
FRoGGeR: Fast Robust Grasp Generation via the Min-Weight Metric

Albert H. Li†, Preston Culbertson‡, Joel W. Burdick‡, and Aaron D. Ames†,‡

Abstract— Many approaches to grasp synthesis optimize
analytic quality metrics that measure grasp robustness based
on finger placements and local surface geometry. However,
generating feasible dexterous grasps by optimizing these metrics
is slow, often taking minutes. To address this issue, this paper
presents FRoGGeR: a method that quickly generates robust
precision grasps using the min-weight metric, a novel, almost-
everywhere differentiable approximation of the classical ϵ grasp
metric. The min-weight metric is simple and interpretable,
provides a reasonable measure of grasp robustness, and admits
numerically efficient gradients for smooth optimization. We
leverage these properties to rapidly synthesize collision-free
robust grasps—typically in less than a second. FRoGGeR
can refine the candidate grasps generated by other methods
(heuristic, data-driven, etc.) and is compatible with many object
representations (SDFs, meshes, etc.). We study FRoGGeR’s
performance on over 40 objects drawn from the YCB dataset,
outperforming a competitive baseline in computation time,
feasibility rate of grasp synthesis, and picking success in
simulation. We conclude that FRoGGeR is fast: it has a median
synthesis time of 0.834s over hundreds of experiments.

I. INTRODUCTION

The success of data-driven methods for grasp synthesis
has fundamentally changed manipulation in recent years.
Traditional methods [1], [2] for grasp synthesis focused
largely on optimizing analytic quality metrics (e.g., the
largest inscribed ball metric [3], [4], [5], which we call the
ϵ metric as in [6]), which use hand-object contact points
to measure a grasp’s robustness to external perturbations.
However, these methods suffer some drawbacks in practice:
traditional metrics are often hard to optimize and may be
non-differentiable, meaning grasps must be synthesized with
slower sampling-based methods. Further, they are sensitive to
the object geometry (i.e., the surface location and normals),
which requires detailed object models to be constructed
offline, e.g., by using object scanning rigs [7], [8].

To address these shortcomings, a number of authors con-
sider data-driven methods for grasp synthesis (for a detailed
survey, see [9]) that seek to learn grasping policies or
metrics depending solely on raw sensor data, such as RGB
images or point clouds. A wide variety of approaches have
emerged, including using supervised learning to train CNNs
to estimate grasp quality from images [10], identifying class-
level keypoints to find features appropriate for manipulation
[11], or learning a generative model conditioned on depth
images [12]. These methods, however, have focused nearly

† A. H. Li and A. D. Ames are with the Department of Computing and
Mathematical Sciences, California Institute of Technology, Pasadena, CA
91125, USA, {alberthli, ames}@caltech.edu.

‡ P. Culbertson, J. W. Burdick, and A. D. Ames are with the Department
of Civil and Mechanical Engineering, California Institute of Technology,
Pasadena, CA 91125, USA, {pculbert, jwb}@caltech.edu.

Fig. 1: FRoGGeR quickly refines infeasible multi-finger dexterous grasps
into kinematically-feasible, collision-free grasps using gradient-based non-
linear optimization. We leverage the min-weight metric presented in Sec.
II to maximize refined grasp robustness. (a) A candidate grasp q0 with
collisions between the object, robot, and table (highlighted red). (b) The fea-
sible and robust refined grasp q∗. In this example, the entire process—from
sampling to refinement—took just 0.816 seconds. The median computation
time over all experiments was 0.834 seconds, compared to minutes required
by methods like GraspIt! [1], [13], [14].

exclusively on generating antipodal grasps for parallel-jaw
grippers, or power grasps for dexterous hands.

In this work, we consider the problem of quickly refining
an initial pose for a dexterous hand into a robust precision
grasp for a particular object. Compared to power grasps,
precision grasps are more useful for manipulation tasks
that require delicate or accurate movements, such as tool
use or bin packing. Our goals are twofold. First, we seek
to generate these grasps quickly (in seconds rather than
minutes for current methods [1], [13], [14]) while enforcing
kinematic and collision constraints. Second, we seek to
balance common trade-offs of grasp synthesis methods in
terms of performance, speed, and interpretability.

A. Contributions

The main contribution of this work is the formulation of
grasp synthesis/refinement as a nonlinear optimization prob-
lem that leverages a novel, almost-everywhere differentiable
approximation of the ϵ metric: the min-weight metric. The
end result is FRoGGeR, a framework for fast robust grasp
generation. The optimization problem underlying FRoGGeR
can, due to the properties of the min-weight metric, be
solved efficiently using commercial solvers. Additionally,
FRoGGeR allows us to explicitly enforce kinematic and
collision constraints on generated grasps while harnessing
the speed of gradient-based optimization.

We aim for our work to be compatible with existing
methods in the grasping community. For instance, while
FRoGGeR can synthesize grasps with no prior knowledge, it
may also refine infeasible or suboptimal grasps computed by
learning-based methods. Further, this paper represents object

geometry implicitly using signed distance fields (SDFs),
which means we can leverage existing work that learns
SDFs of objects from sensor data [15]. To allow the use of
mesh-based object representations, we also present practical
approximations of the SDF, its gradient, and its Hessian
computable using only the mesh.

In summary, our contributions are as follows:
• FRoGGeR: a fast robust grasp generator built on the

min-weight metric, a novel, almost-everywhere differ-
entiable approximation of the ϵ grasp metric with a
numerically efficient gradient;

• a practical procedure based on nonlinear optimization
with an open-source implementation that generates fea-
sible grasps on the order of seconds; and

• numerical experiments and simulations comparing
grasps generated by our method to prior work, thereby
demonstrating the speed of the proposed approach.

The open-source implementation of FRoGGeR is available
at: github.com/alberthli/frogger.

B. Related Work

The majority of recent work in the grasping literature
concerns parallel-jaw grasps, which admit simple parameter-
izations due to the low number of DOFs and ease of control
[10], [16], [17], [18], [9]. Multifinger, dexterous grasping
introduces numerous challenges, as the grasp parameteriza-
tion must specify the states of each finger, and the high
dimensionality of this representation demands more fine-
grained control and better sensing. Moreover, the complex
kinematics and potential for self-collisions complicate the
search for feasible grasps. In turn, the problem of synthesiz-
ing dexterous grasps, particularly using data-driven methods,
has received far less attention than parallel-jaw grasps.

Many classical methods for multifinger grasp synthesis
ignored kinematic and collision constraints and only op-
timized for contact location by leveraging analytic grasp
metrics [2], [19]. The GraspIt! simulator explicitly considers
these constraints but simplifies the optimization problem
by searching a lower-dimensional space of “eigengrasps”
using simulated annealing [1]. This approach has several
downsides, including the need for the user to define eigen-
grasps for new hands (which is highly non-trivial), and slow
computational speed in general. Overall, analytic metrics
have two main drawbacks: (i) their usage is typically slow,
often due to non-smoothness, and (ii) they demand high-
fidelity estimates of object geometry and contact locations,
diminishing their efficacy, especially on novel objects [6].

In response to these limitations, numerous authors sought
to develop data-driven methods for dexterous grasping. Ex-
isting approaches include discriminative models, (i.e., those
that seek to estimate the quality of a particular grasp), and
generative models, which seek to directly generate grasps for
novel objects, conditioned on the object geometry or percep-
tual data. Among these, some only enforce hand kinematics
and check collisions post-hoc [6], [20]; others only optimize
for contact points and check kinematic feasibility post-hoc
[21]; others learn grasp pre-shapes rather than reasoning

about contact [22], [23]. We refer the reader to [9] for a
detailed survey of data-driven approaches to grasp synthesis.

One reason for these limitations is the difficulty in casting
the nonlinear constrained grasp optimization problem in a
computationally tractable way. Among methods addressing
this challenge, collision constraints are typically penalized
instead of enforced, leading synthesized grasps to have high
amounts of infeasible interpenetration [18], [14], [24]. Other
attempts at solving the unrelaxed problem are computation-
ally prohibitive (e.g., minutes to hours in [25]).

In this work, we do not address the perception-based
challenges of analytic metrics and assume knowledge of the
object’s geometry and pose. Instead, we focus on mitigating
their slow speed with the view that, despite their drawbacks,
these metrics still provide a useful framework for grasping
that is agnostic to robot model, object representation, and
quality of available data. To that end, we build on prior works
that formulate differentiable approximations of analytic force
closure measures to recover robust grasps on any multifinger
arm/hand system using bilevel optimization.

These prior works propose methods of varying complexity,
including solving and differentiating a sequence of linear
programs (LPs) [26], a sequence of semidefinite programs
(SDPs) [27], a sum of squares program [28], or a single SDP
that only approximates force closure [24], [18]. In contrast,
we propose in Sec. II a single LP whose optimal value math-
ematically indicates force closure and whose maximization
empirically yields robust grasps. Besides bilevel methods,
other methods exist that optimize the full grasp configuration
by formulating grasp synthesis as a maximum a posteriori
inference problem with variants that do and do not consider
collision [29], [30], [22].

The method of Wu et al. [31] is most similar to ours
as they also propose solving a bilevel optimization pro-
gram with smooth collision constraints. However, instead of
optimizing for robustness, they solve a feasibility problem
and impose a force closure constraint parameterized as a
quadratic program while training a conditional variational
autoencoder (CVAE) to output performant initial grasps. We
compare FRoGGeR’s formulation to theirs in Sec. IV.

C. Preliminaries

We assume a fixed-base, fully-actuated serial manipulator
and dexterous hand with nc fingers contacting the object.
Denote by n the total DOFs of the system and q ∈ Q ⊂ Rn

the generalized positions. We let FKi(q) and Ji(q) denote
the forward kinematics and Jacobian of prescribed contact
point i (we can relax this by computing a parameterization
of the fingertip geometries, but do not for simplicity). Define
the hand Jacobian as Jh = blkdiag(J1, . . . , Jnc). We aim to
manipulate a rigid object denoted O with surface ∂O and
body frame {O}. The pose of a frame {B} with respect to
a frame {A} is expressed TAB ∈ SE(3), and let RAB ∈
SO(3) represent the relative position and orientation of {B}
with respect to {A}. The world frame is denoted {W}.

We refer to the pair (q∗, TWO) as a grasp, where q∗ is
a feasible configuration (i.e., no collisions and valid hand-

https://github.com/alberthli/frogger

object contact). In this work, we will model the fingers as
point contacts with friction. We can thus define G(q), the
grasp map, which maps a vector of contact forces expressed
in their local contact frames, FC ∈ R3nc , to wrenches in the
object frame wO ∈ R6, i.e., we can write wO = G(q)FC .

We assume a Coulomb friction model, so there is no slip
if contact forces remain in the friction cone, i.e., if ∥F t

C∥ ≤
µFn

C , where F t
C and Fn

C > 0 denote the tangent and normal
components respectively. We assume a pyramidal friction
cone approximation [32] with ns sides and let m = ncns

denote the total number of associated basis wrenches forming
the subset W of the grasp wrench space W ⊆ R6. We
assume at least 7 affinely independent basis wrenches and let
them form the columns of the wrench matrix W (q) ∈ R6×m.

We say a grasp is force closure if it can resist arbitrary
disturbance wrenches in any direction, which is implied if
the origin of the grasp wrench space W lies in the convex
hull of W , denoted conv(W) [4]. For a thorough treatment
of grasping fundamentals, we refer the reader to [32, Ch. 5].

II. THE MIN-WEIGHT GRASP METRIC

This section introduces the min-weight metric, a simple
non-binary indicator of force closure we use as an optimiza-
tion objective. Specifically, we treat it as a differentiable
proxy for the ϵ metric, which measures the robustness of
force closure grasps by reporting the radius of the largest
origin-centered ball inscribed in conv(W) [3], [4].

In the sequel, we assume that int(conv(W)) ̸= ∅. To
check whether 0 ∈ conv(W), we can solve the follow-
ing linear feasibility problem [33] over variables α =
(α1, . . . , αm)⊤, where 1m ∈ Rm is the vector of 1s:

find α (1a)
subject to Wα = 0 (1b)

1⊤
mα = 1 (1c)

α ⪰ 0. (1d)

That is, 0 ∈ conv(W) ⇐⇒ ∃α∗ satisfying (1b)-(1d), which
is equivalent to the existence of an equilibrium wrench.

A. The Min-Weight Metric ℓ∗(q) and its Properties

The key idea of the min-weight metric is to relax constraint
(1d) by allowing negative weights α. If the minimum weight
in α is non-negative, the feasibility problem is satisfied, so
0 ∈ conv(W). This motivates the following LP:

ℓ∗(q) = maximize
α∈Rm, ℓ∈R

ℓ (2a)

subject to W (q)α = 0 (2b)

1⊤
mα = 1 (2c)

α ⪰ ℓ1m. (2d)

Thus, ℓ∗(q) and ∇ℓ∗(q) are defined even when a grasp
is not force closure (i.e., when ℓ∗ < 0 in the case of non-
physical “pulling” contact forces). This admits a procedure
to make grasps force closure via smooth optimization made
possible by the dependence of ℓ∗(q) on q via the wrench

Fig. 2: Toy examples of the min-weight metric. The weights αi are
associated with wrenches wi ∈ W ⊆ W . The minimum weights are
highlighted purple. The largest inscribed ball about the origin in each convex
hull is highlighted green. We empirically observe that the minimum weight
ℓ∗ is strongly correlated with the radius of this ball, i.e., the ϵ metric.

matrix W (q) in constraint (2b). The following result formally
relates ℓ∗ and force closure status.

Theorem 1. If W contains a subset of 7 affinely independent
basis wrenches, then problem (2) always has a feasible
solution. Further, the optimal solution (α∗, ℓ∗) satisfies
(i) [Non-Force Closure] ℓ∗(W) < 0 ⇐⇒ 0 ̸∈ conv(W),

(ii) [Robust Closure] ℓ∗(W) > 0 ⇐⇒ 0 ∈ int(conv(W)),
(iii) [Only Equilibrium] ℓ∗(W) = 0 ⇐⇒ 0 ∈ ∂ conv(W),
where ∂S denotes the boundary of a set S.

Proof. We first prove the feasibility claim. Since ℓ is un-
constrained, it suffices to show that there always exists α
satisfying (2b) and (2c). Let W ′ ∈ R6×7 denote a submatrix
of W with 7 affinely independent columns and α′ the
associated weights in α. Set all other weights in α to 0. Let
W

′
=

[
(W ′)⊤ 17

]⊤ ∈ R7×7 and 0̄ =
[
0⊤ 1

]⊤ ∈ R7.
The columns of W ′ are affinely independent in R6 if and

only if the columns of W
′

are linearly independent in R7

[34, Exercise 1.1]. Thus, W
′

is invertible, so we can always
find α′ satisfying W

′
α′ = 0̄. Equivalently, W ′α′ = 0 and

1⊤
7 α

′ = 1, implying Wα = 0 and 1⊤
mα = 1.

Proof of (i). By feasibility problem (1), ℓ∗ < 0 implies
(1) has no solution, so equivalently, 0 ̸∈ conv(W).

Proof of (ii). ℓ∗(W) > 0 if and only if ∃α ≻ 0 such that
Wα = 0. Since we assume conv(W) has nonempty interior,
its relative interior is its interior, so 0 ∈ int(conv(W)) if
and only if ∃α ≻ 0 such that Wα = 0 [34, Exercise 3.1].

Proof of (iii). Follows immediately from (i) and (ii).

Thereom 1 states that under mild assumptions, the sign
of ℓ∗ indicates force closure, justifying its maximization.
Heuristically, very negative values of ℓ∗ indicate a grasp is
far from force closure while very positive values indicate the
origin lies well within conv(W) (see Fig. 2). This motivates
using ℓ∗ as an approximate measure of robustness.

Since ℓ∗ ≤ 1/m, the normalized min-weight metric ℓ̄∗ =
mℓ∗ is well-defined, allowing us to specify the constraint
ℓ̄∗ ≥ kℓ, where kℓ ∈ [0, 1] is a lower bound on the desired
grasp robustness. In experiments, we use kℓ = 0.3.

We note that while using ℓ∗ to measure force closure is
theoretically justified, its use as a proxy for the ϵ metric is
not, since ℓ∗ ≫ 0 does not guarantee a large ball is contained
in conv(W). Nevertheless, empirically, we find that ℓ∗ and

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
̄ℓ *

0
2
4
6
8

10

ε
(×

 1
e3

)
̄ℓ * vs. ε Metric, m= 16

Fig. 3: ℓ̄∗ vs. ϵ metric for 600 total feasible force closure grasps on 6
objects from the YCB dataset [8] generated using FRoGGeR for m = 16
basis wrenches. We report a Pearson correlation of 0.865 and observe a
clear improvement in the worst-case ϵ value as ℓ̄∗ increases. Because ℓ̄∗

is bounded above, we typically observe a ceiling in its value (here, ≈ 0.7)
which degrades the correlation as grasp robustness increases. However, we
see that ℓ∗ is very informative in the regime where grasps are barely force
closure (bottom left), i.e., where they are least robust.

the ϵ metric are strongly correlated and maximizing ℓ∗

improves a lower bound on the ϵ value (see Fig. 3).
Finally, as in many classical metrics, ℓ∗ is not invariant

to the object frame [5, Ch. 13.5]. While methods exist that
address this [19], we do not explore them in this work.

B. Computing ∇ℓ∗(q) with Differentiable Optimization

We compute ∇ℓ∗(q) where it is defined using implicit
differentiation of the KKT conditions [35] and exploit the
resulting structure to compute it quickly.

For brevity, let x = (α, ℓ) and express (2) as

maximize
x

c⊤x (3a)

subject to Aeqx = beq (3b)
Ainx ⪯ 0. (3c)

Let λ and ν denote the Lagrange multipliers associated
with inequality and equality constraints respectively. As
in [35], we write the stationarity, primal feasibility, and
complementary slackness conditions for (2):

H =

H1

H2

H3

 :=

c+A⊤
inλ+A⊤

eqν
λ⊙ (Ainx)
Aeqx+ beq

 , (4)

where ⊙ denotes the Hadamard product. Solving the system
H = 0 is necessary and sufficient to solve any LP since it
is convex and always satisfies Slater’s condition. Let D(·)f
denote the Jacobian of a vector-valued function f with
respect to variables (·). Since H = 0 at the optimal solution,
by implicit differentiation,

DqH(x∗, λ∗, ν∗, q) = 0

=⇒ D(x,λ,ν)H(x∗, λ∗, ν∗, q)Dq(x
∗, λ∗, ν∗)(q)

+DqH(x∗, λ∗, ν∗, q) = 0.

(5)

We can compute DqH explicitly or with autodifferen-
tiation through the primitive wrench matrix W (q), which
is derived from the grasp map G(q), with details deferred
to our open-source implementation. We compute ∇ℓ∗(q)
for the case where D(x,λ,ν)H is invertible and apply the
result without further justification like a subgradient in the
singular case (similar to the non-differentiable case in [36]).

In particular, ∇ℓ∗(q)⊤ is given by the last row of Dqx
∗(q),

which we can compute via the following result:

Proposition 1 (Gradient Exploit). Let (·)† denote the Moore-
Penrose pseudoinverse. Then,

Dqx
∗(q) =

[
Dqα

∗(q)
∇ℓ∗(q)⊤

]
=

[
diag(λ∗)Ain

Aeq

]† [
0

DqH3

]
. (6)

Proof. See App. A.

Proposition 1 allows efficient computation of ∇ℓ∗(q),
especially when m is “small” (≲ 40). For example, when
m = 16 (e.g., using a square pyramidal approximation for
a 4-fingered hand), we find that ℓ∗(q) and ∇ℓ∗(q) can be
computed together in about 3.9ms with cvxpylayers [36]
on an Nvidia A6000 GPU, whereas using our exploit, they
are computed in 0.18ms on an Intel i9 CPU, a 22× speedup.

III. THE FROGGER FORMULATION

A. The Grasp Refinement Problem
FRoGGeR refines a candidate grasp configuration q0 into

a locally optimal one q∗ by solving the following nonlinear
bilevel optimization program (recalling that ℓ̄∗ = mℓ∗):

maximize
q

ℓ∗(q)

subject to qmin ⪯ q ⪯ qmax

ℓ̄∗(q) ≥ kℓ

FKi(q) ∈ ∂O, i = 1, . . . , nc

No (non-finger/object) collision.

(FRoGGeR)

To enforce joint limits, we constrain the robot configuration
q to lie between minimum and maximum values qmin and
qmax. Further, we enforce that the fingertips lie on the object
surface ∂O and that no rigid bodies are interpenetrating.

To express these constraints mathematically, we first pa-
rameterize ∂O as the 0-level set of a twice-differentiable
SDF s : R3 → R, which reports the distance of query points
x ∈ R3 to ∂O, with s(x) < 0 for all points in O:

s(x) =

{
− dist(x, ∂O), x ∈ O,

+dist(x, ∂O), x /∈ O.

Second, we consider every possible pair of geometries
we would like to prevent from colliding and parameter-
ize the collision status using the differentiable constraints
σ
(
o
(j)
A , o

(j)
B ; q

)
, j = 1, . . . , np, where np is the number of

collision pairs and σ is an SDF between two geometries, at
least one of whose state depends smoothly on q. For pair j,
we enforce a minimum safety margin of dj > 0 unless it is
a finger-object pair, for which we allow a small amount of
interpenetration by specifying dj < 0. Thus, we can express
optimization program (FRoGGeR) formally as

maximize ℓ∗(q) (7a)
subject to qmin ⪯ q ⪯ qmax (7b)

ℓ̄∗(q) ≥ kℓ (7c)
s(FKi(q)) = 0, i = 1, . . . , nc (7d)

σ
(
o
(j)
A , o

(j)
B ; q

)
≥ dj , j = 1, . . . , np. (7e)

B. Gradients of the Constraint Functions

To use gradient-based methods, we must compute the
gradients of the objective and each constraint. The gradient of
constraint (7d) is immediately given by J⊤

i (q)∇s(FKi(q))
for i = 1, . . . , nc. For constraint (7e), we compute for each
pair of geometries (oA, oB) the witness points (pA, pB). If
the pair is colliding, then the witness points are the two points
of furthest penetration. If the pair is not colliding, then they
are the two closest points. Let Ic = 1 indicate collision of a
pair and Ic = 0 otherwise. Then,

σ (oA, oB ; q) = (−1)Ic+1 ∥pA − pB∥
=⇒ ∇qσ (oA, oB ; q) = (−1)Ic

(
J⊤
B − J⊤

A

)
n̂AB ,

(8)

where JA and JB are the Jacobians at witness points A and
B and n̂AB is the unit vector from pA to pB .

We use Drake [37] to compute witness points for all
geometry pairs in a scene. To speed up computation, we
represent nonconvex bodies as a union of convex polytopes
computed using V-HACD [38]. To reduce the amount of
checked pairs, Drake culls distant pairs using a broadphase
algorithm and we set the associated gradients to 0. When
two geometries have exactly 0 signed distance, the gradient
may not be defined since pA − pB = 0. In this case, we use
the previous value of n̂AB , which is initialized randomly.

C. Object Surface Representations

The SDF representation of objects is convenient for rea-
soning about collision and also geometric properties, since
the outward-pointing surface normal at a point p ∈ ∂O is
given by ∇s(p) and principal curvatures can be computed
from the Hessian ∇2s(p). However, supplying the true
object SDF s is non-trivial. Some approaches learn this
representation [15], [30], while most avoid learning by using
the object’s mesh or a point cloud [10], [21], [28]. Since these
representations are all widely used, it is desirable for grasp
synthesis methods to be compatible with any of them.

In the case of a learned or analytical SDF, computing
the requisite gradients can be done via autodifferentiation.
Further, if provided a dense enough point cloud, the Poisson
surface reconstruction algorithm can return a watertight mesh
[39]. Therefore, we focus on the case of meshes.

We assume that there exists a true smooth SDF s and
denote the approximation computed with the object mesh as
s̃. To compute s̃ and ∇s̃, we use the open-source signed
distance query provided by open3d that also computes the
closest point on a mesh to any query point p ∈ R3 [40].
Then, given a closest point p′ to p, the gradient is simply

∇s̃(p) = sign(s̃(p))
p− p′

∥p− p′∥
, (9)

where when s̃(p) = 0, ∇s̃(p) is the mesh normal at p′.
To compute whether a grasp is (robustly) force closure,

we must compute the grasp map G(q), which depends on the
contact frames associated with fingertip positions p ∈ R3 [4].
The normal component of each contact frame is the inward-
pointing surface normal, i.e., n̂(p) = −∇s(p). Therefore,

to differentiate any objective or constraint that depends on
measures of force closure, we require ∇2s(p).

However, when the object is parameterized as a mesh,
the surface is piecewise flat, so ∇2s̃(p) ≡ 0 wherever it is
defined even if ∇2s(p) ̸= 0. Other works present methods of
varying complexity to compute s̃ and ∇s̃ that involve solving
a quadratic program or deep learning, but do not consider the
problem of computing the Hessian of s [28] [18].

Here, we propose a coarse but efficient approximation. Let
p1 = p ∈ R3 be an arbitrary query point. Fix a small constant
δ > 0, randomly select 2 unit vectors denoted d2, d3 ∈ R3,
and define pi = p1+δdi for i = 2, 3. By (9), we have ∇s̃(pi)
for all i = 1, 2, 3. Finally, fix d1 = ∇s(p1).

The directional derivative of ∇s(p) in a direction v is

∇2s(p)[v] = lim
δ→0

(∇s(p+ δv)−∇s(p)) /δ. (10)

Further, for twice-differentiable functions, we must have
∇2s(p)[v] = ∇2s(p)v. Thus, using our perturbation di-
rections di and a finite-difference approximation of the
directional derivatives, yi = (∇s(p1 + δdi) − ∇s(p1))/δ,
we can write a system of equations to estimate ∇2s(p),

Σ
[
d1 d2 d3

]
=

[
y1 y2 y3

]
, (11)

by solving for Σ ∈ R3×3. We note y1 = 0 since ∇s(p) is
unchanging (close to the surface) along ∇s(p) and d1, d2, d3
are linearly independent with probability 1. Σ denotes an
initial estimate for ∇2s(p) that may not be symmetric, so
we simply choose ∇2s̃(p) = (Σ + Σ⊤)/2.

The quality of our estimate ∇2s̃(p) is sensitive to the
choice of δ and the properties of the mesh. Empirically,
we find that setting δ to be roughly 10 times the average
mesh edge length yields accurate enough gradients for grasp
refinement. Using open3d, we find the time to estimate all
of s̃, ∇s̃, and ∇2s̃ is on the order of 0.1ms.

IV. EXPERIMENTS

We describe the high-level experimental setup and defer
a detailed discussion to App. B-E. We use the 7-DOF
Franka Research 3 and 16-DOF 4-fingered Allegro hand.
The system is mounted on a flat tabletop and each target
object is spawned with a fixed initial pose over all trials for
repeatability, since the arm/hand configuration is allowed to
vary arbitrarily.

We evaluate the robustness of FRoGGeR by executing 20
“shaky pickups” per object in simulation using Drake. To
do so, we generate a pick trajectory where the end-effector is
lifted 10cm in 1s and then held for 1.5s. We add sinusoidal
perturbations to this trajectory with amplitude 3mm and
varying frequency in all spatial axes 0.25s after the pick
begins until the end of the simulation. A pick fails if either
(1) the object rotates by more than 30◦ or if the object
deviates from the pick trajectory by more than 7.5cm at any
point; or (2) the total grasp synthesis time exceeds 1 minute.

We remark that our shaking test is more dynamic than
others in the literature (e.g. [17], [31]), which either do not
shake or classify a shake only as a linear movement in space

Fig. 4: Left. A representative pre-shaped grasp q0 from our heuristic sampler. The initial width of the grip is determined by the object’s bounding box.
Right. Example refined grasps q∗ from our experiments. We can produce robust grasps for highly varying objects that are tall, round, small, flat, long, or
otherwise irregular. Top row: sugar box, mustard bottle, soup can, strawberry. Bottom row: pudding box, banana, hammer, large clamp.

with zero gravity. In contrast, we simulate gravity as well as
sustained high-frequency perturbations in all directions.

We compare FRoGGeR’s performance on the pickup task
to a baseline presented by Wu et al., which only enforces
force closure without optimizing for robustness [31].

The controller used in simulation is given by τ =
J⊤
h RWCF

∗
C + (I − J⊤

h (J⊤
h)†)τjoint. F ∗

C is computed by
solving for the optimal contact forces to resist external
wrenches and errors in the object’s pose (e.g., [31]). τjoint is
the concatenation of arm torques tracking the pick trajectory
with hand torques that drive the hand configuration qh
towards the optimized one q∗h. We project τjoint to the null
space of Jh to avoid affecting the fingertip locations.

To obtain initial configurations q0, we use a heuristic sam-
pler that noisily aligns the palm with the axes of the object’s
oriented bounding box with probabilities proportional to the
box side lengths, motivated by observations of preferred
human grasps [41]. We choose a width for the fingertips by
computing the width of the appropriate axis of the bounding
box. The palm is then placed 4cm from the object. To obtain
the configuration variables, we solve an inverse kinematics
(IK) problem as in [31], but we do not enforce collision
constraints or force the fingertips to lie on the object surface.
Thus, we only consider infeasible candidate grasps. To solve
(7), we use the NLopt [42] implementation of SLSQP [43].

Our choice to use a coarse sampling heuristic instead of
a more performant method is intentional, as our goal is to
evaluate FRoGGeR’s robustness to the quality of the initial
guess. We control for the resulting decrease in performance
by evaluating the relative performance of our method versus
the baseline under these conditions.

Thus, we do not evaluate the CVAE sampler from [31].
Further, we found that the quality of CVAE-generated grasps
was not consistent for all objects in our dataset and its
performance was on par with our heuristic on a small set
of test objects. Ultimately, we chose to synthesize 4-finger
grasps to capture the full dexterity of the Allegro hand, which
are incompatible with the 3-finger CVAE sampler.

The only difference between our method and the baseline
is that in (7), FRoGGeR maximizes ℓ∗(q) with constraint

ℓ̄∗(q) ≥ 0.3, while the baseline has no objective and (7c)
is replaced with the bilevel force closure equality constraint
described in [31]. Otherwise, the same IK routines, sampler,
collision geometries, and controller were used.

A. Object Data Processing

We only present results on objects parameterized as
meshes. When supplied with analytical SDFs or well-trained
deep SDFs, our method was generally both fast and perfor-
mant. We use meshes to demonstrate our approach on non-
smooth object representations and to validate the usefulness
of the Hessian approximation from Sec. III-C.

The objects used in our experiments are from a pruned
subset of the YCB dataset [8]. First, we removed all objects
that were too large, small, or thin to reasonably grasp with 4
fingers from a flat table, as well as deformable or multibody
objects. Second, since the YCB meshes are not watertight,
we attempted to reprocess them by densely sampling points
on each mesh and running Poisson reconstruction. Of these,
we removed objects for which we could not produce water-
tight meshes due to poor data quality (e.g. from transparency,
thin walls, etc.). We note that FRoGGeR works even on non-
watertight meshes of adequate quality, but we take this step
to eliminate the effect of poor meshes on our results. In
total, we test on 43 objects belonging to three categories:
spheroids, like fruits and balls; boxes/cylinders, like food
containers, cans, or large cups; and adversarial objects with
irregular geometry, like tools or very flat/long objects.

For simplicity, we set the friction coefficient to be µ = 0.7
for all objects, which is reasonable for the rubbery Allegro
fingertips on mostly plastic objects. We also assumed a
uniform density of 150 kg/m3 (as in [17]) and computed
masses using the volume of the processed meshes. The
optimizer assumed a more conservative friction coefficient
of µ = 0.5 and the controller was provided the mass.

B. Results and Discussion

We report values related to the quality of the grasp (pick
success, ϵ metric value, and ℓ̄∗) as well as values regarding
the runtime of each method in Table I. We find that overall,

category method % converged ↑ % pick success ↑ ϵ (×1e3) ↑ normalized ℓ∗ ↑ time per solve (s) ↓ num. solves ↓ total time (s) ↓
sphere baseline 12.9% (31/240) 83.9% (26/31) 2.7 (1.6, 3.6) 0.32 (0.19, 0.39) 0.67 (0.44, 1.00) 68 (61, 73) 27.2 (13.5, 36.2)

(240 total) FRoGGeR 97.9% (235/240) 95.3% (224/235) 4.9 (4.2, 5.5) 0.67 (0.55, 0.72) 0.31 (0.18, 0.49) 2 (1, 4) 0.57 (0.30, 1.2)
box/cyl baseline 52.8% (169/320) 68.6% (116/169) 2.2 (0.1, 3.8) 0.20 (0.09, 0.36) 0.79 (0.41, 1.29) 42 (13, 53) 13.4 (5.5, 31.1)

(320 total) FRoGGeR 100% (320/320) 81.6% (261/320) 4.8 (3.8, 5.9) 0.58 (0.44, 0.65) 0.15 (0.09, 0.24) 3 (2, 5) 0.87 (0.44, 1.6)
adversarial baseline 61.7% (185/300) 43.8% (81/185) 1.8 (0.6, 2.9) 0.18 (0.08, 0.29) 0.79 (0.47, 1.25) 29 (10, 55) 12.7 (5.8, 24.5)
(300 total) FRoGGeR 100% (300/300) 63.0% (189/300) 4.3 (3.5, 5.1) 0.53 (0.42, 0.63) 0.18 (0.11, 0.30) 3 (2, 9) 1.0 (0.49, 3.3)

overall baseline 44.8% (385/860) 58.0% (223/385) 2.0 (0.8, 3.4) 0.19 (0.09, 0.32) 0.73 (0.44, 1.15) 50 (17, 63) 13.8 (5.8, 29.5)
(860 total) FRoGGeR 99.4% (855/860) 78.8% (674/855) 4.6 (3.7, 5.5) 0.58 (0.45, 0.66) 0.21 (0.12, 0.36) 3 (1, 6) 0.83 (0.39, 1.9)

TABLE I: Simulation results. For each of 43 objects, we try to generate 20 feasible grasps and evaluate them for both methods. In each cell, the top entry
is the baseline and the bottom is FRoGGeR. The better result is bolded. ↑ and ↓ denote whether higher or lower values are better. Statistics are reported
as the median and interquartile range over converged runs and all times are reported in seconds. A run converges if it yields a feasible grasp in under 1
minute. We find that our method almost always quickly converges to a feasible grasp while the baseline succeeds under 45% of the time. Further, over
converged grasps, our method outperforms the baseline on a “shaky pickup” task in every category and by 20 percentage points overall. Our method’s
superior robustness is reflected in its ϵ values, which are about twice as high as the baseline. FRoGGeR’s fast convergence is a result of both solving each
optimization problem faster as well as requiring significantly fewer attempts before finding a feasible grasp. Note that the total time reported also includes
time spent solving IK problems when sampling initial configurations q0 (unreported, since the IK problem solved is the same for both methods).

FRoGGeR outperforms the baseline in terms of pick success
by 20 percentage points and yields ϵ values that are roughly
twice as high. We find that ℓ̄∗ is a noisy but accurate predictor
of grasp success.

We also found that overall, FRoGGeR was ∼16× faster
at generating grasps than the baseline, a result of ∼3×
faster single solve times and ∼15× fewer number of solves
required to produce a feasible grasp. This is consistent with
the observation by Wu et al. that their method struggles to
converge to feasible solutions when q0 is infeasible, which
requires an expensive IK pre-solve [31]. In contrast, FRoG-
GeR retains superior speed and feasibility rate even with a
coarse IK procedure, which suggests that our formulation
is also robust to poor candidate grasps. In particular, only 5
runs (all on one object) timed out using our method, whereas
over half of the runs timed out for the baseline.

One explanation for this gap is that the baseline force
closure equality constraint’s gradient vanishes at force clo-
sure, which yields a constraint geometry that is difficult to
satisfy. Since we do not demand that q0 satisfies (7d), we ob-
served that the optimization often terminated unsuccessfully
satisfying only one of the equality constraints. In contrast,
our constraint (7c) has non-zero gradients even in force
closure, which we conjecture is better-posed numerically, and
in particular, allows FRoGGeR to converge for a larger set
of candidate grasps q0 than the baseline.

We remark that our reported baseline pick success values
are significantly lower than those reported by Wu et al. [31],
which we attribute to adding shaking to the pick trajectory.
When these perturbations were smaller or nonexistent, we
typically observed much higher baseline pick success rates,
which supports our hypothesis that enforcing only non-robust
force closure yields grasps that are brittle in practice.

One of the limitations of our method is that the ϵ metric
often prefers grasps where the fingertips lie on edges or cor-
ners, since these regions are typically farther from the center
of the object (roughly where we place the object frame),
yielding larger moment arms. Moreover, these regions allow
a grasp to direct forces in “non-robust” directions with little
change, drawing solutions to them. This yields unstable
grasps in practice, since small deviations in the positions of
the fingertips produce large changes in the contact conditions,

which commonly occurs in dynamic scenarios.
Edge-seeking behavior was the most common failure mode

of both methods, which is reflected by the poor performance
on many adversarial objects with less low-curvature area on
which to grasp. This behavior was also observed on objects in
the box/cyl category, which explains the worse performance
compared to spheroids. However, failures often occurred for
the baseline even when no fingers were placed on edges.

Finally, we find that the overall performance of both
FRoGGeR and the baseline was highly sensitive to the
sampled initial conditions. For instance, if the initial width of
the fingertips was not guided by object bounding boxes, both
methods suffered in terms of runtime and grasp quality, as
enforcing surface constraints became harder. This motivates
the use of data-driven methods in identifying candidate
grasps that may be synergistic with the refinement process.

V. CONCLUSION AND FUTURE WORK

We presented FRoGGeR, a fast method for generating
robust precision grasps using the min-weight metric ℓ∗, a
simple, almost-everywhere differentiable approximation of
the ϵ metric. We have demonstrated that ℓ∗ is empirically
correlated with the ϵ metric, and validated through simulation
that using ℓ∗ as an optimization objective yields grasps that
are more robust to dynamic perturbations than a baseline that
only enforces a (non-robust) force closure constraint. Further,
we have shown that both the solve time and the feasibility
rate of FRoGGeR are superior to that of the baseline.

In the future, we hope to develop methods to combat edge-
seeking behavior, such as adding curvature regularization
terms to the objective. We also seek to generalize FRoGGeR
to allow non-precision grasps and to allow for a non-
fixed number of contact points. Finally, we hope to explore
better object representations that do not require online mesh
construction or analytical SDFs to be provided beforehand.

REFERENCES

[1] A.T. Miller and P.K. Allen. Graspit! A versatile simulator for robotic
grasping. IEEE Robotics and Automation Magazine, 11(4):110–122,
2004.

[2] C. Borst, M. Fischer, and G. Hirzinger. Grasping the Dice by Dicing
the Grasp. In Proceedings 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
volume 4, pages 3692–3697 vol.3, 2003.

https://ieeexplore.ieee.org/document/1371616
https://ieeexplore.ieee.org/document/1371616
https://ieeexplore.ieee.org/document/1249729
https://ieeexplore.ieee.org/document/1249729

[3] D. G. Kirkpatrick, B. Mishra, and C. K. Yap. Quantitative steinitz’s
theorems with applications to multifingered grasping. In Proceed-
ings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC ’90, page 341–351, New York, NY, USA, 1990.
Association for Computing Machinery.

[4] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings 1992
IEEE International Conference on Robotics and Automation, pages
2290–2295 vol.3, 1992.

[5] Elon Rimon and Joel Burdick. The Mechanics of Robot Grasping.
Cambridge University Press, 2019.

[6] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. Leveraging big
data for grasp planning. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 4304–4311, 2015.

[7] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman,
Ryan Hickman, Krista Reymann, Thomas B. McHugh, and Vincent
Vanhoucke. Google Scanned Objects: A High-Quality Dataset of
3D Scanned Household Items. In 2022 International Conference on
Robotics and Automation (ICRA), pages 2553–2560, 2022.

[8] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter
Abbeel, and Aaron M. Dollar. The YCB Object and Model Set:
Towards Common Benchmarks for Manipulation Research. In 2015
International Conference on Advanced Robotics (ICAR), pages 510–
517, July 2015.

[9] Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian,
Clemens Eppner, Jürgen Leitner, Jeannette Bohg, Antonio Morales,
Tamim Asfour, Danica Kragic, Dieter Fox, and Akansel Cosgun. Deep
Learning Approaches to Grasp Synthesis: A Review, 2022.

[10] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard
Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-Net
2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds
and Analytic Grasp Metrics. ArXiv, abs/1703.09312, 2017.

[11] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kPAM:
KeyPoint Affordances for Category-Level Robotic Manipulation.
arXiv:1903.06684 [cs], October 2019.

[12] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-DOF Grasp-
Net: Variational Grasp Generation for Object Manipulation. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV),
pages 2901–2910, Seoul, Korea (South), October 2019. IEEE.

[13] Ravi Balasubramanian, Ling Xu, Peter D. Brook, Joshua R. Smith,
and Yoky Matsuoka. Human-guided grasp measures improve grasp
robustness on physical robot. In 2010 IEEE International Conference
on Robotics and Automation, pages 2294–2301, 2010.

[14] Dylan Turpin, Liquan Wang, Eric Heiden, Yun-Chun Chen, Miles
Macklin, Stavros Tsogkas, Sven Dickinson, and Animesh Garg.
Grasp’D: Differentiable Contact-Rich Grasp Synthesis for Multi-
Fingered Hands. In Computer Vision – ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
VI, page 201–221, 2022.

[15] Jeong Joon Park, Peter R. Florence, Julian Straub, Richard A. New-
combe, and S. Lovegrove. DeepSDF: Learning Continuous Signed
Distance Functions for Shape Representation. 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
165–174, 2019.

[16] Douglas Morrison, Peter Corke, and J. Leitner. Closing the Loop
for Robotic Grasping: A Real-time, Generative Grasp Synthesis Ap-
proachClosing the Loop for Robotic Grasping: A Real-time, Genera-
tive Grasp Synthesis Approach. ArXiv, abs/1804.05172, 2018.

[17] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. ACRONYM:
A Large-Scale Grasp Dataset Based on Simulation. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages
6222–6227, 2021.

[18] Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu, Puhao Li,
Tengyu Liu, and He Wang. DexGraspNet: A Large-Scale Robotic
Dexterous Grasp Dataset for General Objects Based on Simulation.
ArXiv, abs/2210.02697, 2022.

[19] Máximo A. Roa and Raúl Suárez. Grasp quality measures: review and
performance. Autonomous Robots, 38:65 – 88, 2014.

[20] Umit Rusen Aktas, Chaoyi Zhao, Marek Kopicki, Ales Leonardis, and
Jeremy L. Wyatt. Deep Dexterous Grasping of Novel Objects from a
Single View. Int. J. Humanoid Robotics, 19:2250011:1–2250011:30,
2019.

[21] Lin Shao, Fábio Ferreira, Mikael Jorda, Varun Nambiar, Jianlan Luo,
Eugen Solowjow, Juan Aparicio Ojea, Oussama Khatib, and Jeannette
Bohg. UniGrasp: Learning a Unified Model to Grasp with N-Fingered
Robotic Hands. ArXiv, abs/1910.10900, 2019.

[22] Qingkai Lu, Mark Van der Merwe, Balakumar Sundaralingam, and
Tucker Hermans. Multifingered Grasp Planning via Inference in Deep
Neural Networks: Outperforming Sampling by Learning Differentiable
Models. IEEE Robotics and Automation Magazine, 27(2):55–65, 2020.

[23] Zhenjia Xu, Beichun Qi, Shubham Agrawal, and Shuran Song. Ada-
Grasp: Learning an Adaptive Gripper-Aware Grasping Policy. 2021
IEEE International Conference on Robotics and Automation (ICRA),
pages 4620–4626, 2020.

[24] Tengyu Liu, Zeyu Liu, Ziyuan Jiao, Yixin Zhu, and Song-Chun Zhu.
Synthesizing Diverse and Physically Stable Grasps With Arbitrary
Hand Structures Using Differentiable Force Closure Estimator. IEEE
Robotics and Automation Letters, 7:470–477, 2021.

[25] Min Liu, Zherong Pan, Kai Xu, and Dinesh Manocha. New Formula-
tion of Mixed-Integer Conic Programming for Globally Optimal Grasp
Planning. IEEE Robotics and Automation Letters, 5:4663–4670, 2019.

[26] Xiangyang Zhu and Jun Wang. Synthesis of force-closure grasps on
3-D objects based on the Q distance. IEEE Trans. Robotics Autom.,
19:669–679, 2003.

[27] Hongkai Dai, Anirudha Majumdar, and Russ Tedrake. Synthesis and
Optimization of Force Closure Grasps via Sequential Semidefinite
Programming. In International Symposium of Robotics Research,
2015.

[28] Min Liu, Zherong Pan, Kai Xu, Kanishka Ganguly, and Dinesh
Manocha. Deep Differentiable Grasp Planner for High-DOF Grippers.
ArXiv, abs/2002.01530, 2020.

[29] Qingkai Lu, Kautilya Chenna, Balakumar Sundaralingam, and Tucker
Hermans. Planning Multi-Fingered Grasps as Probabilistic Inference
in a Learned Deep Network. In International Symposium of Robotics
Research, 2018.

[30] Mark Van der Merwe, Qingkai Lu, Balakumar Sundaralingam, Martin
Matak, and Tucker Hermans. Learning Continuous 3D Reconstruc-
tions for Geometrically Aware Grasping. 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 11516–11522,
2019.

[31] Albert Wu, Michelle Guo, and C. Karen Liu. Learning Diverse and
Physically Feasible Dexterous Grasps with Generative Model and
Bilevel Optimization. ArXiv, abs/2207.00195, 2022.

[32] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

[33] Rafaela Filippozzi, Douglas S. Gonçalves, and Luiz-Rafael Santos.
First-order methods for the convex hull membership problem. Euro-
pean Journal of Operational Research, 306(1):17–33, 2023.

[34] Arne Brøndsted. An Introduction to Convex Polytopes. Graduate Texts
in Mathematics. Springer-Verlag, New York, 1982.

[35] Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimiza-
tion as a Layer in Neural Networks. In International Conference on
Machine Learning, 2017.

[36] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter.
Differentiable Convex Optimization Layers. In Advances in Neural
Information Processing Systems, 2019.

[37] Russ Tedrake and the Drake Development Team. Drake: Model-based
design and verification for robotics, 2019.

[38] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach
for 3D mesh approximate convex decomposition. In 2009 16th IEEE
International Conference on Image Processing (ICIP), pages 3501–
3504, 2009.

[39] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson
Surface Reconstruction. In Alla Sheffer and Konrad Polthier, editors,
Symposium on Geometry Processing. The Eurographics Association,
2006.

[40] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A Modern
Library for 3D Data Processing. arXiv:1801.09847, 2018.

[41] Ravi Balasubramanian, Ling Xu, Peter D. Brook, Joshua R. Smith,
and Yoky Matsuoka. Human-guided grasp measures improve grasp
robustness on physical robot. In 2010 IEEE International Conference
on Robotics and Automation, pages 2294–2301, 2010.

[42] Steven G. Johnson. The NLopt nonlinear-optimization package, 2011.
[43] Dieter Kraft. A software package for sequential quadratic program-

ming. Forschungsbericht Deutsche Forschungs und Versuchsanstalt
fur Luft und Raumfahrt, 1988.

https://ieeexplore.ieee.org/document/219918
https://ieeexplore.ieee.org/document/7139793
https://ieeexplore.ieee.org/document/7139793
https://arxiv.org/abs/2204.11918
https://arxiv.org/abs/2204.11918
https://ieeexplore.ieee.org/document/7251504
https://ieeexplore.ieee.org/document/7251504
https://arxiv.org/abs/2207.02556
https://arxiv.org/abs/2207.02556
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1903.06684
https://arxiv.org/abs/1903.06684
https://openaccess.thecvf.com/content_ICCV_2019/papers/Mousavian_6-DOF_GraspNet_Variational_Grasp_Generation_for_Object_Manipulation_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Mousavian_6-DOF_GraspNet_Variational_Grasp_Generation_for_Object_Manipulation_ICCV_2019_paper.pdf
https://ieeexplore.ieee.org/document/5509855
https://ieeexplore.ieee.org/document/5509855
https://arxiv.org/abs/2208.12250
https://arxiv.org/abs/2208.12250
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1804.05172
https://arxiv.org/abs/1804.05172
https://arxiv.org/abs/1804.05172
https://arxiv.org/abs/2011.09584
https://arxiv.org/abs/2011.09584
https://arxiv.org/abs/2210.02697
https://arxiv.org/abs/2210.02697
https://link.springer.com/article/10.1007/s10514-014-9402-3
https://link.springer.com/article/10.1007/s10514-014-9402-3
https://arxiv.org/abs/1908.04293
https://arxiv.org/abs/1908.04293
https://arxiv.org/abs/1910.10900
https://arxiv.org/abs/1910.10900
https://arxiv.org/abs/2001.09242
https://arxiv.org/abs/2001.09242
https://arxiv.org/abs/2001.09242
https://arxiv.org/abs/2011.14206
https://arxiv.org/abs/2011.14206
https://arxiv.org/abs/2104.09194
https://arxiv.org/abs/2104.09194
https://arxiv.org/abs/1909.05430
https://arxiv.org/abs/1909.05430
https://arxiv.org/abs/1909.05430
https://ieeexplore.ieee.org/abstract/document/1220716
https://ieeexplore.ieee.org/abstract/document/1220716
https://link.springer.com/chapter/10.1007/978-3-319-51532-8_18
https://link.springer.com/chapter/10.1007/978-3-319-51532-8_18
https://link.springer.com/chapter/10.1007/978-3-319-51532-8_18
https://arxiv.org/abs/2002.01530
https://arxiv.org/abs/1804.03289
https://arxiv.org/abs/1804.03289
https://arxiv.org/abs/1910.00983
https://arxiv.org/abs/1910.00983
https://arxiv.org/abs/2207.00195
https://arxiv.org/abs/2207.00195
https://arxiv.org/abs/2207.00195
https://www.sciencedirect.com/science/article/pii/S037722172200683X
https://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1703.00443
https://papers.nips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://drake.mit.edu
https://drake.mit.edu
https://ieeexplore.ieee.org/document/5414068
https://ieeexplore.ieee.org/document/5414068
https://diglib.eg.org/handle/10.2312/SGP.SGP06.061-070
https://diglib.eg.org/handle/10.2312/SGP.SGP06.061-070
https://arxiv.org/abs/1801.09847
https://arxiv.org/abs/1801.09847
https://ieeexplore.ieee.org/document/5509855
https://ieeexplore.ieee.org/document/5509855
http://ab-initio.mit.edu/nlopt
http://degenerateconic.com/uploads/2018/03/DFVLR_FB_88_28.pdf
http://degenerateconic.com/uploads/2018/03/DFVLR_FB_88_28.pdf

APPENDIX

This appendix provides the proof of Proposition 1
as well as numerous implementation details. For the
most fine-grained explanation of these details, we re-
fer the reader to our open-source implementation at
github.com/alberthli/frogger.

A. Proof of Proposition 1

By direct computation, we have

D(x,λ,ν)H =

 0 A⊤
in A⊤

eq

diag(λ∗)Ain diag(Ainx
∗) 0

Aeq 0 0

 . (12)

For brevity, let Ω := D(x,λ,ν)H and unless otherwise stated,
let functions be evaluated at the optimal primal/dual solution
(x∗, λ∗, ν∗). Let

Ω :=

[
A B
C D

]
, (13)

where for convenience we denote

A = 0(m+1)×(m+1), B =
[
A⊤

in A⊤
eq

]
,

C =

[
diag(λ∗)Ain

Aeq

]
, D =

[
diag(Ainx

∗) 0m×7

07×m 07×7

]
.

Proof. We have

Ω−1 = (Ω⊤Ω)−1Ω⊤

=

[
C⊤C C⊤D
D⊤C B⊤B +D⊤D

]−1 [
0 C⊤

B⊤ D⊤

]
.

(14)

Observe that

C⊤D =
[
A⊤

in diag(λ
∗) A⊤

eq

] [diag(Ainx
∗) 0

0 0

]
=

[
A⊤

in diag(λ
∗) diag(Ainx

∗) 0(m+1)×7

]
= 0,

(15)

where the last equality follows because

diag(λ∗) diag(Ainx
∗) = diag(λ∗ ⊙ (Ainx

∗)) = 0 (16)

by complementary slackness. Letting P = C⊤C and R =
B⊤B +D⊤D,

Ω−1 =

[
P−1 0
0 R−1

] [
0 C⊤

B⊤ D⊤

]
=

[
0 P−1C⊤

R−1B⊤ R−1D⊤

]
,

(17)

where we note that P−1C⊤ = C†. By substituting (17) into
(5), the result immediately follows.

We remark that if ℓ∗ is locally Lipschitz with respect
to the constraint matrix parameters Aeq and Ain, it is
differentiable everywhere but a set of measure 0 by a theorem
of Rademacher (see [44] for discussion). Further, the gradient
is defined when (2) has unique primal/dual optima and in this
case,

(
D(x,λ,ν)H

)−1
is defined so ∇ℓ∗(q) is computable [44,

Prop. 4.1]. The Lipschitz condition can always be satisfied
by removing degenerate constraints, so we assume it.

B. Controller Implementation Details

This section explains the structure of the controller used
for the pickup task. Recall that our controller is of the form

τ = J⊤
h RWCF

∗
C + (I − J⊤

h (J⊤
h)†)τjoint. (18)

We first explain computation of τjoint ∈ Rn. We have that

τjoint = τgrav + τtrack, (19)

where the first term is a gravity compensation torque com-
puted using partial inverse dynamics (i.e., ignoring the
inertial/coriolis dynamical terms and assuming quasi-static
operation) and the second term is a tracking term with
independent components for the arm and the hand. We have

τtrack =

[
τarm
τhand

]
. (20)

The arm tracking torques are computed as

τarm = −Kp,arm(qa − qa,des)−Kd,arm(q̇a − q̇a,des), (21)

with the gains set to

Kp,arm = 500I,

Kd,arm = diag
([
1, 1, 1, 1, 0.1, 0.1, 0.1

])
.

(22)

The desired values qa,des and q̇a,des are computed via a
differential inverse kinematics controller implemented in
Drake that converts a desired end-effector pose trajectory
specified in Cartesian space to joint angles and velocities that
can be tracked. We defer those details to [45, Ch. 3.10].

The hand tracking torques are simply given by the follow-
ing proportional controller:

τhand = −kp,hand(qh − q∗h), (23)

where q∗h is the component of the refined configuration
q∗ corresponding to the hand states and kp,hand = 5. We
project all of these torques via the left multiplication of
(I − J⊤

h (J⊤
h)†) to the null space of Jh, which ensures that

applying them does not change the contact positions between
the hand and object. We note that this projection does not
affect the arm torques at all.

We now explain the computation of the optimal contact
forces F ∗

C , which is formulated as the solution to the fol-
lowing quadratic program:

minimize
FC

∥∥GFC −
(
−Owdes

)∥∥2
2

subject to ΛiFC,i ≤ 0, i = 1, . . . , nc

Fn
C,i ≥ Fn

min, i = 1, . . . , nc

τlb − τjoint,h ≤ J⊤
i RWCFC,i, i = 1, . . . , nc

J⊤
i RWCFC,i ≤ τub − τjoint,h, i = 1, . . . , nc.

We note that FC,i ∈ R3 is the ith contact force in the
concatenation of all contact forces FC .

The QP objective produces applied wrenches on the object
as close as possible to counteracting some desired wrench
whose force and torque components are expressed in the

https://github.com/alberthli/frogger

object frame. The first constraint represents the pyramidal
friction cone constraints (e.g., [31]). As in [31], the second
enforces a minimum normal force which we specify as
Fn

min = 1.0 and we additionally specify that if the object
weighs under 0.01kg, we set Fn

min = 0.25. The final two
constraints enforce torque limits by ensuring the total applied
joint torques from both controller terms in (18) respect the
desired limits.

The desired external wrench is computed as follows:

Owdes = ROW

(
Wwgrav +

Wwerr
)
, (24)

where Wwgrav is the gravitational wrench expressed in the
world frame. Wwerr is an error wrench computed from the
measured error in the object’s desired pose. Suppose the
desired object pose in the world frame is specified as the
tuple (pdes, Rdes) where we suppress the frame notation for
brevity. We convert errors in the pose into a wrench using
the formulation provided in [46]:

Wwerr =

[
−kp,err(p− pdes)− kd,errṗ

−kR,erreR − kω,errω

]
, (25)

where

eR =

(
1

2

(
R⊤

desR−R⊤Rdes
)∨)

, (26)

(·)∨ is the map sending elements of the Lie algebra so(3)
to R3 (see [46]), and ω is the angular velocity of the object
computed using numerical differentiation of its orientation.
We choose the gains

kp,err = 50,

kd,err = 5,

kR,err = 50,

kω,err = 5.

(27)

C. Heuristic Sampler Implementation Details

We first fix a convention for the axes of the palm of the
hand. Let the x-axis be the outward palm normal and the
z-axis be the corresponding axis that points in the direction
of the fingers of the hand (for non-anthropomorphic hands,
this choice may be arbitrary). The y-axis is then chosen
consistently with the right hand rule.

The heuristic sampler consists of the following steps: (1)
from the oriented bounding box of the object (which can
be computed approximately very quickly using open3d),
choose an axis with which to align the palm’s y-axis up to
sign and use the width of this box edge to fix an initial
guess for the separation of the hand’s fingers; (2) of the two
remaining axes, choose one with which to align the palm’s
x-axis; (3) add rotational noise drawn from the von Mises
distribution on the 2-sphere to randomly perturb the palm
frame; (4) compute a desired location of the palm frame
with respect to the object by placing it roughly 4cm from the
surface of the object, which is approximated as its bounding
box; (5) using the constraints on the palm frame, solve an
inverse kinematics problem to recover q0.

The probability of choosing a given bounding box axis for
alignment is proportional to its length. For instance, if the
bounding box has side lengths a, b, c, then the probability of
choosing the first axis is a/(a+b+c). For very short objects,
we only accepted a palm frame whose x-axis approached the
object from above to avoid heavy collisions with the tabletop.

D. Additional Dataset Processing Details

Out of non-excluded objects, we ranked the quality of the
provided data in order of (i) Google 16k mesh, (ii) Poisson
reconstruction, and (iii) TSDF file. For instance, if the 16k
mesh was available, we would always prefer to use that as the
initial mesh for processing before the Poisson reconstructed
mesh. The excluded objects and the exact reasons for their
exclusion are listed in Table II.

Object Reason for Exclusion
019_pitcher_base too big
022_windex_bottle poor model: transparency
023_wine_glass poor model: transparency

024_bowl thin walls
025_mug thin walls

026_sponge deformable, too flat
028_skillet_lid poor model: transparency

029_plate thin walls
030_fork too flat
031_spoon too flat
032_knife too flat
033_spatula too big

035_power_drill too big
037_scissors too flat
038_padlock no file
039_key no file

040_large_marker too small
041_small_marker too small

042_adjustable_wrench too flat
046_plastic_bolt no file
047_plastic_nut no file
049_small_clamp too small
050_medium_clamp too small

053_mini_soccer_ball too big
059_chain multibody
076_timer lost features, not interesting

TABLE II: YCB Exclusions.
While flat utensils are generally too flat to be picked up

by an Allegro hand from a flat table, we did replace the
excluded mug with a teacup from the ShapenetSem dataset
[47] with ID 23fb2a2231263e261a9ac99425d3b306
and scaled by a factor of 0.00038748778493825193.
This cup was added to the adversarial category.

E. Other Experimental Parameters

For all experiments, we used a 4-sided pyramidal approx-
imation of the friction cone. We enforced a minimum safety
margin of 1mm between every collision geometry pair that
was not a fingertip/object pair. For fingertip/object pairs, we
allowed interpenetration up to 3mm.

We selected a specific desired point of contact on each
fingertip such that the forward kinematics were fixed. This
point was located on each fingertip at an angle of 60◦ tilted
towards the palm, measured from the very tip of each finger.
Again, we remark that we can relax the assumption that we
use a fixed contact point on the fingertip by parameterizing
the surface of each fingertip using an SDF and applying a

similar constraint to (7e) between the fingertip geometries
and the objects, with dj = 0. For simplicity, we instead fix
this contact point.

We supplied the following constraint tolerances to the
optimization solver:

Constraint Tolerance
joint 1e-2

surface contact 5e-4
collision 1e-3

force closure 1e-5

TABLE III: Constraint Tolerances.
We note that the force closure constraint refers to the

robustness constraint for our method and the QP equality
constraint for the baseline. In the original implementation
of the method of [31] (obtained through private correspon-
dence), the authors used a tolerance of 1e-7. In practice, we
had to loosen this slightly to obtain a reasonable feasibility
rate for their method.

Finally, we use the default rigid body contact model
implemented in Drake for all of our simulations, the details
of which we defer to the software documentation [37].

F. Acknowledgments

We thank Victor Dorobantu for useful discussions in-
volving our proposed Hessian approximation. We thank
Ivan D. J. Rodriguez for help with setting up experiments.
We thank Wu et al. for their thoughtful correspondence
concerning their work. We thank Philipp Wu for constructive
feedback and comments. Finally, we thank all developers and
maintainers of the open-source software that made this work
possible (not cited in the main text but used either directly
or indirectly: [48], [49], [50], [51], [52]).

REFERENCES

[44] Daniel De Wolf and Yves Smeers. Generalized derivatives of the
optimal value of a linear program with respect to matrix coefficients.
European Journal of Operational Research, 291(2):491–496, 2021.

[45] Russ Tedrake. ”Robotic Manipulation”. 2022.
[46] Taeyoung Lee, Melvin Leok, and N. Harris McClamroch. Geometric

tracking control of a quadrotor uav on se(3). In 49th IEEE Conference
on Decision and Control (CDC), pages 5420–5425, 2010.

[47] M. Savva, A. X. Chang, and P. Hanrahan. Semantically-enriched 3d
models for common-sense knowledge. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages
24–31, Los Alamitos, CA, USA, jun 2015. IEEE Computer Society.

[48] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James John-
son, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke,
Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:
composable transformations of Python+NumPy programs, 2018.

[49] Dawson-Haggerty et al. trimesh, 2019.
[50] QuantEcon Organization. The QuantEcon package., 2023.
[51] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-

based python jit compiler. In Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC, pages 1–6, 2015.

[52] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose
library for collision and proximity queries. In 2012 IEEE International
Conference on Robotics and Automation, pages 3859–3866, 2012.

https://www.sciencedirect.com/science/article/pii/S0377221719309312
https://www.sciencedirect.com/science/article/pii/S0377221719309312
https://manipulation.mit.edu/index.html
https://ieeexplore.ieee.org/document/5717652
https://ieeexplore.ieee.org/document/5717652
https://www.computer.org/csdl/proceedings-article/cvprw/2015/07301289/12OmNxFsmtQ
https://www.computer.org/csdl/proceedings-article/cvprw/2015/07301289/12OmNxFsmtQ
https://jax.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest/index.html
https://github.com/mikedh/trimesh
https://github.com/QuantEcon/QuantEcon.py
https://numba.pydata.org/
https://numba.pydata.org/
https://ieeexplore.ieee.org/document/6225337
https://ieeexplore.ieee.org/document/6225337

	Introduction
	Contributions
	Related Work
	Preliminaries

	The Min-Weight Grasp Metric
	The Min-Weight Metric and its Properties
	Computing Dl*(q) with Differentiable Optimization

	The FRoGGeR Formulation
	The Grasp Refinement Problem
	Gradients of the Constraint Functions
	Object Surface Representations

	Experiments
	Object Data Processing
	Results and Discussion

	Conclusion and Future Work
	References
	Appendix
	Proof of Proposition 1
	Controller Implementation Details
	Heuristic Sampler Implementation Details
	Additional Dataset Processing Details
	Other Experimental Parameters
	Acknowledgments

	References

