
Multi-Robot Assembly Sequencing via Discrete Optimization

Preston Culbertson, Saptarshi Bandyopadhyay, and Mac Schwager

Abstract— Multi-robot assembly has the potential to greatly
reduce the cost and risk associated with the fabrication of large
structures. Using teams of robots to perform assembly offers
numerous advantages such as parallelism, robustness to single-
agent failures, and flexibility in scheduling and task assignment.
However, while previous work on multi-robot assembly focuses
on generating feasible assembly plans and decentralized control
strategies, we instead study the problem of planning optimal
assembly sequences.

To this end, we pose the problem of multi-robot assembly as
a discrete optimization, specifically an integer linear program
(ILP) or quadratic program (IQP), which aims to minimize the
time to complete the assembly, or to minimize the distance
traveled. We develop a model of multi-robot assembly that
captures both geometric constraints and actuation constraints
inherent to the problem. While the ILP and IQP can be solved
exactly using commercial optimization software in a substantial
amount of time, we also propose heuristic strategies which can
be quickly computed, and can scale to structures of reasonable
size. We also verify our methods empirically by comparing their
performance on a variety of test structures.

I. INTRODUCTION

A. Motivation

Automated assembly remains one of the most important
practical applications of robotics to date. Currently, robots
are widely used in industrial environments, where they
efficiently and reliably perform assembly operations to mass-
produce commodities. However, while robotic assembly has
transformed small-scale manufacturing, its benefits have not
been brought to bear on large-scale assembly tasks such as
the fabrication of buildings or infrastructure.

By leveraging recent advances in mobile robotics and
multi-robot coordination, we hope to enable teams of robots
to perform assembly on much larger scales, and in less
structured environments, than is possible to date. Teams
of mobile robots can work in parallel to perform multiple
assembly operations at once, which can lead to large speedup
in assembly time. Further, multi-robot assembly is inherently
flexible, since ad hoc teams can form and dissolve as needed
to perform various assembly and transport operations. Multi-
robot teams are also robust to single-agent failures, ensuring

P. Culbertson is with the Department of Mechanical Engineering, Stanford
University, Stanford, CA, USA, pculbertson@stanford.edu.

S. Bandyopadhyay is with the Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, USA,
saptarshi.bandyopadhyay@jpl.nasa.gov.

M. Schwager is with the Department of Aeronautics and Astronautics,
Stanford University, schwager@stanford.edu.

This research was supported in part by the NASA Space Technol-
ogy Research Fellowship, Grant 80NSSC18K1180. Part of this research
was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration. c© 2019 California Institute of Technology. Government
sponsorship acknowledged.

Fig. 1: Image of the International Space Station (ISS), and its assembly
graph representation, which we use to plan multi-robot assembly sequences
which minimize time and distance traveled during construction. We pose the
planning problem as a discrete optimization, for which we propose heuristic
strategies which can scale to structures of practical sizes such as the ISS.

assembly may continue despite individual robots requiring
repair.

By enabling multi-robot assembly of large structures, we
hope to increase the safety of construction, which remains
among the most dangerous occupations, while also reducing
its cost and lead time. Further, there exist numerous envi-
ronments inaccessible to humans where assembly tasks are
crucial, such as the repair and fabrication of infrastructure
in disaster environments, as well as the assembly of habitats
and scientific instruments in space exploration.

B. Contribution

In this paper, we present a model of multi-robot assembly,
in which a team of mobile robots collaborate to assemble a
large structure. We pose the problem of assembly sequencing
as an integer linear program (ILP) or integer quadratic
program (IQP) which optimizes either the time to complete
the assembly, or of the distance traveled by robots during
construction, respectively. The program includes numerous
geometric constraints to ensure planned assembly operations
are physically feasible, as well as constraints which capture
the limited actuation of individual assembly robots.

We argue that this approach is well-founded for planning
multi-robot assembly of large, one-off structures such as
buildings, since there exists plentiful “planning time” in
which an assembly sequence may be computed and stored
offboard, compared to the “execution time” which should
be utilized as effectively as possible. A further advantage of
this approach is its flexibility, since IPs are an expressive
class of problems which can include logical and discrete
variables. Thus, our model can be easily adapted to suit
various construction scenarios through the addition of new
variables and constraints.

We further leverage insights from our ILP and IQP to pro-
pose heuristic, optimal or near-optimal strategies for multi-
robot assembly planning for a restricted class of structures.
We also offer a proof of the optimality for one heuristic

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4004-9/19/$31.00 ©2019 IEEE 6502

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

strategy in the free final time case. The performance of our
exact solution, as well as our heuristic strategies, is evaluated
empirically in a number of numerical examples.

II. RELATED WORK

While (multi-)robotic assembly has been a fundamental
problem for many years, there has been a recent surge of
interest in distributed and decentralized approaches to robotic
assembly. In [1], [2] the authors developed a termite-inspired
swarm of ground robots which used local interaction rules
to coordinate assembly of a large structure using tiles. This
work is notable due to its limited assumptions on individual
robot capabilities needed for assembly, as well as its use of
techniques such as stigmergy to enable multi-robot coordina-
tion. In [3], the authors introduce a more efficient compiler,
which uses posed the problem as a constraint satisfaction
problem (CSP), and can scale up to structures with millions
of bricks. Recently the authors in [4] proposed a reinforce-
ment learning approach to this specific construction domain,
in which they learn decentralized policies which aim to
minimize the final time of assembly completion. While this
approach is domain-specific, and provides few guarantees of
its optimality or correctness, it shows an empirical speedup
from the original algorithm in [2].

Other approaches to multi-robot construction include [5],
where a team of quadrotors use Finite State Controllers to
execute a centrally-computed construction plan for fabricat-
ing cubic structures from self-assembling beams. [6], [7]
propose a distributed, Voronoi-based algorithm for partition-
ing construction and part delivery tasks for among a team
of robots which build truss structures. Further, [8] uses a
CAD model to plan assembly, delivery, and tooling schedules
for fabricating IKEA furniture, which are then executed by
teams of ground robots. The authors in [9] seek to use local
force measurements to determine the stability and strength
of intermediate assemblies, and to use this information to
stabilize and reinforce structures online.

While these works span a wide range of building materials,
model fidelity, and centralization, they mostly seek to gener-
ate feasible assembly sequences under the constraints of their
specific assembly models. In contrast, we propose framing
multi-robot assembly planning explicitly as a discrete opti-
mization, which can be solved centrally and executed in a
distributed fashion. This framing is especially appropriate for
high-risk or high-cost applications such as on-orbit assembly,
or automated assembly of disaster relief infrastructure.

There has also been extensive work in developing both
hardware and materials suitable for performing robotic as-
sembly. [10] presents a highly accurate system which can
weld and assemble wire mesh structures which act as rein-
forcement for concrete walls. As an alternative to assembly
of pre-fabricated parts, [11] proposes “contour crafting,” a
material-deposition approach to construction in which a robot
deposits ceramic material in layers (as in 3D printing) to
build macro-scale structures. Further, the authors of [12]
argue that robotic assembly motivates the development of
“digital materials” which are specialized to the specific chal-
lenges of autonomous construction, cheaply mass produced,

and reconfigurable. [13] provides an excellent survey of the
current trends in autonomous construction research, both in
hardware and software.

Of special note is the large body of work on in-space
construction, which is motivated by the high cost of material
transport, and dangerous environments which preclude the
use of human labor. [14] investigates the use of a multi-
robot team to fabricate habitats for human astronauts on other
bodies such as the Moon. Other approaches such as [15], [16]
aim to perform in-orbit assembly using satellites equipped
with 3D printers, which can manufacture components in situ.

Our work draws inspiration from the extensive work by
the operations research and artificial intelligence communi-
ties on assembly planning for single-robot manipulators in
manufacturing environments. The authors of [17] formulate
a disassembly sequence as a traversal of an AND/OR graph,
which can list all possible disassembly sequences, and be
searched for optimal sequences using AO*, a variant of
the A* algorithm. In [18], the author develops a non-
directional blocking graph, which can be used to deter-
mine infinitessimally-feasible disassembly motions without
requiring the exponential space of the AND/OR graph. [19]
provides an excellent review of assembly planning methods,
including the breadth of optimization techniques applied to
the problem in literature.

We note that in the assembly planning literature, the
problem is to find feasible assembly sequences (via forward
searches of large trees), whereas in this work we seek a
feasible assembly sequence which is optimal with respect
to some cost metric. We accomplish this by leveraging the
recent advances in computing power and current availability
of efficient commercial solvers for discrete optimization.

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

The rest of the paper will proceed as follows. In Section
III we present our model of multi-robot assembly, and pose
the problem of assembly planning as a discrete optimization
as an Integer Linear Program (ILP) or Integer Quadratic
Program (IQP). In Section IV we provide technical details
outlining our decision variables and constraints. Section V
presents and analyzes heuristic strategies which can quickly
generate feasible, near-optimal assembly sequences for many
structures without solving the IP exactly. Finally, Section
VI presents the results of our numerical experiments, which
verify both the exact strategy resulting from our IP solution,
as well as the performance of our heuristic strategies.

A. Model Definition

We will now outline our model of multi-robot assembly.
We consider a set of N parts which must be assembled
into the desired structure by a team of R robots. The final
assembly is specified by a graph G = {V, E}, with the vertex
set V = {1, 2, . . . , N} corresponding to the set of parts, and
the edge set E ⊂ V × V , where edge {i, j} ∈ E iff there
exists a mate between parts i and j in the final assembly.
We also define the adjacency matrix A(G), with aij = 1 if
{i, j} ∈ E , and zero otherwise. By definition, aii = 0 for all
i, since parts may not be mated to themselves.

6503

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 2: Parts being disassembled by moving along mating axes. Since parts
are joined in a loop, no single part may be removed from this example; a
subassembly must be created for disassembly.

Further, each mate {i, j} ∈ E has an associated direction
Dij along which part i must be moved to be attached to
part j, as shown in Figure 2. We further let D be the
number of unique mating directions in the assembly. While
this model does not capture all possible attachment methods
used in construction, it is a natural setting for parts which
are connected via fasteners, snap fits, and press fits, and is
expressive enough to capture geometries of sufficient interest
for our work herein.

Finally, we assume the parts are assembled at one of
S construction sites which are located at points si in Rn

for either n = 2 or 3. At the beginning of the assembly
process, parts are located in a “depot” located at the origin,
from which robots may retrieve parts for assembly. Then,
over each timestep of the construction process, robots grasp,
transport, and join parts at various sites, until they complete
the assembly. Figure 3 shows a schematic of the proposed
construction layout.

Fig. 3: Schematic of proposed construction site. Robots transport parts from
the depot to assembly sites located at si, where they join parts to create
subassemblies.

Since we are interested in high-level construction plan-
ning, our system dynamics are highly discretized, where
one timestep of our construction process is long enough
for robots to grasp, transport, and attach parts. Further,
our construction model is synchronous, meaning all robots
operate on the same clock, performing only one construction
operation per timestep.

In this paper, we formulate the planning problem as
“assembly-by-disassembly,” meaning we plan optimal disas-
sembly sequences which are then reversed to give the optimal
assembly plan. Since we consider the problem problem of
deterministic, open-loop planning, the reversed disassembly
sequence retains its optimality for assembly.

B. Problem Formulation
Given our assembly model and system architecture, we

now formulate the assembly planning problems to be solved
in this paper. While there exist a large number of feasible
assembly sequences, we aim to optimize our assembly plan
with respect to some cost function. In this work we consider
two different costs of assembling a structure: final assembly
time, and total distance traveled.

For most assembly problems, we aim to minimize final
time, since we want the structure to be completed as quickly
as possible. The benefits of multiple robots are obvious in
this case, since using a team of robots enables construction
tasks to occur in parallel, which can greatly speed con-
struction. However, other construction tasks such as in-orbit
assembly place low value on optimizing the final time of the
construction process in favor of minimizing fuel usage.

1) Minimum-Time Assembly Planning: The minimum
time objective can be captured using a set of binary variables
p ∈ BT , where pt = 1 if there are any parts outside the depot
at time t, and B = {0, 1}. This can be expressed using the
constraint

pt = ∨Ni=1 ∨Sj=1 xi,j,t, (1)

where x ∈ BN×S×T are variable describing part placements,
with xi,j,t = 1 if part i is in location j at time t, and ∨ is
the logical OR. We let xi,0,t = 1 when part i is located at
the depot at timestep t. This yields the cost function

Jtime =

T∑
t=1

pt. (2)

We further note that the logical constraint (1) can be im-
plemented using linear inequalities via a big-M formulation
[20]. Thus, the minimum-time assembly problem is given by

J∗time = minimize
T∑

t=1

pt,

subject to geometric constraints (6)-(7),
movement constraints (8)-(9),
connectivity constraints (10)-(13),
cost constraint (1).

(3)
As we show in Section IV, all constraints are linear in

the decision variables, which take integral values. Since we
optimize a linear cost with linear constraints, (3) is an Integer
Linear Program (ILP), which can be efficiently solved using
commercial solvers.

2) Minimum-Travel Assembly Planning: When we seek to
minimize the total distance traveled by parts during assembly,
this cost may be captured by considering the matrix L =
[0, s1, . . . , sS], i.e. the concatenation of the position vectors
of the depot and assembly sites. The distance traveled by
part i in time t is simply

||L(xi,:,t − xi,:,t+1)||2,
where ||·||2 denotes the `2-norm, and xi,:,t ∈ BS is the

binary vector of location variables corresponding to part i’s
position at time t.

6504

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

Thus, to express our cost as the distance traveled by all
parts, we use the objective

Jdist =

N∑
i=1

T∑
t=1

||L(xi,:,t − xi,:,t+1)||22, (4)

which is quadratic in the decision variables x. This yields
the problem

J∗dist = minimize
N∑
i=1

T∑
t=1

||L(xi,:,t − xi,:,t+1)||22,

subject to geometric constraints (6)-(7),
movement constraints (8)-(9),
connectivity constraints (10)-(13).

(5)
Since our objective is quadratic in our decision variables,

and our constraints are linear, (5) is an Integer Quadratic
Program (IQP), which again may be solved efficiently using
a commercial solver.

IV. CONSTRAINT DEFINITIONS

We now describe in detail the constraints of the ILP and
IQP defined above. Frequently used symbols are summarized
in Table I below.

Symbol Definition

G Graph of desired assembly
R Number of robots
N Number of parts
S Number of assembly sites
T Final timestep
x Part locations (Sec. III-B)
a Part adjacency (Sec. IV-A)
d Part directions (Sec. IV-A)
b Mate disconnections (Sec. IV-A)
r Robot assignments (Sec. IV-B)
c Part connectivity(Sec. IV-C)

TABLE I: List of frequently used symbols

A. Geometric Constraints

To track the assembly process at each timestep, we intro-
duce a set of binary variables a ∈ BN×N×T , where T is the
index of the final timestep, and B = {0, 1}, with ai,j,t = 1 iff
part i is directly mated to part j at timestep t. Since we plan
by disassembly, the initial adjacency variables A0 = A(G),
i.e. the adjacency matrix of the completed structure, and
AT = 0, i.e. a completely disassembled structure.

However, there exist geometric constraints on which parts
may be detached at each timestep; specifically, parts must
move away from each other along their mating axis to allow
disassembly. Thus, we seek to constrain ai,j,t− ai,j,t+1 = 1
iff part i can be removed from part j, or vice versa.

To accomplish this, we introduce binary variables d ∈
BN×2D+1×T−1, where di,k,t = 1 iff part i moves in direction
k at time t. Since only one part need move to allow
disassembly, we include a null direction D0 to model parts
which remain stationary during a disassembly step.

We thus introduce another variable b ∈ BN×N×T−1,
which indicates if the parts move in the correct relative direc-
tions to allow the mate ai,j,t to be disconnected. Logically,
we can express this as

bi,j,t := di,Di,j ,t ∧ (dj,0,t ∨ dj,Dj,i,t) (6)

meaning bi,j,t = 1 iff part i moves away from part j along
their docking axis and part j remains immobile or moves
away from part i along the same axis. Further, using big-
M, we can express this logical constraint as a series of
linear constraints between b and d. We can now enforce
our geometric constraint on our transition dynamics by
constraining

ai,j,t − ai,j,t+1 ≤ bi,j,t + bj,i,t, (7)

for all i, j, t, meaning the mate between i and j may only
be deactivated at time t if the parts move such that i can be
removed from j or vice versa.

B. Movement Constraints
We first constrain parts located in the depot to be discon-

nected from all other parts (i.e. there can be no subassemblies
in the depot). We achieve this by imposing the constraint

xi,0,t =⇒
N∑
j=1

ai,j,t = 0, ∀i, t, (8)

where the implication constraint may again be implemented
using linear inequalities via big-M.

Further, part movements are limited by the number of
robots which we have available to perform manipulation and
joining tasks. Since we assume our robots are much smaller
than the total assembly, we model their actuation limits by
requiring one robot to be attached to each part which changes
locations in the next timestep. Thus, we require one robot
per part which is taken to the depot; moving a subassembly
of m parts requires a team of m robots.

We capture this mathematically using a set of binary
variables r ∈ BR×N×T−1, where rm,n,t = 1 iff robot m
is assigned to part n at time t. We can thus implement our
actuation constraints by constraining

xi,j,t+1 − xi,j,t ≤
R∑

k=1

rk,i,t (9)

for all i, t.

C. Connectivity Constraints
There further exist important constraints on our assembly

path which depend on the connectivity of the assembly graph
at each timestep. Specifically, since connected components
of the assembly graph correspond to subassemblies, any parts
belonging to the same connected component must have the
same direction. Further, since we constrain each construction
site to have at most one subassembly, we must constrain parts
in different subassemblies at each time to occupy different
construction sites.

We introduce a variable c ∈ BN×N×T , with ci,j,t = 1
iff there exists a path between parts i and j at time t.

6505

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

Specifically, if we consider At to be an adjacency matrix
corresponding to an intermediate assembly graph Gt =
{V, Et}, where Et ⊂ E is the set of mates still active at
time t, then ct corresponds to the transitive closure of At.

The values of ct can be determined from the adjacency
matrix at at time t, using ct = (at + I)n, i.e. by repeatedly
applying the adjacency matrix to consider all n-hop walks on
the graph. But, this relation is nonlinear and thus intractible
for many integer programming solvers. We can instead com-
pute the transitive closure using intermediate variables and
the Floyd-Warshall algorithm [21], which requires recursive
applications of logical functions, which can be modeled with
linear constraints.

We thus introduce the intermediate variable χ ∈
BN×N×N+1×T , where χi,j,k,t = 1 iff nodes i and j of Gt
can be connected using intermediate nodes up to k, per the
Floyd-Warshall algorithm. We impose the constraint

χi,j,0,t =

{
ai,j,t, i 6= j

1, otherwise,
(10)

since directly connected nodes require no intermediate nodes
for their connection, and nodes are self-connected by defini-
tion.

Further, each set of intermediate variables can be defined
recursively, via

χi,j,k+1,t := χi,j,k−1,t ∨ (χi,k,k−1,t ∧ χk,j,k−1,t), (11)

which states that nodes i and j can be connected with
intermediate nodes {1, . . . k} iff they were connected using
k − 1 nodes, or if k acts as a separating node. Finally,
we simply let ci,j,t = χi,j,N,t, which denotes all connected
nodes which can use the full vertex set as intermediate nodes.

We note that this number of variables grows with N3,
which limits the tractability of the exact IP solutions in
practice. However, these constraints are also crucial to
the problem, since many important properties of assembly
planning (e.g. actuation constraints, placement) hold at the
subassembly level, which requires us to understand the
connected components of the graph.

To constrain disconnected parts to occupy separate sites,
we simply impose the constraint

xi,k,t + xj,k,t ≤ 1 + ci,j,t (12)

for all i, j, k, t. Thus, if the nodes nodes i and j are
disconnected at time t (i.e. ci,j,t = 0), then only one of
them may occupy each site k.

Finally, we must impose that connected components must
move together; otherwise, parts could have arbitrary motions.
We thus impose

di,k,t − dj,k,t ≤ 1− ci,j,t+1, (13)

for all i, j, k, t.

V. HEURISTIC STRATEGIES

As discussed previously, while the assembly sequencing
problems of interest may be solved exactly by solving the IPs
outlined above, the solution time scales poorly in the number

of parts, which can cause the exact problem to become
intractable even for moderately-sized structures (N ≈ 30).

Thus, it is crucial to develop optimal or near-optimal
heuristic strategies which can scale to structures with large
numbers of parts. In this section, we propose two heuristic
strategies for assembling a restricted class of structures, as
well as a proof optimality for the minimum-distance, free
final time case.

For both strategies, we consider the problem of building
acyclic assemblies, i.e. assemblies whose assembly graphs
contain no self-loops. While this is a significant restriction,
we choose to study acyclic structures because they contain
removable single parts at every timestep. Disassembling
cycles, even over one timestep, requires the planner to
choose feasible subassemblies for removal. This is itself a
combinatorial problem subject to connectivity constraints,
i.e. one of similar hardness to the full problem.

A. Greedy Disassembly

We first propose a heuristic strategy we term greedy
disassembly, in which robots remove as many free parts
as possible at each timestep. The algorithm is summarized
in Alg. 1. Initially, the assembly is placed at the assembly
location which is closest to the depot. Robots are then
assigned to “leaf” parts in the structure, i.e. those with
only one neighbor; assignment continues until there are no
robots or free parts remaining. The robots then remove their
assigned part, and leave it at the depot. The process continues
until all parts have been disassembled.

Algorithm 1: Greedy algorithm for disassembly

1 function Greedy(s,R);
input : List of assemblies s, and number of robots R
output: Number of robots used robs, list of parts

rem to be removed

2 initialize robs, rem;
3 for every assembly a in s do
4 for every part p in a do
5 if robs < R and neighbors(p) = 1 then
6 append p to rem;
7 robs ++;
8 end
9 end

10 end

Importantly, since we consider the disassembly problem
for acyclic structures, this heuristic remains persistently
feasible (i.e. there exists at least one removable part at each
timestep), since an acyclic graph must have at least one
vertex with one or fewer neighbors, and removing this node
from the graph yields another acyclic graph. Further, since
robots only remove single parts, there always exist feasible
disassembly directions.

We term this strategy “greedy” as it optimizes the number
of parts sent to the depot in the current timestep; it is myopic
with respect to time, since assembly may proceed more

6506

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

i

j

k

Fig. 4: Expansion step of fast disassembly. Upon expanding part i, its parent
j, and all descendants (i.e. k) are added to the current subassembly. Since i
is a leaf node, this expansion requires a free site and two additional robots.
Part j is now added to the list of expansion candidates.

quickly by creating subassemblies which can be disassem-
bled in parallel.

B. Fast Disassembly

We now propose a second heuristic strategy for minimum-
time disassembly of acyclic structures, which aims to im-
prove upon the myopic behavior of the greedy algorithm.
The algorithm is summarized in Algs. 2 and 3. We term
this strategy “fast” since it attempts to improve the greedy
solution to render it less myopic with respect to time.

This algorithm leverages a number of insights about the
disassembly problem to improve our performance. On one
hand, when structures have low numbers of free parts relative
to the number of robots, the myopic strategy results in poor
utilization rates of the team. Thus, our algorithm aims to
increase robot utilization by forming subassemblies.

However, creating large subassemblies can also be coun-
terproductive. We thus constrain the number of parts per
subassembly to be below the threshold Θi, for

Θi =

⌊
|ai|

s(ai) +m(ai) + 1

⌋
,

where |ai| is the number of parts contained in an assembly
of interest ai, s(ai) is the proposed number of single parts
being taken from ai, and m(ai) is the proposed number
of subassemblies to be taken from ai. Intuitively, if all
subassemblies have size Θi, then ai will be split into equal
portions at the next timestep.

The algorithm works as follows: the policy is first initial-
ized to the greedy solution, where we attempt to remove all
free parts. If assembly robots remain idle after greedy assign-
ment, the algorithm aims to create valid subassemblies by
“growing” inward from the original free part. To accomplish
this we maintain a list of “threads,” candidate subassemblies
which are iteratively expanded until assigning all robots are
assigned, or until all assemblies cannot be expanded without
exceeding the part size threshold.

Figure 4 shows a diagram of an “expansion step” for
various candidate parts. We first direct the edges of the
assembly graph such that, for each undirected edge {i, j} ∈
E , we direct i→ j if part j would be removed before part i
under the greedy algorithm. On expanding a part, the part’s
parent, and all the parent’s descendants, are added to the
current subassembly. Since the parent part may have other
subassemblies or singletons downstream, we update these

lists on every expansion step. Subassemblies are assigned
greedily to the closest free sites, in order of size.

Algorithm 2: Fast algorithm for disassembly

1 function Fast(s,R, S);
input : List of assemblies s, number of robots R,

and sites S
output: List of parts to be removed singles, list

of subassemblies to be created threads

2 robs, singles ← Greedy(s,R);
3 threads ← [], sites ← |s|;
4 while robs < R do
5 robsPrev← robs;
6 for every p in singles do
7 growSubassem(p);
8 end
9 for every t in threads do

10 growSubassem(t);
11 end
12 if robs = robsPrev then break;
13 end

C. Analysis

We now offer analysis of our heuristics’ performances on
the problems presented in Section III-B. We first prove the
optimality of greedy disassembly for the minimum-travel,
free final time case, and then discuss the performance of our
heuristic policies for the minimum-time problem.

Theorem 1 (Optimality of Greedy Disassembly). Greedy
disassembly, as described in Alg. 1 is an optimal strategy
for minimum-travel assembly (5) with free final time.

Proof. Consider a relaxation of (5) which only imposes the
boundary conditions and (8), which restricts connected parts
from being placed in the depot. The relaxed problem has
optimal cost

¯
J∗ = N ||s∗||22, where s∗ = arg mini||si||2,

since each part must start at a non-depot site.
Now let us consider the cost of greedy disassembly in the

free final time case. At each time t the robots will remove
Kt free parts and transport them to the depot, incurring a
stage cost of Kt||s∗||22, since the full assembly is located at
the closest assembly site.

Since robots remove only single parts, there exist feasible
removal directions for all parts, and since the graph is
acyclic, there always exist free parts to be removed at each
timestep. Finally, since the final time is unconstrained, the
removal process may continue until some time T ∗, when all
parts have been disassembled.

Thus, the cost of performing greedy disassembly is J∗ =∑T∗

t=1Kt||s∗||22 = N ||s∗||22 =
¯
J∗. Ergo, our policy attains a

cost equal to the optimal cost of the relaxed problem, while
being feasible for the full planning problem. Thus, greedy
removal is optimal for the minimum-travel, free final time
case.

However, while greedy disassembly is optimal for the
free final time case, it can perform poorly in optimizing the

6507

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Subassembly expansion

1 function growSubassem(p);
input : Index p of part to be expanded

2 a← p.assem;
3 q ← p.parent;
4 thresh = floor(|parts(a)|

|singles(a)|+|threads(a)|+1);
5 if p in singles then
6 expand← [(sites < S) ∧

(robs + numAdded(q) ≤ R) ∧
(size(q) ≤ thresh)];

7 if expand then sites++;
8 else
9 expand← [(robs + numAdded(q) ≤ R) ∧

(size(q) ≤ thresh)];
10 end
11 if expand then
12 push q to threads;
13 robs += numAdded(q);
14 for every descendant d of q do
15 if d in singles then remove d;
16 if d in threads then
17 remove d;
18 sites --;
19 end
20 end
21 end

. . .1 2 3 N

Fig. 5: Structure of N parts with chain topology.

final disassembly time. Consider a structure with a “chain”
topology, i.e. all parts are mated sequentially along one axis,
as shown in Figure 5. In this case, even with R, S arbitrarily
large, the greedy policy will only remove two parts per
timestep, resulting in a final disassembly time of T ∗ =

⌈
N
2

⌉
.

In contrast, the fast policy will create subassemblies at each
timestep to increase the number of free parts, as well as
robot utilization. Further, as we show in Section VI, the fast
policy empirically returns policies which are optimal or near-
optimal for the minimum final time case.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments which
study the performance of both our ILP and IQP solutions,
as well as the heuristic strategies proposed in Section V.
All computations were performed onboard a Google Cloud
virtual machine with 8 vCPUs and 30GB of memory.
We implemented our integer programs in Julia 1.1 using
JuMP [22], which we solved using IBM CPLEX 12.8. Our
source code is available at http://www.github.com/
pculbertson/ip-assembly-planning.

For our test cases, we considered five structures of varying
topology and size: a nine-part planar lattice, a LEGO R©

model of the Hubble space telescope, the ISS, a chain of 50
parts, and a random tree of 500 parts. While these examples

vary greatly in their scale and complexity, their joining
mechanisms and geometry can be captured well using our
assembly model. Figure 6 shows images of the structures,
along with their assembly graph representations.

Tables II & III summarize the results of our numerical
experiments below. We computed both exact and heuristic
assembly plans for all three structures, and compare their
objective values as well as computation time. A video
visualizing both optimal and heuristic assembly plans is
included with this submission.

method Lattice Hubble ISS Chain Random

ILP 4 (100s) 5 (103s) — — —
Greedy — 7 (10-2s) 9 (10-2s) 26 (10-2s) 32 (10-1s)
Fast — 7 (10-2s) 9 (10-2s) 11 (10-2s) 30 (10-1s)

TABLE II: Numerical results for minimum-time assembly sequencing. Table
values are final times returned by each solution method, with optimal values
in bold. Computation times are reported in parenthesis in seconds.

method Lattice Hubble ISS Chain Random

IQP 58 (102) 20 (103) — — —
Greedy — 20 (10-2) 32 (10-2) 50 (10-2) 500 (10-2)
Fast — 60 (10-2) 120 (10-2) 1079 (10-2) 1036 (10-2)

TABLE III: Numerical results for minimum-travel, free final time assembly
sequencing. Table values are distance objectives returned by each solution
method, with optimal values in bold. Computation times are reported in
parenthesis in seconds.

For each case, we let S = 4, with assembly sites located at
s1 = [0, 1], s2 = [−1,−2] , s3 = [−2, 2], and s4 = [2,−2].
For the lattice and Hubble cases, we let R = 4, while we use
R = 6 for the ISS, R = 10 for the chain case, and R = 20
for the random tree.

While we can compute optimal assembly plans via our
IP solution, the number of integer variables scales poorly
with the number of parts, causing the problem to become
intractable as the assembly grows larger. Thus, the IP was
unable to scale beyond the Hubble case, where N = 20.
Further, while our heuristic solutions were easily computable,
they are unable to handle cyclic structures (such as the
lattice). We also report the distance traveled by the fast
disassembly heuristic, to demonstrate that it incentivizes part
travel to optimize the final time.

We also studied how additional robots can speed con-
struction. Figure 7 plots the final time for both heuristics
fabricating the chain, with N = 50. We note that the greedy
heuristic cannot improve its performance after R = 2, due
to the topology of the structure. On the other hand, the
fast heuristic continues to improve its final time, albeit with
diminishing returns. We note also the suboptimality of the
fast heuristic, since the final time should be nonincreasing
with respect to R. We believe slight increases in final time
are due to the fast heuristic’s optimism about the value of
creating subassemblies.

VII. CONCLUSIONS & FUTURE WORK

In summary, we posed the problem of multi-robot as-
sembly as a discrete optimization which captures both the
geometric and actuation constraints inherent to the problem.

6508

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

(a) Lattice, (N = 9) (b) LEGO R© Hubble Telescope (N = 20) (c) Random Tree (N = 500)

Fig. 6: Images of structures studied in our numerical experiments, with their assembly graph representations, if different.
Our test cases also included the ISS (Fig. 1), and a 50-part chain (Fig. 5).

Fig. 7: Final time comparison of greedy and fast heuristics, for a chain of
N = 50 parts, as a function of R. We note that adding robots can decrease
the final time significantly while using the fast heuristic, while exhibiting
diminishing returns.

We pose the problem as an ILP or IQP, which we solve
exactly, as well as providing scalable heuristic strategies for
acyclic structures. We verify our approach numerically by
studying its performance on assembling a number of test
structures.

This work offers numerous paths for future work. Our
most immediate goal is to use our heuristic strategies to
“warm start” the IP solver, to speed up the exact solution. We
also aim to develop heuristics for cyclic structures which are
significantly faster than the full IP. We are also interested in
reformulating our connectivity constraints (12)-(13) without
intermediate variables which grow in N3. Finally, we are
interested in developing decentralized and asynchronous as-
sembly strategies, while also bounding their optimality with
respect to the exact problem defined in this work.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Federico Rossi for his
helpful discussions on integer programming.

REFERENCES

[1] J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior
in a termite-inspired robot construction team,” Science, vol. 343,
pp. 754–758, Feb. 2014.

[2] K. Petersen, R. Nagpal, and J. Werfel, “TERMES: An autonomous
robotic system for three-dimensional collective construction,” in
Robotics: Science and Systems VII, Robotics: Science and Systems
Foundation, June 2011.

[3] Y. Deng, Y. Hua, N. Napp, and K. Petersen, “Scalable compiler for the
TERMES distributed assembly system,” in Distributed Autonomous
Robotic Systems, pp. 125–138, Springer International Publishing,
2019.

[4] G. Sartoretti, Y. Wu, W. Paivine, T. K. S. Kumar, S. Koenig, and
H. Choset, “Distributed reinforcement learning for multi-robot decen-
tralized collective construction,” in Distributed Autonomous Robotic
Systems, pp. 35–49, Springer International Publishing, 2019.

[5] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor
teams,” Autonomous Robots, vol. 33, pp. 323–336, June 2012.

[6] S. Yun, M. Schwager, and D. Rus, “Coordinating construction of
truss structures using distributed equal-mass partitioning,” in Springer
Tracts in Advanced Robotics, pp. 607–623, Springer Berlin Heidelberg,
2011.

[7] D. Stein, T. R. Schoen, and D. Rus, “Constraint-aware coordinated
construction of generic structures,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, Sept. 2011.

[8] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “IkeaBot: An
autonomous multi-robot coordinated furniture assembly system,” in
2013 IEEE International Conference on Robotics and Automation,
IEEE, May 2013.

[9] N. Melenbrink and J. Werfel, “Local force cues for strength and stabil-
ity in a distributed robotic construction system,” Swarm Intelligence,
vol. 12, pp. 129–153, Nov. 2017.

[10] M. Lussi, T. Sandy, K. Dorfler, N. Hack, F. Gramazio, M. Kohler,
and J. Buchli, “Accurate and adaptive in situ fabrication of an
undulated wall using an on-board visual sensing system,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
IEEE, May 2018.

[11] B. Khoshnevis, D. Hwang, K. T. Yao, and Z. Yeh, “Mega-scale
fabrication by contour crafting,” International Journal of Industrial
and Systems Engineering, vol. 1, no. 3, p. 301, 2006.

[12] N. Gershenfeld, M. Carney, B. Jenett, S. Calisch, and S. Wilson,
“Macrofabrication with digital materials: Robotic assembly,” Archi-
tectural Design, vol. 85, pp. 122–127, Sept. 2015.

[13] H. Ardiny, S. Witwicki, and F. Mondada, “Construction automation
with autonomous mobile robots: A review,” in 2015 3rd RSI Inter-
national Conference on Robotics and Mechatronics (ICROM), IEEE,
Oct. 2015.

[14] A. Stroupe, A. Okon, M. Robinson, T. Huntsberger, H. Aghazarian,
and E. Baumgartner, “Sustainable cooperative robotic technologies
for human and robotic outpost infrastructure construction and mainte-
nance,” Autonomous Robots, vol. 20, pp. 113–123, Mar. 2006.

[15] R. P. Hoyt, “SpiderFab: An architecture for self-fabricating space
systems,” in AIAA SPACE 2013 Conference and Exposition, American
Institute of Aeronautics and Astronautics, Sept. 2013.

[16] J. Kugler, J. Cherston, E. R. Joyce, P. Shestople, and M. P. Snyder,
“Applications for the archinaut in space manufacturing and assembly
capability,” in AIAA SPACE and Astronautics Forum and Exposition,
American Institute of Aeronautics and Astronautics, Sept. 2017.

[17] A. C. Sanderson, H. Zhang, and L. S. Homem de Mello, “Assembly
sequence planning,” AI Mag., vol. 11, pp. 62–81, Apr. 1990.

[18] R. H. Wilson, On Geometric Assembly Planning. PhD thesis, Stanford
University, Stanford, CA, USA, 1992. UMI Order No. GAX92-21686.

[19] P. Jiménez, “Survey on assembly sequencing: a combinatorial and ge-
ometrical perspective,” Journal of Intelligent Manufacturing, vol. 24,
pp. 235–250, Aug. 2011.

[20] J. P. Vielma, “Mixed integer linear programming formulation tech-
niques,” SIAM Review, vol. 57, pp. 3–57, Jan. 2015.

[21] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM,
vol. 9, pp. 11–12, Jan. 1962.

[22] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language
for mathematical optimization,” SIAM Review, vol. 59, pp. 295–320,
Jan. 2017.

6509

Authorized licensed use limited to: Stanford University. Downloaded on June 30,2021 at 16:40:04 UTC from IEEE Xplore. Restrictions apply.

