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Abstract— Dexterous manipulation tasks often require con-
tact switching, where fingers make and break contact with
the object. We propose a method that plans trajectories for
dexterous manipulation tasks involving contact switching us-
ing contact-implicit trajectory optimization (CITO) augmented
with a high-level discrete contact sequence planner. We first
use the high-level planner to find a sequence of finger contact
switches given a desired object trajectory. With this contact
sequence plan, we impose additional constraints in the CITO
problem. We show that our method finds trajectories approx-
imately 7 times faster than a general CITO baseline for a
four-finger planar manipulation scenario. Furthermore, when
executing the planned trajectories in a full dynamics simulator,
we are able to more closely track the object pose trajectories
planned by our method than those planned by the baselines.

I. INTRODUCTION

Dexterous manipulation tasks, which consist of multiple
fingers cooperating to manipulate an object [1], often require
fingers to make and break contact with the object. For
example, a multi-fingered hand manipulating a cube with
a fixed grasp will only be able to rotate the cube by so
much before the fingers reach their workspace limits; to
rotate the cube any farther requires the fingers to switch
contacts. Planning such tasks requires finding not only a
discrete sequence of contact switches, but also the piecewise
continuous trajectories that satisfy dynamic equations and
force constraints for each part of the sequence.

Contact-implicit trajectory optimization (CITO) methods
jointly find trajectories for state, input, and contact forces,
making them a good candidate for planning finger joint con-
figuration, torque, and contact force trajectories for dexterous
manipulation tasks. The most straightforward way to apply
CITO to such tasks is to use a general formulation, such
as the one presented in [2], with the appropriate dynamics
constraints. We consider a planar task of manipulating a
rectangular object in the gravity plane with four fingers, each
with two degrees of freedom. When using a general CITO
formulation to plan this task, we find that it not only requires
long solve times, but also often plans trajectories that are
highly dynamic, resulting in more frequently dropping the
object when being executed with a low-level tracking con-
troller. One could obtain more robust dexterous manipulation
trajectories with CITO by introducing additional constraints
into the optimization problem, such as requiring the object
to always be stably grasped. While the CITO framework is
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Fig. 1: An overview of TrajectoTree for planning an object rotation task with
four contact switches. Given an initial contact configuration and desired
object trajectory, TrajectoTree use a discrete planner to find a feasible
contact sequence, with fingers that switch contacts drawn in red. It then uses
CITO with constraints from the high-level plan to plan the full trajectory.

amenable to such constraints, enforcing, for example, a grasp
stability constraint would require selecting a combination of
fingers to remain on the object at each time. Consequently,
the optimizer faces a fundamentally discrete choice at each
time, which is difficult to optimize whether modeled using
continuous constraints or integer variables.

Instead, given a desired object trajectory, we propose to
first find a sequence of contact switches for the fingers using
a discrete planner that reasons about kinematics and grasp
stability. We then use this contact sequence to either improve
the initial guess or impose additional constraints in the CITO.
Specifically, we constrain the contact point locations to those
planned by the contact sequence planner and only allow one
finger to make and break contact with the object at any
given time. Although we fix some contact point locations,
we still model the contact dynamics of free fingers with
complementarity constraints, allowing them to make contact
with the object at any time during a contact transition.

We call our algorithm, which combines high-level tree
search with low-level CITO, TrajectoTree. We show that
TrajectoTree not only plans dexterous manipulation trajecto-
ries robust against dropping the object using CITO, but also
improves solve times. Specifically, for a four-finger planar
manipulation scenario, TrajectoTree has planning times that
are, on average, approximately 7 times faster than a general
CITO baseline. Furthermore, when executing the planned
trajectories in a PyBullet simulation environment, a low-level
finger tracking controller is able to more closely execute the
object trajectories planned by TrajectoTree than trajectories
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planned by other CITO baselines.

II. RELATED WORK

This work uses CITO as a strategy for dexterous manipula-
tion planning. While both CITO and dexterous manipulation
have been studied extensively, contact-implicit approaches
to manipulation are relatively rare. As such, we provide
a fairly disjoint discussion of these two bodies of work,
highlighting the few existing works which combine them.
Given that dexterous manipulation relates to this work at the
task level, we provide a general summary of some commonly
used approaches. In contrast, this work focuses specifically
on contact planning, warranting a more detailed analysis
of individual prior contact planning methods from both the
manipulation and locomotion communities.

A. Contact-implicit trajectory optimization

Trajectory optimization is a key method for planning robot
motion, generating motion plans that locally optimize a given
cost functional, subject to a set of constraints. Although
trajectory optimization generalizes well to different sys-
tems, traditional methods can only handle smooth dynamics,
and not the discontinuous dynamics introduced by contact
switching. In recent years, several works have introduced a
class of trajectory optimization methods that address this lim-
itation. These methods, termed CITO, simultaneously plan
state, control input, and contact force trajectories without
needing a pre-specified contact mode schedule. They handle
the hybrid dynamics of contact with either complementarity
constraints [2]–[6] or with soft constraints implemented as a
penalty term in the cost function [7], [8]. In this work, we
follow the formulation introduced in [2].

Since the introduction of CITO methods, many works
have applied them to whole-body dynamic motion planning
[9], [10], quadruped locomotion [6], and single-leg jumping
[11]. Of these works, [10] and [11] use hierarchical planning
schemes, first planning a trajectory with a simplified robot
model and then using this to warm-start the full trajectory
optimization. TrajectoTree adopts a similar hierarchical de-
sign strategy, first considering a simpler kinematics prob-
lem before introducing full dynamics. More recently, CITO
methods have also been used for planning non-prehensile
object manipulation [12], [13]. There have also been a few
works that use CITO for planning dexterous manipulation
tasks [8], [14]. In [8], the authors impose both dynamics
and contact constraints using a soft penalty formulation
to synthesize manipulation motions for computer graphics.
The method proposed in [14] is more similar to ours, in
that it uses a complementarity constraint formulation. While
both methods are able to plan dexterous manipulation tasks
that involve contact switching, results are only shown as
animated visualizations of the trajectories, and do not include
discussions of the planning times.

While one might argue that the versatility of CITO makes
it trivial to apply to planning dexterous manipulation tasks, in
reality, obtaining good solutions with reasonable solve times
still depends on providing an appropriate initialization and

task-specific constraints. TrajectoTree accomplishes this by
augmenting CITO with an additional high-level planner.

B. Planning dexterous manipulation

Contact switching is an integral part of dexterous ma-
nipulation, but reasoning about how to make and break
contact with an object is difficult due to the combinatorics
and hybrid dynamics associated with the problem. To re-
duce the complexity associated with reasoning about contact
switching, many dexterous manipulation planning methods
rely on breaking down the task by choosing hand-designed
manipulation primitives [15]–[17]. Often, primitives are de-
signed for specific tasks or objects, thus requiring significant
implementation effort to generalize to different scenarios.

Finger gaiting is another common method for reducing the
complexity of dexterous manipulation planning by allowing
only a single finger to switch contacts at any given time. Fin-
ger gaiting has most often been used for in-hand re-grasping
[18], [19]. Although finger gaiting can be considered a
primitive, it is more general than higher-level manipulation
primitives such as sliding, pushing, or pivoting.

In contrast to breaking down a task by imposing structure
on motion, data-driven approaches have also been used to
plan dexterous manipulation tasks [20], [21], and while the
results have been impressive, they require large amounts of
training data and time to generalize to different scenarios.

Of these three strategies, our proposed approach is most
similar to finger gaiting, and does not rely on choosing hand-
designed primitives. Unlike [18], we consider the task of
moving an object to a goal pose and do not assume a given
order in which fingers move. [19] assumes that the object is
smooth to enable fingers to slide along its surface.

C. Contact planning for locomotion and manipulation

Finally, we address the contact planning works most
directly related to this work.

First, we discuss a recent work that combines search-
based planning and dynamics optimization for humanoid
contact planning [22], as well as an extension to that work
that considers the robustness of the method to disturbances
[23]. The core structure of the methods in these works
is similar to TrajectoTree, first constructing and searching
through a graph to find a contact sequence, and then using a
dynamics optimization step to generate full trajectories given
this contact sequence. However, their graph search finds con-
tact sequences with low dynamics costs, which traditionally
would involve solving a slow dynamics optimization problem
to obtain the cost of every contact transition, whereas our
discrete planner only cares about finding feasible solutions.
Consequently, the goal of their work is to speed up the graph
search by training a network to predict the optimal objective
value of the dynamics optimization for a contact transition.
In contrast, this work focuses on speeding up trajectory
optimization by using a search-based planner.

Next, we discuss several hybrid feedback control works
that reason about contact mode scheduling. These works em-
ploy a variety of strategies, including mixed-integer quadratic



programming (MIQP) [24], [25], sequencing high-level prim-
itives [26], enumerating all possible contact sequences [27],
and learning contact schedule selection with Bayesian opti-
mization [28]. Of these, only [27] considers multi-contact
dexterous manipulation tasks. The authors present a hy-
brid differential dynamic programming (DDP) algorithm
for closed-loop execution of planar pushing and pivoting
primitives with frictional contact switches. Their method uses
input-constrained DDP to explore and rank all feasible con-
tact mode sequences. Unlike CITO methods, DDP requires a
fixed contact mode sequence. Consequently, their approach
requires enumerating all possible contact sequences, limiting
the number of contact switches they can consider while still
obtaining reasonable planning times. The maximum number
of contact switches they consider is two.

Finally, we highlight two recent papers that both reason
about how to plan contact switches for planar dexterous
manipulation tasks. The first, [29], reformulates the problem
with a quasi-dynamic relaxation and constructs the planning
problem as mixed-integer program. The second, [30], uses
rapidly-exploring random tree guided by contact modes.
Both methods plan a diverse set of dexterous manipulation
tasks, but neither consider full finger kinematics, and instead
assume that the contact points will always be reachable.

III. METHOD

First, we use a discrete contact sequence planner that only
considers grasp stability and kinematics to find a sequence
of contact switches for the fingers given a desired object tra-
jectory. Next, we formulate the contact transition trajectory
optimization by combining the high-level plan with CITO
by constraining the contact locations to those given by the
plan, thereby allowing only one finger to break contact with
the object at any given time. Additionally, we use the object
poses from the high-level plan as incremental goal poses in
the cost function. Fig. 1 shows an overview of our method.

TrajectoTree makes several assumptions. The discrete
planner allows only one finger to make and break contact
with the object at any given time. It also relies on the user
to define a maximum number of allowed contact switches.
We discuss the implications of this in the conclusion. In the
contact transition trajectory optimization, we use the same
number of time steps for each contact switch, but this can be
modified by adjusting the constraints. The duration for each
contact switch can even be included as decision variables
within the optimization.

A. Contact sequence planner

To find a feasible finger contact sequence for a given
object trajectory, we use depth-first search with a heuristic
to construct and search through a tree. The planner takes as
input an N -length object pose trajectory (x∗0, ..., x

∗
N−1) and

initial contact point locations for each finger, p∗0. A node z in
the tree consists of an object pose, finger joint configurations,
and finger contact point locations on the object. To construct
a tree, we expand nodes that are kinematically feasible and
have a stable grasp. To expand a node, we find its neighbors

TABLE I: Primary notation

Notation Definition
nf Number of fingers in hand
nq Number of joints in hand
nd Number of degrees of freedom of object

l
Number of contact force components transmitted
through nf contacts

x ∈ Rnv Object position and orientation
q ∈ Rnq Joint angles
τ ∈ Rnq Joint torques
λ ∈ Rl Contact forces, expressed in local contact frames
G(x, q) ∈ Rnd×l Grasp matrix
J(x, q) ∈ Rl×nq Hand Jacobian
pf ∈ R2 Position of fingertip f , expressed in object frame
γ Vector of slack variables
superscript ∗ Denotes a reference quantity from high-level plan

Fig. 2: An example illustrating the tree-search. To get neighbors of the top
node, increment the object pose, determine a free finger, shown in red, and
choose new contact points based on a fixed set of contact displacements.
Here, the free finger can either stay at the red contact point, or move to the
green or blue contact points. Staying at the red point or moving to the blue
point would result in collisions with the object. Thus, the only valid node
to expand next is that with the free finger at the green point.

by exploring a discrete set of contact switches for each
finger not needed to maintain grasp stability. We outline our
search algorithm with pseudo-code in Algorithm 1, and Fig.
2 illustrates each of its components with a simple example.
Below, we describe each of the functions in Algorithm 1.

SELECTNODE(Vopen): From the nodes in the open set Vopen
deepest in the tree, return the node with the lowest heuristic
value. As a heuristic for choosing feasible nodes, we use the
deviation of the second finger joint from its nominal joint
angle of 45 degrees, guided by the intuition that the more
extended fingers are, the more likely a contact configuration
will be infeasible. While we found that this heuristic helped
improve search times marginally, it can be swapped with
other heuristics or removed entirely.

ISFEASIBLE(z): Determine if node z is valid, and should
be expanded, or a dead-end. It is a dead end if the object is
not in frictional form closure [31], or the contact points are
not reachable by the fingers. We check for frictional form
closure by solving the linear program formulated in [31]
and check for kinematic feasibility with inverse kinematics.
Return False if z is a dead end and True otherwise.

GETNEIGHBORS(z): Return all neighbor nodes of a fea-
sible node z. Given the current node’s object pose, x∗n, the
object pose of all neighbor nodes is x∗n+1. To get a neighbor
node znear of z, first determine all free fingers in z. A finger
is “free” if it is not needed to maintain frictional form closure
on the object if the other fingers remain fixed on the object.
Next, choose a new contact point location for that free finger
by displacing its current contact location along the object’s
surface by some displacement chosen from a pre-defined,



Algorithm 1: Contact sequence planner
input : (x∗0, ..., x∗N−1), p∗0
output: T = (V,E), Planner success status

1 Vopen ← {zstart}, Vclosed ← ∅
2 T ← (V {zstart}, E{none}) // Initialize tree

3 while Vopen 6= ∅ do
// Get deepest node from open set

4 zcurrent ← SELECTNODE(Vopen)
5 Vopen ← Vopen \ zcurrent // Remove from open set

6 Vclosed ← Vclosed ∪ zcurrent // Add to closed set

7 if ISFEASIBLE(zcurrent) then
8 if x∗current equals x∗N then

// Exit if object goal pose reached

9 return T , True
// Add the neighbors to tree

10 Znear ← GETNEIGHBORS(zcurrent)
11 for z ∈ Znear do
12 T ← INSERT(z, zcurrent)
13 Vopen ← Vopen ∪ z
14 return T , False

fixed set of displacements Dcp. The set Dcp includes the
zero displacement, meaning that the free finger will remain
at its current contact location. Then, create a new neighbor
for each displacement in Dcp. Only one finger can perform
a contact switch between two nodes, so each neighbor node
will have the same set of contact points as the parent node,
zcurrent, except for one contact point which may have changed.

INSERT(znew, zcurrent): Add znew to V , and add the edge
between znew and its parent zcurrent to E.

Algorithm 1 outputs path of N nodes from the initial
to final object pose, where each node contains the object
pose x∗n, joint angles q∗n, and contact point locations in the
object frame p∗n for n = 0, ..., N − 1. At most one finger
can perform a contact switch at any given time, meaning
that with four fingers in total, any two consecutive nodes in
the path must have three common contact points. We call a
pair of consecutive nodes in a path a transition segment. In
TrajectoTree, we enforce these transition segments in CITO
by constraining contact point locations.

B. General contact-implicit trajectory optimization

We formulate the general CITO problem for planar dexter-
ous manipulation. A discussion of extending this formulation
to 3D can be found in [2]. In Section III-C, we augment this
formulation with constraints from the contact sequence plan
to arrive at the contact transition trajectory optimization used
in TrajectoTree. Table I contains the primary notation.

We find trajectories for the object pose, finger joint con-
figurations and torques, and corresponding contact forces by
solving a CITO problem of the form

minimize
{x,q,ẋ,q̇,τ ,λ,γ}

F (x, τ ,λ,γ) (1)

s.t. dynamics constraints (3), (4)
friction cone constraint (5)
complementarity constraints (6), (7)
path constraints for each decision variable,

where F (x, τ ,λ,γ) is a quadratic tracking objective func-
tion of the form

F (x, τ ,λ,γ) =

M∑
k=0

(xk − xgoal)
TQ(xk − xgoal)

+ τTk Rτk + λTk Lλk + ||γ||1,

(2)

where x = (x0, . . . , xM ) is the object pose trajectory,
and q, τ , and λ are defined similarly as the joint angle
trajectory, joint torque trajectory, and contact force trajectory,
respectively. L, Q, and R are weight matrices, and γ is a
vector of slack variables, which we use to relax several equal-
ity constraints to improve convergence of the optimization
problem [5].

The constraints in (1) are as follows. We use trapezoidal
collocation [32] to discretize the finger and object dynamics,

Mobj(xk)ẍk = G(xk, qk)λk + gobj(xk), (3)

Mhand(qk)q̈k = τk − JT (xk, qk)λk. (4)

In these constraints, gobj is the vector of gravitational forces
on the object, and Mobj and Mhand are the object and
hand mass matrices, respectively. We omit the Coriolis and
centrifugal terms in (4) because these are negligible in
a quasi-static setting with low-mass manipulators. Higher-
order collocation methods, like Hermite-Simpson or orthogo-
nal collocation, can be used instead of trapezoidal collocation
to improve solution accuracy, as [33].

We model contact in the optimization problem with fric-
tion cone constraints and complementarity constraints:

µλn,k − |λt,k| ≥ 0 (5)
γi − φ(qk)λn,k ≥ 0 (6)

−γ ≤ (Jq̇k −GT ẋk){x,y}λn,k ≤ γ (7)
λn,k ≥ 0 (8)
φ(qk) ≥ 0 (9)

γ ≥ 0. (10)

This ensures that contact forces are zero when the fingertips
are not in contact with the object. Equations (5) – (10) apply
for each finger f = 1, ..., nf separately. To minimize notation
clutter, we drop the additional subscript f and use q and λ to
denote joint angles and contact forces for a single finger f .
The vector of contact forces λ is comprised of normal and
tangential components λn and λt, respectively. Equation (5)
constrains the contact forces to lie within the planar friction
cones of an object with coefficient of friction µ. The function
φ(q) can be thought of as a signed-distance field of the
object, which enforces a non-penetration constraint with (9)
and only equals zero when the fingertip is in contact with
the object. Equation (6) is the complementarity constraint
on normal contact forces, relaxed with a slack variable. We
include another relaxed complementarity constraint, (7), to
constrain each fingertip to remain fixed at their contact points
when on the object; these equations constrain the {x, y}
components of a fingertip’s velocity, in the world frame, to be
equal to the {x, y} components of the contact point velocity,
also in the world frame. We solve the problem in (1) with



Fig. 3: Total planning times and final optimization cost of TrajectoTree and
baselines across 60 different goal rotations randomly sampled between -π
and π radians. We present the data with standard boxplots and denote means
with crosses. TrajectoTree reaches a solution faster (left), but typically with
a higher cost (right) due to the additional contact constraints.

the constraints in (3) – (10) using IPOPT [34].

C. Constraining CITO to the high-level contact sequence

Finally, we formulate the contact transition trajectory opti-
mization by combining the contact sequence plan with CITO.
Given a high-level contact sequence plan, we modify the cost
function and introduce additional task-specific constraints
that specify which fingers are free and fixed, as well as the
contact point locations of each finger. For a high-level plan
with N−1 transition segments, we fix each segment to be M̂
time-steps long, making the full trajectory M = (N − 1)M̂
time-steps long. Each of the s = 0, ..., (N − 2) transition
segments consists of two consecutive nodes.

First, we introduce a cost function that uses object poses
(x∗1, ..., x

∗
N−1) given by the high-level plan as incremental

goal object poses in the running state cost, resulting in a
cost function of the form

F̂ (x, τ ,λ,γ) =

M∑
j=0

τTj Rτj + λTj Lλj + ||γ||1+

N−1∑
n=1

M̂∑
k=0

(x(n−1)M̂+k − x
∗
n)

TQ(x(n−1)M̂+k − x
∗
n).

(11)

If segment s has a free finger f ′, we constrain the contact
points to be fixed at locations specified by the high-level
plan at the first and last time-step of the segment, and keep
the complementarity constraints for the other time-steps with
constraints of the form

FK(qsM̂,f ′) = p∗s,f ′ (12)

FK(q(s+1)M̂−1,f ′) = p∗(s+1),f ′ (13)

(6), (7) with k ∈ {sM̂ + 1, ..., (s+ 1)M̂ − 2}. (14)

The fixed fingers f are constrained to be fixed at locations
specified by the high-level plan for the entire segment s with
equality constraints of the form

FK(qk,f ) = p∗s,f for k∈ {sM̂, ..., (s+ 1)M̂ − 1} (15)

where FK(qk,f ) is the forward kinematics that computes the
fingertip position of finger f at time-step k. In our implemen-
tation, we relax the contact point equality constraints with
slack variables, but omit them here for brevity.

Solving (1) with (11) as the cost function and (12) - (15)
in place of (6) and (7) results in trajectories that adhere
to the contact sequence in the high-level plan. With this
formulation, we solve one optimization problem for the entire

M = (N − 1)M̂ length trajectory. Additionally, we include
the boundary constraints

x0 = x∗0 (16)
q0 = q∗0 (17)

ẋsM̂ , ẋ(s+1)M̂−1 = 0 ∀ s ∈ {0, ..., N − 2} (18)

q̇sM̂ , q̇(s+1)M̂−1 = 0 ∀ s ∈ {0, ..., N − 2}, (19)

where (16) and (17) constrain the initial object pose and joint
angles of the entire trajectory to those specified by the first
node in the high-level plan. Equations (18) and (19) constrain
the object and joints to be stationary at the first and last time-
step of each segment. We do not constrain the final object
pose or joint angles of each segment to those specified in
the high-level plan, thereby allowing for some deviation.

D. Controller

To execute trajectories planned by TrajectoTree in simu-
lation, we track the fingertip trajectories in Cartesian space
using the following simplified impedance controller [35] with
additional gravity compensation for the fingers (time index
omitted for brevity)

τ = JT
(
kp(pref − p) + kv(ṗref − ṗ) + λref

)
+ ghand, (20)

where pref, ṗref, and λref are the reference fingertip positions,
velocities, and contact forces from the trajectory optimization
solution, ghand is the gravity compensation vector, and kp and
kv are hand-tuned controller gains.

IV. EXPERIMENTS & RESULTS

We show that TrajectoTree achieves faster planning times
than other CITO baselines. Additionally, we show that when
executing the planned trajectories in a PyBullet simulation
environment, we are able to more closely track object tra-
jectories planned by TrajectoTree.

A. Experimental Setup

In our experiments, we consider contact sequences of
length N = 10, trajectories of length M = 10.8 seconds,
and 0.1 second optimization time steps. For these results,
we fix the initial pose of the object and randomly sample
60 object goal orientations between -π and π radians. In
our experiments, we obtain the object pose trajectory for the
contact sequence planner by linearly interpolating between
initial and final object pose. We use the same initial contact
configuration for all trials. The object we consider is a
20cm×10cm rectangular object with coefficient of friction
µ = 0.7 and mass m = 50 grams.

B. Baselines

We compare TrajectoTree to these CITO baselines:
1) “CITO”: General CITO formulation from Section III-B,

initializing decision variables such that the system is in static
equilibrium throughout the entire trajectory. We hypothesize
that this formulation will produce highly dynamic trajectories
prone to dropping the object during execution.

2) “CITO, warm-start”: General formulation from Section
III-B, initializing object pose and joint angles to those given



Fig. 4: Mean absolute error from object reference trajectory for x, y, and θ when executing trajectories with a controller in simulation for 60 sampled
goals, with 95% confidence interval bands. TrajectoTree plans trajectories that are more robust to execute in a physics simulator, as compared to pure
CITO methods. The baseline methods frequently drop the object, shown by large y and θ errors in the middle and right plots, while TrajectoTree does not.

by the high-level plan. We hypothesize that compared to the
first baseline, this initialization should move solutions closer
to a non-dynamic manipulation sequence.

For all three methods, we use cost function (11) with the
same values for L, Q, and R.

C. Planning Speed and Solution Quality

We show that TrajectoTree achieves faster total planning
times than the baseline methods. For methods that use the
contact sequence planner, we consider total planning time to
be the sum of the search time and the trajectory optimization
solve time. Fig. 3 (left) reports the total planning times across
60 trials for each method. TrajectoTree achieves an average
planning time of 14 seconds. “CITO” and “CITO, warm-
start” achieve average planning times of 98 seconds and 76
seconds, respectively. The planning times of TrajectoTree
have a significantly narrower interquartile range compared
to those of the baselines, suggesting that our method also
performs more consistently across various goal poses.

This improved planning speed comes at the expense of
finding trajectories that have a higher cost in comparison
with the baselines. This is expected, as TrajectoTree solves
an optimization problem that is the same as for the baselines,
but with additional constraints corresponding to the desired
contact sequence. Specifically, TrajectoTree constrains par-
ticular fingers to remain in contact with the object via
typical equality constraints, rather than allowing them to
make and break contact via complementarity constraints.
Because TrajectoTree is more constrained than the baselines,
the optimal objective value is guaranteed to be no lower
than the baselines, and will be higher than the baselines
if these additional constraints are active, as evidenced in
Fig. 3 (right). What is crucial to note, however, is that the
trajectories found by TrajectoTree are considerably more
robust to dropping the object when executed in a physics
simulator, as shown in Fig. 4 and detailed in sec III-D.

A comparison of the two baseline methods also demon-
strates that the choice of the initial guess impacts solutions,
as other works [2], [9] have also found; however, our results
suggest that imposing additional constraints, as done in
TrajectoTree, can significantly influence the solution cost
and planning time. While is it clear that these additional
constraints will increase the trajectory cost, it may be surpris-
ing that these extra constraints can also significantly reduce
solution time and lead to more robust plans in practice.

D. Executing trajectories in simulation

We show in simulation that controllers which track trajec-
tories found with TrajectoTree are significantly less likely to
drop the object than when tracking trajectories planned with
the baseline methods. We execute trajectories in a planar
PyBullet environment by planning a trajectory once and
tracking the reference fingertip positions with the low-level
controller described in Section III-D. We use the same hand-
tuned controller gains for all methods. We compare executing
trajectories planned by all three methods, across the same
randomly chosen goal poses, and show the mean absolute
tracking errors for object position and angle in Fig. 4.

Although we only perform closed-loop tracking of fin-
gertip positions, the controller is able to maintain relatively
small tracking errors on object pose when tracking trajec-
tories planned by TrajectoTree. In contrast, tracking the
trajectories planned by the baseline methods results in much
larger errors and frequently dropping the object, as shown by
the dramatically increasing errors in the y dimension (gravity
points in the negative y direction in our simulation). This re-
inforces that imposing the additional constraints given by the
high-level plan, which only considers kinematic feasibility
and grasp stability, moves the CITO towards solutions that
are of higher cost, but also more robust during execution.

V. CONCLUSION

This work demonstrates the utility of augmenting CITO
methods with discrete planning. For dexterous manipulation
tasks, we show that CITO methods are most suitable when
augmented with a discrete contact sequence planner that
reasons about kinematic constraints and grasp stability. Using
a contact sequence planner enables us to impose task-specific
constraints in the optimization, which not only dramatically
reduces the planning time, but also results in trajectories
that, when executed in a physics simulator with a low-level
tracking controller, produce more robust object manipulation.

We only demonstrate TrajectoTree in a planar scenario and
recognize that applying it to a 3D task may be difficult, due
to the challenges that come with dealing with 3D orientations
in trajectory optimization and the poor scaling of the contact
sequence planner. Although we fix the parameters of the
contact sequence planner in our experiments, we discuss
how varying these parameters would affect our method. We
fix the length of the object trajectories to N = 10 which
corresponds to tree depth, and fix the number of contact point
offsets to 17 which corresponds to tree branching factor.



The length of the object trajectory equals the maximum
number of contact switches allowed in a high-level plan,
and with N = 10 maximum switches, we find that our
planner is able to find feasible solutions for object goal
angles between -π and π radians. Planning goals farther from
the initial object pose would require increasing N , resulting
in longer search times. One alternative to formulating the
contact sequence planning problem as a tree search is to pose
it as a mixed-integer program (MIP); however, our discrete
planner would likely outperform most generic MIP solvers,
not only because it is built to only find feasible, as opposed
to optimal, solutions, but also because it admits the use of
heuristics to speed up the search. While we acknowledge
the discrete planner presented in this work scales poorly
with goal distance, this is tangential to the main point of
this work, which is the utility of augmenting CITO with
discrete planning. Finding scalable methods for planning
discrete contact sequences remains an interesting direction
for future work.
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