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Abstract— This paper presents a design for a decentralized
adaptive controller that allows a team of agents to manipulate
a common payload in R

2 or R
3. The controller requires no

communication between agents and requires no a priori knowl-
edge of agent positions or payload properties. The agents can
control the payload to track a reference trajectory in linear and
angular velocity with center-of-mass measurements, in angular
velocity using only local measurements and a common frame,
and can stabilize its rotation with only local measurements. The
controller is designed via a Lyapunov-style analysis and has
proven stability and convergence. The controller is validated in
simulation and experimentally with four robots manipulating
an object in the plane.

I. INTRODUCTION

Collaborative manipulation remains one of the most im-
portant problems in multi-agent systems. Using teams of
robots to manipulate large or heavy payloads promises
many advantages over single-agent manipulators, including
flexibility, scalability, and robustness to individual agent
failures. Applications for these systems include construc-
tion, manufacturing and assembly, search and rescue, and
debris removal. However, current strategies make restrictive
assumptions which prevent these systems from being used
in the field.

A. Contribution
This paper presents a design for a decentralized adaptive

controller that allows a team of agents to manipulate a
common payload in R

2 or R3. The agents are rigidly attached
to the object, and manipulate it by applying forces and
torques. The controller has proven stability and convergence
properties, requires no communication between agents and
requires no a priori knowledge of agent positions or payload
mass and friction properties. The agents use online parameter
adaptation to compensate for these unknown effects while
simultaneously performing the manipulation task.

Specifically, we solve three collaborative manipulation
problems of varying difficulty, depending on the information
available to the agents. First, assuming inertial measurements
from the object’s center of mass are available to all robots,
our controller allow the robots to track general translational
and rotational velocities. Second, if the robots take inertial
measurements at their attachments points, they can control
the object to track general rotational trajectories. Third, if
the robots take inertial measurements at their attachment
points and have different frame orientations, they can still
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Fig. 1: Four agents manipulate a common payload. The agents have no
prior knowledge of the object’s mass or frictional properties, and cannot
communicate with each other. Using the proposed decentralized adaptive
controllers, they can control the body’s linear and angular velocities to track
a desired trajectory.

cooperatively stabilize the rotational velocity of the object
to zero. These strategies apply to manipulation tasks in R

2

and R
3, and are robust to the addition or removal of agents.

These results all stem from a novel decentralized adaptive
control design strategy, which is introduced in this paper for a
class of nonlinear dynamical systems. We prove the stability
and convergence properties of the adaptive controller with a
Lyapunov style analysis.

We experimentally demonstrate a team of omni-directional
ground robots [1] manipulating a common payload in R

2,
and present a simulation of a team manipulating a payload
in R

3 using Gazebo [2], an open-source dynamics engine.

B. Prior Work

Collaborative manipulation has been extensively studied,
beginning with a set of protocols for pushing rigid objects
in [3]. Various decentralized manipulation strategies have
been proposed, including force sensing [4], potential fields
[5], caging [6], consensus [7], and pseudo-inverse allocation
[8]. In [9] the authors demonstrate automated transport and
assembly of furniture with ground robots. In [10] the authors
develop and demonstrate a strategy for manipulating flexible
payloads. Further, various recent papers have focused on co-
operative manipulation with aerial vehicles, using both cables
[11] and rigid attachments [12], as well as path planning
for cooperative lifting [13]. In [14], the authors propose a
decentralized, non-adaptive control strategy for quadrotors
manipulating a common payload. These algorithms, while
successful, suffer from the significant drawback of requiring
accurate payload knowledge, including the locations of each
agent from the center of mass, as well as mass and frictional
properties of the payload.
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To this end, some authors have sought to develop strategies
that estimate or adapt to unknown payload dynamics. In [15]
and [16] the authors develop a decentralized strategy for
estimating payload parameters, and using these estimates for
manipulation. However, these algorithms make extensive use
of networking between agents, and do not perform estimation
and control simultaneously.

Previous work has also proposed applying adaptive con-
trol to manipulation tasks. In [17], the authors develop a
centralized adaptive controller to control the attitude of a
quadrotor. In [18], the authors develop a decentralized adap-
tive controller that allows robotic arms to adapt to their own
dynamics, but consider the payload geometry (i.e. attachment
points and center-of-mass location) to be known. Further,
in [19], the authors develop a fully centralized adaptive
controller for multiple manipulators moving an unknown
payload.

Our work applies results from Model Reference Adap-
tive Control (MRAC) [20]. Further, our work is related to
decentralized adaptive control, wherein adaptive controllers
are designed for interconnected systems, as in [21], [22].

The remainder of the paper is structured as follows. In
Section II, we formulate three collaborative manipulation
tasks, and outline the assumptions required to accomplish
them. In Section III, we formulate the dynamics of the
manipulation problems. Section IV presents a decentralized
adaptive controller design for a class of nonlinear dynamical
systems that includes the dynamics described in Section III.
In Section V, we assess our controller performance for a
manipulation task in R

3 using an open-source dynamics
engine. In Section VI, we present the experimental results of
our controller for a planar manipulation task using ground-
based mobile robots.

II. PROBLEM STATEMENT

We consider a team of n robots, Ri, i ∈ {1, ..., n}, rigidly
attached to a rigid payload B, which has mass m and inertia
matrix I. Each agent has a body-fixed coordinate frame,
r̂xyz,i, and there also exists a common body-fixed frame

b̂xyz . Each agent is attached at position ri, measured from
the object’s center of mass, and is capable of applying a force
Fi and a torque Ti to the object. The body is located in an
inertial (world) frame N at position p, has a linear velocity
vcm measured at its center of mass, and angular velocity
ω. The body is also subject to a frictional force Ff (e.g.
sliding friction or air resistance). A schematic of the system
is shown in Figure 1.

Each agent has a low-level controller which can apply
the desired forces Fi and torques Ti. The agents are also
equipped with sensors to measure their linear velocity vi

and angular velocity ωi in N . Each agent also has access
to a reference signal and model trajectory, either via a
broadcast from a ground station, or precomputed and stored
onboard. The agents cannot communicate with each other or
the ground station, and have no a priori knowledge of the
payload’s mass or frictional properties.

We now formulate three collaborative manipulation prob-
lems to be solved in this paper. The problems are ordered

from most to least challenging, and each requires progres-
sively less restrictive assumptions for its solution.

Problem 1 (Collaborative Manipulation). Consider a team
of n agents manipulating a rigid object B. Let x =[
vT
cm ωT

]T
denote the object’s appended linear and

angular velocities. Design a decentralized controller such
that, given a reference velocity xm(t), the control law
guarantees stability and asymptotic tracking.

To solve this problem, we make the following assump-
tions:

Assumption 1 (Center-of-Mass Measurement). Each agent
has access to x(t), the linear and angular velocity of B
measured at its center of mass.

Assumption 2 (Common Reference Frame). The agents
share a common reference frame fixed in B (i.e. b̂xyz), and
know the orientation between their frame r̂xyz,i and this
frame.

While Assumption 1 appears restrictive, we discuss here
multiple options for its removal.

One option is to place a sensor at the center of mass which
broadcasts measurements to the agents. While this requires
prior knowledge of B, an adaptive algorithm still allows for
the solution of Problem 1 without measuring ri for each
agent, which can be prohibitively expensive for large teams
of agents.

In addition, Assumption 1 is satisfied by each agent
knowing its location ri with respect to the center of mass.
This is due to w = wi, and vcm can be calculated using
vcm = vi + ωi × ri. We seek to remove this assumption in
future work by allowing measurements to be taken from any
point on the body.

We also note that Assumption 2 is only mildly restrictive.
Assuming each agent has a compass or star tracker onboard,
it may use this device to determine its orientation with
respect to the body frame.

Further, we can consider additional manipulation problems
that allow us to remove Assumptions 1 and 2.

Problem 2 (Collaborative Rotation Control). Consider a
team of n agents manipulating a rigid object B. Design a
decentralized controller such that, given a reference angular
velocity ωm(t), the control law guarantees stability and
asymptotic tracking.

We note that solving this problem does not require As-
sumption 1, since angular velocity is equal at all points
on a rigid body, and thus each agent may use its local
measurement, ωi for control.

We can further restrict the problem to also remove As-
sumption 2.

Problem 3 (Collaborative Rotation Stabilization). Consider
a team of n agents manipulating a rigid object B. Design a
decentralized control law that guarantees stability and drives
the angular velocity to zero.

While this problem is much more restricted than Problem
1, it forms an important class of manipulation problems
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which includes the stabilization of orbital debris for active
removal as proposed in [23].

III. SYSTEM DYNAMICS

In this section, we formulate the dynamics of collaborative
manipulation tasks in R

2 and R
3 as nonlinear dynamical

systems. Throughout this discussion, we let
Fdv
dt denote the

time derivative of vector v in the reference frame F .

A. Planar Manipulation

We first consider a payload that is being manipulated in
R

2 by a team of agents. The linear dynamics are described
by F = macm, where F is the resultant of all forces on the
body B, and acm is the acceleration of the payload’s center
of mass in N . For planar manipulation, we consider both
applied forces from the robots and frictional forces on the
body, F =

∑n
i=1 Fi + Ff , where we model the frictional

force Ff as

Ff = −μ0,�σ(vcm)− μ1,�vcm,

where μ0,�, μ1,� are zeroth-order (sliding) and first-order
(viscous) frictional constants, and

σ(x) =
1

1 + e−x

denotes the sigmoid function, a continuous approximation
of the sign function. Additionally, we can write the linear
acceleration as

acm =
Ndvcm

dt
= (v̇x − ωvy)b̂x + (v̇y + ωvx)b̂y.

Further, the rotational dynamics of B are given by
MB/Bcm = Jα, where MB/Bcm is the resultant of all
moments on B about its center of mass, J is B’s moment
of inertia about b̂z , and α denotes B’s angular acceleration
in N .

We consider both applied and frictional moments on B,
MB/Bcm = Mf +

∑n
i=1 Ti + ri×Fi, where we model the

frictional moment about the center of mass as

Mf = (−μ0,rσ(ω)− μ1,rω)b̂z,

for frictional constants μ0,r, μ1,r.

Let x =
[
vx vy ω

]T
denote the system state and

ui =
[
Fxi Fyi Ti

]T
denote the input for agent i. Using

the equations above, we can write

ẋ = Ax+
∑n

i=1 Bi(ui − Lif(x)), (1)

where

A =

⎡
⎣ −μ1,�

m 0 0
0 −μ1,�

m 0
0 0 −μ1,r

m

⎤
⎦ ,Bi =

⎡
⎣ 1

m 0 0
0 1

m 0
− ry

J
rx
J

1
J

⎤
⎦ ,

Li = − 1

n
B−1

i

⎡
⎣ μ0,�

m 0 0 0 1
0

μ0,�

m 0 −1 0
0 0

μ0,r

m 0 0

⎤
⎦ ,

and f(x) =
[
σ(vx) σ(vy) σ(ω) ωvx ωvy

]T
.

B. General 3D Motion
We now consider a payload being manipulated in R

3. We
now only consider a first-order (viscous) friction model,

Ff = −μ�vcm.

While we can also add zeroth- and higher-order terms to the
friction model, this is unnecessary when the object is free-
flying (e.g. in space or in the air), as it is not in contact with
a sliding surface.

We write the linear acceleration as

acm =
Ndvcm

dt
=

Bdvcm

dt
+ ω × vcm.

Further, the rotational dynamics of B are given by
MB/Bcm = Iα + ω × (Iω) where I is the inertia matrix
of B,

I =

⎡
⎣ Ixx Ixy Ixz

Ixy Iyy Iyz
Ixz Iyz Izz

⎤
⎦ ,

and MB/Bcm is the resultant moment on B about the center
of mass. MB/Bcm = Mf+

∑n
i=1 Ti+ri×Fi, where Mf =

−μrω denotes the rotational friction on B.

Let x =
[
vx vy vz wx wy wz

]T
denote the system state, and ui =[
Fxi Fyi Fzi Txi Tyi Tzi

]T
denote the input

for agent i.
Using the above equations, we can write

ẋ = Ax+
∑n

i=1 Bi(ui − Lif(x)), (2)

where

A =

[−μ�

m I 0
0 −μrI

−1

]
, Bi =

[ 1
m I 0

I−1Ri× I−1

]
,

Li = − 1

n
B−1

i

[
M 0
0 P

]
, M =

⎡
⎣ 0 0 0 1 0 −1
0 1 0 0 −1 0
1 0 −1 0 0 0

⎤
⎦ ,

P =

⎡
⎣ 0 Iyz −Iyz Ixz −Ixy Izz − Iyy
−Ixz 0 Ixz −Iyz Ixx − Izz Ixy
Ixy −Ixy 0 Iyy − Ixx Iyz −Ixz

⎤
⎦ ,

and f(x) =
[ ωxvy ωxvz ωyvx ωyvz ωzvx ωzvy · · ·

ω2
x ω2

y ω2
z ωxωy ωxωz ωyωz ]T ,

where I denotes the identity matrix, and Ri× denotes the
matrix form of the cross product of ri,

Ri× =

⎡
⎣ 0 −rzi ryi

rzi 0 −rxi
−ryi rxi 0

⎤
⎦ .

Note the dynamics (1) and (2) are of the same general form.

IV. DECENTRALIZED ADAPTIVE CONTROL

In this section, we use techniques from Model Reference
Adaptive Control (MRAC) to design decentralized adaptive
controllers for a class of nonlinear systems. These controllers
require no communication between agents, no prior knowl-
edge of system parameters, and have proven stability and
asymptotic tracking. We then use these results to develop
adaptive controllers for the manipulation problems described
in Section II.
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A. Decentralized Adaptive Controller

Assume n agents are cooperating to control a nonlinear
system, with system state x ∈ R

m. We assume the system
is of the form

ẋ = Ax+

n∑
i

Bi(ui − Lifi(x)), (3)

where A ∈ R
m×m, Bi ∈ R

m×k, Li ∈ R
k×qi are unknown

constant matrices, and fi(x) ∈ R
qi are a set of known

nonlinear basis functions which are continuous in x. Note
this is precisely the form of the planar manipulation (1) and
3D manipulation (2) equations.

The objective of the decentralized controllers is to choose
ui ∈ R

k such that the system state x(t) tracks the trajectory
of a reference model xm(t) ∈ R

m, with LTI dynamics given
by

ẋm = Amxm +Bmr(t), (4)

where Am ∈ R
m×m is stable, Bm ∈ R

m×k, and r(t) ∈ R
k

is a bounded reference signal. The reference model is chosen
by the designer, and represents the desired dynamics for the
system.

Each agent i implements a controller of the form

ui = Kxix+Krir(t) + L̂ifi(x), (5)

where Kxi ∈ R
k×m,Kri ∈ R

k×k, L̂i ∈ R
k×qi are control

gain matrices which are tuned online. Therefore, each agent
seeks to choose control gains such that the closed-loop
system tracks the reference model. This controller yields the
closed-loop dynamics

ẋ = (A+

n∑
i=1

BiKxi)x+ (

n∑
i=1

BiKri)r+ (

n∑
i=1

BiL̃ifi(x)),

(6)
where L̃i = L̂i − Li.

Thus, if we choose K∗xi,K
∗
ri,L

∗
i according to

A+
∑n

i=1 BiK
∗
xi = Am,∑n

i=1 BiK
∗
ri = Bm,∑n

i=1 Bi(L
∗
i − Li)fi(x) = 0,

then the system dynamics match those of the reference
model, and x(t)→ xm(t).

We assume the desired gains K∗xi,K
∗
ri,L

∗
i exist, although

they are unknown a priori. In general, these gains need not
exist, but their existence can be shown for the manipulation
systems considered here when the designer chooses Bm �
0. 1 Similar structure may be leveraged to design Am,Bm

appropriately for specific systems.

Define e = x− xm as the tracking error. We use (4) and
(6) to write the error dynamics

ė = ẋ− ẋm

= Ame+
n∑

i=1

Bi(K̃xix+ K̃rir+ L̃ifi(x)),
(7)

1We let M � 0 denote that matrix M is positive definite, and M ≺ 0
denote M is negative definite.

where K̃xi = Kxi − K∗xi is the feedback gain error and

K̃ri = Kri −K∗ri is the feedforward gain error.
Since the error dynamics depend on the unknown matrices

Bi, we make a further assumption on their form, namely:

Assumption 3. Bi =
1
nBmK∗−1

ri , for K∗ri � 0.

This assumption is non-restrictive, and implies the desired
feedforward control effort is evenly divided between the
agents. Since all Bi are p.d. for the manipulation tasks
considered in this paper (see Appendix), if Bm � 0, then
K∗ri � 0 by design.

We now propose the following adaptation laws for the
control gain matrices:

˙̃
Kxi = K̇xi = −ΓxiB

T
mPexT , (8)

˙̃
Kri = K̇ri = −ΓriB

T
mPerT , (9)

˙̃
Li = L̇i = −Γ�iB

T
mPefi(x)

T , (10)

where P = PT � 0 satisfies the Lyapunov equation

PAm +AT
mP = −Q

for some Q = QT � 0, and Γxi,Γri,Γ�i ∈ R
k×k are

positive definite gain matrices.

Theorem 1. If each agent implements the controller in (5),
and the adaptation laws (8)-(10), then the system is stable in
the sense of Lyapunov, and achieves asymptotically perfect
tracking.

Proof. Consider the Lyapunov function candidate

V (e, K̃xi, K̃ri, L̃i) = eTPe+ 1
n

∑
tr(K̃T

xiK
∗−1
ri Γ−1

xi K̃xi

+ K̃T
riK

∗−1
ri Γ−1

ri K̃ri + L̃T
i K

∗−1
ri Γ−1

�i L̃i).

Taking the time derivative of V yields

V̇ = −eTQe+
2

n

∑
eTPBmK∗−1

ri (K̃xix+ K̃rir

+ L̃ifi(x)) +
2

n

∑
tr(K̃T

xiK
∗−1
ri Γ−1

xi
˙̃
Kxi

+ K̃T
riK

∗−1
ri Γ−1

ri
˙̃
Kri + L̃T

i K
∗−1
ri Γ−1

�i
˙̃
Li).

Using the adaptation laws (8)-(10), we get

V̇ = −eTQe. (11)

Thus, since V > 0 and V̇ ≤ 0, the system is stable in the

sense of Lyapunov, and e, K̃xi, K̃ri, L̃i are bounded because
V is nonincreasing. By definition, r(t) is bounded, and since
Am is a stable matrix, the reference model is BIBO stable,
so xm is also bounded. Since e,xm bounded, we also have
x bounded from the definition of e, and ui bounded using
(5) and the fact that fi are continuous in x (and thus bounded
for bounded x). Therefore, all signals in the closed-loop are
bounded. Further, from (7) we have ė bounded.

We can write the second derivative of V ,

V̈ = −2eTQė,

which is bounded since e, ė bounded. Thus, we invoke
Barbalat’s Lemma [24] to conclude that V̇ → 0 with t, and
thus e→ 0.
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We note the controller (5) and adaptive laws (8)-(10) do
not depend on n, the number of agents. Thus, the controller
is robust to the addition or removal of agents, since this is
equivalent to merely restarting the controller with different
n, and initial gains Kxi, Kri, Li.

We also notice that the controller and adaptation laws
require only information available to each agent (specifically
Kxi, Kri, e, r, f(x)), without requiring information from
any other agent. Thus, this is a decentralized adaptive con-
troller that does not require explicit communication between
robots.

Further, since (11) does not depend on K̃xi, K̃ri, L̃i,
V̇ → 0 does not imply the parameter errors go to zero
asymptotically. An additional condition, persistent excitation
(PE), must be satisfied for this to occur [20]. Thus, in
general, the control gains Kxi, Kri, Li are not suitable for
performing parameter estimation.

B. Decentralized Adaptive Manipulation

We now apply the results from Section IV-A to the
manipulation problems formulated in Section II. We show
our controller design solves these problems, and motivate
Assumptions 1-2.

Corollary 1 (Controller for General Manipulation). If a team
of agents implements a decentralized controller of the form
(5), and use adaptation laws of the form (8)-(10), they can
solve Problem 1, namely for for x =

[
vT
cm ωT

]T
,

lim
t→∞ || x(t)− xm ||= 0.

Proof. It is apparent that the dynamics of both systems in
R

2 (1) and R
3 (2) are of the form in (3), with Bi which

satisfy Assumption 3 by definition (see Appendix). This
result follows from Theorem 1.

We now motivate Assumptions 1-2 for the solution of
Problem 1.

Assumption 1 is necessary because the controller (5)
and adaptation law (8) require a measurement of x, which
requires a velocity measurement from the center of mass.

Further, the dynamics in (1), (2) implicitly assume the
velocities are measured in a body-fixed frame. Thus, the
agents must have access to this frame to achieve tracking.

Corollary 2 (Controller for Rotation Control). If a team of
agents have a shared body-fixed frame b̂xyz , and implement
controllers of the form (5) with adaptation laws of the form
(8)-(10), then they can solve Problem 2, namely for x = ω,

lim
t→∞ || x(t)− xm ||= 0.

Proof. It is again apparent that the rotational dynamics of
the systems are of the form (3). This result again follows
from Theorem 1.

If the agents only apply torques Ti to the object, none
of the dynamics depend on vcm. Further, since angular
velocity is equal on all points of a rigid body, each agent can
measure x(t) locally, which allows us to relax Assumption
1. However, solving Problem 2 still requires Assumption 2,
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(a) Simulated Trajectory for General R3 Manipulation
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(b) Lyapunov Function for General R3 Manipulation

Fig. 2: Simulation results for n = 6 agents manipulating a common payload
in R

3. The agents aim to control the payload’s angular and linear velocities.
(a): Simulated state trajectory, and reference trajectory. (b): Simulated
Lyapunov function V for the manipulation task. The plotted function has
been shifted by a constant value.

since the agents require a common frame in which to express
the reference signal r.

Corollary 3 (Controller for Rotation Stabilization). If a team
of agents implement a decentralized controller of the form
(5) with adaptation laws of the form (8)-(10), they can solve
Problem 3, namely

lim
t→∞ || x(t) ||= 0.

Proof. Suppose r(t) = 0. Since this reference signal is equal
in all frames, the agents can implement the proposed adaptive
controller without requiring Assumption 2. This result again
follows from Theorem 1.

V. SIMULATION RESULTS

To validate our algorithm, we simulated its performance
for Problems 1-3. The simulation consisted of a team of
n = 6 satellites rigidly attached to a large, free-floating
payload (i.e. a rocket body). The mass properties of the
payload were based on a Delta IV first stage rocket, and
the model parameters are given in Table I.

While the adaptation laws (8)-(10) are continuous deriva-
tives, we used a forward-difference method to approximate
the derivative for a discrete-time implementation. Addi-
tionally, we modified the adaptation laws by adding σ-
modification and a deadzone to improve their robustness and
transient performance. These techniques are well studied, and
outlined in [25].

Figure 2(a) shows the simulated trajectory for a group
of agents performing general manipulation on the body B.
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Parameter Value

m 2.6e4 (kg)
Ixx 4.47e6 (kg m2)
Iyy 4.47e6 (kg m2)
Izz 1.40e5 (kg m2)
r1 (0, 0, 20.4) (m)
r2 (6.9, 0, 0) (m)
r3 (-6.9, 0, 0) (m)
r4 (0, 6.9, 0) (m)
r5 (0, -6.9, 0) (m)
r6 (0, 0, -20.4) (m)

TABLE I: Simulation Parameters

0 50 100 150 200
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ω
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/s
]
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(a) Simulated Trajectory for R3 Rotation Control

0 50 100 150 200
0

2

4

t [sec]

V
(t

)

(b) Lyapunov Function for R3 Rotation Control

Fig. 3: Simulation results for n = 6 agents controlling the rotation of a
payload in R3. Only local measurements are used for control. (a): Simulated
state trajectory, and reference trajectory. (b): Simulated Lyapunov function
V for the manipulation task The plotted function has been shifted by a
constant value.

A sinusoidal reference signal of multiple frequencies was
commanded in vx, vy , and ωx, while zero velocities were
commanded in the other states. The agents were able to
measure the velocities at the center of mass, and had a
common body-fixed frame. It is apparent that the system
achieves asymptotic tracking, as shown in Corollary 1.

Further, Figure 2(b) plots the Lyapunov function V (t) for
the simulation. For ease of computation, the function V (t)
was evaluated by integrating V̇ , given by (11). Since V � 0
with t, the plot is offset by a constant amount. From the plot,
we can see V̇ → 0.

Figure 3(a) shows the simulated trajectories for a group of
agents controlling the rotation of body B. The agents only
applied torques Ti to the body, and used local measurements
for control. The figure indicates that asymptotic tracking is
achieved. Further, from Figure 3(b), we again see that V̇ →
0.

As discussed in Section IV-B, the control strategy is robust
to the addition/removal of agents during manipulation. Figure
4 shows a simulation in which the agents attempt to control
the rotation of body B, where 4 of the n = 6 agents are
turned off at tdrop = 45s. The controllers are able to respond
to this change, and still achieve asymptotic tracking.

0 50 100 150 200

−0.5

0

0.5

1 tdrop

t [sec]

ω
(t
)

[r
ad

/s
]

ωx ωy ωz xm

Fig. 4: Simulated trajectory for n = 6 agents controlling the rotation of a
common payload. At tdrop = 45s, 4 agents are deactivated.
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Fig. 5: Simulated trajectory for n = 6 agents attempting to stabilize the
rotation of a body in R

3. Only local measurements are used for control,
and agents do not have a common reference frame.

Further, Figure 5 plots the simulated trajectories of a group
of agents attempting to stabilize body B to zero angular
velocity. The body was given an initial angular velocity of
[3, 3, 3] (rad/s) about its principal axes. The agents did not
have access to central measurements or a common reference
frame. Despite these constraints, the agents were still able to
stabilize the body’s rotation.

VI. EXPERIMENTAL RESULTS

We also evaluated the control strategy experimentally,
using a team of ground-based mobile robots. A schematic of
the experimental setup is shown in Figure 6. The robots have
omnidirectional wheels, and use an onboard PID controller
to provide the desired force Fi and torque Ti by generating
motor speeds. The robots received velocity measurements
via an OptiTrack motion capture system. All controller
code was executed onboard each robot. All communication
was performed using ROS over a wireless network. Our
implementation used a sign function to model zeroth-order
friction, which worked well in practice. The payload had a
mass of m = 16.5 kg, and inertia J = 2.46 kg m2.

Figure 7(a) shows the results of the controllers when
commanded a square wave in vx, and zero velocity in vy
or ω. The test consists of 50 trials of 60 seconds each. Each
robot was initialized with randomly scaled control gains, and
had no unique prior knowledge of the object parameters
or its position on the object. While the robots initially do
not respond to the velocity command, their controllers adapt
online to allow the payload to begin moving, and eventually
to track the reference signal.

Figure 7(b) shows the average value of the Lyapunov
function V (t) for the trials, as well as the maximum and
minimum value at each timestep. The variance in the function
values is likely due to unmodelled effects, including network
latency, discretization error, and static friction. It is apparent
that V̇ is decreasing in magnitude, but does not fully reach 0
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b̂xyz

Bcm

r̂xyz,i

Fig. 6: Four ground robots manipulate a common payload. The agents
achieve asymptotic tracking in linear and angular velocity without prior
knowledge or explict communication with other agents. All computation
is performed onboard. A video of the experiments may be viewed at
https://youtu.be/qRoCpjAW5NY.

by the end of the trial, indicating the parameters can evolve
further to achieve better tracking.

Figure 7(c) shows the results of the controllers when
tracking a reference signal generated by a human user. The
reference signal was generated in real time using a joystick
operated by the human user, and broadcast over the wireless
network.

Again, we can see the controllers initially do not respond
to velocity commands, but begin to track the commands as
their controllers adapt. Good tracking is achieved for arbi-
trary signals in vx, vy , while moderate tracking is achieved
in ω. The difficulty in rotational control is likely due to
static rotational friction, as well as control gains which were
initialized to values far from their true values.

VII. CONCLUSION AND FUTURE WORK

This work proposes a decentralized adaptive controller
which allows teams of agents to perform collaborative
manipulation without communication or prior knowledge
of object parameters. The proposed controller has proven
stability and tracking for linear and angular velocities in R

2

and R
3, if the agents receive measurements from the center of

mass, tracking in angular velocity if agents have a common
body-fixed frame, and rotation stabilization using only local
measurements. The strategy was verified in both simulation
and experiments.

A number of improvements can be made to the proposed
control strategy. Assumption 1, which requires center of mass
measurements for general manipulation, can be relaxed by
formulating the object dynamics about a general point on
the rigid body, which would allow a sensor to be placed
anywhere on the body, reducing the need for object calibra-
tion.

Further, while the proposed controllers have proven track-
ing in x(t), the parameter errors do not necessarily go to
zero. An additional condition, persistent excitation (PE),
must hold for the parameters to converge to their true
values [20]. Thus, for general r(t), the controller gains are
not suitable for parameter estimation. Future work includes
writing the conditions for PE and investigating when they are
satisfied. We also hope to verify our manipulation algorithms
in R

3 experimentally using quadrotors or robotic arms.
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APPENDIX

Here we prove the positive definiteness of the matrices Bi

as defined in Section III.

Lemma 1 (Definiteness of Block Triangular Matrices). For
a matrix M ∈ R

(f+g)×(f+g) of the form

M =

[
A 0
C D

]
,

where A ∈ R
f×f , C ∈ R

g×f , D ∈ R
g×g , if A,D � 0 then

M � 0.

Proof. Using the results in [26], we write

det(M− λI) = det(A− λI) det(D− λI)

Thus, the eigenvalues of M are equal to the union of those
of A and D, which have positive real parts. Thus, M � 0,
as needed.

Theorem 2. Bi, as defined in (1) is positive definite.

Proof. We can partition Bi with A = 1
m I and D = 1

J . By
inspection, A,D � 0. Thus, using Lemma 1, Bi � 0, as
needed.

Theorem 3. Bi, as definied in (2) is positive definite.

Proof. We again partition Bi, with A = 1
m I and D = I−1.

By inspection, A � 0. For rigid bodies of finite size, I � 0,
which implies I−1 � 0, and thus D � 0. Thus, by Lemma
1, Bi � 0, as required.
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