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CATNIPS: Collision Avoidance Through Neural
Implicit Probabilistic Scenes
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Abstract—We introduce a transformation of a Neural Radiance
Field (NeRF) to an equivalent Poisson Point Process (PPP).
This PPP transformation allows for rigorous quantification of
uncertainty in NeRFs, in particular, for computing collision
probabilities for a robot navigating through a NeRF environment.
The PPP is a generalization of a probabilistic occupancy grid
to the continuous volume and is fundamental to the volumetric
ray-tracing model underlying radiance fields. Building upon this
PPP representation, we present a chance-constrained trajectory
optimization method for safe robot navigation in NeRFs. Our
method relies on a voxel representation called the Probabilistic
Unsafe Robot Region (PURR) that spatially fuses the chance
constraint with the NeRF model to facilitate fast trajectory
optimization. We then combine a graph-based search with a
spline-based trajectory optimization to yield robot trajectories
through the NeRF that are guaranteed to satisfy a user-specific
collision probability. We validate our chance constrained plan-
ning method through simulations and hardware experiments,
showing superior performance compared to prior works on
trajectory planning in NeRF environments.

Index Terms—Collision Avoidance, Robot Safety, Visual-Based
Navigation, NeRFs

I. INTRODUCTION

Constructing an environment model from onboard sensors,
such as RGB(-D) cameras, lidar, or touch sensors, is a funda-
mental challenge for any autonomous system. Recently, Neural
Radiance Fields (NeRFs) [1] have emerged as a promising 3D
scene representation with potential applications in a variety of
robotics domains including SLAM [2], pose estimation [3],
[4], reinforcement learning [5], and grasping [6]. NeRFs offer
several potential benefits over traditional scene representations:
they can be trained using only monocular RGB images, they
provide a continuous representation of obstacle geometry, and
they are memory-efficient, especially considering the photo-
realistic quality of their renders. Using current implementa-
tions [7], [8], NeRFs can be trained in seconds using only RGB
images captured from monocular cameras, making onboard,
online NeRF training a viable option for robotic systems.

However, NeRFs do not directly give information about spa-
tial occupancy, which poses a challenge in using NeRF models
for safe robot navigation. In other 3D scene representations,
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Fig. 1: (a) Ground-truth of the Stonehenge scene, (b) Poisson
Point Process (PPP) of the scene represented as a point cloud,
(c) Probabilistically Unsafe Robot Region (PURR) of scene,
(d) Generated safe paths from our method (CATNIPS).

such as (watertight) triangle meshes [9], occupancy grids [10],
or Signed Distance Fields (SDFs) [11], occupancy is well-
defined and simple to query. NeRFs, however, do not admit
simple point-wise occupancy queries, since they represent the
scene geometry implicitly through a continuous volumetric
density field. For this reason, integrating NeRF models into
robotic planners with mathematical safety guarantees remains
an open problem.

To this end, we develop a framework for robot trajectory
planning that can generate trajectories through a NeRF scene
with probabilistic safety guarantees. To do this, we propose
a mathematical transformation of a NeRF to a Poisson Point
Process (PPP), which allows for the rigorous computation of
collision probabilities for a robot moving through a NeRF
scene. We further introduce a novel scene representation, a
Probabilistically Unsafe Robot Region (PURR), that convolves
the robot geometry with the NeRF to yield a 3D map of
all robot positions with collision probabilities less than a
user-specified threshold. Finally, we propose a fast, chance-
constrained trajectory planner that uses the PURR to ensure
the trajectories are collision free up to the user-specified
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probability threshold. Our method, called CATNIPS, can com-
pute probabilistically safe trajectories at more than 3 Hz.
This is many times faster than existing NeRF-based trajectory
planners that provide no safety guarantees [12].

The key theoretical advance underpinning our results is the
novel transformation of the NeRF into a PPP. Existing works
on radiance fields either ignore the underlying probabilistic
interpretation of the field or treat it as a nuisance. A naive
approach is to convert the NeRF representation into a more
traditional deterministic mesh or occupancy representation. We
argue that such conversions are computationally slow, and they
destroy any potential mathematical safety guarantees for a
downstream planner. For example, generating a triangle mesh
(e.g., using marching cubes [13]) that represents a level set of
the density field requires the arbitrary selection of a density
cutoff value, and collapses the uncertainty represented by the
density field into a binary occupancy measure. In contrast,
our method computes rigorous collision probabilities using the
NeRF density directly.

We provide simulation studies to show that our planner gen-
erates safe, but not overly-conservative, trajectories through
the environment. We contrast our paths to those generated
using a level-set based environment representation and those
from prior work [12]. We find that the paths our method
generates are more intuitive and easier to tune than these
baselines, as collision is interpretably defined through violation
of a collision probability as opposed to violation of an arbitrary
level set of the density. We show our method to be real-time,
replanning online at 3 Hz on a laptop computer, compared
to the gradient descent-based planner proposed in [12], which
requires approximately 2 seconds for replanning.

The rest of this paper is organized as follows. In Section II
we discuss related work. In Section III we review background
concepts from NeRFs, and in Section IV we derive the Poisson
Point Process interpretation of the NeRF. In Section V we
compute collision probabilities for a robot in a NeRF environ-
ment, and in Section VI we present our trajectory planning
algorithm, CATNIPS. Section VII gives our simulation results
and Conclusions are in Section VIII.

II. RELATED WORK

Here we review the related literature in robot planning and
control with NeRF representations, compare it with planning
in a Signed Distance Function (SDF) representation, discuss
other uses of NeRFs in robotics, and summarize chance-
constrained planning.

A. Planning and Control with Onboard Sensing and SDFs

Planning and control based on onboard sensing has already
yielded a large amount of literature. Typically these works
present reactive control schemes [14], using the sensed depth
directly to perform collision checking in real-time. These
methods typically are myopic, reasoning only locally about
the scene. An alternate approach is to construct a map of the
environment using the depth measurements. Often a Signed
Distance Field (SDF) is constructed from depth data [15],
[16], which in this work is encoded within voxels. [16]

also integrates their system onboard a quadrotor to validate
their method. Such a representation is typical in dynamic
robotic motion planning, providing fast collision checking and
gradients in planning.

We believe NeRF is a promising alternative to more familiar
3D geometry representations like SDFs due to some key
NeRF properties. We show that the NeRF inherently encodes
uncertainty in the environment, whereas SDFs are typically
deterministic. Moreover, we find that deep network SDFs are
difficult to train, often requiring synthetic training points with
heuristically generated, error-prone depth labels. In contrast,
NeRFs can be supervised directly from RGB images, and can
be trained reliably and quickly with NeRF training packages
such as [8]. The modularity of NeRFs in perception pipelines,
especially those involving visual data, is another benefit of
NeRFs. However, this is not to say that the two cannot co-
exist. There exists in the literature deep learning architectures
that simultaneously learn SDF and NeRF outputs based on
empirical consistency between the two (e.g., NeuS [17]). We
hope that our probabilistic interpretation of NeRFs can help
bridge the gap between these two representations and enable
future pipelines to access advantages of both representations.

B. Planning and Control using NeRFs

Safety has been a largely unexplored topic in the NeRF
literature, with only preliminary approaches being studied
in simulation. The authors’ previous work NeRF-Nav [12]
presents a planner that avoids collisions in a NeRF envi-
ronment model by avoiding high-density areas in the scene.
An alternative work [18] instead uses the predicted depth
map at sampled poses to enforce step-wise safety using a
control barrier function. The two methods are not at odds,
as the philosophy of [12] serves as a high-level planner that
encourages non-myoptic behavior while [18] can be used as
a safety filter for a myopic low-level controller interfacing
directly with the system dynamics.

More specifically, NeRF-Nav [12] adapts trajectory opti-
mization tools to plan trajectories for a robot through a NeRF
environment. Collisions are discouraged with a penalty in the
trajectory cost, but the probability of collision is not quantified
or directly constrained. In this work, we instead rigorously
quantify collision probabilities for a robot in a NeRF, and
develop a trajectory planning method to satisfy user-defined
chance constraints on collision. In addition, NeRF-Nav re-
quires about 2 seconds for each online trajectory re-solve,
while our proposed method requires about 0.3 seconds per
online trajectory re-solve on similar computing hardware.

C. Other Uses of NeRFs in Robotics

Some works have considered NeRFs as a 3D scene repre-
sentation for robotic grasping and manipulation. For example,
Dex-NeRF [6] uses NeRF-rendered depth images to obtain
higher-quality grasps for a robot manipulator than using a
depth camera. Similarly, one can use dense object descriptors
supervised with a NeRF model for robot grasping [4].

Some works have also considered SLAM and mapping
using a NeRF map representation. The papers [2], [3] use the
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photometric error between rendered and observed images to si-
multaneously optimize the NeRF weights and the robot/camera
poses. The approach in [19] uses a grid-interpolation-decoder
NeRF architecture in a similar SLAM pipeline. The work
[20] proposes a combination of an existing visual odometry
pipeline for camera trajectory estimation together with online
NeRF training for the 3D scene. NeRFs have also been used
for tracking the pose of a robot using an on-board camera
and IMU. For example, iNeRF [3] finds a single camera
pose from a single image and a pre-trained NeRF model,
and [12] proposes a nonlinear optimization-based filter for
tracking a trajectory of an on-board camera using a sequence
of images and a pre-trained NeRF. Loc-NeRF [21] approaches
a similar problem using a particle filter instead of a nonlinear
optimization-based filter.

Other papers have considered active view planning for
NeRFs. ActiveNeRF [22] treats the radiance value of the
NeRF as Gaussian distributed random variables, and performs
Bayesian filtering to find the next best view. An alternative
work [23] uses disagreement among an ensemble of NeRFs
to choose the next best camera view. Similarly, [24] uses
ensembles in a next best view strategy while also adding ray-
termination densities to the information gain metric. S-NeRF
[25] uses variational inference to train a probability distribu-
tion over NeRFs for next best view selection. ActiveRMAP
[26] considers a full informative trajectory planning pipeline
for a robot moving through a NeRF. In contrast to our work
here, they do not focus on the safety of the trajectories or
on quantifying collision probabilities. Perhaps the closest in
spirit in terms of modelling uncertainty is Bayes’ Rays [27],
which reasons locally about epistemic uncertainty (i.e. the
distribution over NeRF parameters) and differs from our work
that pins down the distribution that the NeRF model represents.
However, we envision future efforts that incorporate both
works to fully explain geometric uncertainty conditioned on
RGB data.

Of course, many of these works would not be applicable
to robotics if they were not real-time. Massive performance
gains have been made to train NeRFs in real-time [7], [28],
[29]. Moreover, NeRFs must be able to capture reality as well.
They are known to suffer in quality when reconstructing rich,
real environments over a large range of length scales. Attempts
have been made to fix this issue by extrapolating over the
entire camera frustum rather than a ray [30], [31].

D. Chance-constrained Planning

Outside of NeRFs, there exists a large literature on trajectory
planning for robots that seeks to impose constraints on the
probability of collision when the underlying scene geometry
is unknown; this approach is known as chance-constrained
planning. The robot state is typically modeled as stochastic,
while the map is typically considered to be known deter-
ministically. Some works do consider uncertainty in both the
map and the robot state, but they typically rely on a linear
system or Gaussian noise assumption to make computation
convex or analytical and efficient to solve. Du Toit and
Burdick [32] assume Gaussian-distributed obstacle states, and

approximates the collision probability as constant over the
robot body (suitable only for small robots). Blackmore et al.
[33] encode the probability of collision with faces of polytopic
obstacles as a linear constraint, but the resulting trajectory
optimization is a combinatorial problem, making it difficult
to solve quickly. Zhu and Alonso-Mora [34] incorporate this
linear probabilistic constraint into RRT. Luders et al. [35]
again use this linear constraint in an MPC framework with
nonlinear dynamics, executed on real hardware with dynamic
obstacles and extended to a multi-agent context. None of these
methods consider NeRF environment models, which is our
focus here.

III. NEURAL RADIANCE FIELDS (NERFS)

In this section, we introduce the mathematical preliminaries
and notation used in NeRFs. For clarity, we use bold face for
vector variables and functions that output vectors, and non-
bold text for scalar variables, functions that output scalars,
and—in some instances—rotations.

A NeRF is a neural network that stores a density and
color field over the 3D environment. When coupled with a
differentiable image rendering model (usually a differentiable
version of ray tracing), the NeRF can be trained from a
collection of RGB images with known camera poses, and
can generate photo-realistic synthetic images rendered from
camera view points that are different from the training images.

More specifically, the NeRF is a pair of functions
(ρ(p), c(p,d)). The density function, ρ : R3 7→ R≥0, maps
a 3D location p = (x, y, z) to a non-negative density value
ρ that encodes the differential probability of a light ray
stopping at that point.1 The radiance (i.e., RGB color) function
c : R3 × R2 7→ R3 maps a 3D location p = (x, y, z) and
camera view direction d ∈ {x ∈ R3 | ||x|| = 1} (alternatively
parameterized as a 2D vector of angles (θ, ϕ)) to an emitted
RGB color c represented as a vector in R3. In this paper, we
focus specifically on the density function ρ(p) as a proxy for
occupancy, which should ideally be zero in free space and take
on large values in occupied space. We use this ρ(p) function
as a map representation for planning robot trajectories. We
also define C(o,d) ∈ [0, 1]3 as the rendered pixel color
in an image when taking the expected color value from the
NeRF along a ray r(t;o,d) with camera origin o and pixel
orientation d, where r(t) = o + t · d. The rendered color is
given by

C(o,d) =

∫ tf

tn

ρ (r(t)) e−
∫ t
tn

ρ(r(τ))dτ c(r(t),d) dt, (1)

where we only integrate points along the ray between tn and
tf (i.e. the near and far planes). In practice, this integral
is evaluated numerically using Monte Carlo integration with
stratified sampling. The resulting rendering equation (1) is
differentiable.

1This density field can be stored entirely as a multi-layer perceptron (MLP),
as in the original NeRF work [1], as a function interpolated on a discrete voxel
grid [28], or using a combination of interpolated voxel features and an MLP
decoder [7], [29]. Our method can work with any of these representations.
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A rendered image Ii is then an array of pixel colors
associated with a single camera pose, where the color of pixel
j in image Ii is given by C(oi,dij) with associated origin
oi (determined by the camera) and direction dij computed
with an angular offset from the camera optical axis for pixel
j. We denote the set of pixel indices for image Ii as Ii. The
corresponding ground truth image Īi is an array of pixels with
colors C̄ij. A dataset D for training a NeRF consists of a
collection of such ground truth images with known poses.
The parameters of the NeRF are trained by minimizing the
loss function

J(θ) =
1

|D|
∑
i∈D

1

|Ii|
∑
j∈Ii

||C(oi,dij ;θ)− C̄ij||22, (2)

where θ are the parameters of the neural networks representing
the density and radiance fields ρ and c, which appear in
the computation of the pixel color C(oi,dij ;θ) through the
rendering equation (1). This mean squared error is called the
photometric error (or photomoetric loss) and is optimized with
standard stochastic gradient descent tools in, e.g., Pytorch.
Intuitively, the goal is to train the network so that the synthetic
images generated from the NeRF match the training images
at the specified camera poses as closely as possible.

While the camera poses are required to find oi and dij

for each pixel to train the NeRF, a standard pipeline has
emerged that takes images without camera poses, uses a clas-
sical structure-from-motion algorithm (e.g., COLMAP [36]) to
estimate the camera poses, and supervises the NeRF training
with these poses. Recent methods also optimize the camera
poses jointly with the NeRF weights to improve performance
[8].

Hence, in practice a NeRF model can be obtained from only
RGB images (without camera poses). However the quality
and extent of the NeRF is limited by the quality of the
training images, and the volume covered by those images.
Few images, with low resolution, low photographic quality,
and poor coverage will yield a poor-quality NeRF. A large
number of sharp, high-resolution images from a rich diversity
of view points will yield a high-quality NeRF. Our goal is
to accurately quantify collision risk for a robot navigating
through the scene regardless of the quality of the trained NeRF.
With our approach, the same robot pose in the same 3D scene
may have a high collision probability in a poor-quality NeRF,
and a low collision probability in a high-quality NeRF. The
probability of collision is itself an expression of the NeRF
quality in the vicinity of the robot.

IV. NERF DENSITY AS A POISSION POINT PROCESS

In this section, we show that a NeRF density field can
be transformed into the density of a Poisson Point Process
(PPP), and the NeRF color and density fields together give
rise to a “marked” PPP [37], [38]. To do this, we demonstrate
that the NeRF volumetric rendering equation is precisely
the computation that is required to compute expected pixel
color if the color and density under this marked PPP model.
Training the NeRF can be interpreted as fitting the PPP density
parameters through moment matching on the expected pixel
color.

This connection is significant since the PPP derived from
the NeRF density field enables computation of probabilistic
quantities, such as the probability of a given volume being
occupied (e.g., of a robot body colliding with the NeRF), or
the entropy in the NeRF model. This also settles a debate
in the literature about whether the NeRF density can be
probabilistically (it can), and paves the way for practical utility
in other domains beyond safety (e.g., in active sensing and
active view planning). In short, we find that the NeRF density
encodes a probabilistic model of the geometry of the scene,
the uncertainties of which can be rigorously quantified through
an underlying PPP.

A. Poisson Point Processes
Here we review the definition and properties of the Poisson

Point Process (PPP), a stochastic process that models the
distribution of a random collection of points in a continuous
space. Much of this discussion is drawn from [37], to which
we refer the reader for a more detailed and rigorous treatment.

First, we recall that a discrete random variable (RV) N that
takes values in N is said to have a Poisson distribution with
parameter λ ≥ 0 if its probability mass function is given by

Pr(N = m) =
λm exp(−λ)

m!
.

Poisson RVs are often used to model the distribution of the
number of discrete events in a fixed amount of time (e.g.,
customers arriving at a store), or over a fixed region of space
(e.g. the number of rides hailed daily in a given neighborhood).
The PPP naturally extends this concept to the distribution over
the number of points in any subset of a multi-dimensional
Euclidean space.

Definition 1 (Poisson Point Process). Consider a random
process N on Rn that maps subsets2 B ⊂ Rn of the state
space to the random number N(B) of points that lie in B.
We say N is a Poisson Point Process (PPP) with intensity
λ : Rn 7→ R+ if:

(i) The number of points N(B) that lie in B is a Poisson
RV with distribution

Pr(N(B) = m) =
Λ(B)m exp(−Λ(B))

m!
,

where Λ(B) =
∫
x∈B

λ(x) dx.
(ii) For k disjoint subsets B1, . . . Bk ⊂ Rn, the number of

points in each subset, N(B1), . . . , N(Bk), are indepen-
dent RVs.

This is sometimes refered to as the inhomogeneous PPP
since the intensity λ is a function of the spatial variable x. If
the intensity is constant over x, this is called the homogeneous
PPP.

The PPP encodes the randomness over both the number and
the location of random points. An important quantity for such
processes is the “void probability,” or the probability that a
given set B is empty. The void probability is given by

Pr(N(B) = 0) = exp

[
−
∫
B

λ(x) dx

]
. (3)

2The subsets B must be Lebesgue measureable.
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Fig. 2: In the rendering process, the probability that the pixel
color takes on the color of the infintesimally small occluding
slice (green) is given by the probability that all slices in the
region preceding the slice (red) are unoccluded. Then, the
pixel color is the expectation of the color taken by varying
the position of the occluding slice along the ray.
Thus, intuitively, the void probability shrinks as either the
intensity λ increases, or the set B grows larger.

It is also important to note that through the Poisson distri-
bution, the expected number of points in the set B is identical
to the integral of the intensity, in other words,

E [N(B)] =

∫
B

λ(x) dx. (4)

When reasoning about collision probability, we want each
point associated with the PPP to have a corresponding volume.
Using the above fact (4), we can consider points or particles
of arbitrary size by weighting the PPP accordingly.

Given some reference particle size Vref associated with the
initial PPP, a desired particle size Vd, an integration domain
B, and the expected volume occupied by all the particles
E [Vtotal], we can retrieve E [Nd(B)], the expected number
of particles of size Vd, by conservation of E [Vtotal]. Namely,

VrefE [N(B)] = Vref

∫
B

λ(x) dx = E [Vtotal]

= VdE [Nd(B)] ,

E [Nd(B)] =

∫
B
λ(x) dx

Vd/Vref
. (5)

Therefore, a PPP with the same expected occupied volume can
be produced using differing particle sizes by simply scaling
the density.

Finally, we note that PPPs may be “marked” or “colored”
with various quantities using a deterministic labeling function
c(x) : Rn 7→ C. Using the statistics of the underlying PPP,
it is straightforward to compute the statistics of the labels for
the points appearing in a set; see [37, Ch. 5] for a detailed
discussion.

B. “Rendering” a Marked PPP

The intensity function of a PPP admits an infinitesimal
interpretation: λ(x) dx is the probability that a point of the
process lies within an infinitesimal volume dx centered at x.
This is closely related to the interpretation of the density field
offered by the original NeRF authors [1]: “ρ(x) defines the

infinitesimal probability of a ray terminating at a given point
x ∈ R3.” In this section, we show the volumetric rendering
procedure introduced in [1] in fact computes an expected color
of a marked PPP along a given ray.

Our key problem is how to relate the ray tracing used in
NeRF, a 1D process, to the 3D measure of occupancy, λ(x)
in the PPP. We consider the occupancy swept by a frustum
(the pyramid of light that projects onto a single pixel patch).
In particular, when generating the color of a particular pixel
from a marked PPP, we extend a pyramid along the pixel’s ray
(Fig. 2), and return the color of the first point of the process
encountered along the ray in expectation.

More specifically, for each pixel in the image, with as-
sociated ray r(o,d), we consider the frustum (Fig. 2, red)
parameterized by a length t ∈ [tn, tf ],

F(t) ≡
{
o+ dτ + xn̂x + yn̂y | |x| ≤ w(τ)

2
,

|y| ≤ h(τ)

2
, τ ∈ [tn, t]

}
(6)

where n̂x, n̂y are unit vectors orthogonal to d forming a
basis in the image plane and h,w are the height and width of
the frustrum cross-section, respectively, starting from the size
of the pixel (h0, w0) on the image plane.

However, there still remains a modeling choice: given a
fixed particle size Vref, how many particles must be present in
a given cross-section of the frustum for light to be occluded?
We say the ray is occluded when the combined frontal area
of the particles present at depth t occupies a given fraction
γ ∈ (0, 1] of the frustum’s cross-section.

Since the frustum’s area A(t) varies with depth, for particles
of a fixed size, the number of particles needed to occlude the
ray would also vary with t. However, as previously discussed,
reweighting a PPP is equivalent to changing the particle size.
Thus, in this work we consider “dimensionless” particles
whose (projected) area on the frustum is exactly γA(t) (so
only one particle is needed to occlude the ray) by reweighting
the PPP density accordingly along the ray. Thus, we say the
ray terminates at the depth of the first “dimensionless” particle
encountered along the ray.

C. Equivalence of NeRF and PPP Rendering

This brings us to our main result. Here we show that, under
appropriate assumptions on the distribution of the training rays
and the spatial variation of the NeRF density and color, the
color of a given pixel in an image rendered from a NeRF (1)
is exactly the expected color of the same pixel rendered from
a PPP with (scaled) intensity equal to the NeRF density ρ,
and marking equal to the NeRF radiance c. We then provide
intuition on the spatial relation between λ and ρ.

Assumption 1 (PPP Smoothness). Consider a Poisson Point
Process λ(x) and color marking c(x,d). We assume the
average of the PPP density over any ball Bϵ, with center xϵ,
is equal to the value of the PPP density at the center of the
ball, where ϵ is the minimum radius ball required to contain
a pixel projected from the near plane onto the far plane of
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the NeRF scene. We also assume the color field c(x,d) is
approximately constant over any Bϵ. Specifically,∫

Bϵ

λ(x) dx = λ(xϵ)VBϵ
(7)

and
∀(x,y) ∈ Bϵ : ||c(x,d)− c(y,d)|| = 0, (8)

where Bϵ is the smallest ball that can contain an image pixel
projected from the near plane onto the far plane of the NeRF
scene.

This assumption states that the variation in the PPP over
a small ball integrates to 0, while the color is constant in
that same region.3 These are both mathematical idealizations
which are unlikely to hold exactly in practice. However, we
find empirically that these assumptions are very close to
being satisfied, ultimately yielding well-calibrated collision
probabilities. For example, for a scene with length scale 2
meters, a camera with focal length 50 mm, and a 1000×1000
pixel image, the far plane pixel has side length on the order of
10−3m, requiring ϵ =

√
2 mm. Empirically, this is consistent

with the smallest resolution of detail in a well-trained NeRF
scene of a 2 m3 volume.

Assumption 1 is reasonable due to the loss of information
when encoding the continuous environment into the discretized
observation space of pixelated images. Due to the resolution
of the camera, color is constant across a pixel, hence we do
not have information to distinguish generating environments
whose colors only differ over the length scales of a single
pixel. Since reconstructing the continuous geometry given the
pixel-discretized images is ill-posed, we see this smoothness
requirement as a kind of regularization prior for the density
and color fields.

Moreover, we tolerate stricter assumptions on the color
because, in practice, the radiance field (i.e., color) is also
smoother than the density field. The primary reason is that the
radiance field is defined even in regions of empty space and
is therefore allowed to smoothly change across surfaces; on
the other hand, the density must change more sharply across
surfaces in order to reflect the underlying discrete change in
geometry. This is indeed reflected in the literature, where the
original NeRF work [1] uses a smaller network to model color
and later extensions like [28] replace the network with smooth
low-order spherical harmonics.

Assumption 2 (Ray Redundancy). Given a dataset of training
rays derived from training images, poses, and camera intrin-
sics, no two rays intersect.

This is a weak assumption as ray intersection is a zero-
measure event. Moreover, floating point precision and noise
in the poses further reduces the likelihood of ray intersection.

Given these assumptions, we now state our main result.

Proposition 1 (Rendering of PPP). Consider a PPP λ(x)
and radiance c(x,d) and let the radiance satisfy (8) from

3Note that we do not require the density assumption for NeRF-PPP
equivalence (Prop. 1, 2). Its use is in extracting an approximate scaling factor
to transform between the density ρ and PPP intensity λ (Cor. 1).

Assumption 1. Then, the expected color of a pixel rendered
from the PPP matches the form of the rendering equation (1).

Proof. Let us consider a ray r(t) = o+t·d, where t ∈ [tn, tf ].
We consider again the corresponding frustum F(t) (6), the
pyramid created by sweeping the scaled pixel area along r
from tn to t.

As discussed in our rendering model, we consider “di-
mensionless” particles whose projected area is γA(t) (so the
ray is occluded by the first particle encountered). Thus, the
intensity/expected number of particles of this slice δF(t) for
those of the occluding size (Vd = γVδF (t)) is defined as

Λ
(
δF(t)

)
=

∫
x∈δF(t)

Vrefλ(x)

γVδF (t)
dx

=

∫ t+δt/2

t−δt/2

∫
(x,y)∈A(τ)

Vrefλ(r(τ) + xn̂x + yn̂y)

γVδF (t)
dx dy dτ

=
δt
∫
A(t)

Arefδtλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)δt

if the reference particle is some small ball of size Vref =
Arefδt.

Hence, the void probability of the slice (3) (equivalently,
the probability of no occlusion) is

Pr(N(δF(t)) = 0) =

exp

[
−

∫
A(t)

Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
δt

]
.

Now we consider the event where any slice of the frustum
is occluded, up to a given depth t. To do this, we divide
the frustum into smaller subsections along its length. Because
the number of particles in disjoint subsets are independent
by definition of the PPP (Def. 1(ii)), then the probability
of occlusion of each section is independent of that of other
sections. Hence, the probability that the frustum up to t is not
occluded requires all sections to not be occluded,∏

t

Pr(N(δF(t)) = 0)

=
∏
t

exp

[
−

∫
A(t)

Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
δt

]

= exp

[
−
∑
t

∫
A(t)

Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
δt

]
.

In the limit as the section widths δt approach zero, they
become slices, and the summation becomes an integral. Thus,
the probability that the frustum up to t is occluded is

Pr(F(t) not occluded)

= exp

[
−
∫
t

∫
A(τ)

Arefλ(r(τ) + xn̂x + yn̂y) dx dy

γA(τ)
dτ

]
.

For notational simplicity, we henceforth denote the surface
integral divided by the scaled area of the slice by κ(τ).

Let us now consider a random variable Tmin which defines
the distance of the first occluding slice (denoted green in Fig.
2). We can define the cumulative distribution function of this
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variable, for some t > tn, Tmin ≤ t as the probability that
F(t) is occluded. Thus, the CDF of Tmin can be defined using
the above equation,

Pr(Tmin ≤ t) ≡ FTmin(t) = 1− P (F(t) not occluded)

= 1− exp

[
−
∫ t

tn

κ(τ) dτ

]
.

We can then compute the PDF of Tmin by differentiating
FTmin with respect to t, yielding,

fTmin(t) =
d

dt
FTmin(t)

= κ(t) exp

[
−
∫ t

tn

κ(τ) dτ

]
.

(9)

This defines a probability distribution over the extent of the
unoccluded region.

Finally, due to Assumption 1, the color of the slice returned
by the PPP rendering is equal to the marking function evalu-
ated at r(Tmin). Thus, we can compute the expected color of
the PPP rendering by computing the expectation of c(r(Tmin)),
yielding

C(r) = E [c(r(Tmin))] ,

=

∫ tf

tn

κ(t)c(r(t)) exp

[
−
∫ t

tn

κ(τ) dτ

]
dt.

The PPP expected color matches exactly the expression given
in (1) from the original NeRF paper [1], completing the proof.

Proposition 2 (NeRF-PPP Equivalence). Consider a NeRF
with density ρ(x) and let Assumption 2 hold. Then the NeRF
is a locally area-averaged PPP.

Proof. Following from the above proof, we make equivalences
between the two rendering equations for all training rays,
namely

∀ r(t;o,d) :

ρ(r(t)) =

∫
A(t)

Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
.

Note that we require Assumption 2 because when two rays
intersect, the left hand side of the above equation is necessarily
identical for both rays, yet the right hand side may not be.
Specifically, the integration domains for the two rays at the
intersection point may not be identical, hence the numerator
and denominator on the right hand side are not the same for
both rays. Moreover, note that for γ = 1 (full occlusion), the
density is the area-averaged number of particles over the slice
A(t).

Crucially, this matches the intuition on the NeRF density
proposed by [39], [1]. However, our derivation is more general
than that of [39], which assumes a constant-area frustum.
Although we used a pyramidal frustum for illustration pur-
poses, note that our derivation does not assume the form of
A(t) (e.g. rectangular, circular) and therefore the shape of
the frustum, so long as the frustum can be decomposed into

Fig. 3: Overlay of a realization of the PPP with the ground-
truth mesh of Stonehenge. The two have strong spatial agree-
ment.

disjoint slices that are themselves connected sets. Finally, our
derivation suggests a more general rendering equation since
we had to assume local homogeneity of color to retrieve (1).
Without this limitation, we could derive a more expressive and
accurate rendering equation. Moreover, our derivation even
proposes a parameter γ that can be tuned to more precisely
define occlusion and perhaps increase the fidelity of the render.

Corollary 1. By (7) from Assumption 1, ρ(x) = Aref
λ(x)
γ ,

where 0 < γ ≤ 1, so the NeRF density is related to an
equivalent PPP through a constant scale factor Aref/γ.

In general, the constant Aref/γ is unknown, however we
show in Sec. V below that we do not need its exact value to
compute the collision probability for a robot body.

Having shown that a PPP can be derived from the NeRF, we
visually show this relationship in Fig. 3, where we generate
a point cloud randomly drawn from the PPP (blue spheres)
superimposed on the NeRF rendering of the same scene. The
correspondence in geometry of the NeRF scene and the PPP
point cloud is clear.

Note that while area-averaging of λ to ρ yielded the
rendered color as a line integral as opposed to a volume
integral, we have lost information about the λ field (i.e. the
reference particle Aref and occlusion γ) when using a learning
framework to learn ρ. In fact, we conjecture the observed
aliasing phenomena in which NeRFs fail at different scales
[30] is due to this averaging scheme. The success of works like
Mip-NeRF [30] that reason about the pixel not as a projection
of a ray, but along a frustrum and evaluating rendering as a
volume integral (i.e., learning λ rather than ρ) gives us reason
to believe that learning the parameters of the PPP directly
could yield higher quality geometry.

D. Discussion of PPP Interpretation

An important advantage of taking a PPP interpretation of
the NeRF density is that it allows us to leverage well-studied
properties of PPPs when reasoning about NeRFs. Specifically,
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uncertainty metrics such as likelihood and entropy are well-
defined for PPPs. Suppose we measure a point cloud of our
environment using an onboard lidar or depth camera; i.e.,
for a set of rays {r1, . . . , rk} we obtain noiseless depth
measurements {d1, . . . dk}. We can write the likelihood of
obtaining these depths under our NeRF using (9),

logP (d1, . . . dk) =

k∑
i=0

[
log ρ(r(di))−

∫ di

tn

ρ(r(t))dt

]
.

(10)
If, say, the robot’s state is uncertain, and the depth mea-

surements are corrupted by noise, this likelihood can be used
in the computation of Bayes’ rule for pose estimation. Since
previous literature on NeRFs contained no such likelihood
interpretation, existing approaches to state estimation [3], [12]
instead only minimize a photometric loss as a proxy for
maximum likelihood estimation.

Further, notions of entropy and mutual information can
be generalized to point processes, as discussed in [40]. In
particular, the entropy of a point process over a set B is defined
as

H(B) ≡
∫
B

λ(x)(1− log λ(x))dx (11)

=
γ

Aref

∫
B

ρ(x)(1 + logAref − log γ − log ρ(x))dx.

(12)

Thus, H can be used as a measure of the uncertainty of a
NeRF over some set B, which would be useful to reason about
which parts of the NeRF are poorly-supervised (i.e., have high
entropy) for problems such as next-best-view selection and
active perception.

Finally, the PPP interpretation of the NeRF allows us to
provide a novel perspective on NeRF training: minimizing
the photometric loss (2) proposed in [1] can be interpreted as
performing moment-matching [41, Ch. 4] on the first moment
of the color distribution along the supervised rays. In partic-
ular, the photometric loss will be zero if the color rendered
from the NeRF (i.e., an expected color along the ray of a
PPP) matches the sample distribution (i.e., the color label in
the dataset). We believe our probabilistic interpretation of the
NeRF density could also inspire other loss functions beyond
(2), to perform other methods of parameter estimation such
as maximum likelihood estimation, expectation maximization,
and so on.

V. COMPUTING COLLISION PROBABILITY WITH NERF
SCENES

To leverage the probabilistic interpretation of NeRFs to
evaluate the probability of collision between a robot body and
the NeRF, we first define B(p,R) ⊂ Rn as the robot body
parameterized by its pose (p,R) (the set of points occupied by
the robot with position p ∈ R3 and orientation R ∈ SO(3)),
and consider an environment represented as a NeRF with
density field ρ(p), which we have shown to be related to the
PPP field through a constant scale factor λ(p) = γρ(p)

Aref
.

We define collision probability, or the probability that a col-
lection of points from a PPP intersects with the robot body, as
the probability that at most some volume Vmax from the NeRF
can exist within the robot volume. We call Vmax the specified
or allowable inter-pentration volume. Given some auxiliary
particle (which may not be the same as the reference particle)
that is user-defined and has some volume Vaux < Vmax, we
can solve for the maximum number of auxiliary particles that
should exist in the robot volume Nmax

aux = Vmax

Vaux
. The definition

of this new type of particle is necessary because one does
not have access to the reference particle dimensions of the
underlying PPP. We show that this knowledge is not necessary
to compute collision. Nonetheless, we are simply solving for
the Cumulative Distribution Function (CDF) of the Poisson
Point Process associated with the auxiliary particle (i.e. the
number of particles that exist in the robot body),

Pr(X ≤ Nmax
aux ; ΛB) = exp−ΛB

⌊Nmax
aux ⌋∑
i=0

Λi
B

i!
, (13)

where ΛB is the intensity for the auxiliary particle over the
robot body.

Note that ΛB is the PPP associated with the auxiliary
particle and not the reference; therefore, we must scale the
NeRF density appropriately,

ΛB =

∫
B

λaux(x) dx =
Vref

Vaux

∫
B

λ(x) dx. (14)

Recall that Vref = Arefδt and assume an identical form
for the auxiliary volume Vaux = Aauxδt. Additionally, we
can substitute the relationship between λ and ρ (Cor. 1) to get
the following

ΛB =
Arefδt

Aauxδt

∫
B

γρ(x)

Aref
dx =

γ

Aaux

∫
B

ρ(x) dx. (15)

This brings us to the first formal definition of NeRF collision.

Definition 2 (Probabilisitically Safe). A robot body
parametrized by its pose B(p,R) is probabilistically
safe if the collision probability given in (13) and (15) satisfies
Pr(N(B(p,R)) ≤ Nmax

aux ; ΛB) ≥ σ, for desired probability
threshold σ, auxiliary particle associated with the specified
inter-penetration volume, and occlusion threshold.

More succinctly, we consider a robot as probabilistically
safe if the interpenetration volume between the robot and the
NeRF is less that a threshold Vmax with probability at least
σ. A major remaining question is how to choose the auxiliary
particle size and occlusion threshold γ. Since we are assuming
smoothness on the length scales of a pixel, it is appropriate to
use an auxiliary particle of this size. We use the approximate
size of a pixel at the near plane and the sampling distance
along a ray to find the dimensions of the auxiliary particle.
Specifically, given a camera with focal length 50 mm, a scene
of length 2 m, a FOV of 90◦, and a 1000 by 1000 image, the
pixel side on the image plane is 10−4 m, hence for a square
pixel, Aaux = 10−8 m2. If the pixel size is the 2D resolution
of the image, we can think of δt as the sampling resolution
used to learn the NeRF, hence Vaux the 3D resolution of
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the NeRF learned from data. Typically, there are anywhere
between 100 to 200 sample points along a ray between the
near and far plane, so we choose δt = 20 mm, yielding
Vaux = 2 · 10−8 m3. In fact, the CDF is relatively insensitive
to Aaux, as both Nmax

aux and ΛB are scaled the same amount
for changes in Aaux. γ is essentially a modelling parameter
as there is no way to know what the environment defines as
an occlusion event. However, in the interest of safety and
interpretability, we set γ = 1 so that it is meaningful (i.e.
full occlusion) and such that it yields the most conservative
estimate for λ.

VI. CHANCE-CONSTRAINED TRAJECTORY GENERATION
IN NERFS

We now consider the problem of real-time trajectory plan-
ning for a robot in an environment represented as a NeRF,
subject to constraints on the probability of collision (13). Our
proposed algorithm, CATNIPS, has two parts: we first generate
a lightweight, voxel-based scene representation, which we
term a Probabilistically Unsafe Robot Region (PURR), that
encodes the robot locations that satisfy the collision constraint
for a particular robot geometry. We then use Bézier curves to
plan safe trajectories in position space for a robot traversing
the PURR subject to the probabilistic collision constraint. By
assuming differential flatness of our robot, we can guarantee
dynamic feasibility of our solution when planning in the flat
output space.

We note that the following collision calculations may be
conservative due to the approximation of the robot as a
sphere such that safety is invariant to orientation. However,
the collision metric (13) could be calculated while taking into
account the position, orientation, and the physical geometry
of the robot. We also note that the differentiability of the col-
lision probability permits its use in gradient-based trajectory
optimizers. Nonetheless, our design choices were motivated
by speed, scalability, and modularity with other downstream
tasks (e.g. active view planning where the orientation can be
freely manipulated).

A. Generating the PURR

The PURR is a binary, voxelized representation of the NeRF
that indicates collision in R3. If the robot’s position is located
within a free voxel in the PURR, the robot is probabilistically
safe, i.e., the chance collision constraint is guaranteed to be
satisfied. Otherwise, safety is not guaranteed—the robot may
(or may not) be in violation of the chance constraint.

Similar to classical configuration space planning [42], the
core idea behind the PURR is to inflate the occupied space in
the map such that planning a path through free space in the
inflated map corresponds to a robot trajectory that satisfies the
collision probability constraint in the underlying NeRF map.
We essentially “inflate” the NeRF density function to account
for both the robot geometry and the chance constraint.

Fig. 4 shows a schematic of the PURR generation process,
as well as how the PURR fits into our trajectory planning
pipeline. We first voxelize the space of the map and label each
cell with the integral of the NeRF density multiplied with a

Fig. 4: NeRF to PURR pipeline. (1) A density grid is sampled
from the NeRF, which is then trilinearly interpolated and
integrated over a particular voxel to retrieve the cell intensity
grid. (2) A robot kernel is generated by taking the Minkowski
sum between the minimal bounding sphere of the robot and a
single voxel. (3) The kernel is used in a Conv3D operation
with the cell intensity voxel grid to create the robot intensity
grid, which we then threshold by the user-defined collision
probability σ to create the PURR.

scaling factor over each cell to give the voxelized cell intensity
grid, Ic. We then take the Minkowski sum between a sphere
bounding the robot and one underlying voxel cell to produce
the set of all voxels that the robot could be touching, in any
orientation, if its center of mass were located anywhere in one
cell; we call this the robot kernel, K. Finally, we convolve the
robot kernel K with the cell intensity grid Ic to obtain the robot
intensity grid, Ir. Finally, we evaluate the Poisson CDF using
the robot intensity (as well as the auxiliary particle parameters)
and threshold the robot intensity grid with the user-defined
collision probability threshold σ to get the binary PURR map.
These operations are described in more mathematical detail as
follows.

1) Cell Intensity Grid: The cell intensity grid Ic computes,
for each grid cell, the expected number of auxiliary particles
in voxel vijk

Ic(vijk) =
∫
vijk

γρ(x)

Aaux
dx. (16)

This integral, in general, cannot be computed analytically since
the density ρ is typically represented using a neural network.
We compute a high-quality approximation of this integral
using a trilinear interpolation scheme. In fact, if the NeRF
density uses an underlying voxel-based representation (as do
the most high-speed and high quality NeRF variants in the
literature [7], [28]) our integral of the trilinear interpolation is
exact.

We first discretize the environment spatially, using a rect-
angular grid and query the NeRF for the density values at the
grid vertices. We then represent the continuous density field
using trilinear interpolation as [39],

ρ̂(x, y, z) =c1 + c2x+ c3y + c4z+

c5xy + c6yz + c7xz + c8xyz.
(17)

The coefficients c1:8 are the solution of a linear system
A1:8c1:8 = ρ1:8, where A1:8 is the matrix of stacked row
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vectors of the terms involving cell vertex locations, and ρ1:8
the densities at the vertices. Note that at the vertices of the
cell, ρ̂(x, y, z) = ρ(x, y, z). Different interpolations exist for
other finite element geometries, although we only consider
rectilinear cells in this work. The cell values of the cell
intensity grid are computed from a closed form analytic
solution to the integral (16) plugging in (17) for ρ over the
extent of the cell. The analytic expression is given in Appendix
A.

2) Robot Kernel: The robot kernel K(vijk) is a mask that
indicates the neighborhood of cells around voxel vijk that
are considered in the computation of the collision probability
when the robot position p is anywhere in vijk. We first find
the Minkowski sum of the minimum bounding sphere4 of the
robot with the cell in which the robot center is located. We then
compute the smallest collection of voxels that contains this
Minkowski sum. This collection of voxels is the robot kernel,
which can be efficiently convolved with the 3D voxelized grid
using standard PyTorch functions.

3) Robot Intensity Grid: Once the robot kernel is defined,
computing the collision probability for the robot in a particular
cell simply requires a convolution between the kernel K and
the cell intensity grid Ic. In particular, we generate a robot
intensity grid Ir, by convolving the kernel with each cell,
giving the expected number of auxiliary particles in the body
as follows,

Ir(vijk) =
∑

vlmn∈K(vijk)

Ic(vlmn)

=
∑

vlmn∈K(vijk)

∫
vlmn

γρ̂(x)

Aaux
dx

≥
∫
B(p,R)

γρ̂(x)

Aaux
dx ∀ R ∈ SO(3),p ∈ vijk

≈
∫
B(p,R)

γρ(x)

Aaux
dx ∀ R ∈ SO(3),p ∈ vijk.

(18)

Finally, the PURR P is generated by calculating the CDF
(13) using the robot intensity grid and thresholding by the
collision probability threshold σ,

P(vijk) = Pr(X ≤ Nmax
aux ; Ir(vijk)) < σ. (19)

The resulting PURR is visualized at different specified inter-
penetration volumes at a reasonable probability of σ = 95%
in Fig. 5 (Top) for the Flightroom NeRF environment. On the
bottom of Fig. 5, a simple density thresholded grid can yield
visually similar voxel maps, but can degenerate arbitrarily
quickly for large density cutoffs. This is because the threshold
for the PURR is calibrated to a precise probability of collision,
while thresholding on the density provides no interpretable
safety metrics.

Finally, we note that the trilinear interpolation of the density
(17) to compute the integral in (16) introduces a potential
source of approximation error. In practice, this error is much

4Inflating the robot body to a sphere removes the effects of robot orientation
on safety. As a result, the PURR can be efficiently created in position space,
while downstream tasks have the ability control the robot orientation without
impacting safety.

smaller than the over-approximation built into the various vox-
elization steps, yielding a PURR with a conservative probabil-
ity of collision. However, one can remove any doubt about the
conservatism of the approach by introducing an upper bound
on the trilinear approximation error into the formulation. We
call this approximation error bound the collision offset factor,
α.

Definition 3 (Collision Offset Factor). The collision offset
factor α is a map-wide upper bound on the difference between
(i) the maximum collision probability achieved by integrating
the NeRF density ρ over the robot kernel (i.e. the “true”
collision probability) and (ii) the collision probability using
the trilinearly-interpolated density ρ̂ from (17),

α ≤ min
i,j,k

{
min

p∈vijk,R∈SO(3)
Pr(X ≤ Nmax

aux ;

∫
B(p,R)

γρ(x)

Aaux
dx)

− P(vijk)
}
.

Finally, if α exists, then (19) and consequently our PURR
are inflated with this collision offset factor to give the PURR
a rigorous collision probability guarantee

P(vijk) = Pr(X ≤ Nmax
aux ; Ir(vijk)) < σ − α. (20)

Theorem 1. Given a collision offset α and the desired
collision probability threshold σ, a robot with position p in
the complement of P is guaranteed to be probabilistically safe.

Proof. Following the expressions in (18), the ‘≈’ in the last
line becomes ‘≥’ for a collision offset factor, α, that satisfies
Definition 3. Therefore, the resulting PURR is an upper bound
on the probabilistic collision constraint of (13).

Remark 1. If the discretizations match between the PURR
and a voxel-based NeRF architecture, as in [28] then α is

Fig. 5: Top: Mesh of Flightroom, and PURR with varying
specified inter-penetration values Vmax at fixed probability
σ = 95%. Bottom: Density-thresholded voxel maps with
varying density values ρ. The PURR is precisely calibrated
to give a desired probability of collision, while thresholding
the NeRF density directly offers no particular safety guaran-
tee. The density map can quickly degenerate based on the
threshold, while the PURR can still capture the geometry for
reasonable ranges of Vmax.
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identically 0. In practice, we still set α to 0 regardless of
the NeRF architecture, and we find that the PURR free space
is safe invariant to the size of the cells used in trilinear
interpolation (Fig. 9). We conclude that α ≈ 0 (i.e. trilinear
interpolation closely approximates the neural network) or
α ≥ 0 (i.e. trilinear interpolation is over-approximating the
network).

Remark 2. Although voxel representations are undesirable
in memory compared to compact neural networks, we note
that the PURR is binary. The memory footprint can be further
reduced by using octrees and by storing the PURR with a
compression scheme, e.g, with hashing.

B. Path Planning in the PURR

We now turn to the problem of chance-constrained trajectory
optimization through the PURR. In particular, we seek to
plan a dynamically feasible path for a robot through the
environment such that all points along the trajectory satisfy
a chance constraint on collision (rather than enforcing the
chance constraints at discrete “knot points” along the tra-
jectory). In particular, we seek to find trajectories that are
probabilistically safe.

Definition 4 (Probabilistically Safe Trajectory). A trajectory
is probabilistically safe if all points in the trajectory are point-
wise probabilistically safe.

We propose an algorithm containing three components used
to create these safe, continuous trajectories. The first step is
to find an initial, discrete path through the free space of the
PURR by solving a constrained shortest path problem (Fig.
6a) from our initial position p0 to our final position pf (e.g.,
using A∗). While dynamically infeasible, this path provides
a connected, collision-free path through the PURR that we
will refine into a smooth, feasible trajectory. The second step
is to create a “tube” of bounding boxes around this initial
path that is not in collision with the PURR (Fig. 6b). We
opt for this design choice because our emphasis in this paper
is in quantifying collision risk in the NeRF in combination
with a relatively simple planning scheme. One can introduce
more flexible and sophisticated planning schemes [43], [44]
to improve on our method. Finally, we generate a smooth
curve connecting our initial and final positions by solving a
constrained convex optimization, requiring the curve to lie in
the free “tube” generated previously (Fig. 6c). We call the
resulting trajectory planning algorithm Collision Avoidance
Through Neural Implicit Probabilisitc Scenes (CATNIPS).
CATNIPS executes in real-time given a pre-computed PURR
map.

1) A∗ Search: We first find a rough, discrete initial path
through the NeRF using an A∗ search over the voxel grid
defining the PURR free space. Specifically, given an initial
position p0 and final position pf of the robot, we find a
minimum-length (measured in the Manhattan distance) path
between the corresponding initial and final voxels. We search
a 6-connected graph, i.e., the robot can move into neighboring
free voxels of the PURR along the x-, y-, and z-axes. Using
A∗ with the usual heuristic (distance to goal, not considering

collision) yields a connected, collision-free, but dynamically
infeasible path from the start to the goal.

2) Bounding Box Generation: We now seek to refine the
discrete, collision-free path returned by A∗ into a continuous
trajectory that is energy-efficient, and dynamically feasible,
for our robot. To this end, we first generate a “tube” around
our A∗ path that is both large (so we minimally constrain
our trajectory optimization) and lies in the free space of the
PURR (so trajectories in this tube still remain collision-free).
We represent this tube as a union of bounding boxes, as shown
in Fig. 6b.

To generate these bounding boxes, we first split the A∗

trajectory into straight-line segments (i.e., if the path returned
by A∗ begins by moving along the z-axis for 6 voxels, we
join these into a single line segment between the start and
endpoint of this sequence). We then expand a bounding box
around each line segment by “marching” each face along its
normal direction until it is marginally in collision with the
PURR (i.e., at least one cell on the face borders an unsafe
cell). To speed collision-checking for the prospective boxes,
we convert the PURR to a KD-tree representation for this step.

Once this process is complete, we now have one bounding
box for each line segment in our original A∗ path; the union
of these bounding boxes both lies in the free space of the
PURR, and contains at least one connected, collision-free path
between our initial and final positions. However, for voxel
grids with fine spatial resolution, the number of bounding
boxes will grow, adding to computational complexity; thus,
as a final step we eliminate all “similar” bounding boxes
(i.e., any bounding box whose volume has sufficient overlap
with a bounding box earlier in the sequence) to generate
a simplified representation. We find that these simple axis-
aligned rectangular bounding boxes are more well-behaved in
dense voxel grids where narrow corridors exist, while general
polytopic alternatives like [43] introduce numerical instability
into the planner due to acute corners in the safe corridors
(demonstrated by [44]).

3) Smooth Trajectory Generation via Bézier Curves: The
final step of our planner is to generate a smooth trajectory that
lies entirely in the union of the bounding boxes. To do this, we
represent our trajectory as a connected series of Bézier curves.
In particular, a Bézier curve in Rn, of order N , is given by

p(t; sk) =

N∑
k=0

(
N

k

)
(1− t)N−ktksk, (21)

where sk ∈ Rn are a set of “control points” defining the
geometry of the curve, and the curve is traced by a free
parameter t ∈ [0, 1]. For any t ∈ [0, 1], the Bézier curve p(t) is
simply an interpolation of the control points sk, which means
the parametric curve lies in the convex hull of the control
points [45]. Thus, to generate a probabilistically safe trajectory
through the PURR, we find a set of Bézier curves connecting
our initial position p0 and final position pf , whose control
points lie in the bounding boxes generated previously; since
each Bézier curve must lie in the convex hull of its control
points, the entire curve will lie in the complement of the
PURR. We note that this is a common method for enforcing
safety constraints in the path planning literature [46].
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Fig. 6: (a) Discrete path returned by A∗, (b) Union of bounding
boxes containing subsets of the A∗ path whilst remaining
strictly in the complement of the PURR, (c) Smooth path
represented as the union of Bézier curves whose control points
lie within a particular bounding box.

To find this trajectory, suppose we have L bounding boxes
{B1, . . . ,BL} generated from the previous step. We then find
a set of L Bézier curves with control points given by sik,
constraining all control points of the ith curve to lie in the
corresponding bounding box Bi. Since the Bézier curves are
linear functions of the control points, we can in turn represent
the ith curve as pi(t) ≡ β(t)si, where si ∈ Rn(N+1) is a
concatenated vector of all N + 1 control points for curve i,
and β(t) : [0, 1] 7→ Rn×n(N+1) is a coefficient matrix that only
depends on the curve parameter t. We can similarly represent
higher derivatives of the curve as p

(d)
i (t) = β(d)(t)si. Since

we are only concerned with positions and their derivatives,
n = 3. We refer the reader to [45] for a more detailed treatment
of Bézier curves and splines.

To help smooth the spline and discourage looping behavior,
we introduce the objective

J(s1, . . . sL) =

L∑
i=1

(∫ 1

0

||β(d)(t)si||22dt+
N−1∑
k=0

||sik − sik+1||22

)
,

which is quadratic in our decision variables si. A typical
choice is to penalize the snap of the trajectory (d = 4) as
a proxy for control effort [47].

To generate our desired trajectory, we then solve the fol-
lowing optimization:

min
s1,...,sL

J(s1, . . . , sL) (22)

s.t. sij ∈ Bi, ∀i ≤ L, j ≤ N

β(d)(1)si = β(d)(0)si+1, ∀i ≤ L, d ≤ D

β(0)s1 = p0,

β(1)sL = pf .

In particular, we constrain the control points of every segment
so that si must lie in the corresponding bounding box Bi,
which defines a set of linear inequaities in si. We also enforce
continuity of each spline up to a desired derivative D, which
defines a set of linear equality constraints. Finally, we enforce
the boundary conditions of our trajectory, i.e., that the curve
begins at our initial position p0 and ends at our final position
pf . We choose to optimize Bézier curves of order N = 8, to
balance the expressiveness of our model (which needs non-
trivial derivatives up to order d = 4) with the number of
parameters needed to specify the curve.

Since our objective is quadratic in the control points, and
our constraints are defined by linear inequalities and equality
constraints, the resulting optimization (22) is a quadratic
program (QP) that can be solved in real time.

Corollary 2. The trajectory given by the solution of the QP
(22) is probabilistically safe.

Proof. The QP (22) constrains each Bézier curve to live within
a bounding box that is probabilistically safe, rendering each
curve safe. The resulting trajectory, given by the union of the
Bézier curves is therefore probabilistically safe.

Remark 3. We emphasize that all trajectories are probabilis-
tically safe in that all points in any trajectory satisfies the
inter-penetration constraint (13) with probability σ. This is
not equivalent to the statement that some σ fraction of all
trajectories do not contain any points that violate the inter-
penetration constraint.

Remark 4. If the robot system dynamics is differentially flat
such that its position is a subset of the flat outputs, then
the paths generated by the proposed QP (22) (with D set
to the highest derivative of position in the flat outputs) are
dynamically feasible. Therefore a robot tracking a trajectory
from this planner remains probabilistically safe.

Remark 5. We note that each segment of the trajectory
returned by our planner is parameterized by a simple curve
parameter t, which need not correspond to time. However,
since we assume our system is differentiably flat, there exists
a time scaling such that the curve is dynamically feasible. To
resolve this, we use a simple time rescaling (as in [47]) to
generate the final trajectory as a function of time.

VII. NUMERICAL RESULTS

In this section, we study our proposed chance-constrained
trajectory optimizer on the simulated Stonehenge scene and
real Statues and Flightroom environments. The real scenes
were captured using a hand-held phone camera with poses
extracted from COLMAP. Using our proposed trajectory op-
timizer, we generate trajectories for a simulated and real
quadrotor flying through the scene, and study the safety
and conservativeness of trajectories generated across a large
number of initial and final conditions. Using the same path
planning algorithm, we perform a comparison between the
PURR and a baseline voxel occupancy representation obtained
by thresholding the raw NeRF density at a desired density
level. We also compare these methods to the authors’ previous
work NeRF-Nav [12]. Because this method requires an A*
initialization, we use the same A* initialization for both
the baseline grid and NeRF-Nav. Specifically, the NeRF-Nav
A* initialization is generated from the baseline density grid
corresponding to the cutoff ρ = 102 (the most conservative
cutoff).

We demonstrate that both voxel methods are more computa-
tionally efficient than NeRF-Nav, and also generate trajectories
that are safer (with fewer collisions) and less conservative
(shorter paths). Further, we find that our method, CATNIPS,
allows the user to set a clearly defined probability threshold
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Fig. 7: Generated safe paths across 100 configurations from
Stonehenge, Statues, and Flightroom, visualized from the top
and sides. Both Statues and Flightroom NeRFs were trained
from images of the real environments.

for collision. In contrast, the density threshold baseline does
not give such a probabilistic guarantee. In other words, similar
behavior can be obtained from a density thresholded map, but
this requires a user to tune the density threshold through trial
and error to reach a desired qualitative level of safety, and
thresholds that work for one environment may not generalize
to others. Even after tuning to get good empirical behavior,
the baseline offers no accompanying safety guarantee.

A. Algorithm Performance

Qualitative results of the proposed method for 100 start and
goal locations on a circle (perturbed randomly in the up-down
direction) for all 3 environments are shown in Figure 7. The
PURR was generated using a resolution of 150 voxels per
side, with probability threshold σ = 0.95, and Vmax = 10−6

specified volume penetration 5. Moreover, because our quadro-
tor system is differentially flat with flat outputs in position,
the robot can follow these paths with a standard differential
flatness based control pipeline [47].

We first compare our method to two baselines: the “baseline
grid” which computes occupancy from a density threshold, and
NeRF-Nav [12], a gradient-based trajectory planner for NeRFs
in Fig. 8. We analyze their performance on 3 metrics: the
minimum signed distance achieved during the trajectory to the
ground-truth mesh (negative is within the mesh), the maximum
inter-penetration volume achieved during the trajectory, and
the difference in lengths between the generated trajectory
and the shortest straight line path. The first two metrics
quantify safety, while the last quantifies conservativeness. We
evaluate the algorithms on the 100 randomized configurations
distributed evenly on a circle.

We choose to display the same 6 parameter combinations
for CATNIPS, varying the specific inter-penetration and prob-

5Because the cameras are mapped to be within a unit box, all reported
length scales are assumed to be in this normalized system unless explicitly
stated.

ability cutoff, over all scenes to demonstrate generalizability
and interpretability. The cutoffs we choose to be reasonable
thresholds of 95% and 99%. The inter-penetration we choose
to be some fraction of the robot body. For Stonehenge,
5·10−6, 10−6, 10−7 correspond to 13%, 3%, .3%, while for the
real environments, these values correspond to 4%, .8%, .08%,
respectively.

To benchmark against the baselines, we vary the density
cutoffs of the baseline grid and the collision penalty weight in
NeRF-Nav. We again stress the lack of interpretable parame-
ters for both NeRF-Nav and the baseline grid paths and their
required parameter tuning to get a desired safety performance,
which is impossible to know a priori as one does not have
access to the ground-truth in reality. However, in order to
benchmark the methods in good faith, we choose the density
cutoffs on the baseline grid such that the performance on
these metrics were similar to those of CATNIPS in a synthetic
environment (i.e. Stonehenge), since we have access to its
ground-truth mesh. We then use the same cutoffs for the real
environments. In our experience, these are also thresholds
that are typically used to extract meshes from NeRFs using
marching cubes [13]. For NeRF-Nav, the collision penalty
weights are chosen so that they are the dominant term in the
loss.

We can see that NeRF-Nav trajectories are unsafe when
compared to paths generated from either voxel method (nega-
tive is in collision with the mesh) over all collision loss weights
(102, 103, 104). As we increase the weighting on the collision
penalty, we do see that the algorithm can be increasingly
safe on average (higher SDF, lower volume intersection).
However, such a high collision penalty (104) will typically
cause numerical issues in the trajectory optimizer. Moreover,
these trajectories in the worst case are simply less safe than
either voxel method. Finally, these trajectories also deviate
from the shortest path the farthest, illustrating conservatism
and non-smooth paths.

The trajectories derived from the baseline grid can exhibit
safe and non-conservative behavior. However, it is clear that
the parameters necessary to achieve this behavior cannot be
generalized over all scenes. This is evident for the cutoff ρ =
104, where safety performance in Stonehenge is reasonable,
but we see unsafe performance in the real environments.

We see that our method, CATNIPS, is safe (by construction)
and non-conservative. On average, these trajectories are similar
in conservativeness compared to the baseline grid paths, while
exhibiting reasonable levels of safety and respond as expected
to changes in parameters (greater SDF and lower intersection
when decreasing specified volume intersection and/or increas-
ing probability threshold). We draw the readers attention to the
volume intersection metric (Fig. 8, middle row) for CATNIPS,
where trajectory-wise safety is expressed (please see Remark
3 for the distinction). The arrowhead represents the σ quantile
over 100 trajectories, while the dotted lines represent the
specified volume intersection. While we make no claims on
full-trajectory rates of safety (i.e. the arrowhead need not be
below the corresponding dotted line), we see that, indeed, a σ
proportion of the trajectories tends to be completely safe (with
no unsafe points existing on the whole trajectory).
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Fig. 8: Statistics on distances to obstacles, inter-penetration, and path conservativeness over 100 trajectories for each environment
(Stonehenge, Statues, Flightroom). We benchmark our PPP method (three different inter-penetration distances, each at at 95%
and 99% probability) against the paths using the baseline grid and NeRF-Nav [12]. Whiskers indicate max/mean/min over all
trajectories, and the density of color represents the spread. Top: The minimum distance to the ground-truth mesh for every
trajectory. Our method uses interpretable parameters, such that we can tune for safety (lower volume intersection) without being
overly conservative (lower path deviation). Meanwhile, the effect of the density cutoff in the baseline grid is unpredictable
across scenes, and the NeRF-Nav paths can lead to collision violations (low whiskers) and overly-conservative paths. Mid:
The maximum inter-penetration volume per trajectory. Although we only make claims about point-wise safety, we see that
trajectory-wise safety is approximately satisfied (i.e. arrowheads representing 95, 99% of trajectories tend to be below the
specified inter-penetration indicated by red dotted lines). Bottom: Difference between the minimum length of a straight line
path and the executed path. We see that both CATNIPS and the baseline grid are less conservative than NeRF-Nav.

We validate the point-wise safety claims we make, as
well as ablate CATNIPS over grid discretizations, in Fig.
9. The figure contains runs with parameter combinations of
two different collision probabilities, three different specified
volume intersections, three different grid discretizations (100,
150, 200), and three different environments. Note that some
columns can contain multiple bars, representing different grid
discretizations or environments while maintaining the same
collision cutoff and volume intersection. Bar heights represent
the fraction of all 100 trajectories that contain at least a point
with volume intersection higher than what was specified for
that combination of parameters. Numbers on top of these bars
indicate the percentage of all points in all trajectories that fall
below the specified volume intersection for the same parameter
setting. Our theoretical claims pertain to the rate across all
points on all trajectories (number on top of bars), yet we
observe for our method the desired collision rate tends to
hold across full trajectories as well (the height of the bars).
Combinations not visualized mean there were no points in any
trajectories that violated the volume intersection constraint.

Note that the reported percentage of all points being safe

(all percentages greater than the probability cutoff) means
that our derived point-wise probabilistic safety constraint is
validated and that satisfaction of this constraint is invariant to
the parameters. This makes (13), the PURR, and the planning
architecture surrounding it generalizable to arbitrary environ-
ments and reasonable grid discretizations. This result also
implies that the error introduced through trilinear interpolation
of neural network-based density fields is small in terms of its
impact on safety (i.e. collision offset factor α ≥ 0). This is
especially attractive for real scenes where there is no way to
validate safety a priori, and for applications where coarser grid
discretizations are necessary for computational performance.
Moreover, trajectory-wise safety (like in Fig. 8) is generally
satisfied over grid discretizations and scenes.

Here we would like to summarize several subtle points
regarding collision violation to the reader. The violation of
the specified volume penetration at some points (Fig. 8, 9) is
due to both the probabilistic nature of the collision constraint,
and due to the fact that the NeRF does not exactly capture
the ground truth surface. For the NeRF density to exactly
represent the true surface, under our PPP interpretation, it
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Fig. 9: Effect of grid discretizations and environments on
safety. Bars represent fraction of trajectories out of 100 that
contain at least one point greater than the specified inter-
penetration volume. This ablation is performed over spec-
ified inter-penetration volumes, collision probabilities σ =
(95%, 99%), grid discretizations N = (100, 150, 200), and
environments (Stonehenge, Statues, Flightroom). The total per-
cent of points across all trajectories below the specified inter-
penetration volume for a specific combination of parameters
and scenes is indicated above the bar. Combinations not shown
means that all points in that setting were below the specified
inter-penetration volume. We see that point-wise safety is
always satisfied, and trajectory-wise safety is approximately
valid.

would have to be exactly 0 outside the surface, and ∞
inside. In this case, collision would be deterministic because
the only way to satisfy the chance constraint on collision
would be to have no collision. In practice, a NeRF density
field cannot be either 0 or ∞ both because of continuity in
the representation and embedded uncertainty about where the
true surface is. Therefore, a collision with the true surface
may occur with the prescribed probability. We believe that
an accurate representation of uncertainty in perception-based
planning must admit for some probability of collision, as there
is always a nonzero probability that perception errors have
led to an incorrect estimation of occupancy in the scene.
We further alleviate this “NeRF-to-real” gap by embedding
several conservative approximations into our method through
the construction of the PURR. Therefore, in practice, we
collide with the true surface less frequently than required by
the collision constraint. Again, this fact is illustrated in Fig.
9, where the collision constraint satisfaction is very close to
100% but not conservative enough to be unappealing to use
(Fig. 7, 8).

Finally, we validate our CATNIPS pipeline on drone hard-
ware experiments in our Flightroom environment. Using a pre-
trained static NeRF, we compute 10 trajectories from start-goal
points distributed on the perimeter of a circle around the scene,
and drive the on-board controller to follow these waypoints
(open-loop). Then, we choose two of these start-goal locations
and run the CATNIPS A*, bounding box generation, and
convex program online (choosing the next predicted point as a
waypoint) while simultaneously updating the drone to follow
the stream of waypoints (closed-loop). All trajectories are run
until they reach the goal location. The open-loop trajectories

Fig. 10: Signed distances along the executed trajectories on a
real drone in the Flightroom environment. There were 10 open-
loop trajectories, and 2 additional ones with online replanning.
All trajectories are above 0 and hence safe.

are about 20 seconds long since they are pre-defined, while
the closed loop trajectories can have varying times since they
are not pre-defined. We see that all trajectories have a signed
distance greater than 0 and are therefore safe (no collision).
Even for the open-loop trajectory that comes close to 0, we
visually verify a collision-less trajectory. The near-zero SDF
is due to over-approximating the drone body with a bounding
box when computing the signed distance.

B. Computation Times

Computation Time (seconds)
Operation CATNIPS/Basegrid NeRF-Nav
Offline

Robot Kernel 0.002 0.002
PURR/Basegrid 1.11 1.11
Gradients N/A 9.31⋆

Online
A* 0.16 ± 0.05 0.16
Bounding Box 0.12 ± 0.09 N/A
B-Spline 0.034 ± 0.029 N/A
Gradients N/A 0.93⋆⋆

⋆ 1000 gradient steps.
⋆⋆ 100 gradient steps.

TABLE I: Timing results (performed on a laptop with an
RTX 4060 GPU) between our voxel methods (CATNIPS and
baseline grid) and NeRF-Nav. Because both voxel methods use
similar operations, they have identical times. Since NeRF-Nav
depends on an A* initialization, it also inherits some compu-
tation from the voxel methods. Offline operations only need
to be performed once for a static NeRF environment, while
online operations need to be performed whenever replanning
occurs.

The implementation of the above algorithms are performed
in Pytorch on a laptop with an RTX 4060 GPU. Our method
is built on top of NeRFStudio [8]. Little effort was made
to optimize code for fast computation, so we expect these
execution time could be substantially reduced. Moreover, for
a fair comparison, we ported NeRF-Nav to NeRFStudio. In
general, the planning portion of CATNIPS (A*, bounding box,
and Bézier curve generation) operates at around 3 Hz. The
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operation from querying the NeRF density to the creation of
the PURR runs at 1 Hz. The break-down of each operation
is shown in Table I. As a promising direction for future
work, one can further reduce the computation time for creating
the PURR and optimizing trajectories in the PURR through
parallelization and code optimization on a GPU. 6.

Note that the proposed method produces smooth trajectories
from the current position to the goal. Also note that in an
online re-planning scenario, usually only the next waypoint is
tracked before the entire trajectory is updated. Thus, certain
parts of our method can be adapted to only consider the vicin-
ity of the robot, trading computation time for suboptimality.
In comparison, NeRF-Nav takes longer to converge (if at all)
to a reasonable tolerance, without any safety guarantees. We
believe this is primarily due to the difficulty of optimizing
its highly nonconvex objective and the many queries required
to the density neural network within the trajectory optimizer.
In order to produce the best performance from NeRF-Nav in
terms of safety, we ran the algorithm for 1000 gradient steps.

VIII. CONCLUSION

In this paper, we present a novel method for chance-
constrained trajectory optimization through NeRF scenes. We
present a method to transform the NeRF into a Poisson
Point Process (PPP), which we use to generate rigorous
collision probabilities for a robot body moving through the
scene. Leveraging this expression for collision probability, we
develop a fast method for online trajectory generation through
NeRF scenes, which, offline, distills the NeRF density into a
voxel-based representation of collision probability called the
PURR. Using the PURR, we present an algorithm to plan
trajectories represented as Bézier splines that guarantee a robot
traversing the spline does not exceed a user-defined maximum
collision probability. In numerical experiments, we show our
proposed method generates safer and less conservative paths
than a state-of-the-art method [12] for trajectory planning
through NeRFs, and also gives more well-behaved and more
user interpretable results than a baseline planner that uses
a threshold on the NeRF density as a proxy for collision
probability. We also demonstrate that our pipeline can run in
real-time.

This work opens numerous directions for future research.
Since our entire pipeline (both PURR generation and trajectory
optimization) can run at real-time rates, our planner could be
combined with a NeRF-based state estimator (e.g., [21], [19])
to perform active exploration or next-best-view planning on
NeRFs, allowing a robot to autonomously explore a novel
environment using only onboard vision. Building on naviga-
tion, another interesting direction is to tune the collision metric
on-line during execution. Because the collision probability is
differentiable with respect to the pose, it is possible to tune the
collision probability online in response to data collected on-
the-fly (e.g., sensed minimum distance to the nearest obstacle).
This could be implemented with auto-differentiation as part of

6The A* library [48] we use allows users to pre-process a static voxel grid
such that generating the A* initialization is a look-up operation that is near
instant in exchange for a one-time processing cost of approximately a second.

a PyTorch-based planning pipeline. The probabilistic collision
framework developed here could have interesting applications
to problems like differentiable simulation of rigid bodies
represented as NeRFs [49] or planning for problems like
contact-rich manipulation and locomotion. Finally, since our
derivation a PPP from a NeRF is rigorous and generalizable,
we hope that our interpretation of NeRFs will be useful to
research beyond robotics, for example in computer vision and
computer graphics.

APPENDIX A
INTEGRATION OVER TRILINEARLY INTERPOLATED CELLS

For a trilinearly interpolated density over a cell
vijk given by (17) with local coordinates (x, y, z) ∈
([ax, bx] , [ay, by] , [az, bz]), the volume integral over the cell
can be computed analytically as:

∫ bx

ax

∫ by

ay

∫ bz

az

ρ(x)dxdydz = (bx − ax)(by − ay)(bz − az)

+
c2
2
(by − ay)(bz − az)(b

2
x − a2x)

+
c3
2
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2
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2
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2
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(23)

where ci are the coefficients of the trilinear interpolation.
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