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Abstract—Input-to-State Stability (ISS) is fundamental in
mathematically quantifying how stability degrades in the pres-
ence of bounded disturbances. If a system is ISS, its trajectories
will remain bounded, and will converge to a neighborhood
of an equilibrium of the undisturbed system. This graceful
degradation of stability in the presence of disturbances describes
a variety of real-world control implementations. Despite its
utility, this property requires the disturbance to be bounded
and provides invariance and stability guarantees only with
respect to this worst-case bound. In this work, we introduce
the concept of “ISS in probability (ISSp)” which generalizes
ISS to discrete-time systems subject to unbounded stochastic
disturbances. Using tools from martingale theory, we provide
Lyapunov conditions for a system to be exponentially ISSp,
and connect ISSp to stochastic stability conditions found in
literature. We exemplify the utility of this method through its
application to a bipedal robot confronted with step heights
sampled from a truncated Gaussian distribution.

I. INTRODUCTION

Control systems operating in practice are nearly always
affected by disturbances, be they noise, modelling error,
uncertain state estimates, or environmental interactions. This
motivates the design of controllers which are robust to
these uncertainties. Input-to-state stability (ISS) [1], [2] is
a useful heuristic for the robustness of a control system. If
a system is ISS, then, loosely, when the system is subjected
to bounded disturbances, the system state will converge to
some ball whose radius scales with the maximum disturbance
norm; in the presence of zero disturbances, the system
is asymptotically stable. ISS can be interpreted as guar-
anteeing the “graceful degredation” of asymptotic stability
under bounded disturbances; bounded disturbance inputs still
produce bounded state trajectories, and asymptotic stability
is recovered as the input magnitude approaches zero.

However, as a robustness property, ISS suffers some draw-
backs, particularly when reasoning about systems subject
to stochastic disturbances. The central issue is that ISS
reasons only about bounded disturbances, i.e., those whose
norm is upper-bounded. However, many noise sources are
more naturally modeled as continuous, unbounded random
variables (e.g., systems subject to additive Gaussian noise);
ISS-based tools cannot handle such cases. Further, the guar-
antees provided by ISS depend on the worst-case disturbance
magnitude and are thus often highly conservative.

To remedy these limitations, in this paper we introduce a
generalization of the ISS property for discrete-time systems
subject to unbounded stochastic disturbances: input-to-state
stability in probability (ISSp). Intuitively, we say a system is
ISSp if the typical ISS condition can hold with a probability
arbitrarily close to one for an arbitrary (but finite) horizon.
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Fig. 1: This paper introduces input-to-state stability in probability (ISSp),
which generalizes input-to-state stability (ISS) to systems with unbounded
disturbances. We use this framework to study a seven-link walker traversing
stochastic terrain. While ISSp only provides probabilistic guarantees, we
find our framework yields more reasonable estimates for the tolerable set
of step heights. (Top): ISS-based guarantees must hold for any (bounded)
disturbance signal; even for worst-case terrain (e.g., stairs) the walker must
be able to remain stable. (Bottom): ISSp reasons instead about how systems
behave over finite horizons. While the stochastic step heights (shown as
gradients) can sometimes be large, their distribution is concentrated near
zero, and thus the walker has a high probability of remaining upright.

Using tools from martingale theory, we provide Lyapunov
conditions for the exponential form of ISSp. We also ex-
plore connections between ISS, ISSp, and more traditional
stability notions for stochastic systems. We conclude with
simulation studies of ISSp systems subject to unbounded
disturbances, including a double-integrator subject to additive
Gaussian noise and a bipedal robot walking on uncertain
terrain as illustrated in Fig. 1. In particular, we show that
our ISSp-based exit probability bound is indeed conservative
for all examples, and show that we can provide non-trivial
probabilistic stability guarantees for the biped over a larger
disturbance set than the worst-case ISS bound [3].

There has been a large body of work on ISS. Beginning
with the seminal papers by Sontag [2], [4] for continuous time
and the extension of these results to discrete time [5], ISS
has found utility in the fields of control theory [6] robotics
[7], and of special note to this paper, robotic walking [8],
[9], [10]. This paper leverages results on martingale theory
[11] to extend (discrete-time) ISS to stochastic systems. In
particular, the stochastic notions presented in this paper are
similar to the set-invariance notions in [12], [13], but differ
in that they add a notion of stochastic stability to reflect the
convergence present in systems that are ISS. Theoretically,
this work uses similar tools to those presented in [14], which
uses a similar supermartingale to bound the finite-time exit
probability of a system from a particular set. However, in
this work, we provide a novel “ISS-like” interpretation of this
supermartingale, and make explicit connections between the
concepts of ISS and other stochastic stability notions found
in literature such as variable drift [15], recurrence [16], and
boundedness of trajectories in probability [12].



II. BACKGROUND

Consider a discrete-time autonomous system,

xk+1 = f(xk,dk) (1)

with k ∈ N≥0, state xk ∈ X ⊆ Rn, equilibrium point
(x∗,d∗) = (0,0), random disturbance dk ∈ Rd, and
continuous dynamics f : X × Rd → Rn. We assume each
disturbance dk

i.i.d.∼ D from some disturbance distribution D.

A. Input-to-State Stability for Deterministic Systems

If the disturbance distribution for system (1) is bounded,
then we can use the concept of Input-to-State Stability (ISS)
to reason about the boundedness and convergence of the
system’s trajectories.

Definition 1 (Input-to-State Stability [5]). The system (1) is
input-to-state stable (ISS) if there exist functions1 β ∈ KL
and γ ∈ K such that, for each deterministic disturbance input
dk ∈ Rm and each x0 ∈ Rn, it holds that

∥xk∥ ≤ β(∥x0∥, k) + γ

(
sup

k∈N≥0

∥dk∥
)

(ISS)

for each k ∈ N≥0 and some p ≥ 1.

Intuitively, the bound on the state trajectory is a function of
a sequence which converges to zero in time, β(∥x0∥, k) and
a term which grows with respect to the disturbance bound,
γ
(
supk∈N≥0

∥dk∥
)

. If ∥dk∥ = 0 for all k, then ISS systems
are asymptotically stable. Note that a similar inequality
regarding an essentially bounded disturbance distribution D:

∥xk∥ ≤ β(∥x0∥, k) + γ (ess sup∥D∥) , (2)

can be employed to achieve ISS almost surely (Corollary 1)
where ess sup is the essential supremum of the distribution
D, also written as the L∞-norm of D.

We now introduce ISS-Lyapunov functions as tools for
verifying a system’s ISS property.

Definition 2 (ISS-Lyapunov Function [5]). A continuous
function V : Rn → R≥0 is an ISS Lyapunov function for
(1) if there exist κ1, κ2, κ3 ∈ K∞ and κ4 ∈ K such that:

κ1(∥x∥) ≤ V (x) ≤ κ2(∥x∥) (3)
V (f(x,d))− V (x) ≤ −κ3(∥x∥) + κ4(∥d∥) (4)

for all x ∈ Rn and all d ∈ Rd. Additionally, V is an
exponential-ISS (E-ISS) Lyapunov function if there exist
constants a, b, c > 0 and α ∈ (0, 1) such that κ1(r) =
arc, κ2(r) = brc, κ3(r) = αrc,

The existence of an ISS-Lyapunov function can now be
immediately used to verify that the system is ISS.

Theorem 1 ([5]). If there exists an ISS Lyapunov Function
for system (1), then system (1) is ISS.

1A continuous function γ : [0, a) → [0,∞) for a > 0 is said to belong
to class K (γ ∈ K) if it is strictly monotonically increasing and γ(0) = 0.
If additionally a = ∞ and γ(r) → ∞ as r → ∞ then γ belongs to K∞.
A continuous function β : [0, a) × [0,∞) → [0,∞) is said to belong to
class KL if for each fixed s ≥ 0 the function β(·, s) is class K and for
each r ≥ 0 the function β(r, ·) is decreasing and β(r, s) → 0 as s → ∞.

B. Stochastic Preliminaries: Lp spaces and Martingales
Here we provide a brief discussion of random variables,

martingales, and other tools that we will use to generalize
ISS to the case of unbounded, stochastic disturbances. We
will present this material at a level necessary to communicate
these concepts clearly and accessibly. We refer readers to [17]
for a precise measure-theoretic presentation of these ideas.

In this paper we consider disturbance signals which are
sequences of random variables. A continuous random vari-
able y sampled from a distribution Y (denoted y ∼ Y) is a
quantity that takes on values in Ry according to a probability
density p(y) ≥ 0, with P{y ∈ A} ≜

∫
A
p(υ)dυ. By

definition
∫
Ry p(υ)dυ = 1 and the expectation of a random

variable is given by E [y] ≜
∫
Ry υp(υ)dυ.

We now introduce Lp spaces of random variables.

Definition 3 (Lp Space [18]). A random variable y ∼ Y
belongs to Lp (denoted as y ∈ Lp), for p > 0, if

∥y∥Lp ≜ E [∥x∥p]
1
p < ∞. (5)

We call ∥·∥Lp the p-norm of a random variable, which is finite
for any random variable in Lp. Intuitively, for 0 < p ≤ q,
Lq ⊆ Lp [18, Thm. 8.2] since random variables in Lq have
tails that decay faster than those in Lp; additionally, L∞ is
the smallest Lp space and only contains random variables that
are essentially bounded. Note that any norm ∥·∥ appearing
without a subscript defines a typical norm on Rn.

We can also reason about a random variable’s conditional
probability, i.e., its distribution given that another random
variable has taken on a particular value. For two random
variables X,Y the density of X given Y = y is given by

p(x | y) = p(x, y)

p(y)

where p(x, y) is the joint probability density of X,Y . The
conditional expectation of X given Y = y is E [X | Y ] .

The key tool used to reason about Lypaunov functions for
our probabilisitc notion of ISS is a nonnegative supermartin-
gale, a specific type of expectation-governed random process:

Definition 4. Let xk be a sequence of random variables that
take values in Rn, W : X × N≥0 → R, and suppose that
W (xk, k) ∈ L1 for k ∈ N≥0. The process Wk ≜ W (xk, k)
is a supermartingale if:

E[Wk+1 | x0:k] ≤ Wk almost surely for all k ∈ N≥0, (6)

where x0:k indicates the random variables {x0,x1, . . . ,xk}.
If, additionally, Wk ≥ 0 for all k ∈ N≥0, Wk is a nonnegative
supermartingale. If the process is non-decreasing in expecta-
tion, the process Wk is a submartingale. If the inequality (6)
holds with equality, the process Wk is a martingale.

An important result from martingale theory that we will
use is Ville’s inequality, which bounds the probability that a
nonnegative supermartingale rises above a certain value:

Theorem 2 (Ville’s Inequality [19]). Let Wk be a nonnega-
tive supermartingale. Then for all λ ∈ R>0,

P

{
sup

k∈N≥0

Wk > λ

}
≤ E[W0]

λ
. (7)



Intuitively, Ville’s inequality can be compared with
Markov’s inequality for nonnegative random variables; since
the process Wk is nonincreasing in expectation, Ville’s in-
equality allows us to reason about the probability the process
instead reaches some value above λ.

III. STABILITY OF STOCHASTIC DISCRETE-TIME
SYSTEMS

Traditional notions of stability may not necessarily apply
to stochastic systems. For example, asymptotic stability to a
point or forward invariance of a bounded set may be impos-
sible in the presence of unbounded, stochastic disturbances.
Thus more nuanced notions of stability are required [20]. In
this section we provide an abridged discussion of existing
stability notions for stochastic systems. Notably, we discuss
recurrence, boundedness of trajectories in probability and
input-to-state stability for distributions with bounded support.

A. Reccurence
Recurrence is an important notion of stability used in the

analysis of Markov chains [16]. A bounded set A ⊂ X is
recurrent if trajectories enter A in finite time and visit A
infinitely often with probability 1 for all initial states x0 ∈ X .

Definition 5 (Recurrence). For some bounded set A ⊂ X let
the hitting time τA(x) ≜ inf{k ∈ N≥0 s.t. xk ∈ A, x0 = x}.
A set A is recurrent if for every x ∈ X , P{τA(x) < ∞} = 1.
We say a system (1) is recurrent if there exists a recurrent
set A.

Recurrence relates to the notion of stability for deterministic
systems where trajectories remain within a set for all time,
a property which is guaranteed for ISS systems. We refer
the reader to [16] for a more thorough treatment of Markov
chain stability, recurrence, and ergodic theory.

B. Boundedness in Probability
Another notion of stability for stochastic systems is the

probability that the state remains in a bounded region. Since
it is often impossible to keep trajectories of (1) bounded for
all time [12], it is common to discuss these probabilities over
some finite horizon k ∈ {0, . . . ,K} for some K ∈ N≥0.

Definition 6 (Bounded in Probability). The system (1) is
bounded in probability for some K ∈ N≥0 if there exists an
M > 0 and ϵ ∈ (0, 1) such that

P
{
max
k≤K

∥xk∥ ≤ M

}
≥ 1− ϵ. (8)

This notion of stability is central to Harold Kushner’s work
on on stochastic stability [11] which we draw on for this
paper, and which formed the basis for recent martingale-
based approaches to finite-time stability [12] and safety [13],
[21], [14] for systems with unbounded uncertainty. This
relates directly to the forward invariant region guaranteed to
exist around the equilibrium point of ISS systems.

C. ISS for Bounded Disturbance Distributions
If the disturbance distribution D for system (1) is only sup-

ported on a bounded set, then the essential supremum ∥D∥L∞

is well defined; thus if a system satisfies the ISS condition (2),
it is said to be stable in the ISS sense. Several authors have

worked to extend ISS to the setting of unbounded stochastic
disturbances. [22] proposed an ISS condition for continuous-
time systems with unbounded disturbances, but required the
disturbance magnitude to be upper bounded by a class-K
of the state norm (thus, the disturbance vanishes at the
equilibrium, a common but restrictive assumption). [23], [24]
also study stochastic variants of ISS, but only require that the
(ISS) condition hold for the expected trajectory (which does
not guarantee boundedness of any trajectories).

IV. INPUT-TO-STATE STABILITY FOR UNBOUNDED
RANDOM DISTURBANCES

In this paper, we seek to generalize the notion of input-
to-state stability to systems that are subject to unbounded
random disturbances. Specifically, two issues arise when
the support of D is unbounded: (i) the essential supremum
∥D∥L∞ may not be well defined, rendering the ISS condition
inapplicable, and (ii) the probability that xk remains in any
bounded set for all k ∈ N is zero in general.

This second point is somewhat non-intuitive; however,
consider a system with additive Gaussian noise, xk+1 =
f̂(xk) + dk, with dk ∼ N (µ,Σ) for some µ ∈ Rn and
Σ = ΣT > 0. Then, since the tails of d are unbounded,
for any B > 0, P {∥d∥ > 2B} = ϵ > 0. This means, with
probability ϵ, ∥f(x,d)∥ ≥ ∥d∥ −

∥∥∥f̂(x)∥∥∥ > 2B − B = B.2

Thus, for any K ∈ N≥0,

P{∥xk∥ < B, ∀k ≤ K} ≤ P{∥dk∥ ≤ 2B, ∀k ≤ K}
= (1− ϵ)K ,

since all dk are independent. Thus, as K → ∞, the
probability of the state remaining bounded goes to zero.

Thus, when generalizing ISS to the case of unbounded
disturbances, we should expect weaker guarantees than those
provided by the typical condition (ISS). With this in mind,
we now define such a notion, Input-to-State Stability in
Probability (ISSp), which is well-defined for systems subject
to unbounded noise.

Definition 7 (Input-to-State Stable in Probability). The sys-
tem (1) is input-to-state stable in probability (ISSp) with
repect to Lp if, for any ϵ ∈ (0, 1), K ∈ N≥0 and distribution
D ∈ Lp such that ∥D∥Lp , there exist functions β ∈ KL, and
γ ∈ K such that

P
{
∥xk∥ ≤ β(∥x0∥ , k) + γ

(
∥D∥Lp

)
,∀k ≤ K

}
≥ 1− ϵ. (9)

If this holds for β(∥x0∥ , k) = Mαk ∥x∥ , for M > 0, α ∈
(0, 1), the system is exponentially input-to-state stable in
probability (ISSp).

ISSp is a generalization of ISS to systems with (un-
bounded) stochastic disturbances. Intuitively, a system is
ISSp if, for any disturbance in Lp, and for any finite horizon
K, there exist β, γ such that the ISS condition (ISS) (with
the L∞ norm relaxed to the Lp) holds with a probability
arbitrarily close to 1.

2We must have
∥∥∥f̂(xk)

∥∥∥ ≤ B for ∥xk∥ ≤ B; otherwise deterministic
trajectories starting at xk would leave the set in one step.



As with ISS, we now relate ISSp to Lyapunov functions
which can be used to verify this property.

Definition 8 (ISSp Lyapunov Function). A continuous func-
tion V : Rn → R≥0 is an ISSp Lyapunov Function for
the system (1) if there exist functions κ1, κ2, κ3 ∈ K∞ and
κ4 ∈ K such that,

κ1(∥x∥) ≤ V (x) ≤ κ2(∥x)∥) (10)
E[V (f(x,d)− V (x)] ≤ −κ3(V (x)) + κ4(∥D∥Lp) (11)

for all x ∈ X and ∥D∥Lp < ∞. Additionally, if there exist
constants a, b, c > 0 and α ∈ (0, 1) such that κ1(r) =
arc, κ2(r) = brc, and κ3(r) = αr, then V is an Exponential
ISSp (E-ISSp) Lyapunov Function

Remark. As in the typical ISS definition (ISS), since
max{a, b} ≤ a + b ≤ max{2a, 2b}, for suitable choices of
β, γ, the ISSp condition (9) is equivalent to

P
{
∥xk∥ ≤ max

{
β(∥x0∥ , k), γ

(
∥D∥Lp

)}
, ∀k ≤ K

}
≥ 1− ϵ. (12)

In this paper, for simplicity of exposition, we will consider
exponential ISSp. Note that the results presented apply in the
more general case, but the proofs become more complex.

V. LYAPUNOV CONDITIONS FOR E-ISSP

As for ISS, there exist Lyapunov conditions for E-ISSp. To
this end, we will use tools from martingale theory (in partic-
ular, Ville’s inequality) to demonstrate that the existence of a
Lyapunov function satisfying a drift condition in expectation
implies a system is E-ISSp.

Theorem 3. If there exists an E-ISSp Lyapunov function for
system (1), then system (1) is E-ISSp.

Proof. We begin by constructing a nonnegative supermartin-
gale W (xk, k) via a time-varying, affine transform of the
Lyapunov function V (xk). Rearranging the Lyapunov drift
condition (11) with κ3(r) = αr for some α ∈ (0, 1) , we
can see that V (xk) almost resembles a supermartingale3,

E [V (xk+1) | xk] ≤ (1− α)V (xk) + φ (13)

where we define φ ≜ κ4(∥D∥Lp) ≥ 0. However, this is not
exactly a supermartingale due to the (1−α) scaling and the
additive constant φ.

Thus, for a particular horizon K ∈ N≥0, we construct
W (xk, k) by undoing this scaling and translation. Letting
Wk ≜ W (xk, k) for simplicity, this construction is:

Wk = θkV (xk)︸ ︷︷ ︸
rescale

−φ

k∑
i=1

θi︸ ︷︷ ︸
translate

+ φ

K∑
i=1

θi︸ ︷︷ ︸
ensure Wk≥0

, (14)

with θ ≜ 1
1−α > 0 and the constant term φ

∑K
i=1 θ

i added
to ensure Wk ≥ 0.

3Note that E [V (xk+1) | xk] = E [V (xk+1) | x0:k] since system (1) is
Markovian.

Next we show Wk is a nonnegative supermartingale. We
have Wk ≥ 0 for any xk ∈ X , since V (xk) ≥ 0 by definition,
and θ, φ ≥ 0. Further, we have

E
[
Wk+1 | xk

]
= E

[
θk+1V (xk+1) + φ

K∑
i=k+2

θi

]
(15)

≤ θk+1 ((1− α)V (xk) + φ) + φ

K∑
i=k+2

θi (16)

= θkV (xk) + φ

K∑
i=k+1

θi = Wk, (17)

where the inequality (16) follows from the drift condition
(11) and (17) uses the fact that θ = 1

1−α .
Since Wk is a nonnegative supermartingale, we can apply

Ville’s inequality (7) to bound the probability Wk that
remains below any λ > 0 for all k ≤ K. Specifically,

P
{
W (xk) ≤ λ, ∀k ≤ K

}
≥ 1− W (x0)

λ
. (18)

We also note that, using the geometric series identity∑k
i=1 θ

i−1 = θk−1
θ−1 , we can write Wk as

Wk = θkV (xk) +
θφ(θK − θk)

θ − 1
(19)

Examining the structure of Wk, if for all k ≤ K we have
Wk ≤ λ, rearranging this inequality results in

V (xk) ≤
(
λ− θK+1φ

θ − 1

)
θ−k +

θ

θ − 1
φ (20)

≤ (λ− φ)θ−k +
θ

θ − 1
φ (21)

≜ (M ∥x0∥c + ηφ) θ−k +
θ

θ − 1
φ (22)

≤ M ∥x0∥c θ−k + ηφ+
θ

θ − 1
φ (23)

Inequality (21) follows from θ > 1 and φ ≥ 0. Equality (22)
follows from choosing λ = M ∥x0∥c + (1 + η)φ for some
η ≥ 0 and M, c > 0 . Inequality (23) is due to θ > 1 and
φ, η ≥ 0.

Further, using the lower bound (10) on V (xk) and the
definition of θ, (23) becomes

a ∥xk∥c ≤ M ∥x0∥c (1− α)k +

(
η +

1

α

)
φ (24)

for some a > 0 which, rearranging, and raising both sides to
the power of 1

c (which preserves order since c > 0), yields

∥xk∥ ≤
(
M

a
∥x0∥c (1− α)k +

(η + 1
α )

a
φ

) 1
c

(25)

≤
(
M

a

) 1
c

ζ ∥x0∥ (1− α)
k
c + ζ

(
(η + 1

α )φ

a

) 1
c

(26)

≜ M̃α̃k ∥x0∥ + γη(∥D∥Lp), (27)

for M̃ ≜ ζ (M/a)
1
c > 0, α̃ ≜ (1−α)

1
c ∈ (0, 1), some ζ > 0

as needed, and γη(r) ≜ ζ
(

η+ 1
α

a

) 1
c

κ4(r)
1
c which is a class



K for all η ≥ 0. The existence of ζ follows from Lemma A
shown in the Appendix.

Thus, we now must ensure there exists a suitable choice
of M,η such that the probability that this bound holds for all
k ∈ {1, . . . ,K} is greater than 1− ϵ. By Ville’s inequality,

P
{
∥xk∥ ≤ M̃α̃k ∥x0∥ + γη(∥D∥Lp), ∀k ≤ K

}
≥ 1− W0

λ
= 1− V (x0) +

φ
α ((1− α)−K − 1)

M ∥x0∥c + (1 + η)φ
, (28)

with W0 ≥ 0 by definition. Thus, as long as ∥x0∥c , ∥D∥Lp

are not both zero, we can choose M,η large enough to have

P
{
∥xk∥ ≤ M̃α̃k ∥x0∥+γη(∥D∥Lp), k ≤ K

}
≥ 1− ϵ,

for any ϵ ∈ (0, 1), so the system must be E-ISSp.

Remark. The variables M ≥ 0 and η ≥ 0 are free
parameters which can be varied to analyze the probability
of convergence and boundedness respectively. We note that
the bound in (29) may be very weak; stronger bounds can be
achieved by removing the bounding steps in (21) and (23),
but clarity was chosen over tightness for this proof.

VI. CONNECTIONS TO OTHER STABILITY NOTIONS

Here we discuss connections between ISS, ISSp, and other
notions of stability for stochastic systems, as surveyed in
Section III.

Corollary 1. If the system (1) is ISS, then it is ISSp with
respect to L∞.

Proof. By definition, if a system is ISS, then for all k ∈ N≥0,
there exist β ∈ KL, γ ∈ K such that

∥xk∥ ≤ β(∥x0∥ , k) + γ (ϑ) . (29)

for all ϑ ≥ supk∈N≥0
∥dk∥.

Thus, since the L∞-norm (equivalently, the essential supre-
mum) is finite for all random variables in L∞, for any d ∼ D
with d ∈ L∞, we have:

P
{
∥xk∥ ≤ β(∥x0∥ , k) + γ(∥D∥L∞), ∀k ∈ N

}
= 1.

Thus trivially, for any K ∈ N≥0, ϵ ∈ (0, 1), we have β ∈
KL, γ ∈ K such that (9) holds for all distributions D with
d ∈ L∞ . Thus, the system is ISSp w.r.t. L∞.

Corollary 1 provides a clear connection between ISS and
ISSp: if a system is ISS, it by definition is ISSp for distur-
bances in L∞. Next, we discuss the relationship between ISS
and ISSp w.r.t. L2 which is a much larger class of unbounded
random variables.

Corollary 2. If the system (1) is additive with respect to its
disturbance and admits a twice-continuously differentiable,
convex E-ISS Lyapunov function V : Rn → R≥0 such that
supx∈X ∥∇2V (x)∥2 ≤ λmax for some λmax ≥ 0 then it is
E-ISSp for d ∈ Lp with E [d] = 0 for p ≥ 2.

Proof. The dynamics are additive with respect to the distur-
bance so system (1) can be rewritten as:

xk = f(xk,d) ≜ f̂(xk) + d (30)

The function V is a E-ISS Lyapunov function for (30) so it
satisfies:

V
(
f̂(x) + d

)
− V (x) ≤ −αV (x) + κ4(∥D∥L∞) (31)

for all x ∈ X , some α ∈ (0, 1), σ ∈ K, and any d ∈ L∞.
The expected value of the left side of this inequality is:

E
[
V
(
f̂(x) + d

)
− V (x)

]
= E

[
V
(
f̂(x) + d

)]
− V (x)

≤ V
(
f̂(x) + E [d]

)
− V (x) +

λmax

2
tr(cov(d)) (32)

= V
(
f̂(x) + 0

)
− V (x) +

λmax

2
tr(cov(d)) (33)

≤ −αV (x) +
λmax

2
tr(cov(d)) (34)

where (32) accounts for Jensen’s inequality as in [14, Lemma
1], (33) is due to the assumption that the E [d] = 0, and (34)
is an application of the E-ISS bound (31).

Since bounded covariance implies boundedness in L2, if
d ∈ L2 then V is an E-ISSp Lyapunov function for (30).
Furthermore, since L2 ⊇ Lp for p ≥ 2, V is an E-ISSp
Lyapunov function for d ∈ Lp for all p ≥ 2.

Next we discuss the relationship between ISSp and trajec-
tories that are bounded in probability.

Corollary 3. If system (1) is ISSp w.r.t. Lp, then for any
d ∈ Lp, the system’s trajectories are bounded in probability.

Proof. If the system is ISSp w.r.t. Lp, then for any K ∈ N≥0

and ϵ ∈ (0, 1), there exist β ∈ KL and γ ∈ K such that

P
{
∥xk∥ ≤ β(∥x0∥ , k) + γ (∥D∥Lp) , ∀k ≤ K

}
≥ 1− ϵ.

Then, since β is decreasing in k, we have that for B0 ≜
β(∥x0∥ , 0) + γ (∥D∥Lp) ,

P {∥xk∥ ≤ B0, ∀k ≤ K} ≥ 1− ϵ. (35)

Thus the system trajectories are bounded in probability.

Like with traditional ISS, the ISSp condition 9 is equivalent
to system trajectories remaining in a ball whose radius scales
with the initial condition and the norm of the disturbance.
Thus, if a system is ISSp, its trajectories (over a finite
horizon) must be bounded in probability.

Finally, we look to discuss the relationship between ISSp
and recurrence. To do this we, first restate an important result
from drift analysis (see [15] for a detailed survey).

Theorem 4 (Variable Drift [15]). Suppose there exists some
function V : X → R≥0, with γ-sublevel set Vγ ≜
{x ∈ X | V (x) ≤ γ} such that for all x ∈ X \ Vγ ,

E [V (f(x,d))− V (x)] ≤ −h(V (x)), (36)

for some increasing function h : R>0 → R>0. Then, for any
trajectory with initial state x0, the hitting time τγ(x0) =
inf{k | V (xk) ≤ γ} is bounded in expectation by

E [τγ(x0)] ≤
γ

h(γ)
+

∫ V (x0)

γ

1

h(σ)
dσ. (37)



0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

100

200

300

V
(x

k
)

Lyapunov Function Values, LQG
M = 5.0

M = 2.5

M = 0.0

M = -2.5

M = -5.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

t [sec]

0

200

400

600

800

W
k

Supermartingale Values, LQG
λ=717.0

λ=663.2

λ=609.5

λ=555.7

λ=501.9

−4 −2 0 2 4

x [m]

−4

−2

0

2

4

y
[m

]

Ground Tracks, LQG

−5 0 5 10 15 20

M

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
p

ro
b

ab
ili

ty

Fraction stable

lower bound

MC estimate

Fig. 2: Simulation results for the double integrator over 1500 trials. (Top):
Lyapunov function values V (xk) plotted against the upper bound trajectory
for various M . (Middle): Corresponding supermartingale values Wk for
each trajectory. Note the geometric upper bound trajectories for V (x)
correspond one-to-one to the level sets of Wk . (Bottom left): Ground tracks
for the double integrator position. (Bottom right): Monte Carlo estimation
of the “success fraction” (fraction of trajectories with V (xk) ≤ ρk) versus
the guaranteed lower bound.

Using this result, we can show that, if a system admits an
E-ISSp Lyapunov function, then any Lyapunov sublevel set
(above a particular value) must be recurrent.

Theorem 5. If there exists an E-ISSp Lyapunov function w.r.t.
Lp for system (1), then (1) is recurrent.

Proof. Suppose there exists an E-ISSp Lyapunov function V
for the system (1). Then, for h(V (xk)) = αV (xk)−φ, with
φ ≜ κ4(∥D∥Lp), we have

E [V (xk+1)− V (xk) | xk] ≤ −h(V (xk)). (38)

For any γ > φ
α , h(V (x)) > 0 for all x ∈ X \ Vγ ; thus our

system meets the variable drift condition (36).
Thus, consider some trajectory with an initial state x0 ∈

X \ Vγ . Then, by Theorem 4, we have

E [τγ(x0)] ≤
γ

αγ − φ
+

∫ V (x0)

γ

1

ασ − φ
dσ (39)

≤ γ

αγ − φ
+

1

α
log

(
αV (x0)− φ

αγ − φ

)
< ∞.

(40)

Since E [τγ(x0)] < ∞, we must have P{τγ(x0) < ∞} = 1.
Thus, for any γ > α

φ , the sublevel set Vγ is recurrent. Since
κ1 is radially unbounded, Vγ must be bounded for all γ ≥ 0,
thus the system is recurrent.

VII. PRACTICAL EXAMPLE:
LINEAR-QUADRATIC-GAUSSIAN CONTROL

We now consider the ISSp properties of some practi-
cal systems, and study the validity of our exit probability
bounds via simulation. We begin by considering the case
of linear time-invariant systems subject to additive, zero-
mean Gaussian noise. The system dynamics are given by
xk+1 = Axk + Buk + dk, where uk ∈ Rm is a control
input to the system, and dk

i.i.d.∼ N (0,Σ) = D for some
Σ = ΣT > 0. Suppose our system implements an infinite-
horizon LQR feedback policy, i.e., uk = −Kxk, where
K = (R+BTPB)−1(BTPA) for P satisfying the discrete-
time algebraic Riccati equation. For this closed-loop system,
V (x) = xTPx is an E-ISS Lyapunov function, with

E [V (xk+1)− V (xk)] ≤ −αV (xk) + σ ∥D∥2L2 (41)

for α = λmin(Q)
λmax(P) , σ = λmax(P), and any D ∈ L2. In particular,

if we pick λ = MV (x0) +
σ∥D∥2

L2

α(1−α)K
, we can bound the

probability Vk rises above a time-varying trajectory:

P
{
V (xk) ≤ ρk, ∀k ≤ K

}
≥ 1− W0

λ
, (42)

with ρk = MV (x0)(1 − α)k +
σ∥D∥2

L2

α , and W0 defined
as in (14). Specifically, we study how this bound varies
numerically for a double integrator system in the plane (see
[14] for a detailed dynamics derivation). Figure 2 plots the
results of 1500 simulations of the double integrator. First,
we plot the values of V (xk) and Wk across multiple choices
of M. We can see that the trajectories Wk = λ correspond
exactly to V (xk) = ρk; thus, intuitively, the event Wk > λ
is exactly the event where Vk rises above a shifted geometric
sequence ρk.

We also plot the trajectories of the system in the plane,
along with Lyapunov level sets Vρ for ρ = maxk ρk,
evaluated when the system’s velocity is zero. We choose the
maximum value of ρk since if Vk ≤ ρk for all k ≤ K, we
must have Vk ≤ maxk ρk. Interestingly, one can show the
probability bound (42) is equivalent to the exit probability
bound provided by Kushner [11], up to a choice of scaling
to construct Wk (we explore this point further in Section
VIII).

Finally, we plot our bound (42) on the “success prob-
ability” P{Vk ≤ ρk, ∀k ≤ K} versus the fraction of
trajectories that remained under ρk for various choices of
M . While we note that our bound is, indeed, a lower bound
on the success probability, it is quite a weak lower bound;
thus, finding Lyapunov functions and martingales that yield
stronger bounds is an interesting direction for future work.

VIII. PRACTICAL EXAMPLE: SEVEN-LINK WALKER

Consider the seven-link walker as shown in Fig. 1. As
detailed in [10], walking can be distilled down to the discrete-
time dynamical system described by the Poincaré return map:

P :Bρ(x
∗)× [d−, d+] ⇀ S[d−,d+] :=

⋃
d∈[d−,d+]

Sd,

xk+1 = P(xk, dk), dk ∈ [d−, d+], (43)



Fig. 3: Algorithmic results of ISSp compared to ISS. As shown, the
stochastic ISSp condition yields more realistic predictions of the tolerable
step heights for two gaits (the same gaits as those compared in [10]).

for some sequence of step heights dk ∈ [d−, d+] ⊂ R, k ∈
N≥0 and Sd ⊂ Rn denoting the uncertain guard condition:

Sd = {x ∈ Rn | h(x) = d, ḣ(x) < 0}, (44)

where h : Rn → R is typically selected to denote the vertical
height of the swing foot relative to the stance foot. Note that
the partial function nature of P implies that solutions may
not exist for all time, i.e., the solution xk might leave the
ball Bρ(x

∗) on which P is well-defined.

Guaranteed Robustness to Uncertain Terrain. Prior work
considered input-to-state stability of (43) with bounded step
heights described as the set D ≜ [−δ, δ] ⊂ R with δ > 0
[10]. Moreover, leveraging this discrete-time representation
for bounded disturbances [10] introduced an ISS perspective
on bipedal locomotion. Explicitly, a periodic walking gait
with a nominal fixed point x∗ = P(x∗, 0) is defined as δ-
robust for a given δ > 0 if for the discrete-time dynamical
system (43), with any dk ∈ [−δ, δ], there exists some forward
invariant set W ⊂ Bρ(x

∗) such that for all x0 ∈ W , the
system is ISS. Moreover, this definition of robustness was
shown to be verifiable through an ISS Lyapunov function.

Specifically, Theorem 2 of [10] states that if the Lyapunov
condition as in (4) is satisfied, then the periodic gait is
ISS. To verify this, a candidate Lyapunov function can
be synthesized by approximating the exponentially stable
discrete-time system using the linearization of the Poincaré
return map for dk = 0:

xk+1 = Axk := DP(0, 0)xk.

Then, the Lyapunov matrix P = PT > 0 is obtained by solv-
ing the discrete-time Lyapuov equation (ATPA−P = −Q)
for Q = QT > 0 which provides a discrete-time Lyapunov
function V (x) = xTPx.

Probabilistic Robustness to Uncertain Terrain. To obtain
more reasonable estimates of the maximum step heights that
a given periodic gait can withstand, in this work we will
instead consider step heights drawn from some distribution
dk ∼ D and apply the ISSp methodology. Specifically, we
take D := N (0, δ2p) such that δp > 0 now represents the
standard deviation of the distribution. Note that due to the
partial nature of the P, we will truncate D at 3δp to ensure
that there exists some δp such that E[∆V ] < +∞, we will
denote this truncated Gaussian as N (·, ·,±a) where a denotes
the truncation interval [17].

Consider the ISSp Lyapunov condition from Def. (8):

E[V (P(x, d))− V (x) | x] ≤ −α̃V (x) + σ̃, (45)

Fig. 4: The probabilistic bound, evaluated for Gait 2, quickly decreases
as δ increases. However, the simulation results show that the walking is
able to remain periodic for all values determined to be δ-robust in Opt. 47,
highlighting that ISSp yields more reasonable estimates of δ compared to
the strict ISS condition presented in [10].

with α̃ = 2kλmax(P), and σ̃ = k(χδp)
c, where k ∈ (0, 1)

is a user-defined variable dictating the convergence of the
Lyapunov condition and χ > 0 is used to scale the set over
which the expected exponential decay condition holds. Note
that this condition can be equivalently expressed in the form:

∥x− x∗∥ ≥ χδp =⇒
E[V (P(x, d))− V (x) | x] ≤ −k∥x− x∗∥c. (46)

This ISSp Lyapunov function can be utilized with the algo-
rithmic approach introduced in [10] to solving the following
optimization problem:

(δ∗p , χ
∗
p) = argmax

δp,χp>0
δp (47)

s.t. Ed∼D[V (P(x, d))− V (x) | x] ≤ −k∥x∥2
∀ ∥x∥ = χpδp, d ∼ N (0, δ2p,±3δp),

As shown in Fig. 3, the algorithmic approach to the updated
optimization (47) results in more reasonable estimates of the
maximum tolerable step height for each of the two gaits
considered in [10].

Probabilistic Guarantees for ISSp. While relaxing the
Lyapunov condition to the one in (47) yields more realistic
estimates of δ∗, this relaxed condition no longer satisfies the
assumptions needed to be provably ISS. Instead, we can use
probabilistic bounds to assert that the system is ISSp.

To do this, we first need to approximate a reasonable
estimate of the Lyapunov level set that bounds the evolution
of the system after K steps. Rearranging the Lyapunov
condition (45) for the largest χ∗

p and δ∗p identified by Opt.
(47), and using the fact that W ≜ {x | V (x) ≤ κ2(χδ)

c} in
Theorem 2 of [10], we obtain the Lyapunov bound:

V (xK) ≤ ρ̃ ≜ (1− α)Kλmax(P )(χ∗
pδ

∗
p)

2 + k(χ∗
pδ

∗
p)

2.

As discussed in Sec. VII, the associated probabilistic
bound associated with remaining within this Lyapunov level
set can be obtained from Kushner [11]. Importantly, when
your Lyapunov level set ρ̃ is less than σ̃/α, the bound (42)
is extremely conservative. Following Kushner, it is possible
to find a better choice of Wk that yields a better probability
bound. Specifically, one can use the bound:

P(V (xK) ≤ ρ̃), ∀k ≤ K}

≥

 ρ̃−V (x0)
ρ̃

(
ρ̃−σ̃
ρ̃

)K
, ρ̃ ≥ σ̃

α

1− V (x0)(1−α)K+σ̃
∑K

i=1(1−α)i−1

ρ̃ , otherwise.
(48)



with σ̃ determined for each δp via Monte Carlo sampling.
In Fig. 4, the probabilistic bound is illustrated for the

values (χ∗
p, δ

∗
p) obtained using (47) for Gait 2. To verify the

probabilistic bound, Monte Carlo sampling was implemented
to estimate the true probability that the system remains within
ρ̃ after K = 10 steps. We simulate the system for this
horizon and report both the fraction of trajectories remaining
stable, as well as the fraction of trajectories remaining in the
Lyapunov sublevel set ρ̃.

IX. CONCLUSION

In this paper, we introduced the notion of input-to-
state stability in probability (ISSp), which generalizes ISS
for discrete-time systems with unbounded stochastic distur-
bances. We provided Lyapunov conditions for exponential
ISSp, drew connections between ISS, ISSp, and traditional
stability notions for stochastic systems, and provided simula-
tion studies of ISSp systems (including an LQG system and
bipedal walker) where we provide practical, probabilistic sta-
bility guarantees for systems subject to random disturbances.

This work opens numerous directions for future work.
In particular, while the martingale-based tools used in this
paper require only a simple expected drift condition (4) on
the Lyapunov function, martingale-based probability bounds
are typically considered quite weak. Thus, for practitioners,
an important question is how to choose Lyapunov function
V, and the supermartingale W, to obtain the tightest bound
possible (see also sum-of-squares-based approaches [12],
[21]). It is also likely that tighter bounds may be obtained by
exploiting particular structure in the disturbance distribution
and dynamics.

Another direction of interest is to investigate how sta-
bility notions degrade when the system is subject to state
uncertainty (as compared to the process noise considered in
this work). Like for ISSp, we would expect these stability
guarantees to hold only in probability; it remains an open
question whether a similar property to the “smooth degreda-
tion” observed under ISS and ISSp can be found for systems
with uncertain state.

Lastly, the application of ISSp to bipedal locomotion mo-
tivates its use for studying the robustness of periodic walking
gaits to uncertain terrain. Future work in this area includes
applying the notion of ISSp to the gait synthesis framework
to systematically generate nominal walking trajectories that
have probabilistic guarantees of robustness for reasonable
estimates of uncertain terrain.
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APPENDIX

A. Lemma for Lyapunov Conditions
We use the following lemma to prove the sufficiency of

the ISSp Lyapunov conditions in Theorem 3.

Lemma 1. For x1, x2, p > 0, there exists ζ > 0 such that
(xp

1 + xp
2)

1
p ≤ ζ(x1 + x2).

Proof. Case 1: Suppose p ≥ 1. Then (|x1|p + |x2|p)
1
p ≜

∥x∥p defines the ℓp norm for x ≜ [x1, x2]
T on R2. Since

ℓp norms are equivalent [25], there exists ζ > 0 such that
∥x∥p ≤ ζ ∥x∥1 = ζ(|x1| + |x2|). The result follows since
x1, x2 > 0.

Case 2: Suppose 0 < p < 1. Then, xp is a concave
function [25], and

(
xp
1+xp

2

2

)
≤
(
x1+x2

2

)p
. Since x

1
p is an

increasing function, exponentiating both sides preserves or-

dering,
(

xp
1+xp

2

2

) 1
p ≤ x1+x2

2 , and thus we have (xp
1+xp

2)
1
p ≤

2
1
p−1(x1 + x2) ≜ ζ(x1 + x2), with ζ > 0 as needed.
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