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Abstract— A key source of brittleness for robotic systems is
the presence of model uncertainty and external disturbances.
Most existing approaches to robust control either seek to
bound the worst-case disturbance (which results in conservative
behavior), or to learn a deterministic dynamics model (which
is unable to capture uncertain dynamics or disturbances).
This work proposes a different approach: training a state-
conditioned generative model to represent the distribution of
error residuals between the nominal dynamics and the actual
system. In particular we introduce the Online Risk-Informed
Optimization controller (ORIO), which uses Discrete-Time
Control Barrier Functions, combined with a learned, generative
disturbance model, to ensure the safety of the system up to some
level of risk. We demonstrate our approach in both simulations
and hardware, and show our method can learn a disturbance
model that is accurate enough to enable risk-sensitive control of
a quadrotor flying aggressively with an unmodelled slung load.
We use a conditional variational autoencoder (CVAE) to learn a
state-conditioned dynamics residual distribution, and find that
the resulting probabilistic safety controller, which can be run
at 100Hz on an embedded computer, exhibits less conservative
behavior while retaining theoretical safety properties.

I. INTRODUCTION

Robots operating in the real world face considerable
uncertainty due to imperfect perception, approximate world
and dynamics models, and random disturbances. These error
sources are often a key failure cause for field-deployed
robots, and in general can undermine classical safety and
performance guarantees that rely on perfect models of the
system and its environment. A natural framework to ad-
dress this issue is risk-sensitivity: to operate effectively in
novel, uncertain environments, robots should both be able
to represent their uncertainty about the world (due to, e.g.,
modelling error, perception failures) and design controllers
that can still (probabilistically) ensure some level of safety
or performance, despite this uncertainty.

In this paper, we explore using deep generative models
(DGMs), [1]–[3] which are a broad class of methods that use
neural networks to approximate the probability distribution
underlying a given dataset, to learn disturbance distributions
for risk-sensitive control. These models can be used for
density estimation, which provides a likelihood model for
the data, and to sample new data points from the data
distribution. Beyond their more traditional applications, like
generating image [4] and text [5] data, these models have
been applied to a broad range of robotics tasks including

This research is supported by BP.
The authors are with the Department of Mechanical and Civil

Engineering, California Institute of Technology, Pasadena, CA 91125,
USA. {rkcosner, isadalsk, jkwoo, pculbert, ames
}@caltech.edu.

Fig. 1. The drone falling through the air and avoiding hitting the ground
using our proposed method. The generative model learns the state dependent
disturbance distribution and the mean of the disturbance norm expanded by
the trace of the covariance both scaled by the time step plotted on the right.

SLAM [6], imitation learning [7], [8], motion planning [9],
[10], human-robot-interaction [11], [12], anomaly detection
[13], sim-to-real transfer [14], dynamics learning [15], [16],
and reinforcement learning [17].

In this work we employ conditional variational autoen-
coders (CVAEs) [18] which are a generalization of varia-
tional autoencoders (VAEs) that allow one to condition the
generating process on a context variable (e.g., the current
state). CVAEs have been used to recreate hand-written im-
ages of numbers given the desired digit [18] or to predict
trajectories given state and environment understanding [19]–
[21]. Since the generative process for a CVAE only requires
two neural network forward passes and normal distribution
samples, they are computationally efficient and well suited
for real-time robotics applications.

Stochastic control methods can make use of generative
models to ensure constraint satisfaction (e.g., collision avoid-
ance) up to a desired probability. In general, stochastic
control methods assume prior knowledge of distribution such
as value at risk (VaR) or conditional value at risk (CVaR)
[22] values of a constraint function for the noisy dynamics,
or the disturbance distribution’s mean and covariance [23],
[24]. While this assumption is less restrictive than the global
upper bound on the disturbance magnitude common in
classical, deterministic robust control [25]–[27], it is still
unrealistic to assume one has perfect, a priori knowledge
of the disturbance distribution before operating the system,
and impractical / unprincipled to estimate these parameters
by hand. To address these issues, we propose to learn a
conditional generative model of the dynamics distribution
instead of assuming its structure a priori.

This work on modeling dynamics residuals most closely



resembles a probabilistic generalization of [28], [29]. For
generative modeling this work leverages [18] and for safety
we rely on the probabilistic safety guarantees for DTCBFs
with stochastic dynamics residuals presented in [23].

This work presents the Online Risk-Informed Optimiza-
tion (ORIO) controller, a risk-based safety framework that
learns to ensure safety in the presence of stochastic dynamics
residuals using DGMs and DTCBFs. The main contributions
of this work are (1) the proposed ORIO controller, which
is a unified framework for dynamics distribution learning
and usage of that distribution for ensuring probabilistic
safety using DTCBFs; and (2) simulation and hardware
demonstrations of the real-time application of these methods
on a multi-rotor aerial robot for safe flight.

II. CONDITIONAL VARIATIONAL AUTOENCODERS
(CVAES) FOR GENERATIVE DISTURBANCE MODELING

In this work, we consider applications of safe control in
the presence of unmodeled disturbances. Specifically, We
consider the following systems with discrete time dynamics:

xk+1 = F(xk,uk) + dk, ∀k ∈ N (1)

with state xk ∈ Rn, input uk ∈ Rm, unmodeled residual
dynamics dk that take values in Rℓ and are sampled from
some unknown distribution p(d|x), and modeled dynamics
F : Rn × Rm → Rn. A state-feedback controller k : Rn →
Rm yields the discrete-time closed-loop system:

xk+1 = F(xk,k(xk)) + dk, ∀k ∈ N. (2)

The assumptions that the dynamics residuals are input-
independent and unmatched is a general one often made in
robust control theory for discrete-time systems [30]–[33].

A. Conditional Variational Inference

To account for the unmodeled disturbances, we first seek
a generative model that can approximate the conditional
distribution p(d|x) given a dataset D = {(xi,di)}Ni=1.
We do this by fitting a parametric distribution to D which
attempts to maximize the likelihood of the observed data
with respect to the learned distribution.

While there exist many (learning- and learning-free) meth-
ods for generative modeling, in this paper, we look to
Conditional Variational Autoencoders (CVAEs) [18], a vari-
ant of Variational Autoencoders (VAEs) [34] that allows
the learned models to be conditioned on observations, x.
CVAEs assume there exists a latent variable z which captures
the “unobserved” information explaining any non-random
variation in the data distribution p. For example, if the setting
of robot safety, the latent codes z could represent state-
dependent modeling errors, or other hidden variables (e.g.,
higher-order dynamics, time delays) that could influence the
difference between the observed next state xk+1, and the
modeled dynamics F(xk,uk).

Specifically, CVAEs represent the conditional distributions
pθ(d|x, z) and qφ(z|x,d), and the latent prior pϕ(d|x) as
multilayer perceptions (MLPs) with corressponding parame-
ters θ, ϕ, φ, and seek to optimize these parameters such that

Fig. 2. Learning heteroschedastic disturbance of double integrator system
using 3 minutes of data at 100 Hz (36 five second long trajectories). The
approximated mean and covariance values are scaled by the time step and
plotted against the true values in black using the CVAE in blue, diffusion
model in yellow, and MLP (mean only) in green.

the data likelihood, pθ,ϕ(d), marginalized over all states x
and latent codes z, is maximized. Traditionally qφ is called
an “encoder,” since it maps states x and disturbances d to
distributions over the latent codes z, and similarly pθ is called
a “decoder.” While maximizing pθ,ϕ(d) exactly is intractable
(and, since we do not have access to this distribution, as we
are hoping to estimate it from data), we instead optimize the
evidence lower bound (ELBO):

log pθ,ϕ(d|x) ≥ Eqφ [log pθ(d|x, z)] (3)

−KL
(
qφ(z|x,d)∥pϕ(z|x)

)
where KL is the Kullback-Liebler divergence. In prac-
tice, each network represents its corresponding distribu-
tion as a conditional Gaussian, with, e.g. pθ(d|x, z) =
N (d;µθ(x, z),Σθ(x, z)), where N (· ;µ,Σ) is the proba-
bility density function of a multivariate Gaussian with mean
µ and covariance Σ, and µφ,Σφ are neural network outputs
representing the sufficient statistics of this distribution.

B. Mean and Covariance Estimation using CVAEs

Once trained, a CVAE can be used for estimation of the
disturbance’s conditional likelihood, generate new samples,
or estimate the mean and covariance of the true distribution.

In particular, the risk-sensitive DTCBF-based controller
[23] we use requires us to compute the mean and covariance
of the disturbance distribution d. To do this, we use the
following estimator1 for pθ,ϕ(d|x) :

pθ,ϕ(d|x) ≈
1

S

S∑
s=1

pθ(d|x, z(s)) (4)

=
1

S

S∑
s=1

N
(
d ; µθ(x, z

(s)),Σθ(x, z
(s))

)
1This estimator is best understood as a “Rao-Blackwellization” [35] (as

used in the Markov Chain-Monte Carlo literature) of the simple two-step
sampling estimator which uses the sample mean and covariance of d(s) ∼
pθ(· | x, z(s)). This estimator is known to have stronger convergence
(O( 1√

S
)) than the two-step scheme.



Fig. 3. (Top) Mean error ∥Epredicted[d|x] − Etrue[d|x]∥ vs. state for
GMM-based CVAE sampling method (blue), MLP (green), diffusion model
sampling mean estimate (yellow). One standard deviation estimated from
100 samples per state, x ,is plotted around the CVAE and diffusion model
curves. (Middle) Covariance error ∥covpredicted(d|x)− covtrue(d|x)∥2 vs.
state for GMM-based CVAE method (blue) and diffusion model sampling-
mean estimate (yellow) both using 10,000 samples is shown with one
standard deviation. (Bottom) Evaluation time for each model to make
its apprpoximation. Calculations performed on a desktop computer with
a Nvidia 3090Ti GPU with 10,000 samples for the stochastic methods.

where z(s) ∼ pθ(z|x). Since this MC approximation is a
Gaussian mixture model (GMM) we can obtain its mean
and expectation in closed form as:

E[d|x] ≈ 1

S

S∑
s=1

µθ(x, z
(s)) ≜ µ(x), (5)

cov(d|x) ≈ 1

S

( S∑
s=1

Σθ(x, z
(s)) + µθ(x, z

(s))µθ(x, z
(s))T

)
− µ(x)µ(x)⊤ ≜ Σ(x) (6)

C. Residual Dynamics Modeling: Simple Simulation
To demonstrate the capabilities of CVAEs to learn com-

plex dynamics disturbances, we consider the simple double
integrator system:

xk+1 =

[
x
v

]
k+1

=

[
1 ∆t

0 1

] [
x
v

]
k

+ dk (7)

with a state dependent residual distribution, dk ∼
p(dk|xk) which is a state-dependent Gaussian distribution
with mean µ(x) =

[
0, sin(x)

]⊤
and the covariance is

Σ(x) = 1
2

[
2 + cos(x) exp(−|x|)
exp(−|x|) 2 + sin(x)

]
. The system was ini-

tialized at x0 = 0, with ∆t = 0.01, and simulated for 35
five-second trials to collect data. Then the CVAE was trained
to approximate the distribution. The CVAE accurately learns
the nonlinear heteroschedastic disturbance with a relatively
small amount (3 minutes, total, in simulation time) of data,
as can be seen in Fig. 2,

We compare the CVAE to two baselines: a conditional
diffusion model [36], which is a state-of-the-art generative
model that has recently seen interest as a policy represen-
tation for robotics [8], and a simple MLP trained to map
the state x to a fixed, deterministic disturbance d(x)2. The

2Code for this test and the MLP and diffusion models can be found here.

µ Err. Avg. ±2σ Σ Err. Avg. ±2σ
GMM 0.04512 ± 0.00433 0.09518 ± 0.00296

Sampling 0.04604 ± 0.00989 0.09710 ± 0.01419
Diffusion 0.05866 ± 0.00942 0.1025 ± 0.01363

TABLE I. The statistics for the mean and covariance estimates of each
estimation method obtained from 100 estimates at 201 states. The average
error is similar for each model, but the GMM-based method has smaller
variance which is important when using its outputs in closed-loop control.
Estimates for each method are calculated using 10,000 samples.

results of this are shown in Fig. 3 and Table I. There we can
see that the MLP, despite being significantly faster, tends to
overfit to the noise causing higher mean error. Alternatively,
the diffusion model accurately learns the distribution, but
is nearly two orders of magnitude slower than the CVAE.
Additionally, two approximation methods are used for the
CVAE: the GMM-based estimator in (5, 6) and a simple
two-step sampling estimator using the population mean and
covariance calculations from samples of pθ,ϕ(d|x). The
GMM-based method is shown to be slightly faster and results
in less average error and variance.

III. SAFETY THEORY USING DISCRETE-TIME CONTROL
BARRIER FUNCTIONS (DTCBFS)

Now, given a way to learn complex, heteroscedastic noise
distributions from trajectory data, we need a way to perform
risk-sensitive control under this uncertainty. We begin by first
formalizing our definition of safety. We define the safety of
a system to be the forward invariance of some user-defined
“safe set”, C, as is common in robotics and control theory
[37]–[40]

Definition 1 (Forward Invariance and Safety). A set C ⊂ Rn

is forward invariant for the system (2) if x0 ∈ C implies that
xk ∈ C for all k ∈ N. In this case, we call system (2) safe
with respect to the set C.

A. Deterministic Safety with DTCBFs

Discrete-time control barrier functions (DTCBFs) are tools
for guaranteeing the safety of discrete time systems. Consider
a set C ≜ {x ∈ Rn : h(x) ≥ 0} expressed as the 0-
superlevel set of a continuous function h : Rn → R.

Definition 2 (Discrete-Time Control Barrier Function
(DTCBF) [41]). Let C ⊂ Rn be the 0-superlevel set of
a continuous function h : Rn → R. The function h is a
discrete-time control barrier function (DTCBF) for (1) on C
if there exists an α ∈ [0, 1] such that for each x ∈ Rn, there
exists a u ∈ Rm such that:

h(F(x,u)) ≥ αh(x). (8)

Given a CBF h for (1) and a corresponding α ∈ [0, 1], we
define the point-wise set of control values:

KCBF(x) = {u ∈ Rm : h(F(x,u)) ≥ αh(x)} (9)

This yields the following theoretical result:

Theorem 1. ( [41]) Let C ⊂ Rn be the 0-superlevel set of a
continuous function h : Rn → R. If h is a DTCBF for (1) on
C, then the set KCBF(x) is non-empty for all x ∈ Rn, and
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for any continuous state-feedback controller k with k(x) ∈
KCBF(x) for all x ∈ Rn, then the system:

xk+1 = F(xk,k(xk)) (10)

is safe with respect to C.

Intuitively, the value of h(xk) can only decay as fast as the
geometric sequence αkh(x0), which is lower-bounded by 0,
thus ensuring the safety (i.e., forward invariance) of C. This
inequality mimics that of a discrete-time Lyapunov function
[42] and similarly regulates the evolution of h based on its
previous value.

Given a continuous nominal controller knom : Rn × N →
Rm and a DTCBF h for (1) on C, a controller k satisfying
k(x, k) ∈ KCBF(x) for all x ∈ Rn and k ∈ N can be
specified via the following optimization problem (assuming
feasibility for all x ∈ C):

k(x) = argmin
u∈Rm

∥u− knom(x, k)∥2 (11)

s.t. h(F(x,u)) ≥ αh(x)

We note that unlike the continuous-time CBF constraint
[38], the DTCBF inquality constraint (8) is not necessarily
convex with respect to the input, preventing it from being
integrated into a convex optimization-based controller. To
solve this issue, it is often assumed that the function h ◦
F : Rn × Rm → R is concave with respect to its second
argument [22], [41], [43]. This assumption was shown to be
well motivated for concave h and sufficiently fast sampling
times [44].

B. Stochastic Safety with DTCBFs

For this work we are interested in generalizing beyond
deterministic DTCBFs by ensuring safety in the presence
of unbounded disturbances, where the disturbance dk is
sampled from some probability distribution which may be
a function of the state (dk ∼ p(dk|xk)).

Since system (2) will almost surely leave any compact set
as time goes to infinity [45], [46], we focus on bounding
safety probabilities for a finite time horizon.

Definition 3 (K-Step Exit Probability [23]). Let h : RN →
R be a continuous function. For any K ∈ N, and initial
condition x0 ∈ Rn, the K-step exit probability of the closed-
loop system (10) is given by:

Pu(K,x0) = P
{

min
0≤k≤K

h(xk) < 0

}
(12)

In particular, this describes the probability that the system
will leave C within K steps. We now present a key result
that bounds this exit probability when a CBF condition is
imposed in expectation.

Theorem 2 (Thm. 5 [23]). Let h : Rn → R be a continuous,
upper-bounded function with upper bound M ∈ R>0. If there
exists an α ∈ (0, 1) such that the closed-loop system (2)
satisfies:

E[ h(F(x,k(x)) + d) | x ] ≥ αh(x), (13)

Pbound MLP Standard JED True ORIO
0.82 0.69 0.56 0.00 0.32 0.11

Fig. 4. Quadrotor simulation Results. (Figure) The mean of 100 trajectories
for each controller is plotted with 1/2 standard deviation around it. (Table)
The K−step probability bound for the 2 second long trial from Thm. 3 and
the approximated K−step probability experienced on in simulation over
100 trials.

for all x ∈ Rn, with d ∼ p(d|x), then for any K ∈ N:

Pu(K,x0) ≤ 1− h(x0)

M
αK . (14)

Since this constraint contains the expectation of a nonlin-
ear function of the disturbance distribution, it may be difficult
to compute. To this end [23] provides control methods for
ensuring that inequality is satisfied for systems where the
disturbance mean and covariance are known:

Theorem 3 (Thm. 6 [23]). Consider the system (2) and let
h : Rn → R be a twice-continuously differentiable, concave
function such that supx∈Rn h(x) ≤ M for M ∈ R>0 and
supx∈Rn ∥∇2h(x)∥2 ≤ λmax for λmax ∈ R≥0. Suppose
there exists an α ∈ (0, 1) such that:

h(F(x,k(x)) + E[d|x])− λmax

2
tr(cov(d|x)) ≥ αh(x) (15)

for all x ∈ C with d ∼ p(d|x). Then we have that:

E[ h(F(x,k(x)) + d) | x ] ≥ αh(x), (16)

for all x ∈ C with d ∼ p(d|x).

This provides a tractable way for enforcing safety once
a model of the conditional mean E[d|x] and covariance
cov(d|x) is known.

In particular we propose the ORIO (Online Risk-Informed
Optimization) controller:

k(x) = argmin
u∈Rm

∥u− knom(x, k)∥2 (ORIO)

s.t. h(F(x,u) + µ(x))

− λmax

2
tr(Σ(x)) ≥ αh(x)

where we approximate E[d|x] and cov(d|x) using the out-
puts, µ(ϕ,θ)(x) and Σ(ϕ,θ)(x), of the CVAE and use those
approximations in conjunction with the simplified DTCBF
constraint (15) which endows a system with the K-step exit
probability guaranteed by Thm 2.



IV. SAFETY FOR QUADROTOR DRONE: THEORY AND
EXPERIMENTS

In this section we show the utility of our method which
combines the usefulness of CVAEs as tools for learning
complex dynamics residual distributions and our controller
(ORIO) which leverages those generative models for safe
control. This framework is applied to safe flight on a quadro-
tor drone, and evaluated in both simulation and hardware.

A. Modeling and DTCBF Synthesis for a Multirotor Drone

We consider the safety of a quadrotor drone. We model
the dynamics of this system as:

d

dt

pq
v


︸ ︷︷ ︸

ẋ

=

 v
0

−ezg

+

 0
ω

1
mR(q)ezτ

 (17)

where the state x = (p ∈ R3,q ∈ SO(3),v ∈ R3) represents
the position, orientation, and velocity, g is gravity, m is
the drone mass, and the system has inputs of angular rate
ω ∈ so(3) and thrust force τ ∈ R. Here ez is a unit
vector in the z direction and R : SO(3) → R3×3 maps
the quaternion representation of orientation to the respective
rotation matrix. For simulation, these dynamics are approxi-
mated in discrete time using Euler integration on manifolds
and for the dynamics approximation in the DTCBF, standard
Euler integration is used to ease computation, [47] shows that
this approximation is theoretically well justified for DTCBFs
with short time steps.

The safety criteria for our quadrotor is to avoid collisions
with the ground or roof. We can encode this safety as the
0-superlevel set of the function:

hdes(x) = C − ζ⊤Pζ (18)

for some C > 0 where ζ =
[
z − z0, vz

]
and V (ζ) =

ζTPζ is a Lyapunov function generated by the Discrete-
time Algebraic Ricatti Equation (DARE) for discrete-time
double integrator dynamics. However, this is not necessarily
a DTCBF since the quadrotor’s orientation may render it
unable to track double integrator trajectories.

To avoid this problem, we add an penalty term to ensure
correct orientation when h(x) = 0.

h(x) = (C − ζ⊤Pζ)− λ(1− ezR(q)ez) (19)

This DTCBF is motivated by the differential flatness of the
multi-rotor dynamics [48] since the system can track linear
system trajectories.

Importantly, this is a valid DTCBF for the Euler-
approximated dynamics and there are bounds for µ and
λmax
2 tr(Σ(x)) such that ORIO controller is feasible for all x

such that h(x) ≥ 0. This is stated formally in the following
theorem:

Theorem 4. Consider h as in (19) for α > 0. If C ≥ 2λ,
then there exists u ∈ R4 and Mδ,Mc > 0 such that

h(FEul(x,u) + δ) + c ≥ αh(x) (20)

for all δ < Mδ, c < Mc and all x such that h(x) ≥ 0.

See the extended version of this work here for the proof.

B. Comparison Controllers

For comparison, we implement several controllers in ad-
dition to ORIO. Each controller has the structure:

k(x) = argmin
u∈Rm

∥u− kNom(x, k)∥2 (21)

s.t. h(FEul(x,u) +m(x))− c(x) ≥ αh(x)

with the following ablations:
• (Standard) where m(x) = 0 and c(x) = 0. This is

the standard DTCBF controller [41] where the modeled
dynamics are assumed to be correct.

• (JED) where m(x) is the constant sample mean of
the D and c(x) is the trace of the sample covari-
ance times supx∈Rn ∥∇2h(x)∥2. This is the “Jensen-
Enhanced DTCBF” as presented in [23].

• (MLP) where m(x) is an MLP that is trained on the
dataset D to approximate the dynamics residuals and
c(x) = 0.

• (True) where m(x) is the true dynamics residual mean
and c(x) is the trace of the true covariance times
supx∈Rn ∥∇2h(x)∥2.

C. Simulation Results

For simulation we use the dynamics residual model:

p(d|x) = N
(
d; 09︸︷︷︸

µ(x)

, I9 × (1 + 50e−30z2

)× 10−5︸ ︷︷ ︸
cov(x)

)
(22)

where the disturbance grows as the drone approaches the
ground to approximate complicated ground effects.

We fly the drone using an SE(3) stabilization controller
[49] from 1 meter in the air to the ground 20 times for 2
seconds each with a control and data collection frequency
of 333Hz to collect training data (13320 data points). Each
controller was simulated for 100 two-second long trajectories
at 333Hz with α = 0.9975. Results for these simulations are
shown in Fig. 2. The looseness of the probability bound is
in part due to the fact that the covariance is small for a large
portion of the trajectory, which is not accounted for by the
martingale-based bound. Despite the risk probability bound
not being tight (ORIO), produces behavior which is similar
to (True) and which is less conservative than (JED) while
still being more robust than (Standard) and (MLP).

D. Hardware Result

Finally, we deploy our risk-informed controller (ORIO)
on a quadrotor drone flying aggressively near the ground.
For all tests, we provide the drone with real-time pose
measurements from a motion capture system. The drone
is equipped with a Nvidia Tx2 that is used to perform
onboard computation of all neural network forward passes
and optimization-based controllers. The mean and covariance
of the dynamics residuals are approximated using the CVAE
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Fig. 5. Mean and one standard deviation of h(x) for the “drop” test case
in hardware, which drops the drone with knom = 0 from a height of
roughly two meters. We compare our proposed controller (ORIO) with three
ablations: a deterministic MLP, a simple aggregate across all trajectory data
(JED), and a standard CBF controller. All controllers except the standard
CBF satisfy the safety constraint h(x) ≥ 0, where the standard CBF
fails due to the unmodelled dynamics. While the residual dynamics include
complex aerodynamic effects, in this case they are low-variance, and so we
expect both the MLP and (ORIO) to perform similarly.

with 200 samples at 100 Hz and the optimization problem
in ORIO is an SOCP which is solved using en embedded
conic solver [50] at 300 Hz. Approximately 2 minutes of
training data is collected via human-operated flight for both
experiments.

Our first experiment is a drop test (shown in Figure 1)
where we drop the drone from a hover at approximately
2m, and enforce the barrier constraint (19) with α = 0.9975
for positions above the ground; this case has low noise but
requires accurate estimation of the quadrotor’s thrust / ground
effects for the barrier to be effective in preventing ground
collision. Figure 5 plots the mean barrier value h(x) over
at least 50 trials for each ablation of our method, with one
standard deviation shaded around the mean. All controllers
except the standard CBF (which nearly immediately becomes
unsafe due to the unmodeled dynamics) exhibit conservative
behavior and settle relatively far from the boundary. Of
particular interest is the extremely similar behavior of the
simple MLP and CVAE methods; this result is intuitive
since the low-variance disturbance source allows the MLP
to accurately capture the unmodeled dynamics. This provides
an interesting insight: learning residual dynamics via simple
regression, as proposed in [28], [29], [51], is well-posed for
systems subject to deterministic, low-variance disturbances,
and can yield safe, performant behavior without reasoning
about stochasticity.

In our second test, the quadrotor is carrying a slung,
unmodeled load of 0.55kg, which induces large disturbances
that are not uniquely determined by the current state x;
this test requires the residual dynamics models to capture
high-variance behavior to accurately model the slung load’s
effect on the dynamics. Here we again enforce the barrier
constraint (19) which is adjusted to prevent the slung mass
from contacting the ground and which has α = 0.995. For
this test, because all controllers can only condition their
disturbance on the current state (which does not include
the position or velocity of the slung load), the disturbances

Fig. 6. (Top) The drone is dropped from the top left and moves to the right
as it falls while carrying an orange payload. The left shows a failure case
when controlled by the MLP controller and the right shows a success from
the same initial condition when controlled by the ORIO controller. (Bottom)
The average of 14 trajectories is plotted with one standard deviation shading.
The ORIO controller successfully keeps the system safe while the MLP-
based controller results in safety failures. The video of these experiments
can be found here.

appear to be random and high variance, since they are large
and depend on the history of states visited previously. Here
we compare only our proposed method (ORIO) and the
MLP; as expected, in this noisy case the our CVAE-based
method performs remarkably better as seen in Fig. 6, and
has no safety violations. A video of the experiments can
be found with our code here. This experiment demonstrates
both that the CVAE can learn an accurate stochastic model
of highly noisy dynamics (including trajectories where the
slung load reached nearly 90 degree angles dynamics), and
also is necessary to ensure safety in such noisy cases.

V. CONCLUSIONS

We present a unified framework for risk-senstive control
that combines CVAEs, which learn stochastic disturbance
models from trajectory data, with DTCBFs, which provide
probabilistic safety guarantees for stochastic systems. We
demonstrate the real-time utility of this framework by run-
ning the full pipeline (after training) at 100Hz onboard a
quadrotor drone performing aggressive flight, including a
free fall and flight with a slung load.

Future work involves extending the method to handle other
forms of uncertainty such as those generated by perception,
reduced order models, contact dynamics, or human-robot-
interaction.

http://www.rkcosner.com/research/4-ICRA-GenerativeModeling/
http://www.rkcosner.com/research/4-ICRA-GenerativeModeling/
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