend on
the basis forces which themselves depend on the surface
normal at a point x, a relation we use heavily below.

Let nw = ncns denote the number of basis wrenches
(indexed wi

j), each associated with a finger i and pyramid
edge j. For clarity, we sometimes combine the indices i, j
into a single one l. Further, let I = {1, . . . , nf}, J =
{1, . . . , ns}, and L = {1, . . . , nw} denote finger, pyramid
edge, and basis wrench index sets respectively.

II. A PROBABILISTIC NOTION OF FORCE CLOSURE

This paper extends the classical theory of force closure to
the probabilistic setting in which the surface normals ni are
random variables. To review, we say a grasp is (determin-
istically) force closure if for any disturbance wrench it can
generate Coulomb-compliant forces on the object to resist
the disturbance. A well-known sufficient condition for force
closure is that the origin is contained in the convex hull of a
grasp’s basis wrenches, i.e., 0 ∈ Cw [22]. We say that such
basis wrenches certify force closure.

In the probabilistic setting, the normals ni are random
variables, so the basis forces and wrenches are as well. This
begs the central question of the paper: given known contact
locations and randomly-distributed surface normals, what is
(a bound on) the probability that the induced basis wrenches
certify force closure?

Let the known contacts be denoted X = {x1, . . . , xnf }
and consider the set of normals that induce basis wrenches
certifying force closure. We call this the force closure set:

N(X) :=
{
{ni}nf

i=1 | 0 ∈ Cw
}
. (1)

Suppose the normals are jointly distributed with some density
function p

(
n1, . . . , nnf

)
and that they are mutually indepen-

dent such that p can be factorized as
∏nf

i=1 p(n
i). Then, the

probability of force closure can be computed by the integral

Pfc = P[0 ∈ Cw] =
∫
N(X)

nf∏
i=1

p(ni)dni. (2)

While succinct, (2) is not directly useful for two reasons.
First, integrating the density p over N is difficult, because
even though p is factorizable, the integral itself is not. The
integration variables are coupled by the domain N, since
Cw depends on all of the random normals. Second, N is
difficult to parameterize; it has no closed form since it is
implicitly defined by the convex hull condition (1), where
hull membership is checked by solving an LP [22].

Thus, our strategy is to derive an approximate force
closure set A ⊆ N in tandem with a choice of density
function p for which the integral over A is known. Since
A ⊆ N, integrating p over A yields a lower bound on Pfc.

The following result [23] will motivate our constructions
by providing an exact method for integrating a bivariate
Gaussian density over an arbitrary planar polygon.

Proposition 1. Let P be a planar polygon with M vertices
y1, . . . , yM ∈ R2 ordered counterclockwise with yM+1 :=
y1. Let Z be a bivariate Gaussian random variable with
mean µ and covariance Σ = diag(σ2

1 , σ
2
2). Then,

P[Z ∈ P] =
1

σ2
√
8π

M∑
m=1

Dm

∫ 1

0

Am(r)Bm(r)dr, (3)

∂O

Txi∂O

xi
n̄i

t̄i1

t̄i2 δni

ni

(a)

xi

f̄ ij

µ

(b)
n̄i

ḡij

f̄ ij

arctan(µ)

(c)
ni

ḡij

f ij

≤ arctan(µ)

(d)

Fig. 2: (a) The parameterization from Sec. III-A. For visual clarity, we point the contact normals outward. The variances defining the uncertainty ellipse
(blue) lie in the tangent plane at point xi on surface ∂O. A perturbation δni is drawn to generate a random normal ni. (b) The friction cone (green) and
a canonical pyramidal approximation. Each basis wrench w̄i

j depends on position xi, surface normal n̄i, and friction coefficient µ. (c) The construction
of a mean basis force f̄ i

j using generator ḡij . (d) The construction of a random basis force f̄ i
j using the same generator as in the mean case. Note the

smaller angle, which ensures the random basis forces are Coulomb-compliant.

where the terms above are

Dm := ym+1
2 − ym2 ,

Am(r) := exp

(
− 1

2σ2
2

[
(1− r)ym2 + rym+1

2 − µ2

]2)
,

Bm(r) := erf

(
(1− r)ym1 + rym+1

1 − µ1

σ1
√
2

)
.

This allows us to numerically integrate over planar regions
with just line integrals (full proof in App. A).

III. PONG: A TRACTABLE PFC LOWER BOUND

This section presents PONG, which leverages Proposition
1 to address the aforementioned challenges. Due to space
constraints, we elide computational details to our open-
source implementation and the Appendix.

We proceed in three steps: (A) we present a construction
that linearly relates a random surface normal ni to a set of
random basis wrenches wi

j ; (B) we use this relation to define
disjoint sets Ai such that A =

⋃
i Ai, which allows us to

factorize the integral of p over A; and (C) we parameterize
the sets Ai in an integrable way and compute them with
linear programming. The end result is the lower bound

Lfc :=

nf∏
i=1

∫
Ai

p(ni)dni =

∫
A

nf∏
i=1

p(ni)dni

≤
∫
N

nf∏
i=1

p(ni)dni,

(4)

which is the main result of the paper.

A. Random Normals, Forces, and Wrenches

We begin with our representation of the random surface
normals ni. We model each random normal as the sum of a
deterministic mean normal vector denoted n̄i and a random
perturbation vector δni = Tiϵ, where Ti =

[
t̄i1 t̄i2

]
∈ R3×2

is a basis for the tangent plane at n̄i, and ϵ ∼ N (0,Σi) is a
zero-mean Gaussian random vector in R2 (see Fig. 2a).

We opt to parameterize the uncertain normals in this way
for two reasons. First, all perturbations in the direction of n̄i

do not change the direction of the mean normal, and therefore
do not represent any uncertainty in its orientation. Second,

the planar restriction will allow us to invoke the tractable
Gaussian density integral given in Proposition 1.

We remark that with this construction, the random normals
ni will not have unit norm. However, since friction cones are
invariant under scaling, as long as the random basis forces f ij
remain Coulomb-compliant, we can still certify force closure
with the induced random basis wrenches.

Leveraging this insight, we now introduce a procedure for
constructing a random friction pyramid about the random
normal ni such that its edges are always Coulomb-compliant.
First, consider the mean basis wrenches w̄i

j with force and
torque components f̄ ij and τ̄ ij . Per Fig. 2b, we represent f̄ ij
as the sum of n̄i and a tangent component

(
f ij
)
t

of length µ.
We compute

(
f ij
)
t

using a unit length generator ḡij(n̄
i) ∈ R3

(see Fig. 2c) of our choice orthogonal to n̄i such that(
f ij
)
t
= µ

(
ḡij × n̄i

)
. (5)

For example, for some arbitrary v ̸= n̄i, we could pick
ḡij(n̄

i) = (v × n̄i)/
∥∥v × n̄i

∥∥
2
. Thus, we can write

f̄ ij = n̄i + µ
(
ḡij × n̄i

)
=⇒ w̄i

j =

 (
I + µ

[
ḡij
]
×

)
[
xi
]
×

(
I + µ

[
ḡij
]
×

)
︸ ︷︷ ︸

:=T i
j (n̄

i)

n̄i. (6)

Generally, w̄i
j is nonlinear with respect to n̄i since the

generators can depend nonlinearly on n̄i. However, if we
choose to generate the random basis wrenches wi

j with the
generators from the mean case, we have the linear relation
wi

j = T i
j (n̄

i)ni with respect to random normal ni.
Our construction satisfies

∥∥(f ij)t∥∥2 ≤ µ
∥∥ni∥∥ (in contrast,

observe that
∥∥f̄ ij∥∥2 = µ

∥∥n̄i∥∥ as in Fig. 2c and 2d
)
. To see

this, let ψi
j be the angle between ḡij and ni. Then,∥∥(f ij)t∥∥2 = µ

∥∥ḡij∥∥∥∥ni∥∥ sin(ψi
j) ≤ µ

∥∥ni∥∥ , (7)

ensuring Coulomb-compliance of the random basis forces.

B. Deriving a Decomposable Approximate Force Closure Set

Next, we provide a procedure to generate disjoint sets
Ai whose union defines the inner approximation A of the

w̄1

w̄2

w̄3
origin

Cw̄(a)

The expected convex hull.

w1

w2

w3

Cw

S1

S2

S3

(b)

A sampled convex hull.

Fig. 3: Prop. 2 can be interpreted with the sets Sl := −Cw̄ + w̄l (colored)
centered about the expected wrenches. If the random wrenches satisfy wl ∈
Sl, ∀l ∈ L, then 0 ∈ Cw , so the sampled wrenches certify force closure.

ideal integration domain N, allowing us to separate the Pfc
integral (2). We will use the following result, which certifies
the random basis wrenches wi

j form a force closure grasp.

Proposition 2. If wl− w̄l ∈ −Cw̄ for all l ∈ L, then 0 ∈ Cw.

Proof. Suppose for the sake of contradiction that 0 ̸∈ Cw.
Then, there exists a such that ⟨a,w⟩ > 0 for all w ∈ Cw by
the separating hyperplane theorem. Further, there must exist
some l∗ satisfying ⟨a, w̄l∗⟩ ≤ ⟨a, w̄l⟩ for all w̄l ∈ Cw̄. Since
wl − w̄l ∈ −Cw̄ for each l, we have corresponding to l∗ a
set of convex weights αl∗ ∈ Rnw such that

wl∗ = w̄l∗ + (wl∗ − w̄l∗) = w̄l∗ −
nw∑
l=1

αl∗

l w̄l

=⇒ ⟨a,wl∗⟩ = ⟨a, w̄l∗⟩ −
nw∑
l=1

αl∗

l ⟨a, w̄l⟩

≤ ⟨a, w̄l∗⟩ − ⟨a, w̄l∗⟩
nw∑
l=1

αl∗

l = 0.

(8)

But, ⟨a,wl∗⟩ > 0 since wl∗ ∈ Cw, contradicting (8).

We view wl − w̄l as the deviation of the lth basis wrench
from some mean value (e.g., from a model). If all deviations
are contained in −Cw̄, then by Proposition 2, the origin lies
in the convex hull Cw of the true, random basis wrenches,
i.e., the grasp is force closure. See Fig. 3 for visual intuition.

Combining this with the relation wi
j = T i

jn
i from Sec.

III-A, we thus want our approximations to satisfy

Ai ⊆ {ni | T i
j (n

i − n̄i) ∈ −Cw̄, ∀j ∈ J }. (9)

By applying Proposition 2, we have

ni ∈ Ai, ∀i ∈ I =⇒ (n1, . . . , nnf) ∈ N, (10)

so letting A =
⋃nf

i=1 Ai, we recover the bound (4). The
decomposition is possible because even though in (9), Cw̄
depends on all the mean surface normals (n̄1, . . . , n̄nf), these
are fixed parameters of the known uncertainty distributions.
In contrast, in (1), Cw (and thus N) depends jointly on all
of the random normals, which are the integration variables.

C. Computing Approximate Force Closure Sets

Unfortunately, the condition on the right hand side of (9)
cannot be expressed in closed form. Thus, we let Ai be a
conservative polygonal approximation of it by performing
a search procedure to find a polytope with large volume
satisfying (9) parameterized by its vertices.

di,k

(a) Txi∂O

Fixed search directions di,k.

t̄i1

t̄i2

θi,k
vi,k

(b) Txi∂O
Ai

Points vi,k and convex hull Ai.

t̄i1

t̄i2

Fig. 4: Visualization of the parameterization and construction of Ai. (a)
Example search directions represented in the planar coordinates of the
tangent basis. (b) Example points placed along the search directions and
the corresponding set Ai.

To do this, for each finger, we fix a set of search directions
di,k ∈ R3 in the tangent plane at xi. We then search for the
longest step θi,k ≥ 0 that can be taken in this direction while
satisfying (9). We denote the point θi,kdi,k as vi,k and let Ai

be the convex hull of these points. Since the set on the right
side of (9) is convex, Ai is a conservative approximation.

Conveniently, this search can be expressed as a linear
program. Define the matrix W ∈ R6×nw whose columns
are the mean basis wrenches. Then, to compute each vi,k,
we can solve the following LP, denoted VLPi,k:

maximize
θi,k∈R

{αi,k
j }ns

j=1
⊂Rnw

θi,k (11a)

subject to θi,k ≥ 0 (11b)

αi,k
j ⪰ 0, ∀j ∈ J (11c)

1⊤
nw
αi,k
j = 1, ∀j ∈ J (11d)

T i
j

(
θi,kdi,k

)
= −Wαi,k

j , ∀j ∈ J . (11e)

Constraint (11b) enforces nonnegativity of the scaling along
di,k, constraints (11c) and (11d) enforce that the αi,k

j are
valid convex weights, and constraint (11e) enforces that the
random normal ni = n̄i + θi,kdi,k must lie in Ai.

Proposition 3. VLPi,k has a feasible solution if 0 ∈ Cw̄.

Proof. If 0 ∈ Cw̄, then ∃α̃ ∈ Rnw such that α̃ ⪰ 0, W̄ α̃ = 0,
and 1⊤

nw
α̃ = 1. Thus, the choices δi,k = 0 and αi,k

j = α̃, ∀j
satisfy (11b)-(11e), so (11) is feasible.

Proposition 3 ensures that if a grasp is force closure in the
mean case, then we can feasibly solve a batch of VLPs in
parallel over all (i, k) ∈ I ×K and then recover a nontrivial
value for Lfc using the expressions in Proposition 1. If any
VLPs in the batch are infeasible, we set the bound to 0 and
do not compute any integrals.

IV. APPLYING PONG TO SYNTHESIZE
CURVATURE-REGULARIZED GRASPS

A common failure mode for grasp synthesis is edge-
seeking, in which a grasp optimizer computes a solution with
the fingertips on sharp edges of the object. We hypothesize
two causes. First, in the case of, e.g., the Ferrari-Canny
metric, when the torque origin lies near the object’s center,
the edges yield larger moment arms, theoretically providing
more robustness. Second, if an initial guess for a grasp is far
from the object, the edges are often the closest points to the
fingertips, and edge points are often the first feasible points

x

N

v1

v2 1
κ1

1
κ2

Fig. 5: A visualization of the shape operator. Shown is the surface normal
N , the principal directions v1, v2, and the principal curvatures κ1, κ2. Note
the close resemblance to our uncertainty parameterization in Fig. 2a.

encountered during optimization; thus, they easily become
local minima for the full optimization.

Edges (and more generally high-curvature areas) tend to
be poor grasp locations, because small errors in perception
lead to failure. In this section, we use PONG to generate
curvature-regularized grasps by artificially assigning high
uncertainty to high-curvature areas.

A. Curvature-Based Uncertainty Distributions

Suppose we represent the surface ∂O as the 0-level set
of a smooth function s : R3 → R. At a point x ∈ ∂O, the
shape operator Sx : Tx∂O → Tx∂O is defined Sx(v) :=
−∇vN(x), where N is the unit surface normal at x. The
two eigenpairs of Sx, (κ1, v1), (κ2, v2) ∈ R×Tx∂O, are the
principal curvatures and directions at x respectively [24].

Letting the principal directions v1, v2 form our tangent
basis at each contact xi and (some function of) the magnitude
of the principal curvatures κ1, κ2 form our variances, we can
recover a curvature-sensitive uncertainty distribution.

Since Sx(v) = −
[
∇2s(x)

]
(v), the eigenpairs of Sx are

those of the Hessian of s. In the sequel, we use the following
uncertainty distribution parameters:

n̄i := −∇s(xi),
t̄im := vm, m ∈ {1, 2},(

σi
m

)2
:= log (Kcurv · |κm|+ ϵ) , m ∈ {1, 2},

(12)

where Kcurv > 0 is a parameter relating curvature to
uncertainty and ϵ > 0 captures prior uncertainty at x.
These values are also defined for points x ̸∈ ∂O, i.e., the
distribution is even defined “off-surface,” which we exploit
during optimization to evaluate infeasible iterates.

B. Grasp Synthesis with Nonlinear Optimization

As a test, we synthesized grasps by solving the following
bilinear optimization program (similar to FRoGGeR [20]):

maximize
q∈Q

Lfc(q) (13a)

subject to qmin ⪯ q ⪯ qmax (13b)
ℓ̄∗(q) ≥ 0.3 (13c)

s(FKi(q)) = 0, i = 1, . . . , nc (13d)

σ
(
o
(m)
A , o

(m)
B ; q

)
≥ dm, m = 1, . . . , np.

(13e)

400

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

Lfc

Aggregate Grasp Successes and Failures

successes

failures

Fig. 6: Simulation results. Top. The 5 objects used for simulations (camera,
teacup, Rubik’s cube, tape dispenser, teddy bear). They were chosen due
to their high nonconvexity and many edges. Bottom. Success/failure his-
tograms over all trials. Note the fast decay of failures relative to successes.

In (13c), ℓ̄∗(q) is the normalized min-weight metric [20]. If
ℓ̄∗(q) > 0, then 0 ∈ Cw̄, so whenever (13c) is satisfied, we
can invoke Proposition 3 to feasibly solve all VLPs.

Constraint (13d) enforces that the contacts xi lie on the
surface, where s is a neural implicit surface trained using
volume rendering [25]. Lastly, σ is a signed distance be-
tween two convex collision geometries, dm is the minimum
allowable distance between geometries in pair m, and np is
the total number of collision pairs (see [20] for details).

These pairs are computed by performing a convex decom-
position of the object using VHACD [26]. Unlike [20], we do
not prescribe contact points xi, so when the fingers are not
on the surface, we let xi be the closest point on the fingertip
geometry to the object, computed using Pinocchio [27].

C. Simulation Results

Based on the theory of Sec. II, we expect fewer grasp
failures as Lfc rises. To test this, we synthesized grasps on
each of 5 nontrivial objects (see Fig. 6) and visualized the
distribution of successes and failures on a “shaky pickup”
task, where we added high-frequency sinusoidal perturba-
tions to a straight reference trajectory with an amplitude
of 3cm. We simulated 100 unperturbed and 100 perturbed
grasps per object for a total of 1000 grasps.

We use the following simple controller: for an optimal
solution q∗ of (13), we have corresponding fingertip positions
xi and mean normals n̄i computed using (12). We define new
target positions for each finger 1cm into the surface,

xinew = xi + 0.01∇s(xi), (14)

and let q∗new satisfy xinew = FKi(q∗new),∀i ∈ I, computed us-
ing inverse kinematics. Lastly, we track q∗new with P control:

τfb = −Kp(q − q∗new). (15)

Shown in Fig. 6 are the aggregate successes and failures
over all 1000 grasps. We highlight two observations: (1) as
Lfc increases, the failure rate decays as predicted; and (2) the
bound’s conservativeness is nontrivial, as even in the regime
where Lfc ≈ 0, about half of the grasps are successful. That
is, if Lfc is high, we should be confident in a grasp’s quality,
but the converse does not hold.

Fig. 7: We used an Allegro hand with an attached Zed camera to image each object and deployed PONG to successfully synthesize diverse precision grasps
even in the presence of transparency, reflectivity, and an abundance of edges. Shown are representative successful picks.

We report an aggregate success rate of 59%, a low mark
that increases to 75% (266/354) if we exclude very low-
confidence grasps (Lfc < 0.05). We find that after these ex-
clusions, the remaining grasps are resistant to perturbations,
with a success rate of 76.8% (136/177) when unperturbed
and 73.4% (130/177) when perturbed, even though aggre-
gately, the perturbations induced a 6.4% drop in success rate.
This suggests that many of the induced failures occur in the
low-confidence regime, which supports the hypothesis that
curvature regularization improves grasp robustness.

Finally, over all trials, the median grasp synthesis time was
5.93s, a result of our optimized implementation of PONG,
particularly via parallel LP solves.

D. Hardware Results

We additionally verified that we could use PONG to
generate grasps on a real robotic system by synthesizing 10
grasps for each of 3 objects: a semi-transparent tea bottle,
an opened (empty) milk carton, and a transparent/reflective
colored goblet. To achieve this, we chose to represent each
object as a neural radiance field (NeRF) [28], from which
we extracted a smooth density field defined for any query
point x ∈ R3. We then represented the surface ∂O as a
level set of this density function, where the chosen level was
selected experimentally for each object. The images used to
train each NeRF were collected by a wrist-mounted camera
which captured images of the object by following a fixed
trajectory. We then used this noisy representation to solve
problem (13), yielding an optimal grasp configuration q∗.

Finally, we planned a pick trajectory to achieve the op-
timized grasp. We report pick success rates of 6/10, 7/10,
and 7/10 respectively, which we qualify with the following
remarks. First, the NeRF representations exhibited significant
noise, often with many portions of the object surface missing
due to limited views of each object. Second, we deployed the
naive “open-loop” grasp controller from Sec. IV-C, which
usually fails in the presence of large perception errors. Fi-
nally, pick success was very sensitive to the choice of initial
condition for the optimizer. For example, all but one failure

on the tea bottle were attempted overhead grasps which tried
to pinch the poorly-reconstructed cap, while all successes
were side grasps. When the initial guess was similar to
a good grasp, our experiments support the hypothesis that
PONG will refine it into a performant, feasible one.

V. CONCLUSION

In this paper, we considered the problem of grasp synthesis
under surface normal uncertainty. We developed PONG, a
novel, analytic lower bound on the probability of force
closure (PFC), which provides a principled measure of a
grasp’s robustness, is fast to compute, and is differentiable.
Thus, it is able to serve as an objective function for a
gradient-based nonlinear optimizer. We proved that our met-
ric is a lower bound on PFC for Gaussian-distributed surface
normals. In particular, we applied PONG to the case of
curvature-regularized grasping, where we used the Gaussian
curvature of the object surface as an uncertainty metric, and
showed that this practical choice of uncertainty distribution
yields PFC bounds that are strongly correlated with grasp
success/failure. Finally, we provide a hardware study of our
method, using this curvature metric to optimize risk-sensitive
grasps for objects represented as NeRFs.

This work provides numerous directions for future work.
One immediate direction is to consider the effect of uncertain
contact locations xi, which is very common with poor
sensors. Another is improving the conservative nature of
our bound; we make several linearizing approximations that
make the bound fast to compute at the cost of weakening it.
It would be also interesting to explore data-driven methods
for predicting surface normal distributions from, e.g., visual
data. Finally, as discussed in Section IV-D, a key limitation of
our hardware experiments was the sensitivity of the grasps
to the grasp controller itself, which does not reason about
the surface uncertainty; we plan to explore tools from robust
optimization, combined with the surface normal uncertainty
representations developed here, to perform robust grasp
force optimization for risk-sensitive grasp control or in-hand
manipulation.

REFERENCES

[1] Máximo A. Roa and Raúl Suárez. Grasp quality measures: review and
performance. Autonomous Robots, 38:65 – 88, 2014.

[2] Z. Li and S.S. Sastry. Task-oriented optimal grasping by multifingered
robot hands. IEEE Journal on Robotics and Automation, 4(1):32–44,
1988.

[3] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. Leveraging big
data for grasp planning. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 4304–4311, 2015.

[4] Umit Rusen Aktas, Chaoyi Zhao, Marek Kopicki, Ales Leonardis, and
Jeremy L. Wyatt. Deep Dexterous Grasping of Novel Objects from a
Single View. Int. J. Humanoid Robotics, 19:2250011:1–2250011:30,
2019.

[5] Lin Shao, Fábio Ferreira, Mikael Jorda, Varun Nambiar, Jianlan Luo,
Eugen Solowjow, Juan Aparicio Ojea, Oussama Khatib, and Jeannette
Bohg. UniGrasp: Learning a Unified Model to Grasp with N-Fingered
Robotic Hands. ArXiv, abs/1910.10900, 2019.

[6] Jonathan Weisz and Peter K. Allen. Pose error robust grasping from
contact wrench space metrics. In 2012 IEEE International Conference
on Robotics and Automation, pages 557–562, 2012.

[7] Stanimir Dragiev, Marc Toussaint, and Michael Gienger. Gaussian
process implicit surfaces for shape estimation and grasping. In 2011
IEEE International Conference on Robotics and Automation, pages
2845–2850, 2011.

[8] Jeffrey Mahler, Sachin Patil, Ben Kehoe, Jur van den Berg, Matei
Ciocarlie, Pieter Abbeel, and Ken Goldberg. GP-GPIS-OPT: Grasp
planning with shape uncertainty using Gaussian process implicit
surfaces and Sequential Convex Programming. In 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages
4919–4926, 2015.

[9] Cristiana de Farias, Naresh Marturi, Rustam Stolkin, and Yasemin
Bekiroglu. Simultaneous tactile exploration and grasp refinement for
unknown objects. IEEE Robotics and Automation Letters, PP, 02 2021.

[10] Muhammad Sami Siddiqui, Claudio Coppola, Gokhan Solak, and
Lorenzo Jamone. Discovering stable robot grasps for unknown
objects in presence of uncertainty using bayesian models. In Towards
Autonomous Robotic Systems: 22nd Annual Conference, TAROS 2021,
Lincoln, UK, September 8–10, 2021, Proceedings, page 46–55, Berlin,
Heidelberg, 2021. Springer-Verlag.

[11] Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous
grasping under shape uncertainty. Robotics and Autonomous Systems,
75:352–364, 2016.

[12] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard
Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-Net
2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds
and Analytic Grasp Metrics. ArXiv, abs/1703.09312, 2017.

[13] Qingkai Lu, Kautilya Chenna, Balakumar Sundaralingam, and Tucker
Hermans. Planning Multi-Fingered Grasps as Probabilistic Inference
in a Learned Deep Network. In International Symposium of Robotics
Research, 2018.

[14] Qingkai Lu, Mark Van der Merwe, Balakumar Sundaralingam, and
Tucker Hermans. Multifingered Grasp Planning via Inference in Deep
Neural Networks: Outperforming Sampling by Learning Differentiable
Models. IEEE Robotics and Automation Magazine, 27(2):55–65, 2020.

[15] Hongkai Dai, Anirudha Majumdar, and Russ Tedrake. Synthesis and
Optimization of Force Closure Grasps via Sequential Semidefinite
Programming. In International Symposium of Robotics Research,
2015.

[16] Min Liu, Zherong Pan, Kai Xu, Kanishka Ganguly, and Dinesh
Manocha. Deep Differentiable Grasp Planner for High-DOF Grippers.
ArXiv, abs/2002.01530, 2020.

[17] Tengyu Liu, Zeyu Liu, Ziyuan Jiao, Yixin Zhu, and Song-Chun Zhu.
Synthesizing Diverse and Physically Stable Grasps With Arbitrary
Hand Structures Using Differentiable Force Closure Estimator. IEEE
Robotics and Automation Letters, 7:470–477, 2021.

[18] Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu, Puhao Li,
Tengyu Liu, and He Wang. DexGraspNet: A Large-Scale Robotic
Dexterous Grasp Dataset for General Objects Based on Simulation.
ArXiv, abs/2210.02697, 2022.

[19] Albert Wu, Michelle Guo, and C. Karen Liu. Learning Diverse and
Physically Feasible Dexterous Grasps with Generative Model and
Bilevel Optimization. ArXiv, abs/2207.00195, 2022.

[20] Albert H. Li, Preston Culbertson, Joel W. Burdick, and Aaron D.
Ames. FRoGGeR: Fast Robust Grasp Generation via the Min-Weight
Metric. ArXiv, abs/2302.13687, 2023.

[21] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

[22] Elon Rimon and Joel Burdick. The Mechanics of Robot Grasping.
Cambridge University Press, 2019.

[23] Naoki Hayashi, Kohei Segawa, and Shigemasa Takai. 2d voronoi cov-
erage control with gaussian density functions by line integration. SICE
Journal of Control, Measurement, and System Integration, 10(2):110–
116, 2017.

[24] B. O’Neill. Elementary Differential Geometry, Revised 2nd Edition.
Elsevier Science, 2006.

[25] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura,
and Wenping Wang. Neus: Learning neural implicit surfaces by
volume rendering for multi-view reconstruction. NeurIPS, 2021.

[26] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach
for 3D mesh approximate convex decomposition. In 2009 16th IEEE
International Conference on Image Processing (ICIP), pages 3501–
3504, 2009.

[27] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard. The Pinocchio C++ library – A fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives. In International Symposium on System
Integration (SII), 2019.

[28] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.
Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis. CoRR, abs/2003.08934,
2020.

[29] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent
Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and Angjoo
Kanazawa. Nerfstudio: A modular framework for neural radiance field
development. In ACM SIGGRAPH 2023 Conference Proceedings,
SIGGRAPH ’23, 2023.

[30] Russ Tedrake and the Drake Development Team. Drake: Model-based
design and verification for robotics, 2019.

https://link.springer.com/article/10.1007/s10514-014-9402-3
https://link.springer.com/article/10.1007/s10514-014-9402-3
https://ieeexplore.ieee.org/document/7139793
https://ieeexplore.ieee.org/document/7139793
https://arxiv.org/abs/1908.04293
https://arxiv.org/abs/1908.04293
https://arxiv.org/abs/1910.10900
https://arxiv.org/abs/1910.10900
https://ieeexplore.ieee.org/document/5980395
https://ieeexplore.ieee.org/document/5980395
https://ieeexplore.ieee.org/document/7139882
https://ieeexplore.ieee.org/document/7139882
https://ieeexplore.ieee.org/document/7139882
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1804.03289
https://arxiv.org/abs/1804.03289
https://arxiv.org/abs/2001.09242
https://arxiv.org/abs/2001.09242
https://arxiv.org/abs/2001.09242
https://link.springer.com/chapter/10.1007/978-3-319-51532-8_18
https://link.springer.com/chapter/10.1007/978-3-319-51532-8_18
https://link.springer.com/chapter/10.1007/978-3-319-51532-8_18
https://arxiv.org/abs/2002.01530
https://arxiv.org/abs/2104.09194
https://arxiv.org/abs/2104.09194
https://arxiv.org/abs/2210.02697
https://arxiv.org/abs/2210.02697
https://arxiv.org/abs/2207.00195
https://arxiv.org/abs/2207.00195
https://arxiv.org/abs/2207.00195
https://arxiv.org/abs/2302.13687
https://arxiv.org/abs/2302.13687
https://ieeexplore.ieee.org/document/5414068
https://ieeexplore.ieee.org/document/5414068
https://ieeexplore.ieee.org/document/8700380
https://ieeexplore.ieee.org/document/8700380
https://ieeexplore.ieee.org/document/8700380
https://drake.mit.edu
https://drake.mit.edu

APPENDIX

A. Proof of Proposition 1
The proof of Lemma 1 closely follows the one presented

in [23, Proposition 1]. First, we recall Green’s Theorem.

Theorem 1 (Green’s Theorem). Let D be a closed region in
the plane with piecewise smooth boundary. Let P (y1, y2) and
Q(y1, y2) be continuously differentiable functions defined on
an open set containing D. Then,∮

∂D
P (y1, y2)dy1 +Q(y1, y2)dy2

=

∫∫
D

(
∂Q

∂y1
− ∂P

∂y2

)
dy1dy2.

(16)

Second, we prove a useful intermediate result.

Lemma 1. The following holds:∫
exp(−(ay2 + 2by + c))dy

=
1

2

√
π

a
exp

(
b2 − ac

a

)
erf

(√
ay +

b√
a

)
+ const.

(17)
Proof. Recall that

erf(y) =
2√
π

∫ y

0

exp(−t2)dt. (18)

We differentiate the RHS of (17) with respect to y and by
the Fundamental Theorem of Calculus, we have

1√
a
exp

(
b2 − ac

a

)
·
√
a exp

(
−
(√

ay +
b√
a

)2
)

= exp

(
b2 − ac

a

)
exp

(
−
(
ay2 + 2by +

b2

a

))
= exp(−(ay2 + 2by + c)),

(19)

which is the integrand of the LHS, proving the claim.

We are now ready to prove Proposition 1.

Proof of Proposition 1. We have that

(y − µ)⊤Σ−1(y − µ)

=
1

σ2
1

y21 −
2

σ2
1

µ1y1 +

[
1

σ2
2

(y2 − µ2)
2 +

µ2
1

σ2
1

]
.

(20)

Letting

a =
1

2σ2
1

,

b =
−µ1

2σ2
1

,

c =
1

2

[
1

σ2
2

(y2 − µ2)
2 +

µ2
1

σ2
1

]
,

(21)

and applying Lemma 1 to the bivariate Gaussian density
function f(y1, y2), we have∫

f(y1, y2)dy1

=
1

2σ2
√
2π

exp

(
−1

2

(
y2 − µ2

σ2

)2
)
erf

(
y1 − µ1

σ1
√
2

)
+ const.

(22)

Applying Theorem 1, we see that for the choice P = 0 and
Q =

∫
f(y1, y2)dy1,∫∫

D
f(y1, y2)dy1dy2

=

∮
∂D

1

2σ2
√
2π

exp

(
− (y2 − µ2)

2

2σ2
2

)
erf

(
y1 − µ1

σ1
√
2

)
dy2.

(23)

To evaluate the contour integral, we split the contour up
into the line segments formed by connecting the M extreme
points of D in counterclockwise order. A point y on the mth

segment can be expressed

y = (1− r)

[
ym1
ym2

]
+ r

[
ym+1
1

ym+1
2

]
, r ∈ [0, 1]. (24)

Performing this change of variables and letting yN+1 = y1,∫∫
D
f(y1, y2)dy1dy2

=
1

σ2
√
8π

M∑
m=1

Dm

∫ 1

0

Am(r)Bm(r)dr,

(25)

where

Dm := ym+1
2 − ym2 ,

Am(r) := exp

(
− 1

2σ2
2

[
(1− r)ym2 + rym+1

2 − µ2

]2)
,

Bm(r) := erf

(
(1− r)ym1 + rym+1

1 − µ1

σ1
√
2

)
.

Finally, noting that P[Z ∈ D] =
∫∫

D f(y1, y2)dy1dy2
completes the proof.

B. Efficiently Solving Batches of VLPs

Program (11) suggests solving a batch of nf · nv linear
programs in parallel to compute the scaling values θi,k ∈ R.
Here, we show that it is equivalent to further parallelize the
LP computation in the following way.

Proposition 4 (Efficient VLP Batching). The following
equality holds:

θi,k = min
j=1,...,ns

θi,kj , (26)

where (with a slight abuse of notation) θi,kj is the optimal
solution to the following LP for a fixed index triple (i, j, k).

maximize
θi,k
j ∈R, αi,k

j ∈Rnw

θi,kj (27a)

subject to θi,k ≥ 0 (27b)

αi,k
j ⪰ 0 (27c)

1⊤αi,k
j = 1 (27d)(

θi,kdi,k
)
T i
j = −Wαi,k

j . (27e)

Proof. Follows by inspecting the dual programs.

To actually solve many LPs in a batched manner,
we use a custom port of the quantecon implementa-
tion of the simplex method, available at the following
link: github.com/alberthli/jax simplex. Because this imple-
mentation is in JAX, it can be run on both CPU or
GPU without any additional modification. Due to cer-
tain parts of our computation stack being CPU-bound, we
choose to compute the bound serially entirely on CPU.
We observed that an Intel i9-12900KS CPU typi-
cally exhibited about a 20% increase in speed over an
AMD Ryzen Threadripper PRO 5995WX, which we
attribute to speedups in Intel vs. ARM architectures on BLAS
routines.

C. Differentiating the PFC Bound

In order to maximize the bound in (4) in a gradient-
based nonlinear optimization program, we must compute the
gradient of Lfc with respect to the robot configuration q. To
accomplish this, we need three major components:

• differentiating through the numerical integration scheme
used to evaluate the expressions in Proposition 1 with
respect to the polygon vertices vi,k;

• differentiating through VLPi,k in (11) (or the more
efficient program (27)) with respect to the wrench
matrix W (q);

• differentiating through the parameters W , n̄i, {t̄i1, t̄i2},
and {σi

1, σ
i
1} with respect to the configuration q.

To differentiate through the numerical integration, we use
the open source package torchquad designed to differen-
tiate numerical quadrature methods. All sub-expressions in
Proposition 1 can be implemented in JAX, which yields the
desired gradient in a straightforward manner.

To differentiate the optimal value of δi,k in (27) with
respect to the robot configuration q, we use implicit differen-
tiation of the KKT conditions. The analytical gradient can be
computed quickly in a nearly identical way to the one used
by FRoGGeR, since here we also solve a linear program [20,
Prop. 1]. For the the case of quadratic programs and more
general programs, see [31].

We compute the gradients with respect to the uncertainty
distribution parameters directly using JAX. However, due to
the special structure of (27), we compute the gradients of
W with respect to the distribution parameters completely
analytically, which in practice leads to a large speedup.
Because deriving these gradients is extremely tedious and
involves an inordinate amount of algebraic manipulation, we
defer the details to the open-source implementation, along
with test code which verifies the correctness of our analyti-
cal derivations against the automatically-computed gradients
from JAX.

D. Details for the Planar Integration

All search directions di,k are expressed in the local pla-
nar coordinates defined by the principal axes of the shape
operator in Sec. IV, which immediately yields a diagonal

covariance matrix and planar points vi,k. In practice, we do
not integrate over the points generating the hull. Instead,
we integrate over the polygon formed by connecting the
points in lines counterclockwise, which may be smaller than
the convex hull (for example, in Fig. 4(b), see the point
in the bottom left closest to the origin). We could easily
quickly check which points lie on the hull boundary and
only integrate over those - we choose not to for simplicity
of implementation.

E. Additional Experiment Details

The main difference between our simulated and hardware
experiments was the procedure in constructing the object
model. In simulation, we found that learning neural SDFs
using sdfstudio [32] was sufficient, because we could
carefully control the training data by placing cameras around
the object in a sphere. However, upon trying to recover a
representation on real hardware, we were unable to reliably
generate a coherent surface model.

Therefore, for the hardware experiments, we instead
trained a neural radiance field (NeRF) [28], [29] and rep-
resented the object surface as an empirically-chosen level
set of the learned density function (in contrast with neural
SDFs, where the object surface is always the 0-level set). In
practice, we found that the quality of the object representa-
tion was sensitive to the choice of density level. It was easy
to slightly over or undershoot an appropriate value, which
led to grasping failures due to the belief that the object was
bigger or smaller than in reality.

The picking trajectory optimization was done entirely in
Drake [30], including collision avoidance constraints. In
order to generate the requisite collision geometries associated
with the object, we executed the marching cubes algorithm
on the chosen density level set to recover a nonconvex
mesh, which we then decomposed into convex bodies using
VHACD.

F. Acknowledgments

We thank Lizhi (Gary) Yang for help setting up the
hardware experiments. We thank Victor Dorobantu for dis-
cussions that led to a valid formulation and proof of Propo-
sition 2. We thank Thomas Lew for discussions regarding
Hausdorff distance bounds that inspired the condition of
Proposition 2. We thank Georgia Gkioxari for discussions
about object representations.

Finally, we thank the maintainers of all the open-
source software used extensively in this work, including
but not limited to Drake, Pinocchio, torchquad,
JAX, sdfstudio, trimesh, nlopt, VHACD, and
quantecon [33], [34], [32], [35], [36], [37].

REFERENCES

[31] Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimiza-
tion as a Layer in Neural Networks. In International Conference on
Machine Learning, 2017.

[32] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apratim Bhat-
tacharyya, Michael Niemeyer, Siyu Tang, Torsten Sattler, and Andreas
Geiger. Sdfstudio: A unified framework for surface reconstruction,
2022.

https://github.com/alberthli/jax_simplex
https://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1703.00443

[33] Pablo Gómez, Håvard Hem Toftevaag, and Gabriele Meoni. torchquad:
Numerical integration in arbitrary dimensions with pytorch. Journal
of Open Source Software, 6(64):3439, 2021.

[34] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James John-
son, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke,
Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:

composable transformations of Python+NumPy programs, 2018.
[35] Dawson-Haggerty et al. trimesh, 2019.
[36] Steven G. Johnson. The NLopt nonlinear-optimization package, 2011.
[37] Dieter Kraft. A software package for sequential quadratic program-

ming. Forschungsbericht Deutsche Forschungs und Versuchsanstalt
fur Luft und Raumfahrt, 1988.

https://jax.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest/index.html
https://github.com/mikedh/trimesh
http://ab-initio.mit.edu/nlopt
http://degenerateconic.com/uploads/2018/03/DFVLR_FB_88_28.pdf
http://degenerateconic.com/uploads/2018/03/DFVLR_FB_88_28.pdf

	Introduction
	Related Work
	Preliminaries

	A Probabilistic Notion of Force Closure
	PONG: A Tractable PFC Lower Bound
	Random Normals, Forces, and Wrenches
	Deriving a Decomposable Approximate Force Closure Set
	Computing Approximate Force Closure Sets

	Applying PONG to Synthesize Curvature-Regularized Grasps
	Curvature-Based Uncertainty Distributions
	Grasp Synthesis with Nonlinear Optimization
	Simulation Results
	Hardware Results

	Conclusion
	References
	Appendix
	Proof of Proposition 1
	Efficiently Solving Batches of VLPs
	Differentiating the PFC Bound
	Details for the Planar Integration
	Additional Experiment Details
	Acknowledgments

	References

