
Tracial joint spectral measures

Otte Heinaevaara

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mathematics

Adviser: Assaf Naor

May 2024



© Copyright by Otte Heinaevaara, 2024.

All Rights Reserved



Abstract

Trace inequalities, that is inequalities between traces of complex matrices, are ubiquitous in various

branches of mathematics. While such inequalities are usually easy to state as generalizations of real

variable inequalities, proving them often requires deep understanding.

We introduce a new general tool for investigating trace inequalities, namely the tracial joint

spectral measure. This positive measure on the plane can be associated to any two Hermitian

matrices, and existence of it implies a plethora of non-trivial trace inequalities for these matrices.

In chapter 1, we discuss existence and basic properties of these measures, giving an explicit ex-

pression for them along the way. As the first main application, we deduce a new tracial monotonicity

property: if f has non-negative k:th derivative, then so does t 7→ tr f(tA + B) for any Hermitian

A,B with A positive definite.

In chapter 2, we apply the theory of tracial joint spectral measures to Schatten-p trace ideals.

In this context, we give a new embedding result: any two-dimensional subspace of Schatten-p is

isometric to a subspace of Lp. This result is used to resolve a conjecture of Ball, Carlen, and Lieb

on the extension of Hanner’s inequality to Schatten-p spaces. Finally, we discuss the ways in which

our embedding result fails for more than two matrices/operators and investigate ideas for working

in this higher dimensional setting.

iii



Acknowledgements

Firstly, I want to thank my advisor Assaf. Throughout the years, I’ve been delighted to catch a

glimpse of his mathematical world; I hope I’ll be able carry a fraction of his optimism and vision to

my future adventures.

I want to thank Jill for keeping track of me, and all the faculty I’ve learned from for their guidance

and kindness; Noga, Charlie, Ramon, Elliott and Eric in particular.

I want to thank Victoria and Vijay for their time and encouragement. I hope I pushed them half

as much as they’ve pushed me.

I want to thank all the fellow Assaf fans; Seung-Yeon, Alexandros, Alan, Cosmas, Kevin, Alper,

Mira, Tatiana, Shouda, and Kunal, for their enthusiasm, and making me understand how much

I’ve learned over the years. I’m also thankful to all the lovely people of my cohort and beyond, for

innumerable unforgettable moments of math, music, movies and sports.

I want to thank Eero for his years of mentoring, teaching me about matrices, and with Barry,

sending me to the world.

I want to thank Janne and Joni for the countless stimulating conversations over the years, and

showing me how fun math can be.

I want to thank all my Finnish friends, staying in touch from afar, and for the good times when

I was in Finland. I’m especially thankful to Olli, Viljami, Jaakko and Ilari for their valiant attempts

in keeping me sane, and everybody in my online DnD group for keeping me in touch with the world,

both real and fantastical.

I’ve had the pleasure of living at Princeton with some of the most amazing people there is. I

want to thank Fernando, shikhin, Jay, Neel, Maciej, and Ye for good and better times; cooking,

conversations, and putting themselves through some of the most obscure nonsense in the game

nights. I’m also particularly thankful to shikhin for helping me through the struggles of the last

year.

I want to thank my sister for being wonderful company at Niemenmäki, and suffering (?) through
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Chapter 0

Introduction

Trace inequalities are inequalities between traces of matrices or linear operators. Such inequali-

ties appear in a wide variety of contexts: the theory of trace ideals [Sim05], quantum mechanics

[Car10], and random matrices [T+15]. While many scalar inequalities have natural trace inequality

extensions, methods to prove such generalizations are often quite involved.

The aim of this dissertation is to discuss new methods to prove trace inequalities. My main

contribution is the theory of tracial joint spectral measures, introduced in [Hei23], a new powerful

structural tool for investigating trace inequalities.

Theorem 1. Let n be a positive integer and A,B ∈ Mn(C) be Hermitian. Then, there exists a

positive measure µA,B on R2, that we call the tracial joint spectral measure of A and B, such that

for any positive integer k and x, y ∈ R one has,

tr(xA+ yB)k = k(k + 1)

∫
R2

(ax+ by)k dµA,B(a, b).

Mere existence of this measure has the following two striking consequences, the first one being

the following monotonicity result.

Theorem 2. Fix n ∈ N. Let A,B ∈ Mn(C) be Hermitian and let f : R → R be a smooth function

with non-negative k:th derivative. Consider the function F : R → R given by F (t) = tr f(tA + B).

If k is even, then F is smooth with non-negative k:th derivative. The same holds for odd k if we

additionally assume that A is positive semidefinite.

In Chapter 1, I will prove the existence of tracial joint spectral measures, establish their basic

properties, and discuss some of their applications, including Theorem 2.

1



Denote by Sp the Schatten-p class, the Banach space of compact operators the singular values

of which belong to ℓp; with the ℓp-norm of the singular values as the norm on Sp. My second main

application of tracial joint spectral measures is the following embedding result.

Theorem 3. Let A,B ∈ Sp for some 1 ≤ p ≤ ∞. Then there exists f, g ∈ Lp = Lp([0, 1],R) such

that for any x, y ∈ R,

∥xA+ yB∥Sp
= ∥xf + yg∥Lp

.

In other words, any two-dimensional real subspace of Sp is linearly isometric to a subspace of Lp.

In Chapter 2, I will investigate the isometric properties of Schatten-p classes. I will prove

Theorem 3 and discuss how it relates to uniform convexity of Sp. I will also give alternate arguments

for proving Theorem 3 in special cases, based on my earlier work [Hei24]. Finally, I will discuss

inequalities going beyond the scope of tracial joint spectral measures, focusing on so-called roundness

inequalities of Enflo.

The remainder of the introduction offers historical context and summarizes the two chapters.

0.1 Chapter 1: Tracial joint spectral measure

0.1.1 Joint spectral measures

The spectral theory of self-adjoint operators has a long history, starting from the work of Descartes

and Fermat on the principal axis theorem and perhaps culminating in the spectral theorem for

unbounded operators by von Neumann (see [Ste73] for a survey).

While the theory for a single self-adjoint operator is largely understood, the story differs for

multiple operators. If A and B are commuting Hermitian matrices, they can be simultaneously

unitarily diagonalized, and as a consequence, for any f ∈ C(R2) one can make good sense of f(A,B).

For non-commuting operators the situation is not so simple, and there have been several attempts

to salvage insights from the commutative case. As an example, for Hermitian matrices A and B,

simultaneous diagonalization is out of the question, but one can still define functional calculus,

so-called Weyl calculus (see [Jef04]) using the Fourier transform with

f(A,B) = (2π)−1/2

∫
R2

f̂(x, y)eixA+iyB dxdy. (1)
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In other words, the usual spectral measure is replaced, at least formally, by the Fourier transform

of (x, y) 7→ eixA+iyB , which we denote by WA,B , and call the Weyl distribution, so that

f(A,B) =

∫
R2

f(a, b)WA,B(a, b) da db =: (WA,B , f) .

WA,B is an operator valued distribution, which is uniquely characterized by the fact that

(xA+ yB)k = (WA,B , (a, b) 7→ (ax+ by)k) (2)

for any x, y ∈ R and k ∈ N. In general, it is compactly supported with support lying in the convex

hull of the joint numerical range

W (A,B) = {(⟨Av, v⟩, ⟨Bv, v⟩) | |v| = 1}.

As the name suggests, the Weyl distribution is in general not a measure, so the desirable positivity

properties of usual commutative spectral measures are lost. In fact, one has:

Proposition 1 ([And70, Theorem 2]). Let A and B be such that WA,B is a positive measure. Then

A and B commute.

There is a very good alternate explanation as to why WA,B cannot in general be a positive

measure: it would imply too many inequalities.

Example 1. Consider the polynomial p(x, y) := −(2x+y)4+5(x+y)4+14x4−y4 = 3(−x2+y2+2xy)2

and for Hermitian A,B, examine

p(A,B) = −(2A+B)4 + 5(A+B)4 + 14A4 −B4 = (WA,B , p) .

If WA,B is a positive measure, since p is non-negative, p(A,B) should be positive semidefinite. This

is however not always the case, as can be seen by considering say

A =

1 1

1 1

 , B =

3 0

0 0

 .
The underlying reason for this behaviour is the following beautiful result of Helton [Hel02] (see

also [BKP16, Theorem 1.30]).
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Theorem 4 ([Hel02]). Assume that a non-commutative polynomial p is positive, i.e. for any Her-

mitian A,B the polynomial p(A,B) is positive semidefinite. Then one can find non-commutative

polynomials (qi)
N
i=1 such that

p(A,B) =

N∑
i=1

qi(A,B)∗qi(A,B) (3)

for any Hermitian A,B.

The issue in Example 1 then was that even though our polynomial was square in commutative

variables, it was not a sum of squares in non-commutative ones.

0.1.2 Trace positivity

For trace inequality applications, it is usually not necessary to know that a given matrix/operator

is positive, but its trace being positive might suffice. The non-negativity of traces is a much weaker

condition, and we will later see (Corollary 2) that the polynomial in Example 1 always has a non-

negative trace.

One is now tempted to ask the following question. Is the trace of the Weyl distribution WA,B

always a positive measure? The answer is again no, unless A and B commute (as follows from an

argument almost identical to that of the proof of Proposition 1).

One can also give a trace inequality refutation to this question.

Example 2. Consider the polynomial p(x, y) = 4(x4 + y4) + (x+ y)4 + (x− y)4 − 12(x2 + y2) + 6 =

6(x2 + y2 − 1)2. If trWA,B was always a positive measure, tr p(A,B) would be positive for any

Hermitian A,B. This is however not the case for

A =

1 0

0 −1

 , B =

0 1

1 0

 .
It turns out that Helton’s theorem fails for trace positivity. Namely, given a non-commutative

polynomial p for which tr p(A,B) ≥ 0 for any Hermitian A,B, it is not necessarily the case that

one can find non-commutative polynomials qi(A,B) such that (3) holds. This is partly because of a

silly reason: adding commutator terms like A2B2 −B2A2 won’t affect the trace, but will affect the

possibility of the sum-of-squares representation. If one adds commutators to the RHS of (3), the
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situation is however still not fixed. In fact, consider the non-commutative Motzkin polynomial

p(A,B) = AB4A+BA4B − 3AB2A+ I.

It was observed by [KS08a, Example 4.4] that tr p(A,B) ≥ 0 for any Hermitian A,B, but p(A,B)

doesn’t have a positivity certificate of the form (3) even up to commutators.

While a perfect analogue doesn’t exist, there is still a close tracial relative to Helton’s result.

Theorem 5 ([KS08a, Theorem 3.12]). Consider a non-commutative polynomial p such that for

any finite tracial von Neumann algebra (M, τ) and self-adjoint contractions A,B ∈ M we have

τ(p(A,B)) ≥ 0. Then, for every ε > 0, there exists non-commutative polynomials (fi)
N1
i=1, (gi)

N2
i=1,

(hi)
N3
i=1, (qi)

N0
i=1, (ri)

N0
i=1, such that

p(A,B) + εI =

N1∑
i=1

fi(A,B)∗fi(A,B) +

N2∑
i=1

gi(A,B)∗(I −A2)gi(A,B) (4)

+

N3∑
i=1

hi(A,B)∗(I −B2)hi(A,B) +

N0∑
i=0

[qi(A,B), ri(A,B)].

The exact form of this result is not very important to us, but one should observe that all the

summands on the RHS clearly have non-negative trace wheneverA andB are Hermitian contractions.

As one can see, some concessions have to be made to get a working theorem.

1. A small multiple of the identity has to be added, and terms involving (I − A2) and (I − B2)

considered. This is essentially to make the problem bounded and allow separation in the

functional analytic proof of the theorem.

2. Perhaps more crucially, one has to bring von Neumann algebras into the mix. Whether von

Neumann algebras could be replaced here by Hermitian matrices was proven by Klep and

Schweighofer [KS08a, Theorem 1.6] to be equivalent the Connes embedding conjecture [Con76].

This conjecture was however recently refuted by Ji, Natarajan, Vidick, Wright and Yuen

[JNV+21].

We call expressions of the form (4) (tracial) SOS-certificates (sum of squares), and say that a

SOS-certificate is pure if ε = 0 and no (I − A2) or (I − B2) terms are needed. While checking for

pure certificates can be turned into a semidefinite program [BKP16], the existence of more general

certificates (of the form of 4) cannot be efficiently verified. It is hence important to find tools tailored

to specific families of trace inequalities.
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0.1.3 Tracial joint spectral measures

My main contribution to the study of trace inequalities is the notion of tracial joint spectral measure.

Theorem 6. Let n be a positive integer and A,B ∈ Mn(C) be Hermitian. Then, there exists a

positive measure µA,B on R2, that we call the tracial joint spectral measure of A and B, such that

the following is true:

Fix any measurable function f on R with f(0) = 0 such that for any M > 0,

∫ M

−M

∣∣∣∣f(t)t
∣∣∣∣dt <∞.

Define a function H(f) : R → R by

H(f)(x) =

∫ 1

0

1− t

t
f(xt) dt.

Then, for any x, y ∈ R, we have

trH(f)(xA+ yB) =

∫
R2

f(ax+ by) dµA,B(a, b). (5)

If one sets f(t) = tk in Theorem 6, H(f)(t) = tk/(k(k + 1)), and one recovers Theorem 1.

Tracial joint spectral measures can be understood as a variant of the trace of the Weyl dis-

tribution, trW(A,B): trWA,B satisfies identity (5) with H(f) replaced by f . Remarkably, while

trW(A,B) is usually not a measure, the subtle difference of H(f) vs f allows one to obtain a positive

measure.

In Proposition 5, we will check that the tracial joint spectral measure µA,B is necessarily unique

away from 0. While the exact form of the measure is usually not important for our applications,

µA,B turns out to have an explicit expression:

Theorem 7. Let n, A, B, and µA,B be as in Theorem 6. Denote by µc = µc,A,B and µs = µs,A,B

the continuous and singular parts of µA,B w.r.t. the Lebesgue measure m2 on R2. We assume some

linear combination of A and B is invertible. Then, the continuous part µc is given by

dµc

dm2
(a, b) =

1

2π

n∑
i=1

∣∣∣∣ℑ(λi((I − aA+ bB

a2 + b2

)
(bA− aB)−1

))∣∣∣∣ .

6



Furthermore, if A is invertible and A−1B has n distinct eigenvalues, the singular part µs satisfies

µs(φ) =
∑

v∈E(A−1B)

∫ 1

0

1− t

t
φ

(
⟨Av, v⟩
⟨v, v⟩

t,
⟨Bv, v⟩
⟨v, v⟩

t

)
dt.

where E(C) denotes a set of eigenvectors of a matrix C ∈ Mn(C) and φ is a smooth function with

compact support that does not contain 0.

Figure 1 illustrates the measure µA,B for some choices of A and B.

0.1.4 Derivatives of trace functions and Stahl’s theorem

Theorem 2 can be deduced from Theorem 6 by applying identity (5) to the function f(t) = tk−1
+ .

Theorem 2 is well known for k = 1 and k = 2 [Pet94, Proposition 1], and I first proved the cases

k = 3 and k = 4 in [Hei24]. The general case is intimately connected to the following result of Stahl,

formerly the BMV conjecture.

Theorem 8 (Stahl [Sta13]). Let A,B ∈ Mn(C) be Hermitian with B positive semi-definite. Then

the function

t 7→ tr(exp(A− tB)) (6)

is the Laplace transform of a positive measure.

This result was conjecture by Bessis, Moussa and Villani [BMV75] in their study of monotonic

approximations of partition functions of quantum statistical systems. While the BMV conjecture

garnered much interest during the next three decades (see the survey of Moussa [Mou00]), it was the

algebraic formulation of Lieb and Seiringer that inspired a barrage of computational approaches.

Theorem 9 (Lieb–Seiringer [LS04]). Theorem 8 (Stahl’s theorem) is true iff for any positive semi-

definite A,B ∈Mn(C) and positive integer k, all the coefficients of the polynomial

t 7→ tr(A+ tB)k (7)

are non-negative.

Theorem 9 reduced the BMV conjecture to the task of finding SOS-certificates (4). This approach

was carried in a series of works culminating in [KS08b], where non-negativity of the coefficients of

7



(1)

([
1 0
0 −1

]
,

[
2 −1
−1 1

])
. (2)

([
2 0
0 −1

]
,

[
1 −2
−2 2

])
.

(3)

1 0 0
0 2 0
0 0 −1

 ,

0 1 1
1 −1 −1
1 −1 1

.
(4)



−3 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 2

 ,


0 0 0 −1
0 0 0 −1
0 0 −2 −2
−1 −1 −2 2


.

Figure 1: Four illustrations of the measures µA,B for the pairs of matrices (A,B) listed below the
pictures. The horizontal and vertical axes correspond to a and b respectively. The density of µc,A,B

is represented with the color running from white (zero) to black (infinity) through red. The green
line segments depict the support of the singular part, µs,A,B .
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(7) was proven for k ≤ 13. Whether the Lieb–Seiringer formulation of the BMV conjecture can be

verified in general with SOS-certificates is still an open problem.

Stahl himself doesn’t exploit this reformulation of Lieb and Seiringer, but finds a semiexplicit

expression for the representing measure which he then proves is positive. It had been observed (see

[Mou00]) that should the function (6) correspond to a Laplace transform of a positive measure, say

ν, this measure should be supported on the convex hull of the spectrum of B. The measure ν should

also have point masses at the spectrum of B, and elsewhere have continuous density w.r.t. the

Lebesgue measure. While the point masses are straightforward to deal with, whether the density

is non-negative is rather non-trivial. This non-negativity was shown in the case of 2 × 2 matrices

in the original paper of Bessis, Moussa and Villani [BMV75] by finding an explicit formula for the

density. For larger matrices, however, such formulas seemed out of reach.

Stahl managed to find a general formula for the density in terms of a contour integral. Correctness

of his formula is not terribly difficult to check, but the non-negativity is not clear. To this end, Stahl

transforms the contour integral to a Riemann surface, on which he uses symmetry and topological

arguments to justify the non-negativity. While Stahl’s argument has been rewritten for several

expository articles [Ere15, Cli16], I still find it rather mysterious, and quite frankly, magical.

A third approach towards the BMV conjecture was the classic result of Bernstein.

Theorem 10 (Bernstein [SSV09, Theorem 1.4]). Let f : (0,∞) → R be smooth. Then f is a

Laplace transform of a positive measure iff f is completely monotone, i.e. for any positive non-

negative integer k,

(−1)kf (k)(x) ≥ 0

for x > 0.

This reduced the BMV conjecture to an analysis of the derivatives of the function (6). The

first two derivatives are relatively easy to analyze [Mou00], but even the case k = 3 was open (see

discussion in [Cli14, Chapter 4] however) until I proved the cases k = 3 and k = 4 of Theorem 2

[Hei24].

As we will see in Section 1.4, all the aforementioned reformulations of Stahl’s result follow without

too much trouble from the theory of tracial joint spectral measures.

9



0.2 Chapter 2: Planes in Schatten-p and beyond

0.2.1 Schatten-p classes

In his seminal 1937 paper [VN62], John von Neumann defined the concept of a unitarily invariant

norm. A norm ∥·∥ onMn(C) is unitarily invariant if, for any A ∈Mn(C) and unitaries U, V ∈Mn(C),

we have

∥UAV ∥ = ∥A∥.

In the same work, von Neumann gave a complete characterization of unitarily invariant norms in

terms of symmetric gauge functions.

Definition 1. A function Φ : Cn → R is a symmetric gauge function if it is a norm and

• (Phase invariance) Φ((ωizi)
n
i=1) = Φ((zi)

n
i=1) for any (ωi)

n
i=1 ∈ {w | |w| = 1}n, and

• (Permutation invariance) Φ((zσ(i))
n
i=1) = Φ((zi)

n
i=1) for any σ ∈ Sn.

Theorem 11. A norm ∥ · ∥ on Mn(C) is unitarily invariant iff there exists a symmetric gauge

function Φ such that

∥A∥ = Φ((σi(A))
n
i=1)

for any A ∈Mn(C).

Here (σi(A))
n
i=1 denotes the sequence of singular values of the matrix A.

Theorem 11 created a basis for the theory of cross-norms, norms on tensor products of Hilbert

spaces with suitable invariance properties. This theory was developed in a series of works by Robert

Schatten and John von Neumann [Sch46, SvN46, SvN48] culminating in the books [Sch50, Sch60]

of Schatten. See also [Bha97, Theorem IV.2.1] for a modern treatment of Theorem 11.

For 1 ≤ p ≤ ∞, the gauge function Φp(x) = ∥x∥ℓp gives the Schatten-p norm on Mn(C). More

generally:

Definition 2. Let p ≥ 1. By Sp, we denote the Banach space of compact operators A on a separable

complex Hilbert space H such that

∥(σi(A))∞i=1∥ℓp <∞,

10



with the norm

∥A∥Sp := ∥(σi(A))∞i=1∥ℓp .

Basic functional calculus implies that we further have

∥A∥Sp
= (tr(|A|p))1/p =

(
tr(A∗A)p/2

)1/p
.

Schatten-p classes Sp can be thought of as non-commutative variants of the classical ℓp spaces,

and they satisfy the following properties mirroring those of ℓp. These can be found in [PX03].

1. If 1 ≤ p < ∞, Sq is the dual of Sq with pairing (A,B) = tr(AB∗). Sp is hence reflexive when

1 < p < ∞. In finite dimensions, this is a special case of von Neumann’s result [VN62], while

in infinite dimensions it appears in [Sch60, Chapter V], see also [Sim05, Theorem 3.2].

2. By considering operators diagonal in a fixed orthonormal basis, one sees that ℓp is a closed

subspace of Sp for 1 ≤ p ≤ ∞.

3. Finite rank operators are dense in Sp for 1 ≤ p ≤ ∞ [McC67, Lemma 5.2].

4. Sp is of type min(p, 2) and cotype max(p, 2) when 1 ≤ p <∞ [TJ74].

We have however the following negative results.

1. If 1 ≤ p <∞, p ̸= 2, Sp is not isomorphic to a subspace of ℓp or Lp [McC67].

2. If p ̸= 2, Sp does not have an unconditional basis [GL74].

0.2.2 Modulus of uniform convexity

As mentioned in the previous section, Schatten-p space is reflexive whenever 1 < p <∞. While this

follows from the duality S∗
p = Sq, one can also see it as a consequence of uniform convexity of Sp

for 1 < p <∞.

Definition 3. A normed space X is said to be uniformly convex if for any ε > 0 there exists δ > 0

such that if x, y ∈ X with ∥x∥ = ∥y∥ = 1 and ∥x− y∥ ≥ ε, then

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.
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The maximal such δ (depending on ε and X) is denoted by δX(ε).

Theorem 12 (Milman [Mil38]–Pettis [Pet39]). Any uniformly convex Banach space is reflexive.

Theorem 13. For any 1 < p <∞, the spaces ℓp, Lp and Sp are uniformly convex.

This result for ℓp (or more generally, for Lp) was proven by Clarkson [Cla36]. The main tools

are the so-called Clarkson’s inequalities for ℓp.

Theorem 14 (Clarkson [Cla36]). Let 2 ≤ p <∞ and f, g ∈ ℓp or f, g ∈ Lp. Then

∥f∥pp + ∥g∥pp ≤
∥f + g∥pp + ∥f − g∥pp

2
, (8)

∥f∥pp + ∥g∥pp ≤
(∥f + g∥qp + ∥f − g∥qp

2

)p/q

. (9)

For 1 < p ≤ 2, the reverse inequalities hold.

Inequality (8), the first Clarkson’s inequality, follows from the second (9) by the power mean

inequality ((xr+yr)/2)1/r ≥ (x+y)/2 for r ≥ 1, x, y > 0. Inequality (8) however admits a somewhat

simpler proof. For future illustration, we will briefly sketch the proofs of Clarkson’s inequalities.

Sketch of the proofs of Inequalities (8) and (9) for p ≥ 2. We will start with Inequality (8). Since

∥f∥pp =


∑∞

i=1 |f(i)|p in ℓp∫ 1

0
|f(t)|pdt in Lp,

it is enough to consider the one-dimensional case, i.e. for any x, y ∈ R we have

|x|p + |y|p ≤ |x+ y|p + |x− y|p

2
.

This can be proven directly by scaling y to 1 and analyzing the resulting function in x.

Inequality (9) can also be reduced to a scalar inequality by first observing that for 0 < r ≤ 1 and

a, b ≥ 0

(|a|r + |b|r)1/r = inf
s1,s2>0

s
r/(r−1)
1 +s

r/(r−1)
2 =1

(as1 + bs2).

12



Indeed, this is the reverse Hölder’s inequality. With r = q/p, we then have in Lp,

(∥f + g∥qp + ∥f − g∥qp
2

)p/q

=2−p/q inf
s1,s2>0

s
r/(r−1)
1 +s

r/(r−1)
2 =1

(
s1∥f + g∥pp + s2∥f − g∥pp

)

≥2−p/q

∫ 1

0

inf
s1,s2>0

s
r/(r−1)
1 +s

r/(r−1)
2 =1

(s1|f(t) + g(t)|p + s2|f(t)− g(t)|p) dt

=

∫ 1

0

( |f(t) + g(t)|qp + |f(t)− g(t)|qp
2

)p/q

dt

≥
∫ 1

0

|f(t)|pp + |g(t)|ppdt,

where the last inequality is again a pointwise scalar inequality that can be proven without much

trouble.

Here, we see that in the commutative case, inequalities of suitable form can be reduced to

scalar inequalities, even if for the second Clarkson’s inequality an extra trick was employed. Such

simplification is usually not possible for Sp and alternate methods are needed. Clarkson’s original

method was somewhat different, based on a clever use of Minkowski’s inequality to reduce (9) to the

scalar case.

The main tool for proving uniform convexity of Sp is the following extension of Clarkson’s

inequality.

Theorem 15 (Dixmier [Dix53]–McCarthy [McC67]–Klaus). Let A,B ∈ Sp for 2 ≤ p <∞. Then

∥A∥pp + ∥B∥pp ≤
∥A+B∥pp + ∥A−B∥pp

2
(10)

∥A∥pp + ∥B∥pp ≤
(∥A+B∥qp + ∥A−B∥qp

2

)p/q

. (11)

For 1 < p ≤ 2, the reverse inequalities hold.

Dixmier proved Inequality (10) for 2 ≤ p < ∞, which is enough to prove uniform convexity

for this case. His proof is based on complex interpolation, modelled after a similar argument for

commutative Clarkson’s inequalities by Boas [Boa40]. The other cases were claimed by McCarthy

[McC67], but his proof for (11) is unfortunately erroneous, as observed by Fack and Kosaki [FK86].

Simon [Sim05] sketches an interpolation proof for the remaining cases, attributing this approach to

Klaus.
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Clarkson’s inequalities imply that the moduli of uniform convexity of ℓp and Sp satisfy

δ(ε) ≥


1−

(
1−

(
ε
2

)p)1/p
for 2 ≤ p <∞

1−
(
1−

(
ε
2

)q)1/q
for 1 < p ≤ 2.

This turns out to be the optimal bound for p ≥ 2, as can be verified by considering the vectors

x =

((
1−

(ε
2

)p)1/p
,
ε

2

)
, y =

((
1−

(ε
2

)p)1/p
,−ε

2

)
.

The situation for 1 < p < 2 is more complicated, and Clarkson’s inequalities do not give the

optimal bound. In 1956 however, Olof Hanner [Han56] proved the following inequalities, now known

as Hanner’s inequalities, that improve upon those of Clarkson and can be used to determine the

modulus of uniform convexity of ℓp and Lp in the full range 1 < p <∞.

Theorem 16 (Hanner [Han56]). Let 2 ≤ p <∞ and f, g ∈ ℓp or f, g ∈ Lp. Then

∥f + g∥pp + ∥f − g∥pp ≤ (∥f∥p + ∥g∥p)p + |∥f∥p − ∥g∥p|p. (12)

For 1 < p ≤ 2, the reverse inequality holds.

Corollary 1 (Hanner [Han56]). For 1 < p ≤ 2 the moduli of uniform convexity of ℓp and Lp are

given by the solution to the equation

2 =
∣∣∣1− δp(ε) +

ε

2

∣∣∣p + ∣∣∣1− δp(ε)−
ε

2

∣∣∣p (13)

Hanner also established useful asymptotics for δp when ε→ 0.

δp(ε) ≈


1
p

(
ε
2

)p
for 2 ≤ p <∞

p−1
2

(
ε
2

)2
for 1 < p ≤ 2.

(14)

While the aforementioned generalization of Clarkson’s inequality to Sp implies that δSp
agrees

with δp for p ≥ 2, for 1 < p < 2 a different approach is needed. It was proven by Tomczak-

Jaegermann [TJ74] that also for 1 < p < 2 one obtains quadratic asymptotics δSp(ε) ≫p ε
2, but the

multiplicative constant obtained was larger than (p− 1)/2 for p not an even integer.

The main inspiration for this thesis work is then the paper [BCL94] of Ball, Carlen and Lieb,

where it was proven that the asymptotics (14) hold also for Sp when 1 < p < 2. This follows from
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the following inequality.

Theorem 17. (Ball–Carlen–Lieb [BCL94]) Let 1 ≤ p ≤ 2 and A,B ∈ Sp. Then

∥A+B∥2Sp
+ ∥A−B∥2Sp

2
≥ ∥A∥2Sp

+ (p− 1)∥B∥2Sp
. (15)

Ball, Carlen and Lieb also consider an extension of Hanner’s inequality for Sp and observe that

inequality (15) follows from it.

Theorem 18 (Ball–Carlen–Lieb [BCL94], Heinävaara [Hei23]). Let 2 ≤ p < ∞ and A,B ∈ Sp.

Then

∥A+B∥pp + ∥A−B∥pp ≤ (∥A∥p + ∥B∥p)p + |∥A∥p − ∥B∥p|p. (16)

For 1 < p ≤ 2, the reverse inequality holds.

Ball, Carlen and Lieb manage however to prove inequality (16) only for p ≥ 4, and in the dual

range 1 < p ≤ 4/3. We can deduce Theorem 18 as a quick corollary of a much more general

embedding result, Theorem 3.

0.2.3 Planes in Schatten-p

In [Hei24] and [Hei23], I develop a brand new embedding approach for proving inequalities for Sp.

Theorem 19 (= Theorem 3). Let A,B ∈ Sp for some 1 ≤ p ≤ ∞. Then there exists f, g ∈ Lp such

that for any x, y ∈ R,

∥xA+ yB∥Sp = ∥xf + yg∥Lp .

In other words, any two-dimensional real subspace of Sp is linearly isometric to a subspace of Lp.

For p = 2 and p = ∞ this result is trivial, as S2 is Hilbert space and L∞ is universal, i.e. it

houses every separable normed space isometrically. For p = 1, the result follows from the fact that

any two-dimensional normed space is isometric to a subspace of L1, a classic result of Lindenstrauss

[Lin64].

Theorem 19 follows as a quick corollary of Theorem 6. This embedding result, combined with

Hanner’s theorem [Han56], immediately implies Hanner’s inequality for Sp, Theorem 18. More

generally, we have the following “reduction to commuting” principle: if an inequality only depends
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on the Sp-norms of (real) linear combinations of two complex matrices, then it holds as long as it

holds for real diagonal matrices. Thus, any property that only depends on two-dimensional subspaces

of Sp generalizes directly from Lp to Sp. In particular, Sp has the same modulus of uniform convexity

as Lp.

We will see in Section 2.1.1 that the exact form of the embedding allows one to also argue about

equality cases of inequalities in Sp, given that the equality cases are known in Lp.

I first proved the cases p = 3, 4 in [Hei24] and then the general case in [Hei23]; I will describe

proofs of these special cases in Section 2.2.

0.2.4 Beyond two dimensions, and roundness inequalities

In [Hei24], I showed that a natural generalization of Theorem 19 to 3-dimensional subspaces fails.

Theorem 20. For any 1 ≤ p <∞, p ̸= 2, there exists a 3-dimensional subspace of Sp which is not

linearly isometric to any subspace of Lp.

In Section 2.3, I will give several examples of inequalities exhibiting this difference, including the

so-called roundness inequalities.

After Enflo’s work [Enf69a, Enf69b], we say that a Banach space X satisfies the generalized

p-roundness inequality if for any positive integer k and x1, x2, . . . , xk, y1, y2, . . . , yk ∈ X one has

∑
i<j

∥xi − xj∥pX +
∑
i<j

∥yi − yj∥pX ≤
∑
i,j

∥xi − yj∥pX .

Enflo proved that Lp satisfies the generalized p-roundness inequality for 1 ≤ p ≤ 2 and used this to

prove that Lp and Lq are not uniformly homeomorphic when 1 ≤ p ̸= q ≤ 2.

It turns out that for p > 2, even the real line fails to satisfy the generalized p-roundness inequality;

instead, one can ask for the least constant rp(X) such that

∑
i<j

∥xi − xj∥pX +
∑
i<j

∥yi − yj∥pX ≤ rp(X)
∑
i,j

∥xi − yj∥pX .

This more general notion was investigated by Naor and Oleszkiewicz in [NO20], where rp(Lq) was

bounded for 1 ≤ p, q <∞. In particular, it was proven that if 1 ≤ p ≤ q ≤ 2, rp(Lq) = 1. It follows

from a more general result of Naor and Oleszkiewicz that in the non-commutative setting, one has

rp(Sq) ≤ 22−p,
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whenever 1 ≤ p ≤ q ≤ 2. They however observe that this bound degenerates for q = 1: any Banach

space X satisfies r1(X) ≤ 2. Naor and Oleszkiewicz proceed to ask if this can be improved, namely

if r1(S1) < 2. We answer this question in the affirmative.

Proposition 2. There exists a constant δ > 0 such that for any positive integer k and

A1, A2, . . . , Ak, B1, B2, . . . , Bk ∈ S1 one has

∑
i<j

∥Ai −Aj∥S1
+
∑
i<j

∥Bi −Bj∥S1
≤ (2− δ)

∑
i,j

∥Ai −Bj∥S1
.

Naor and Oleszkiewicz also observe that

rp(S1) ≥ 2p/2+1

and their result readily generalizes to show that

rp(Sq) ≥ 2p(1/q−1/2)+1.

The lower bound is based on a curious set of unitaries A1, A2, . . . , Ak, B1, B2, . . . , Bk having the

property that

AiAj +AjAi = 0 = BiBj +BjBi for i ̸= j (17)

AiBj = BjAi for 1 ≤ i, j ≤ k. (18)

These unitaries arise from the representation theory of Clifford algebras, and were investigated in

the context of Schatten-1 norm by Briët, Regev and Saket [BRS17].

Whether this lower bound is the truth for some 1 ≤ p ≤ q is open, but I have evidence that this

might be the case for p = q = 1. I’ll show in Section 2.4 that this would follow from the following

inequality.

Conjecture 1. Let k, l ≥ 1 be positive integers and A1, A2, . . . , Ak, B1, B2, . . . , Bl ∈ S1. Then

1

k2

∑
1≤i<j≤k

∥Ai −Aj∥2S1
+

1

l2

∑
1≤i<j≤l

∥Bi −Bj∥2S1
≤ 2

kl

∑
1≤i≤k
1≤j≤l

∥Ai −Bj∥2S1

I will show that this inequality is true in the subspaces arising from the aforementioned Clifford

algebra construction. I will also sketch an argument showing that the inequality holds when k = 2
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and Ai’s and Bj ’s are all diagonal.

0.3 Notation and conventions

If not otherwise stated, n will always denote a positive integer that we think of as a dimension, or size

of the matrices. Let A,B ∈Mn(C) be Hermitian. The multiset of the eigenvalues of A are denoted

by λ(A) = (λ1(A), λ2(A), . . . , λn(A)); the ordering is not important for us. The corresponding set

of normalized eigenvectors is denoted by E(A). While these vectors are not unique, we make sure

to respect this ambiguity.

We will also make use of notions from the theory of matrix pencils (see for instance [Ikr93]). Given

A and B as before, we say that the pair/pencil (A,B) is non-degenerate if some linear combination

of A and B is invertible, i.e. det(bA − aB) is not zero for every (a, b) ∈ R2. In this case, the

determinant has exactly n roots (with multiplicity) in CP1, which we will call the roots of the pencil

(A,B). Real roots, which we interpret as lines in R2, are called singular lines. If a root (a, b) is

simple, we may define the corresponding eigenvector as the vector in the kernel of bA− aB. The set

of such vectors (for simple roots) is denoted by E(A,B). Again, these vectors are not unique, but

we will respect this ambiguity.

We say that a pencil (A,B) is definite if some linear combination of A and B is positive definite.

A well-known fact about definite pencils is:

Lemma 1 ([LR05, Theorem 10.1]). If (A,B) is definite, all its roots are real.

We denote the set of (complex valued) Schwartz functions on Rd by S(Rd), and its dual space of

tempered distributions by S ′(Rd). The Fourier transform of a Schwartz function is defined/normalized

with

F(φ)(ξ) = φ̂(ξ) =
1

(2π)k/2

∫
x∈Rk

φ(x)e−i⟨x,ξ⟩ dx.

One has F(∂αφ)(ξ) = (iξ)αF(φ)(ξ) for any multi-index α. The Fourier transform of a tempered

distribution T is defined, as usual, using the pairing (·, ·) : S ′(Rd)× S(Rd) → C, as

(
T̂ , φ

)
= (T, φ̂) .

We make the usual conventions ℓp := Lp(N,R) and Lp := Lp((0, 1),R), with the counting and

Lebesgue measures, respectively. We say that a norm ∥ · ∥ on Rk is a Lp-norm, if (Rk, ∥ · ∥) is
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isometric to a subspace of Lp. Lp-norms are characterized by the following result.

Theorem 21 ([Ney84], [Kol91, Theorem 2]). Norm ∥ · ∥ on Rk is a Lp-norm iff there exists a

symmetric measure µ on Sk−1 (given any inner product ⟨·, ·⟩ on Rk) such that

∥v∥p =

∫
Sk−1

|⟨v, u⟩|p dµ(u) (19)

for any v ∈ Rk. If p is not an even integer, such a measure is unique.

We shall need basic properties of divided differences. Define

[x0]f = f(x0),

and recursively for any positive integer k define the divided difference of order k by

[x0, x1, . . . , xk]f =
[x0, x1, . . . , xk−1]f − [x1, x2, . . . , xk]f

x0 − xk
, (20)

when points x0, x1, . . . , xk are pairwise distinct. If f is Ck, the divided difference of order k has

continuous extension to all tuples of (k + 1) points. This extension satisfies (20) whenever x0 ̸= xk

and

[x0, x0, . . . , x0]f =
f (k)(x0)

k!
,

where x0 appears (k + 1) times. For this and lot more, see for instance [dB05].
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Chapter 1

Tracial joint spectral measures

In this chapter we discuss tracial joint spectral measures (TJSMs) and their basic properties, with

some applications. We begin by proving slight refinements of Theorems 6 (Existence of TJSMs) and

7 (Expression for TJSMs), Theorems 23 and 22.

The defining property of the tracial joint spectral measure of A and B is that for suitable f and

x, y ∈ R, one has

trH(f)(xA+ yB) =

∫
R2

f(ax+ by) dµA,B(a, b),

where

H(f)(x) =

∫ 1

0

1− t

t
f(xt) dt.

It is not difficult to heuristically recover µA,B from this identity. Indeed, plugging in f(t) = eit

yields

trH(eit)(xA+ yB) =

∫
R2

ei(ax+by) dµA,B(a, b),

so one would guess that µA,B is the Fourier transform of the function (x, y) 7→ trH(eit)(xA+ yB).

This calculation however doesn’t quite make sense since the H-transform cannot be applied to

t 7→ eit.
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The problem can be fixed by considering f(t) = eit − 1 instead. Define a function g : R → C by

g(x) =

∫ 1

0

eixt − 1

t
(1− t) dt = H(t 7→ eit − 1)(x). (1.1)

Observe that g is smooth, g(0) = 0, and g(x) = O(log |x|) at infinity. For any two Hermitian

A,B ∈Mn(C), define then a continuous function G by

G := GA,B : R2 → C (1.2)

(x, y) → tr g(xA+ yB).

We will prove that µA,B is essentially the Fourier transform of GA,B .

Theorem 22. Let A,B ∈ Mn(C) be Hermitian. Then there exists a positive measure µA,B which

agrees with ĜA,B away from 0, in the sense that if φ is any Schwartz function with compact support

not containing 0, then

(µA,B , φ) =
1

2π

(
ĜA,B , φ

)
.

Denote by µA,B = µc+µs the Lebesgue decomposition of µA,B w.r.t. Lebesgue measure m2 (µc ≪ m2,

µs ⊥ m2). If the pencil (A,B) is non-degenerate, then the continuous part µc is given by

ρA,B(a, b) :=
dµc

dm2
(a, b) =

1

2π

n∑
i=1

∣∣∣∣ℑ(λi((I − aA+ bB

a2 + b2

)
(bA− aB)−1

))∣∣∣∣ . (1.3)

If the pencil (A,B) is non-degenerate and the real roots of (A,B) are distinct, then the singular part

µs satisfies

µs(φ) =
∑

v∈E(A,B)

∫ 1

0

1− t

t
φ

(
⟨Av, v⟩
⟨v, v⟩

t,
⟨Bv, v⟩
⟨v, v⟩

t

)
dt, (1.4)

where φ is a Schwartz function with compact support not containing 0.

We note that for any v ∈ E(A,B) corresponding to a root (a, b), b⟨Av, v⟩ − a⟨Bv, v⟩ = 0, and

⟨Av, v⟩ and ⟨Bv, v⟩ are real. If v further corresponds to a non-real root, then ⟨Av, v⟩ = 0 = ⟨Bv, v⟩.

Thus, the sum in (1.4) can equivalently be taken over all eigenvectors of (A,B) that correspond to

real roots.

The points (⟨Av, v⟩/⟨v, v⟩, ⟨Bv, v⟩/⟨v, v⟩) where v ∈ E(A,B) are called the singular points. They
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lie on the singular lines, as defined in section 0.3.

Remark 1. There is nothing particularly special about the expression

C :=

(
I − aA+ bB

a2 + b2

)
(bA− aB)−1.

Since eigenvalues of C and C + tI have equal imaginary parts, we may replace C by anything of the

form

(I − f(a, b)A− g(a, b)B) (bA− aB)−1

where f(a, b)a + g(a, b)b = 1. The expression we chose has the desirable property of making sense

for every (a, b) ̸= (0, 0), and works well with the change of variables in the proof.

1.1 Proofs of the main results

Before proving Theorem 22, we will give a mock proof illustrating our strategy. The major unsound

steps are indicated by numbered asterisks. We will comment on how to fix them afterwards.

Mock proof of Theorem 22. Our goal is to calculate the Fourier transform of G. By definition (1∗)

we have

Ĝ(a, b) =
1

2π

∫
R2

e−i(ax+by) tr g(xA+ yB) dxdy =
1

2π

n∑
i=1

∫
R2

e−i(ax+by)g(λi(xA+ yB)) dxdy.

Rewriting the integral in polar coordinates, we get

=
1

2π

n∑
i=1

∫ π

0

∫
R
e−ir(a cos(θ)+b sin(θ))|r|g(λi(cos(θ)A+ sin(θ)B)r) dr dθ

=
1

2π

n∑
i=1

∫ π

0

1

λi(cos(θ)A+ sin(θ)B)2

(∫
R
e
−ir

a cos(θ)+b sin(θ)
λi(cos(θ)A+sin(θ)B) |r|g(r) dr

)
dθ

=
1√
2π

n∑
i=1

∫ π

0

F(x 7→ |x|g(x))
(

a cos(θ)+b sin(θ)
λi(cos(θ)A+sin(θ)B)

)
λi(cos(θ)A+ sin(θ)B)2

dθ.

It turns out that the Fourier transform of |x|g(x) (2∗) equals

ξ 7→
√

2

π

1

ξ2
log

∣∣∣∣1− 1

ξ

∣∣∣∣ , (1.5)
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so plugging this in, and multiplying the eigenvalues to obtain the determinant, allows us to simplify

to

=
1

π

n∑
i=1

∫ π

0

log
∣∣∣1− λi(cos(θ)A+sin(θ)B)

a cos(θ)+b sin(θ)

∣∣∣
(a cos(θ) + b sin(θ))2

dθ =
1

π

∫ π

0

log
∣∣∣det(I − cos(θ)A+sin(θ)B

a cos(θ)+b sin(θ)

)∣∣∣
(a cos(θ) + b sin(θ))2

dθ.

Making a change of variable

t =
1

a2 + b2
a cos(θ) + b sin(θ)

b cos(θ)− a sin(θ)

transforms (3∗) the integral to

1

π

∫ ∞

−∞
log

∣∣∣∣det(I − aA+ bB

a2 + b2
+ t(bA− aB)

)∣∣∣∣ dt.
Finally, we factorize the determinant and use the fact (4∗) that

∫ ∞

−∞
log |a+ bt|dt = π

∣∣∣ℑ(a
b

)∣∣∣ (1.6)

to prove the identity (1.3). △

(1∗) The function GA,B is not integrable, so we will instead calculate its Fourier transform as a

distribution, testing against a Schwartz function φ.

(2∗) The function |x|g(x) does not have a Fourier transform in the usual sense, and in any case

(1.5) is not correct. In Lemma 2, we calculate the correct Fourier transform as a tempered

distribution, which is similar to (1.5) but contains some corrections terms.

(3∗) The integrals at hand are not integrable. Instead, we apply a cutoff, split the integral to three

parts, and apply a change of variables to each part.

(4∗) The identity (1.6) is not true, but instead we employ a similar looking identity from Lemma 3.

Additionally, this mock proof doesn’t see the singular part. It is hidden (together with the terms

making the expressions converge) in the correction terms of the Fourier transform of |x|g(x). These

terms bring complications, as we will need to understand the behaviour of the eigenvalues of C (as

in Remark 1) near the singular lines. These eigenvalue estimates are done in Lemma 5.

Proof of Theorem 22. Our goal is to calculate the Fourier transform of G = GA,B . Fix a Schwartz

23



function φ. We can rewrite our integral in polar coordinates,

(Ĝ, φ) = (G, φ̂) =

∫
R2

tr g(xA+ yB)φ̂(x, y) dx dy

=

∫ π

0

n∑
i=1

(∫
R
|r|g(λi(cos(θ)A+ sin(θ)B)r)φ̂(r cos(θ), r sin(θ)) dr

)
dθ.

Let λ = λi(cos(θ)A+ sin(θ)B). The inner integral vanishes when λ = 0, and when λ ̸= 0 it equals

∫
R
|r|g(λr)φ̂(r cos(θ), r sin(θ)) dx =

1

λ2

∫
R
|r|g(r)φ̂

(
r cos(θ)

λ
,
r sin(θ)

λ

)
dr. (1.7)

Let vθ = (cos(θ), sin(θ)), uθ = (− sin(θ), cos(θ)), and φ(w) = φ(w1, w2), for any w ∈ R2. By direct

calculation, one sees that the term in the integrand

r 7→ φ̂

(
r cos(θ)

λ
,
r sin(θ)

λ

)

is the Fourier transform of the function mapping x to

λ2√
2π

∫
R
φ(λx cos(θ)− λy sin(θ), λx sin(θ) + λy cos(θ)) dy =

λ2√
2π

∫
R
φ(λxvθ + λyuθ) dy =:

λ2√
2π
ϕθ,λ.

Observe also that ϕθ,λ(x) = ϕθ,1(λx)/|λ| =: ϕθ(λx)/|λ|. Consequently, the integral in (1.7) simplifies

to

1

λ2

∫
R
|r|g(r)φ̂

( r
λ
vθ

)
dr =

1√
2π

∫
R
|r|g(r)ϕ̂θ,λ(r) dr =

1√
2π

(
|̂r|g(r), ϕθ,λ

)
,

where by |̂r|g(r) we mean the Fourier transform of the tempered distribution r 7→ |r|g(r).

Lemma 2. For any Schwartz function ϕ on R, one has

( ̂|x|g(x), ϕ) =
√

2

π

∫
R
(ϕ(x)− ϕ(0)− ϕ′(0)x)

1

x2
log

∣∣∣∣1− 1

x

∣∣∣∣dx. (1.8)

Proof. If ϕ(x) = x2ψ(x) for some Schwartz function ψ, we have

( ̂|x|g(x), ϕ) = ( ̂−∂2x|x|g(x), ψ) =

(
1̂− eix

|x|
, ψ

)
=

√
2

π

(
log

∣∣∣∣1− 1

x

∣∣∣∣ , ψ) =

√
2

π

(
1

x2
log

∣∣∣∣1− 1

x

∣∣∣∣ , ϕ) ,
as desired. For the third equality, see [GS16, p. 361].
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The result is thus true up to a multiple of δ0 and δ′0. To take care of them, consider the function

ϕε,α,β(x) = (α+ βx)e−
1
2 ε

2x2

.

It is enough to check that for any fixed α, β ∈ R, when ε → 0+, both the left- and right-hand side

of (1.8) tend to 0. For the right-hand side, this follows from the dominated convergence theorem.

For the left-hand side, note that

( ̂|x|g(x), ϕε,α,β) = (|x|g(x), ϕ̂ε,α,β) =
∫
R
|x|g(x)

(
α

ε
+ i

β

ε3
x

)
e−

1
2ε2

x2

dx

=

∫
R
|x|g(εx) (εα+ iβx) e−

1
2x

2

dx,

which tends to 0 as ε→ 0+, since g is continuous and g(0) = 0.

Using Lemma 2, we can write

1√
2π

(
|̂r|g(r), ϕθ,λ

)
=

1

π

∫
R
(ϕθ,λ(r)− ϕθ,λ(0)− ϕ′θ,λ(0)r)

1

r2
log

∣∣∣∣1− 1

r

∣∣∣∣dr
=

1

π

∫
R
(ϕθ(x)− ϕθ(0)− ϕ′θ(0)x)

1

x2
log

∣∣∣∣1− λ

x

∣∣∣∣dx.
Recall that λ was an eigenvalue of cos(θ)A + sin(θ)B. We can now sum the above expression

over all the eigenvalues of cos(θ)A+sin(θ)B, and integrate over θ. The eigenvalues multiply to form

the determinant, and we obtain

(Ĝ, φ) =
1

π

∫ π

0

∫
R
(ϕθ(x)− ϕθ(0)− ϕ′θ(0)x)

log
∣∣∣det(I − cos(θ)A+sin(θ)B

x

)∣∣∣
x2

dxdθ.

We would like to split this integral to the three parts corresponding to ϕθ(x), ϕθ(0), and ϕ′θ(0).

While the resulting parts don’t converge, we can remedy this with a cutoff:

(Ĝ, φ) = lim
ε→0+

 1

π

∫ π

0

∫
|x|>ε

ϕθ(x)
log
∣∣∣det(I − cos(θ)A+sin(θ)B

x

)∣∣∣
x2

dx dθ

− 1

π

∫ π

0

∫
|x|>ε

ϕθ(0)
log
∣∣∣det(I − cos(θ)A+sin(θ)B

x

)∣∣∣
x2

dx dθ

− 1

π

∫ π

0

∫
|x|>ε

ϕ′θ(0)
log
∣∣∣det(I − cos(θ)A+sin(θ)B

x

)∣∣∣
x

dxdθ


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We will now analyze the three integrals inside the limit for ε > 0; these integrals are absolutely

integrable.

(i) The ϕθ(x)-term: By definition of ϕθ,

1

π

∫ π

0

∫
|x|>ε

ϕθ(x)
log
∣∣∣det(I − cos(θ)A+sin(θ)B

x

)∣∣∣
x2

dxdθ

=
1

π

∫ π

0

∫
|x|>ε

∫
R
φ(λxvθ + λyuθ)

log
∣∣∣det(I − cos(θ)A+sin(θ)B

x

)∣∣∣
x2

dy dx dθ

We make the change of variables

(a, b, t) =

(
x cos(θ)− y sin(θ), x sin(θ) + y cos(θ),

y

x(x2 + y2)

)
,

and get

∫
t2(a2+b2)2<(a2+b2)/ε2−1

log

∣∣∣∣det(I − aA+ bB

a2 + b2
− t(bA− aB)

)∣∣∣∣φ(a, b) dadbdt.
(ii) The ϕθ(0)-term: With a change of variables similar to the previous case,

(a, b, t) =

(
− sin(θ)y, cos(θ)y,

1

xy

)
,

we simplify to

∫
t2(a2+b2)2<(a2+b2)/ε2

log |det (I − t(bA− aB))|φ(a, b) dadbdt.

(iii) The ϕ′θ(0)-term: With the same change of variables as in the ϕθ(0) case, one can simplify to

∫
t2(a2+b2)2<(a2+b2)/ε2

log |det (I − t(bA− aB))|
d
dhφ(a+ hb, b− ha)

∣∣∣
h=0

(a2 + b2)t
dadbdt.
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At this point, we have proven that

(
Ĝ, φ

)
= lim

ε→0+

(∫
t2(a2+b2)2<(a2+b2)/ε2−1

log

∣∣∣∣det(I − aA+ bB

a2 + b2
− t(bA− aB)

)∣∣∣∣φ(a, b) da dbdt
−
∫
t2(a2+b2)2<(a2+b2)/ε2

log |det (I − t(bA− aB))|φ(a, b) dadbdt

−
∫
t2(a2+b2)2<(a2+b2)/ε2

log |det (I − t(bA− aB))|
d
dhφ(a+ hb, b− ha)

∣∣∣
h=0

(a2 + b2)t
dadbdt

 .

Write

C1(a, b) :=

(
I − aA+ bB

a2 + b2

)
(bA− aB)−1, and C2(a, b) := (bA− aB)−1. (1.9)

To prove identity (1.3), we recall our additional assumption that (A,B) is non-degenerate. We

now also need to assume that φ has compact support not containing 0. We can then rewrite our

expression as

1

π
lim

ε→0+

(∫
(a2+b2)/ε2−1<t2(a2+b2)2<(a2+b2)/ε2

log |det (C1(a, b)− t)|φ(a, b) da dbdt

+

∫
t2(a2+b2)<1/ε2

log

∣∣∣∣det (C1(a, b)− tI)

det(C2(a, b)− tI)

∣∣∣∣φ(a, b) da dbdt
−
∫
(a2+b2)/ε2−1<t2(a2+b2)2<(a2+b2)/ε2

log |det (C2(a, b))|φ(a, b) da dbdt

−
∫
t2(a2+b2)<1/ε2

log
∣∣det (I − tC2(a, b)

−1
)∣∣ d

dhφ(a+ hb, b− ha)
∣∣∣
h=0

(a2 + b2)t
da dbdt

 .

We claim that the first term here tends to 0 as ε → 0+. To that end, we integrate first over t and

then a and b. Observe that for small ε and fixed a and b, the term log |det (C1(a, b)− t)| is a sum of

functions log |t−c|, where c is an eigenvalue of C1(a, b). The integral in t is over an interval of length

O(ε) with distance O(1/ε) from 0. One checks that such an integral is O(ε log(1+ |c|) + ε log(1/ε)),

i.e.

∣∣∣∣∣
∫
(a2+b2)/ε2−1<t2(a2+b2)2<(a2+b2)/ε2

log |det (C1(a, b)− t)|φ(a, b) dadbdt

∣∣∣∣∣
= O

(∫
R2

(ε

n∑
i=1

log(1 + |λi(C1(a, b))|) + ε log(1/ε))|φ(a, b)|dadb

)
.

Since the eigenvalues of C1(a, b) explode at most polynomially near the singular lines of C1(a, b),
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these integrals converge to zero. By a similar argument, one sees that the third term converges to

zero.

So, we know that if φ has compact support not containing 0, then

(
Ĝ, φ

)
=
1

π
lim

ε→0+

(∫
t2(a2+b2)<1/ε2

log

∣∣∣∣det (C1(a, b)− tI)

det(C2(a, b)− tI)

∣∣∣∣φ(a, b) da dbdt
−
∫
t2(a2+b2)<1/ε2

log
∣∣det (I − tC2(a, b)

−1
)∣∣ d

dhφ(a+ hb, b− ha)
∣∣∣
h=0

(a2 + b2)t
dadbdt

 .

We will now integrate out t using the following two computational lemmas.

Lemma 3. For any λ ∈ C, consider the integral

I1(λ,M) :=

∫
|t|<M

log

∣∣∣∣1− λ

t

∣∣∣∣ dt.
Then, we have

I1(λ,M)

=M log

∣∣∣∣1− λ2

M2

∣∣∣∣+ ℜ(λ) log
∣∣∣∣λ+M

λ−M

∣∣∣∣+ ℑ(λ)
(
arctan

(
M −ℜ(λ)

ℑ(λ)

)
− arctan

(
−M −ℜ(λ)

ℑ(λ)

))
(1.10)

= : π|ℑ(λ)|+ E1(λ,M),

where

E1(λ,M) = O

(
M log

(
1 +

λ2

M2

))
+ |ℑ(λ)|o(1);

the o(1) term tends to zero with |λ|/M .

Proof. The first identity is straightforward, if somewhat tedious to verify. The limit of the expression

is π|ℑ(λ)|, so it remains to prove the error term estimate.

By scaling, we may assume that M = 1. Since logarithm is locally integrable, it is enough to

consider the cases with |λ| ≪ 1 and |λ| ≫ 1. The first two terms of (1.10) can be estimated via

Taylor expansion, while the third term is straightforward.
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Lemma 4. For any λ ∈ R, consider the integral

I2(λ,M) :=

∫
|t|<M

log

∣∣∣∣1− t

λ

∣∣∣∣ dtt .
Then,

I2(λ,M) = −π
2

2
sign(λ) + E2(λ,M),

where the E2(λ,M) is bounded and tends to zero with |λ|/M .

Proof. By scaling, we may assume that λ = 1. We have

lim
M→∞

∫
|t|<M

log |1− t|dt
t

=

∫ ∞

0

log

∣∣∣∣1− t

1 + t

∣∣∣∣ dtt =

∫ 1

0

log

(
1− t

1 + t

)
dt

t
+

∫ ∞

1

log

(
t− 1

t+ 1

)
dt

t

= 2

∫ 1

0

log

(
1− t

1 + t

)
dt

t
= −2Li2(1) + 2Li2(−1) = −π

2

2
.

Here, Li2 stands for the dilogarithm function, defined as

Li2(z) =

∫ z

0

log(1− t)

t
dt,

whose properties and special values are well-documented (see [Zag07]). The error term estimates

are straightforward.
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Having integrated out t, we are then left with

(
Ĝ, φ

)
=

1

π
lim

ε→0+

(∫
R2

[
n∑

i=1

I1

(
λi (C1(a, b)) ,

1

ε
√
a2 + b2

)
−

n∑
i=1

I1

(
λi (C2(a, b)) ,

1

ε
√
a2 + b2

)]
φ(a, b) dadb

−
∫
R2

[
n∑

i=1

I2

(
λi (C2(a, b)) ,

1

ε
√
a2 + b2

)] d
dhφ(a+ hb, b− ha)

∣∣∣
h=0

(a2 + b2)
da db


=

∫
R2

n∑
i=1

|ℑ(λi(C1(a, b)))|φ(a, b) dadb (1.11)

+
1

π
lim

ε→0+

(∫
R2

[
n∑

i=1

E1

(
λi (C1(a, b)) ,

1

ε
√
a2 + b2

)
−

n∑
i=1

E1

(
λi (C2(a, b)) ,

1

ε
√
a2 + b2

)]
φ(a, b) dadb

(1.12)

−
∫
R2

[
n∑

i=1

(
−π

2

2
sign(λi(C2(a, b))) + E2

(
λi (C2(a, b)) ,

1

ε
√
a2 + b2

))] d
dhφ(a+ hb, b− ha)

∣∣∣
h=0

(a2 + b2)
da db

 .

(1.13)

We are finally ready to isolate the continuous part. Indeed, we will assume that φ has compact

support disjoint from the singular lines. In this case, the eigenvalues of C1(a, b) and C2(a, b) are

bounded uniformly on the support of φ, so the error terms E1 and E2 tend uniformly to zero.

Additionally, the sign term is locally constant, so integrating it by parts against the derivative term

along circular arcs yields 0. We are left with the first term, (1.11), which is the desired continuous

part (after dividing by 2π).

It remains to work out the singular part. We recall the additional assumption that (A,B) does

not have repeated real roots. If (A,B) does not have real roots, there is no singular part. Otherwise,

we can assume that (0, 1) ∈ RP1 is one of the roots. This means that B is singular, and the a-axis

is a singular line; it suffices to consider φ for which the support hits only this single singular line. In

the following lemma, we analyze the behaviour of the eigenvalues of C1(a, b) and C2(a, b) near this

singular line.

Lemma 5. Assume that the pencil (A,B) has a simple root (0, 1) with unit eigenvector v. Then

⟨Av, v⟩ ≠ 0, and for a ̸= 0, the matrices C1(a, b) and C2(a, b) (as defined in (1.9)) have big eigen-
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values, with asymptotics as follows,

λbig (C1(a, b)) =
a− ⟨Av, v⟩
ab⟨Av, v⟩

(1 +O(b1/n)),

λbig (C2(a, b)) =
1

b⟨Av, v⟩
(1 +O(b)).

The O-terms are uniform for (a, b) ∈ K × (−δ, δ), where K is compact and does not contain 0 and

δ is sufficiently small. All the other eigenvalues of C1(a, b) and C2(a, b) are O(b1/n−1) and O(1)

respectively, with the same uniformity properties.

Proof. By our assumption, det(xA + B) has a single zero at 0. By expanding this determinant in

an eigenbasis for B, we can see that ⟨Av, v⟩ ≠ 0.

Observe that

C2(a, b) =
1

b⟨Av, v⟩
vv∗ +O(1),

where the error term is Hermitian with uniformly bounded entries. This follows at once from

Cramer’s rule, applied in an eigenbasis for B. Consequently, for C1(a, b) we have

C1(a, b) =
1

b⟨Av, v⟩

(
I − aA+ bB

a2 + b2

)
vv∗ +O(1),

where the error term again has uniformly bounded entries but not necessarily Hermitian. The

main terms have the desired eigenvalues, and the error estimates follow from well-known eigenvalue

perturbation bounds for general (C1) and Hermitian (C2) matrices; see [Kat66].

These eigenvalue estimates imply that (1.11) is indeed integrable.

We will evaluate (1.12) and (1.13) using the eigenvalue expansions, starting with the former.

Making the change of variable b = cε, and observing that E1(s, t) = E1(εs, εt)/ε, we can rewrite

(1.12) as

1

π

∫
R2

n∑
i=1

[
E1

(
ελi (C1(a, εc)) ,

1√
a2 + ε2c2

)
− E1

(
ελi (C2(a, εc)) ,

1√
a2 + ε2c2

)]
φ(a, εc) dadc.

By Lemma (5), the integrand converges pointwise, and we obtain

1

π

∫
R2

[
I1

(
a− ⟨Av, v⟩
ca⟨Av, v⟩

,
1

|a|

)
− I1

(
1

c⟨Av, v⟩
,
1

|a|

)]
φ(a, 0) dadc.
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To justify taking the limit inside, it suffices to note that by Lemma 5, for i ∈ [n], we have

ε|λi (C1(a, εc)) | = O(1/|c|), with imaginary part O(|c|1/n−1ε1/n). Apply the estimates of Lemma

(3) to get an integrable majorant c 7→ C(log(1 + 1/c2) + |c|1/n−1) for some C > 0.

We may now use Lemma 3 to evaluate the I1-terms to get

1

π

∫
R2

a− ⟨Av, v⟩
c|a|⟨Av, v⟩

log

∣∣∣∣∣∣
a−⟨Av,v⟩
⟨Av,v⟩ + c

a−⟨Av,v⟩
⟨Av,v⟩ − c

∣∣∣∣∣∣+ log

∣∣∣∣1− 1

c2
(a− ⟨Av, v⟩)2

⟨Av, v⟩2

∣∣∣∣
φ(a, 0) dadc

− 1

π

∫
R2

[
a

c|a|⟨Av, v⟩
log

∣∣∣∣∣
a

⟨Av,v⟩ + c
a

⟨Av,v⟩ − c

∣∣∣∣∣+ log

∣∣∣∣1− 1

c2
a2

⟨Av, v⟩2

∣∣∣∣
]
φ(a, 0) da dc.

Finally, use Lemma 3 and 4 to calculate the integral in c, ending up with

π

∫
R

(∣∣∣∣1a − 1

⟨Av, v⟩

∣∣∣∣− 1

|⟨Av, v⟩|

)
φ(a, 0) da.

We will now turn to (1.13). Since the E2-term is bounded and converges to zero, it vanishes in

the limit, and we are left with

π

2

∫
R2

[
n∑

i=1

sign(λi(C2(a, b)))

] d
dhφ(a+ hb, b− ha)

∣∣∣
h=0

(a2 + b2)
dadb

=
π

2

∫
R2

sign(⟨Av, v⟩b)
d
dhφ(a+ hb, b− ha)

∣∣∣
h=0

(a2 + b2)
da db.

Here, the equality follows from the fact that only the big eigenvalue can change its sign in the support

of φ, and its sign is determined by Lemma 5. This integral can be further simplified by integration

along the
√
a2 + b2-radius arcs, with say the change of variables (a, b) = (r cos(θ), r sin(θ)). This

results in the integral

π

∫
R

sign(⟨Av, v⟩)
a

φ(a, 0) da.

Putting the terms together, we can see that the singular part is given by

π

∫
R

(∣∣∣∣1a − 1

⟨Av, v⟩

∣∣∣∣− 1

|⟨Av, v⟩|
+

sign(⟨Av, v⟩)
a

)
φ(a, 0) da

= 2π

∫ 1

0

1− t

t
φ(⟨Av, v⟩t, 0) dt = 2π

∫ 1

0

1− t

t
φ(⟨Av, v⟩t, ⟨Bv, v⟩) dt,

as desired.
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It remains to get rid of the extra assumptions for the existence of µA,B . This can be done

with approximation: one can find a sequence of pairs (Am, Bm) converging to (A,B), such that

1) pencils (Am, Bm) are non-degenerate, and 2) all roots of (Am, Bm) are pairwise distinct. These

conditions are Zariski open, so are satisfied by small generic perturbations. Then, (ĜAm,Bm
, φ) =

(GAm,Bm , φ̂) → (GA,B , φ̂) = (ĜA,B , φ) for any φ as before. So, ĜA,B is a weak limit of positive

measures and hence a positive measure itself.

Theorem 23. Let µA,B be as in Theorem 22. Fix any measurable function f with f(0) = 0 such

that for any M > 0,

∫ M

−M

∣∣∣∣f(t)t
∣∣∣∣dt <∞.

Define a function H(f) : R → R by

H(f)(x) =

∫ 1

0

1− t

t
f(xt) dt.

Then, for any x, y ∈ R, one has

trH(f)(Ax+By) =

∫
R2

f(ax+ by) dµA,B(a, b). (1.14)

Proof. Let us start by considering a Schwartz function f with compact support not containing

0. By a change of variables (see Proposition 3, (1)), we may assume that (x, y) = (1, 0). Define

φε(a, b) = f(a)e−1/2ε2b2 . By the defining property of the measure µA,B from Theorem 22,

∫
R2

f(a) dµA,B(a, b) = lim
ε→0+

∫
R2

φε(a, b) dµA,B(a, b) = lim
ε→0+

∫
R2

φ̂ε(a, b)GA,B(a, b) da db

= lim
ε→0+

1

ε

∫
R2

f̂(a)e−
1

2ε2
b2 tr g(aA+ bB) dadb = lim

ε→0+

∫
R2

f̂(a)e−
1
2 b

2

tr g(aA+ cεB) da dc

=

∫
R2

f̂(a)e−
1
2 b

2

tr g(aA) da dc =
√
2π

n∑
i=1

∫
R
f̂(a)g(aλi(A)) da

=
√
2π

n∑
i=1

∫
R
F(x 7→ f(λi(A)x))(a)g(a) da =

√
2π

n∑
i=1

(ĝ, x 7→ f(λi(A)x)) .

It therefore suffices to check that

∫ 1

0

1− t

t
f(t) dt =

1√
2π

(ĝ, f) .
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Writing f(t) = t2h(t), we are left to verify that

∫ 1

0

t(1− t)h(t) dt = − 1√
2π

(
∂̂2g, h

)
= − 1√

2π

(
F
(
x 7→ (x+ 2i)eix

x3
+
x− 2i

x3

)
, h

)
.

But this is straightforward to check by calculating the inverse Fourier transform of t(1− t)χ[0,1](t).

A general f can be dealt with approximation. Start by assuming that f is bounded and compactly

supported with the support not containing 0. One can then find a sequence (fm)∞m=1 of Schwartz

functions with the same bound converging pointwise a.e. to f . Dominated convergence theorem

then implies that both sides of (1.14) converge when m → ∞, so the identity (1.14) is also true for

such an f . A general non-negative f can be now dealt with monotone convergence theorem, and to

finish, decompose f to positive and negative parts.

Remark 2. If h := H(f), one may calculate

h′(x) =
d

dx

∫ 1

0

f(xt)
1− t

t
dt =

∫ 1

0

f ′(xt)(1− t) dt =
1

x

∫ 1

0

f(xt) dt

h(2)(x) =
d

dx

1

x

∫ 1

0

f(xt) dt = − 1

x2

∫ 1

0

f(xt) +
1

x

∫ 1

0

f ′(xt)tdt = − 2

x2

∫ 1

0

f(xt) +
1

x2
f(x),

so that 2xh′(x) + x2h(2)(x) = f(x). This allows one to recover f from H(f), at least if H(f) is

regular enough, say twice continuously differentiable.

1.2 Basic properties

Proposition 3. 1. (Basis change) Let V : R2 → R2 be linear and invertible with V (a, b) =

(v1,1a+ v1,2b, v2,1a+ v2,2b) for a, b ∈ R. Define (A′, B′) = V (A,B) = (v1,1A+ v1,2B, v2,1A+

v2,2B). Then, µA′,B′ is given by the pushforward measure V∗(µA,B).

2. (Invariance) The measure µA,B only depends on the homogeneous polynomial, the so called

Kippenhahn polynomial,

pA,B(x, y, z) = det(zI + xA+ yB),

in the sense that if pA,B = pA′,B′ for a different pair (A′, B′), then µA,B = µA′,B′ .
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3. (Block matrices) Assume that (A,B) is block diagonal, i.e. in some basis we have

A =

A1 0

0 A2

 and B =

B1 0

0 B2


for some (A1, B1) ∈ Mn1(C)×Mn1(C) and (A2, B2) ∈ Mn2(C)×Mn2(C) (with n1 + n2 = n,

n1, n2 > 0). Then,

µA,B = µA1,B1
+ µA2,B2

. (1.15)

4. If pA,B is reducible, then for some n1, n2 > 0 with n1 + n2 = n, there exists (A1, B1) ∈

Mn1
(C)×Mn1

(C) and (A2, B2) ∈Mn2
(C)×Mn2

(C) such that pA,B = pA1,B1
pA2,B2

and hence

(1.15) holds.

Proof. 1. It follows by manipulating (1.14) that V∗(µA,B) satisfies the defining identity (1.14) for

µA′,B′ . Hence, we will be done by uniqueness of the measure, Proposition 5.

Alternatively, this follows from the explicit formulas (1.3) and (1.4). Indeed, Remark 1 implies

that

ρA′,B′ =
1

|det(V )|
ρA,B ◦ V −1,

which is exactly the density of the pushforward of the continuous part of µA,B . The singular

points are respected by the pushforward, and hence the singular part in its entirety.

2. This is clear since the left-hand side of (1.14) only depends on the eigenvalues (with multi-

plicities) of linear combinations of A and B; and these are the same for (A,B) and (A′, B′) if

pA,B = pA′,B′ .

3. This follows from tr f(xA+ yB) = tr f(xA1 + yB1) + tr f(xA2 + yB2), and uniqueness of the

measure.

4. The polynomial pA,B and hence all its factors are hyperbolic in the sense of G̊arding [G̊ar59].

The existence of (A1, B1) and (A2, B2) then follows from the Helton–Vinnikov theorem [HV07].

Property (4) of Proposition 3 implies that degenerate pencils can be reduced to the non-degenerate

case by factoring the polynomial pA,B .
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Proposition 4. Let µc be the continuous part of the measure µA,B for some Hermitian matrices A

and B. Then the following things hold true:

1. For (a, b) ∈ R2 we have ρA,B(a, b) > 0 iff (A− aI,B − bI) has non-real root.

2. If the pencil (A− aI,B− bI) is definite, then ρA,B(a, b) = 0. In particular, µc is supported on

the joint numerical range of (A,B):

supp(µc) ⊂W (A,B) ⊂ [min(λ(A)),max(λ(A))]× [min(λ(B)),max(λ(B))].

3. µc ≡ 0 iff A and B commute.

Proof. 1. Roots of the pencil (A−aI,B− bI) are images of the eigenvalues of C1(a, b) (see (1.9))

under the map

λ 7→ bλ− a

aλ+ b

1

a2 + b2
,

2. The first claim follows from the previous part and the Lemma 1. For the second claim, observe

that if α(A − aI) + β(B − β) is positive definite, (α, β) is exactly the functional separating

(a, b) from the convex set W (A,B).

3. Assume that µc ≡ 0 so that

trH(f)(Ax+By) =
∑

v∈E(A,B)

H(f)

(
⟨Av, v⟩
⟨v, v⟩

x+
⟨Bv, v⟩
⟨v, v⟩

y

)
.

Assuming w.l.o.g. that the largest eigenvalue of A equals 1, we will apply this identity with

(x, y) = (1, 0) and the function f = χx>1−ε for 0 < ε < 1. Note that H(f) vanishes on

(−∞, 1 − ε] and is positive on (1 − ε,∞). If ⟨Av, v⟩ < ⟨v, v⟩ for every v ∈ E(A,B), then we

may choose ε so small that LHS is positive while RHS is zero, a contraction. If on the other

hand ⟨Av, v⟩ = ⟨v, v⟩, then v maximizes the Rayleigh quotient, and is hence an eigenvector of

A. Since it is also a root of the pencil (A,B), it must be eigenvector of B. Consequently A

and B have a common eigenvector and we are done by induction.

Proposition 5. There is at most one measure µ with µ({0}) = 0 satisfying the condition of Theorem

23.
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Proof. While µ is not a finite measure, the measure µ̃ defined by

µ̃(f) =

∫
R2

(a2 + b2)f(a, b) dµ(a, b)

is. Applying (1.14) for different polynomials and x, y ∈ R, one can solve all moments of µ̃. As µ̃ is a

compactly supported measure by Proposition 4, the moments uniquely determine it (via expansion

of its characteristic function), and hence also µ.

1.3 Applications to polynomials

Applying Theorem 6 to integer powers f(t) = tk for k > 0 yields

1

k(k + 1)
tr(xA+ yB)k =

∫
R2

(ax+ by)k dµA,B(a, b). (1.16)

Write

tr(xA+ yB)k =

k∑
l=0

(
k

l

)
sl,k−l(A,B)xlyk−l.

The coefficient sk,l(A,B) is equal to the average of traces of words with k A’s and l B’s. If

max(k, l) ≤ 1, sk,l(A,B) = tr(AkBl), while for instance s2,2(A,B) = (2 tr(A2B2) + tr(ABAB))/3

and s3,2(A,B) = (tr(A3B2) + tr(A2BAB))/2.

Equating coefficients in (1.16) one finds expressions for mixed moments:

∫
R2

akbl dµA,B(a, b) =
sk,l(A,B)

(k + l)(k + l + 1)

for k, l > 0. This allows one to deduce a trace inequality for any non-negative bivariate polynomial

vanishing at origin.

Corollary 2. If p(a, b) =
∑

k,l≥0 ck,la
kbl is non-negative with c0,0 = 0, then for any Hermitian

A,B ∈Mn(C)

0 ≤
∫
R2

p(a, b) dµA,B(a, b) =
∑
k,l≥0

ck,l
sk,l(A,B)

(k + l)(k + l + 1)
.
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In particular, if p is homogeneous and non-negative with p(a, b) =
∑k

l=0 cla
lbk−l, then also

k∑
l=0

clsl,k−l(A,B) ≥ 0

for any Hermitian A,B ∈Mn(C).

Example 3. Considering p(a, b) = (a2 + b2 − a)2 in Corollary 2 yields

tr(A2)− (tr(A3) + tr(AB2)) +
3 tr(A4) + 4 tr(A2B2) + 2 tr(ABAB) + 3 tr(B4)

10
≥ 0.

This inequality doesn’t have any non-trivial equality cases. Indeed, if

∫
R2

(a2 + b2 − a)2 dµA,B(a, b) = 0,

measures µA,B would need to be supported on a circle {(a, b) | a2 + b2 − a} and this is only possible

if A = 0 = B.

More generally, one could ask for the best constant c in the inequality

c tr(A2)− (tr(A3) + tr(AB2)) +
3 tr(A4) + 4 tr(A2B2) + 2 tr(ABAB) + 3 tr(B4)

10
≥ 0. (1.17)

As we observed, c ≤ 1. If c ≥ 5/4, one may rewrite this inequality as

(
c− 5

4

)
tr(A2) +

1

10
tr(AB +BA)2 +

5

4
tr

(
2

5
(A2 +B2)−A

)2

+
1

10
tr(A2 −B2)2 ≥ 0.

Proposition 6. If c < 5
4 , the inequality (1.17) doesn’t admit a pure SOS-certificate.

For basics of working with SOS-certificates, see for instance [BKP16, Section 1.3].

Proof. Existence of a pure SOS-certificate is equivalent to the existence of a positive semidefinite

5× 5 matrix M such that

trMG = c tr(A2)− (tr(A3) + tr(AB2)) +
3 tr(A4) + 4 tr(A2B2) + 2 tr(ABAB) + 3 tr(B4)

10
=: S,
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where G denotes the tracial Gram matrix of (A,A2, B2, AB,BA), i.e.

G =



tr(A2) tr(A3) tr(AB2) tr(A2B) tr(A2B)

tr(A3) tr(A4) tr(A2B2) tr(A3B) tr(A3B)

tr(AB2) tr(A2B2) tr(B4) tr(AB3) tr(AB3)

tr(A2B) tr(A3B) tr(AB3) tr(A2B2) tr(ABAB)

tr(A2B) tr(A3B) tr(AB3) tr(ABAB) tr(A2B2)


.

Observe now that the entries Gi,j with i ≤ 3 < j have odd degree in B, and such terms don’t

exist in S. We may hence restrict our attention to two block matrices and note that

S =tr



M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3




tr(A2) tr(A3) tr(AB2)

tr(A3 tr(A4) tr(A2B2)

tr(AB2) tr(A2B2) tr(B4)




+tr


M4,4 M4,5

M5,4 M5,5


 tr(A2B2) tr(ABAB)

tr(ABAB) tr(A2B2)


 .

Since the term tr(ABAB) appears only at the entries G4,5 and G5,4 of G, we must haveM4,5+M5,4 =

1/5. Positivity of M then implies that M4,4 +M5,5 ≥ 1/5. Subtracting these terms from both sides

of the equation reveals that

0 ≤ tr



M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3




tr(A2) tr(A3) tr(AB2)

tr(A3 tr(A4) tr(A2B2)

tr(AB2) tr(A2B2) tr(B4)




=S − (M4,4 +M5,5) tr(A
2B2)− (M4,5 +M5,4) tr(ABAB)

≤c tr(A2)− (tr(A3) + tr(AB2)) +
3 tr(A4) + 2 tr(A2B2) + 3 tr(B4)

10
.

Pluggin in A,B = 5/4 one deduces that c ≥ 5/4.

Picking

A =
3

4

1 +
√

2
3 0

0 1−
√

2
3

 , B =
3

4

0 1

1 0


shows that c ≥ 9

10 , but we don’t know if this bound is optimal. If A and B commute, c = 5
6 is the
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optimal bound since the expression rewrites to

1

30
tr(3(A2 +B2)− 5A)2.

1.4 Derivatives of trace functions and Stahl’s theorem

If one applies Theorem 6 to the functions f(t) = tk−1
+ for a positive integer k, one quickly arrives at

Theorem 2.

Proof of Theorem 2. Smoothness follows from a classical result of Rellich, see [Kat66, VII, Theorem

3.9]. Furthermore, by [Bul71, Corollary 8], it is enough to proof that if f is of the form

t 7→ pk−1(t) +

M∑
i=1

mi(t− ci)
k−1
+ (1.18)

where pk−1 is a polynomial of degree at most k − 1, (ci)
M
i=1 ∈ RM , and (mi)

M
i=1 ∈ RM

+ , then

tr f(tA + B) is a pointwise limit of functions of the same form. The desired conclusion is clear for

the polynomial part, and for the remaining terms we can assume that M = 1, c1 = 0, and m1 = 1.

Also, the case k = 1 is classical [Pet94, Proposition 1], so we may assume that k ≥ 2.

Applying Theorem 6 for f(t) = tk−1
+ (so that H(f)(t) = f(t)/(k(k − 1))) and (x, y) = (t, 1), one

gets

tr(tA+B)k−1
+ = k(k − 1)

∫
R2

(at+ b)k−1
+ dµA,B(a, b).

If k is an even integer, the integrand (at + b)k−1
+ is of the form (1.18) for any a, b ∈ R, and we are

done by the positivity of µA,B . If k is odd, we further need that the support of µA,B is contained in

the half plane {(a, b) ∈ R2 | a ≥ 0}, which follows from Proposition 4.

As explained in the introduction, Theorem 2 is closely related to Stahl’s theorem, which admits

the following reformulations.

Theorem 24 (Reformulations of Stahl’s theorem). Let A,B ∈ Mn(C) be positive semidefinite.

Then

1. the function

t 7→ tr(exp(A− tB))
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is Laplace transform of a positive measure,

2. for positive integer k all the coefficients of the polynomial

t 7→ tr(A+ tB)k

are non-negative, and

3. the function

t 7→ tr(exp(A− tB))

is completely monotone.

Proof. 1. By approximation (see for instance [Cli14, Section 2.1]) we may assume that all the

eigenvalues of B are pairwise distinct. Apply identity (1.14) for (x, y) = (1, 0) and positive

definite A. Since A−1B ∼ A−1/2BA−1/2, all the roots of (A,B) are real and the singular part

hence has n terms; we assume for now that all the roots of (A,B) are pairwise distinct. We

hence have

trH(f)(A) =
∑

v∈E(A,B)

H(f)

(
⟨Av, v⟩
⟨v, v⟩

)
+

∫
R2

f(a)ρA,B(a, b) dm2(a, b). (1.19)

By Theorem 7 and Remark 1 the density ρA,B satisfies

ρA,B(a, b) =
1

2π

n∑
i=1

∣∣∣∣ℑ(λi((I − A

a

)
(bA− aB)

−1

))∣∣∣∣ .
Writing A′ = A−1, B′ = A−1/2BA−1/2 this rewrites to

ρA,B(a, b) =
1

2π

n∑
i=1

∣∣∣∣ℑ(λi((A′ − I

a

)
(bI − aB′)

−1
))∣∣∣∣ .

Note also that

{
⟨Av, v⟩
⟨v, v⟩

}
v∈E(A,B)

=

{
⟨A1/2v,A1/2v⟩

⟨A′A1/2v,A1/2v⟩

}
v∈E(A1/2,A−1/2B)

=

{
⟨w,w⟩

⟨A′w,w⟩

}
w∈E(B′)

,

and (A,B) having n distinct roots means exactly that B′ has n distinct eigenvalues. We can
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hence simplify (1.19) to

trH(f)(A′−1) =
∑

v∈E(B′)

H(f)

(
⟨v, v⟩

⟨A′v, v⟩

)

+
1

2π

∫
R2

f(a)

n∑
i=1

∣∣∣∣ℑ(λi((A′ − I

a

)
(bI − aB′)

−1
))∣∣∣∣dm2(a, b).

The idea is now to choose f so that H(f)(1/x) = exp(−x). Remark 2 allows us to solve for f

and we obtain

f(t) =


t−2e−1/t t > 0

0 t ≤ 0

.

Simple integration yields that H(f)(t) = t2f(t) and we have

tr exp(−A′) =
∑

v∈E(B′)

exp (−⟨A′v, v⟩/⟨v, v⟩)

+
1

2π

∫
R2

a−2e−1/a
n∑

i=1

∣∣∣∣ℑ(λi((A′ − I

a

)
(bI − aB′)

−1
))∣∣∣∣ dm2(a, b)

=
∑

v∈E(B′)

exp (−⟨A′v, v⟩/ ⟨v, v⟩)

+
1

2π

∫
R2

e−a′
n∑

i=1

∣∣∣ℑ(λi ((A′ − a′I) (b′I −B′)
−1
))∣∣∣dm2(a

′, b′)

where we performed the change of variables (a′, b′) = (1/a, b/a). While this formula a priori

only holds when A′ is positive definite, multiplying both sides by a constant and translating

A′ and a′ appropriately reveals that such restriction is not necessary.

Substitute (A′, B′) = (Bt − A,B). Again, a simple change of variables (a′, b′) = (bt − a, b)

yields

tr exp(A− tB) =
∑

v∈E(B)

exp (⟨Av, v⟩/⟨v, v⟩ − t⟨Bv, v⟩/⟨v, v⟩)

+
1

2π

∫
R2

ea−bt
n∑

i=1

∣∣∣ℑ(λi ((aI −A) (bI −B)
−1
))∣∣∣ dm2(a, b).
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The measure we seek is therefore

∑
v∈E(B)

e
⟨Av,v⟩
⟨v,v⟩ δ ⟨Bv,v⟩

⟨v,v⟩
+ νc

where

dνc
dm1

(b) =
1

2π

∫
R
ea
∣∣∣ℑ(λi ((aI −A) (bI −B)

−1
))∣∣∣da.

2. Applying Theorem 6 to f(t) = tk one sees that

tr(xA+ yB)k = k(k + 1)

∫
R2

(xa+ yb)k dµA,B(a, b).

The claim now follows once one observes that by Proposition 4 the measure µA,B is supported

on the first quadrant {(a, b) | a, b ≥ 0}.

3. This readily follows from Theorem 2 applied to the exponential function.
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Chapter 2

Chapter 2: Planes in Schatten-p

and beyond

In this chapter we study isometric questions in Schatten-p classes. We start by proving Theorem 25,

a slight refinement of Theorem 3/Theorem 19.

2.1 The embedding result

Theorem 25. Let A,B ∈ Sp for some 0 < p < ∞. Then there exists f, g ∈ Lp such that for any

x, y ∈ R

∥xA+ yB∥Sp = ∥xf + yg∥Lp .

In other words, any two-dimensional real subspace of Sp is linearly isometric to a subspace of Lp.

It turns that Theorem 25 follows as a quick corollary from Theorem 23. Indeed, if in Theorem 23

we set f(t) = |t|p for p > 0, then H(f)(t) = |t|p/(p(p+ 1)), and the identity we obtain is

tr |xA+ yB|p = p(p+ 1)

∫
R2

|ax+ by|p dµA,B(a, b).

Note that this is giving us an embedding of the span of A and B in Sp to Lp(µA,B), mapping A to

(a, b) → a and B to (a, b) → b. This embedding is (proportional to) an isometry for every p > 0

simultaneously.

Passing from the case of Hermitian matrices A,B to general two dimensional subspaces of Sp is
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standard.

Proof of Theorem 25. We have seen that the result holds as a consequence of Theorem 6 if A,B ∈

Mn(C) are Hermitian. General complex matrices A,B ∈Mn(C) can be reduced to this special case

by considering the following Hermitian block matrices

A′ =
1

21/p

 0 A

A∗ 0

 , B′ =
1

21/p

 0 B

B∗ 0

 , (2.1)

and noting that ∥xA′ + yB′∥Sp
= ∥xA+ yB∥Sp

for any x, y ∈ R.

For general A,B ∈ Sp, by approximating A and B with finite rank operators and applying the

finite dimensional result, one sees that for any k ∈ N there exists a measure µk and a (1 + 1/k)-

distortion embedding span(A,B)Sp
→ Lp(µk). Take an ultraproduct of these maps with respect

to a non-principal ultrafilter U to get an isometric embedding of span(A,B)Sp to the ultraproduct

(
∏

k Lp(µk))U , which is known to be isometric to Lp(µ) for some measure µ; see [DCK72] for the

case p ≥ 1 and [Nao98] for the case 0 < p < 1.

2.1.1 Equality cases

It turns out that the tracial joint spectral measure can be in many cases used to determine equality

cases in various inequalities.

Theorem 26. Let p > 0 and ν a finite symmetric signed measure on S1 such that for any A,B ∈ Sp

one has

∫
S1

∥t1A+ t2B∥pSp
dν(t1, t2) ≥ 0. (2.2)

Assume also that two Hermitian matrices A,B not both zero exist such that (2.2) holds with equality.

Then at least one of the following is true:

• A and B commute.

• The set

{
(a, b) ∈ R2 |

∫
S1

|t1a+ t2b|pdν(t1, t2) = 0

}

contains an open set.
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Proof. Take such a Hermitian A and B and consider µA,B . We then have

∫
S1

∥t1A+ t2B∥pSp
dν(t1, t2) =p(p+ 1)

∫
R2

∫
S1

n∑
i=1

|t1a+ t2b|pdν(t1, t2)dµ(a, b).

Since the integrand is non-negative by the assumption, it has to vanish on the support of µA,B . If

A and B don’t commute, by Proposition 4, the support of µA,B contains an open set, so the second

condition is true.

By analysing dilations (2.1) one could formulate similar statements about more general elements

A,B ∈ Sp.

While Hanner’s inequality Theorem 18 doesn’t fit in the framework of the Theorem 26, the

knowledge of the situation in the commutative case can be still used to deduce equality case in the

non-commutative one.

Theorem 27. Let p > 2. Assume that A,B are Hermitian matrices for which inequality (16) holds

with equality. Then A and B commute.

Proof. As in the proof of the embedding result, consider the functions fA,B = (a, b) → a ∈ Lp(µA,B)

and gA,B = (a, b) → b ∈ Lp(µA,B). Since

∥xA+ yB∥pSp
= p(p+ 1)∥xfA,B + ygA,B∥pLp

the pair (fA,B , gA,B) satisfies inequality (12) with equality. It was however proven by Hanner [Han56]

that equality holds in (12) only if |f(t)| and |g(t)| are proportional. This means that the support of

µA,B has to lie on two lines, which by Proposition 4 implies that A and B commute.

2.2 Embeddings via polynomial certificates

In my earlier work [Hei24] I proved Theorem 25 for p = 3 and p = 4. In these special cases the

embedding result admits considerably simpler proofs which I will now describe.

2.2.1 The case p = 4

For even integers subspace structure of Lp is somewhat special: for any f, g ∈ Lp the function

t 7→ ∥tf + g∥pLp
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is a polynomial of degree p. This turns the question of embedding to Lp essentially to a moment

problem. Indeed, by Theorem 21 we are to find a measure µ on S1 such that for any x, y ∈ R,

tr(xA+ yB)p =

∫
S1

|xv1 + yv2|p dµ(v1, v2).

Both sides of this equation are homogeneous polynomials of degree p and we may compare their

coefficients to obtain constraints for the moments µ(vk1v
p−k
2 ), 0 ≤ k ≤ p. Isometric embeddability

to Lp for even integer p is then equivalent to the solvability of this moment problem.

The same relationship works in any dimension, but for 2-dimensional spaces the situation is

somewhat simpler: moment problem is one-dimensional and we can use Fourier analysis to connect

this problem to a well known variant of Bochner’s theorem.

Theorem 28. If A,B ∈ Mn(C) are Hermitian matrices, there exists a measure µ on S1 such that

for any x, y ∈ R,

tr(xA+ yB)4 =

∫
S1

|xv1 + yv2|4 dµ(v1, v2). (2.3)

Proof. Expanding both sides of (2.3) leads to an equality between two degree 4 homogeneous poly-

nomials. On the LHS the coefficients of this polynomial can be written as sum of traces, while on

the RHS they can be written in terms of Fourier coefficients of µ by writing

(v1, v2) =

(
exp(it) + exp(−it)

2
,
exp(it)− exp(−it)

2i

)
.

Equating the coefficients leads to the following equations for the Fourier coefficients:

µ̂(0) = tr(A4) +
2

3

(
2 tr(A2B2) + tr(ABAB)

)
+ tr(B4)

µ̂(2) = tr(A4)− tr(B4) + 2i
(
tr(A3B) + tr(AB3)

)
µ̂(4) = tr(A4) + tr(B4)− 2

(
2 tr(A2B2) + tr(ABAB)

)
+ 4i

(
tr(A3B)− tr(AB3)

)
.

It then suffices to determine if a measure with such Fourier coefficients exists. Since only the even

coefficients are constrained, we may consider even measures (µ(f) = µ(f(· + π))). If ν denotes the

respective measure on the half circle [0, π], we have ν̂(k) = µ̂(2k) for every k ∈ Z.

Existence of a positive measure ν with given moments ν̂(0), ν̂(1), ν̂(2) is equivalent to (see for

47



instance [BW11, Theorem 1.3.6])


ν̂(0) ν̂(1) ν̂(2)

ν̂(1) ν̂(0) ν̂(1)

ν̂(2) ν̂(1) ν̂(0)

 ≥ 0,

i.e. ν(p) ≥ 0 for any trigonometric polynomial p of degree 2 non-negative on S1. By [BW11,

Theorem 1.1.7] it is enough to check such polynomials with roots on the unit circle, namely that

0 ≤ν(θ 7→ (eiθ − eiθ1)(eiθ − eiθ2)(e−iθ − e−iθ1)(e−iθ − e−iθ1))

=(4 + ei(θ1−θ2) + ei(θ2−θ1))ν̂(0)

− 2(e−iθ1 + e−iθ2)ν̂(1)− 2(eiθ1 + eiθ2)ν̂(1)

+ e−i(θ1+θ2)ν̂(2) + ei(θ1+θ2)ν̂(2)

for any θ1, θ2 ∈ R. But since this can be expressed as

(2− eiθ1 − e−iθ1)(2− eiθ2 − e−iθ2) tr(A4)

+4i
(
eiθ1 + eiθ2 − ei(θ1+θ2) − e−iθ1 − e−iθ2 + e−i(θ1+θ2)

)
tr(A3B)

+
(
8 + 2(ei(θ1−θ2) + ei(θ2−θ1))− 6(ei(θ1+θ2) + e−i(θ2+θ1))

) 2 tr(A2B2) + tr(ABAB)

3

+4i
(
eiθ1 + eiθ2 + ei(θ1+θ2) − e−iθ1 − e−iθ2 − e−i(θ1+θ2)

)
tr(AB3)

+(2 + eiθ1 + e−iθ1)(2 + eiθ2 + e−iθ2) tr(A4)

=∥(eiθ1 − 1)(eiθ2 − 1)A2 − i(ei(θ1+θ2) − 1)(AB +BA)− (eiθ1 + 1)(eiθ2 + 1)B2∥2S2

+
|eiθ1 − eiθ2 |2

3
∥AB −BA∥2S2

≥0,

we are done.

For p = 6 a similar argument is considerably more difficult but still possible. The main difference

is that a new identity is needed to prove non-negativity of ν(p) for trigonometric polynomial p of

degree 3 non-negative on S1. Again, it suffices to check polynomials with roots at eiθ1 , eiθ2 , eiθ3 . For
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such a polynomial, non-negativity is exhibited by the following identity:

ν(θ → |eiθ − eiθ1 |2|eiθ − eiθ2 |2|eiθ − eiθ3 |2) (2.4)

=
∥∥c3,0A3 + c2,1(BA

2 +ABA+A2B) + c1,2(BA
2 +ABA+A2B) + c0,3B

3
∥∥2
S2

+
|eiθ2 − eiθ3 |2

360

(
∥[((eiθ1 − 1)A+ i(eiθ1 + 1)B), [A,B]]∥2S2

+ 15∥[((eiθ1 − 1)A− i(eiθ1 + 1)B), [A,B]]∥2S2

)
+
|eiθ3 − eiθ1 |2

360

(
∥[((eiθ2 − 1)A+ i(eiθ2 + 1)B), [A,B]]∥2S2

+ 15∥[((eiθ2 − 1)A− i(eiθ2 + 1)B), [A,B]]∥2S2

)
+
|eiθ1 − eiθ2 |2

360

(
∥[((eiθ3 − 1)A+ i(eiθ3 + 1)B), [A,B]]∥2S2

+ 15∥[((eiθ3 − 1)A− i(eiθ3 + 1)B), [A,B]]∥2S2

)
,

where

c3,0 = (eiθ1 − 1)(eiθ2 − 1)(eiθ3 − 1)

c2,1 = −i3e
i(θ1+θ2+θ3) + 3− eiθ1 − eiθ2 − eiθ3 − ei(θ1+θ2) − ei(θ2+θ3) − ei(θ3+θ1)

3

c1,2 = −3ei(θ1+θ2+θ3) − 3− eiθ1 − eiθ2 − eiθ3 + ei(θ1+θ2) + ei(θ2+θ3) + ei(θ3+θ1)

3

c0,3 = i(eiθ1 + 1)(eiθ2 + 1)(eiθ3 + 1).

Remark 3. Identity (2.4) was discovered with heavy use of computer algebra. I first guessed the

form of the leading term based on the commutative case. I then analyzed the remainder in various

special cases with semidefinite programming tools until patterns started emerging and I could guess

a general formula.

For p = 8 I have not been able to find a similar expression, and have some numerical evidence

that it might not exist. In particular, one can check that

ν(θ 7→ |(e2iθ + 1)2|2)

=s8,0(A,B)− 4s6,2(A,B) + 6s4,4(A,B)− 4s2,6(A,B) + s0,8(A,B), (2.5)

where, as in the section 1.3, the coefficients sk,l(A,B) are defined with

tr(tA+B)k =

k∑
l=0

sl,k(A,B)

(
k

l

)
tl.

Question 1. Can the expression (2.5) be written as a sum of squares?
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2.2.2 The case p = 3

For odd integers p determining embeddability to Lp also simplifies, but for a rather different reason.

It was shown by Koldobsky [Kol92] that embeddability of two-dimensional normed spaces to Lp is

essentially determined by non-negativity of a fractional derivative of an auxiliary function. For odd

integers this fractional derivative is just the usual derivative. More explicitly, one can make use of

the following result.

Lemma 6. Let ∥ · ∥ be a norm in R2 such that for any v, w ∈ R2 the 4th distributional derivative of

t 7→ ∥tv + w∥3

is a finite positive Borel measure µ, for which
∫
|x|3dµ(x) < ∞. Then ∥ · ∥ is linearly isometrically

embeddable into L3.

The converse is also true [Kol92, Theorem 4].

Proof of Lemma 6. It follows directly Theorem 5 of [Kol92] that for any v, w ∈ R2 there exists a

function hv,w : R2 → R and a symmetric positive measure µv,w on S1 such that for any x, y ∈ R

∥xv + yw∥3 =

∫
S1

|⟨xv + yw, u⟩|3dµv,w(u) + hv,w(x, y). (2.6)

Additionally, there exists some mv,w ∈ N such that hv,w(x, y) is polynomial of degree less than mv,w

in y for every fixed x. By checking the asymptotics at ±∞ one sees that mv,w is at most 3. By

using homogeneity one sees that hv,w(x, y) = |x|3pv,w(y/x) for some polynomial pv,w of degree at

most 3 whenever x ̸= 0.

Swapping v and w one similarly obtains µw,v and pw,v. Subtract the resulting representations to

get the equation

∫
S1

|⟨xv + yw, u⟩|3d(µv,w − µw,v)(u) = |y|3pw,v(x/y)− |x|3pv,w(y/x) =: q(x, y). (2.7)

We claim that µv,w − µw,v =: ν is supported on {u ∈ S1 | ⟨v, u⟩ = 0} ∪ {u ∈ S1 | ⟨w, u⟩ = 0} =

v⊥ ∪ w⊥, and that pv,w and pw,v are both constant.

To that end, note that for fixed non-zero y0 ∈ R, the restrictions of q(·, y0) to intervals (−∞, 0)

and (0,∞) coincide with polynomials, though these polynomials need not be the same. Integration
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by parts then implies that for any smooth φ with compact support not containing 0 one has

0 =

∫
R

∂4

∂x4
q(x, y0)φ(x)dx =

∫
R
q(x, y0)φ

(4)(x)dx =

∫
R

∫
S1

|⟨xv + y0w, u⟩|3φ(4)(x)dν(u)dx

= −6

∫
S1

∫
R
⟨v, u⟩3 sign(⟨xv + y0w, u⟩)φ′(x)dxdν(u) = 12

∫
S1

|⟨v, u⟩|3φ
(
−y0

⟨w, u⟩
⟨v, u⟩

)
dν(u).

Since this holds for any φ as before, it follows that the signed measure ν is supported on v⊥ ∪ w⊥.

This means that the LHS of (2.7) is a linear combination of |x|3 and |y|3, and consequently for some

α, β ∈ R we have

β|y|3 − α|x|3 = |y|3pw,v(x/y)− |x|3pv,w(y/x)

⇔ sign(x)(x3(pv,w(y/x)− α))) = sign(y)(y3(pw,v(x/y)− β))

whenever x, y ̸= 0. Comparing the bivariate polynomials x3(pv,w(y/x) − α) and y3(pw,v(x/y) − β)

one then sees that in fact pv,w ≡ α and pw,v ≡ β.

We have thus proven that in (2.6), hv,w(x, y) is a multiple of |x|3, and we may hence absorb it

into the measure µv,w to obtain measure µ̃v,w for which

∥xv + yw∥3 =

∫
S1

|⟨xv + yw, u⟩|3dµ̃v,w(u)

for any x, y ∈ R. While µ̃v,w is not a priori positive, it is positive in w⊥. Since by Theorem 21 the

measure µ̃v,w however is independent of v and w, it has to be a positive everywhere.

Theorem 29. Let A,B ∈ Mn(C) be Hermitian. Then there exists f, g ∈ L3 such that for any

x, y ∈ R

∥xA+ yB∥S3 = ∥xf + yg∥L3 .

Given Lemma 6, proving Theorem 29 reduces to analyzing the fourth derivative of

t 7→ tr |tA+B|3

for Hermitian A and B. The moment bounds are mostly technicalities and the points of non-

smoothness also cause no trouble, but checking non-negativity elsewhere is quite non-trivial.
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Lemma 7. Let A,B ∈Mn(C) be Hermitian. Then

(
tr |A+ tB|3

)(4)
= O(1/|t|5)

when |t| → ∞.

Proof. Recall that since A and B are Hermitian, by the result of Rellich [RB69] the eigenvalues of

B + εA are n analytic functions of ε, and hence for i ∈ [n] we can write

λi(A+ tB) = tλi(B) +

∞∑
j=0

cjt
−j

with cj ∈ R for j ≥ 0 and the series converging for large enough t. Now, either λi(A + tB) is

identically zero, or for some integer d ≤ 1 one has

|λi(A+ tB)|3 = |t|3d(1 +O(1/t)), (2.8)

where the multiplier is analytic outside a compact set. Differentiating termwise one sees that the

4th derivative of (2.8) is O(|t|−5), and summing over i then yields the claim.

Theorem 30. For Hermitian A,B ∈Mn(C), with B invertible, the function

T : t 7→ tr |A+ tB|3

is analytic outside finitely many points where A + tB is singular. Outside these points T has non-

negative 4th derivative. At the singular points T behaves like

C|t− c|3 +D|t− c|3(t− c) + f(t),

where C ≥ 0 and f is C4 near c. Consequently, the 4th derivative is a non-negative multiple of δ

measure at the singular points and therefore altogether a non-negative measure.

Proof. The second claim follows straightforwardly from the analyticity of the eigenvalues. Indeed,

assume that say 0 is a singular point and let λi(A+ tB) denote the analytic branches of eigenvalues

of A + tB near 0 for i ∈ [n]. If λi(A) ̸= 0, |λi(A + tB)|3 is analytic near 0. If on the other hand

λi(A) = 0, we can write λi(A + tB) = tkνi(t) for some analytic νi with νi(0) ̸= 0 and k a positive
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integer (recall that B is invertible). Now

|λi(t)|3 = |t|3k|νi(t)|3.

Note however that the second term is analytic near 0. If k > 1 the whole function is C4 near 0. If

k = 1, we may expand |νi|3 at 0 to get required expansion for a single eigenvalue. Repeating this

for all the eigenvalues yields the claim. Since det(At + B) is a non-zero polynomial, it can only

have finitely many zeroes, and there can consequently only be finitely many points where T is not

analytic.

Let us then move to the heart of the matter, identifying the analytic part.

Lemma 8. (cf. [Hia10, Theorem 2.3.1.]) Let A,B ∈ Mn(C) be Hermitian and f be analytic near

the eigenvalues of A. Write F (t) = tr(f(A+ tB)). Then

F (k)(0)

k!
=

1

k

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

[λi1 , λi2 , . . . , λik ]f ′Bi1,i2Bi2,i3 · · ·Bik,i1 . (2.9)

Here Bi,j is the matrix of B in the eigenbasis of A, and λ1, λ2, . . . , λn are the eigenvalues of A.

Proof. The LHS clearly only depends on the value of f and its first k derivatives at the eigenvalues of

A. Hence it is sufficient to prove such an identity for a special class of functions, say for polynomials.

For the function (·)m the LHS is simply

(tr(A+ tB)m)(k)(0)

k!
=

∑
j0,j1,...,jk≥0,

∑
ji=m−k

tr(Aj0BAj1B · · ·BAjk)

=
∑

j1,...,jk≥0,
∑

ji=m−k

(jk + 1) tr(BAj1B · · ·BAjk)

=
m

k

∑
j1,...,jk≥0,

∑
ji=m−k

tr(Aj1B · · ·BAjkB)

=
m

k

∑
j1,...,jk≥0,

∑
ji=m−k

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

λj1i1λ
j2
i2
· · ·λjkikBi1i2Bi2i3 · · ·Biki1 .

But since

∑
j1,...,jk≥0,

∑
ji=m−k

λj1i1λ
j2
i2
· · ·λjkik = [λi1 , λi2 , . . . , λik ]xm−1 ,

we are done.
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Let us now focus on the main expression (2.9) with k = 4 and f = | · |3. Write g = f ′/3 = (·)| · |

We have the following simple identities.

Lemma 9. Let a1, a2, a3, a4 < 0 < b1, b2, b3, b4. Then the following identities hold:

[a1, a2, a3, a4]g =0 (2.10)

[a1, a2, a3, b1]g =
2b21

(b1 − a1)(b1 − a2)(b1 − a3)
(2.11)

[a1, a2, b1, b2]g =
2(b1 + b2)a1a2 − 2(a1 + a2)b1b2

(b1 − a1)(b1 − a2)(b2 − a1)(b2 − a2)
(2.12)

=
−2a1b1

(b1 − a1)(b1 − a2)(b2 − a1)
+

−2a2b2
(b2 − a2)(b2 − a1)(b1 − a2)

[a1, b1, b2, b3]g =
2a21

(b1 − a1)(b2 − a1)(b3 − a1)
(2.13)

[b1, b2, b3, b4]g =0. (2.14)

Proof. Straightforward to check from the definitions.

Let us then complete the proof of Theorem 30. Assume that the matrix A has n1 negative

(λ1, λ2, . . . , λn1) and n2 positive (λn1+1, . . . , λn) eigenvalues (n1+n2 = n). To prove that (2.9) is non-

negative for our f , we first group the sum in several parts. The sum consists of n4 summands; assign

each summand a sign pattern depending on whether i1, i2, i3 and i4 are at most or greater than n1. If

say i1, i3 ≤ n1 < i2, i4, assign the corresponding term the pattern (−,+,−,+). Write then S−,+,−,+

for the sum of all the terms with the pattern (−,+,−,+). Note that since [x0, x1, . . . , xk]f =

[xσ(0), xσ(1), . . . , xσ(k)]f for any permutation σ, many of these sums are equal, and they can be in

fact split into following groups:

(a) S−,−,−,−

(b) S+,−,−,−, S−,+,−,−, S−,−,+,−, S−,−,−,+

(c) S+,+,−,−, S−,+,+,−, S−,−,+,+, S+,−,−,+

(d) S+,−,+,−, S−,+,−,+

(e) S−,+,+,+, S+,−,+,+, S+,+,−,+, S+,+,+,−

(f) S+,+,+,+.
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Note also that by (2.10) and (2.14), S−,−,−,− = 0 = S+,+,+,+. Moreover, by (2.11), (2.12) and

(2.13), we have

S+,−,−,− =

n∑
i1=n1+1

n1∑
i2,i3,i4=1

2λ2i1Bi1i2Bi2i3Bi3i4Bi4i1

(λi1 − λi2)(λi1 − λi3)(λi1 − λi4)

S+,+,−,− =

n∑
i1,i2=n1+1

n1∑
i3,i4=1

−2λi1λi3Bi1i2Bi2i3Bi3i4Bi4i1

(λi1 − λi3)(λi2 − λi3)(λi1 − λi4)

+

n∑
i1,i2=n1+1

n1∑
i3,i4=1

−2λi2λi4Bi1i2Bi2i3Bi3i4Bi4i1

(λi2 − λi4)(λi1 − λi4)(λi2 − λi3)

S+,−,+,− =

n∑
i1,i3=n1+1

n1∑
i2,i4=1

−2λi1λi3(λi2 + λi4)Bi1i2Bi2i3Bi3i4Bi4i1

(λi1 − λi2)(λi3 − λi2)(λi1 − λi4)(λi3 − λi4)

+

n∑
i1,i3=n1+1

n1∑
i2,i4=1

2λi2λi4(λi1 + λi3)Bi1i2Bi2i3Bi3i4Bi4i1

(λi1 − λi2)(λi3 − λi2)(λi1 − λi4)(λi3 − λi4)

S−,+,+,+ =

n1∑
i1=1

n∑
i2,i3,i4=n1+1

2λ2i1Bi1i2Bi2i3Bi3i4Bi4i1

(λi2 − λi1)(λi3 − λi1)(λi4 − λi1)
.

Our goal is to prove that

(2.9) = 4S+,−,−,− + 4S+,+,−,− + 2S+,−,+,− + 4S−,+,+,+ ≥ 0.

We shall in fact prove that

S+,−,−,− + S+,+,−,− + S−,+,+,+ ≥0 (2.15)

and

S+,−,+,− ≥0. (2.16)

The inequalities (2.15) and (2.16) correspond to terms where the (cyclic) sign sequences change signs

2 and 4 times, respectively. To prove (2.15), first note that (simply relabel the indices, factor, and

use the Hermitian property Bj,i = Bi,j)

S+,−,−,− =
∑

i>n1≥j

2λ2i
λi − λj

∣∣∣∣∣
n1∑
l=1

Bi,lBl,j

λi − λl

∣∣∣∣∣
2

S−,+,+,+ =
∑

i>n1≥j

2λ2j
λi − λj

∣∣∣∣∣
n∑

l=n1+1

Bi,lBl,j

λl − λj

∣∣∣∣∣
2

.
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In a similar vein,

S+,+,−,− =
∑

i>n1≥j

−2λiλj
λi − λj

(
n∑

l=n1+1

Bi,lBl,j

λl − λj

)(
n1∑
l=1

Bi,lBl,j

λi − λl

)

+
∑

i>n1≥j

−2λiλj
λi − λj

(
n1∑
l=1

Bi,lBl,j

λi − λl

)(
n∑

l=n1+1

Bi,lBl,j

λl − λj

)
.

But this just means that

S+,−,−,− + S+,+,−,− + S−,+,+,+ = 2
∑

i>n1≥j

1

λi − λj

∣∣∣∣∣
n1∑
l=1

λiBi,lBl,j

λi − λl
+

n∑
l=n1+1

λjBi,lBl,j

λj − λl

∣∣∣∣∣
2

≥ 0.

(2.17)

Quite similarly

S+,−,+,− =2

n1∑
i1,i2=1

(−λi1 − λi2)

∣∣∣∣∣
n∑

l=n1+1

λlBi1,lBl,i2

(λi1 − λl)(λi2 − λl)

∣∣∣∣∣
2

(2.18)

+2

n∑
i1,i2=n1+1

(λi1 + λi2)

∣∣∣∣∣
n1∑
l=1

λlBi1,lBl,i2

(λi1 − λl)(λi2 − λl)

∣∣∣∣∣
2

≥ 0.

The proof is thus complete.

Corollary 3. For any Hermitian n× n matrices A and B the function

T : t 7→ tr |A+ tB|3

has non-negative 4th distributional derivative.

Proof. If B is invertible, the claim follows from Theorem 30. In the general case, approximate B

by sequence of invertible matrices (Bk)
∞
k=1. If Bk converges to B, Tk = t 7→ tr |A+ tBk|3 converges

pointwise to T . Since functions with non-negative 4th distributional derivative are closed under

pointwise limits, we are done.

Proof of Theorem 29. This follows at once from Corollary 3 and Lemmas 6 and 7.

It would be interesting to determine if similar proof can be given for other odd integers. For

p = 1 this is straightforward. Indeed, one ends up considering the second derivative of the function

T : t 7→ tr |tA+B|.
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It is not difficult to check that at the points where T is smooth (tA+B is non-singular), the second

derivative of T equals

4
∑

i>n1≥j

1

λi − λj
|Bi,j |2,

which is clearly non-negative. Here, as in the proof of Theorem 30 λ1, λ2, . . . , λn1
< 0 < λn1+1, . . . , λn.

For larger integers the key difficult is finding such certificates of positivity. Order p+1 derivative

of

t 7→ |tA+B|p

can be always written as a polynomial of degree p+1 in the entries B in the eigenbasis of A, where

the coefficients are rational functions of the respective eigenvalues. By the converse of Lemma 6 (for

general p) we know that this polynomial is non-negative in the real variables

(Bi,i)
n
i=1 × (ℜ(Bi,j))1≤i<j≤n × (ℑ(Bi,j))1≤i<j≤n ∈ Rn2

,

so the question remains: is this polynomial also a sum of squares (even for fixed λi’s)? In the case

p = 3 the necessary identities were discovered mostly with laborious trial and error process starting

with small n. For larger p, I have attempted to find representations with the aid of semidefinite

programming and computer algebra systems. Despite some effort, I haven’t been able to find such

a sum of squares representation even for p = 5 and n = 3.

Question 2. For which odd integers p can one prove the non-negativity of the (p+ 1):st derivative

of the function

t 7→ |tA+B|p

by a sum of squares representation as described above?

Since every non-negative polynomial is sum of squares of rational functions, it would also be

interesting to find an explicit certificates by sums of squares of rational functions of entries of B.

2.3 3-dimensional subspaces of Sp

In this section we show that Theorem 25 doesn’t have analogue for more than two matrices/operators.
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Theorem 31. For any 1 ≤ p < ∞, p ̸= 2 there exists a 3-dimensional subspace of Sp which is not

linearly isometric to any subspace of Lp. In fact one may consider the space of real symmetric 2× 2

matrices.

To illustrate the main idea of the following proof, we will first sketch the argument for p = 1. It

is straightforward to check that for x, y ∈ R one has

∥∥∥∥∥∥∥x
1 0

0 −1

+ y

1 0

0 −1

+ I

∥∥∥∥∥∥∥
S1

= 2max(1,
√
x2 + y2).

We are therefore looking for a measure ν on S2 such that

2max(1,
√
x2 + y2) =

∫
S2

|t1x+ t2y + t3|dν(t1, t2, t3) (2.19)

for any x, y ∈ R.

The impossiblity of the existence of measure ν then follows from the following three observations:

1. Denote by S the set of open radial segments not intersecting the unit circle. The LHS of (2.19)

is affine on any such segment.

2. If (t1, t2, t3) ∈ supp(ν), the RHS of (2.19) is not affine on any open segment transversally

intersecting {(x, y) ∈ R2 | t1x+ t2y + t3 = 0}.

3. Any line on the plane intersects some segment in S transversally.

For p ̸= 1, the idea of affine segments doesn’t quite work. One can use the uniqueness of

representing measure ν instead, Theorem 21.

Proof of Theorem 31. Assume first that p is not an even integer. Towards a contradiction, assume

that there exists a measure µ

∥∥∥∥∥∥∥
z + x y

y z − x


∥∥∥∥∥∥∥
p

Sp

=
∣∣∣z +√x2 + y2

∣∣∣p + ∣∣∣z −√x2 + y2
∣∣∣p =

∫
S2

|xt1 + yt2 + zt3|pdµ(t1, t2, t3).

Setting (x, y) = (r cos(θ), r sin(θ)) we see that

|z + r|p + |z − r|p =

∫
S2

|r(cos(θ)t1 + sin(θ)t2) + zt3|pdµ(t1, t2, t3). (2.20)
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Note however that by the uniqueness of the symmetric representing measure for 2-dimensional Lp-

spaces, Theorem 21, this equality implies that for any θ, the point (cos(θ)t1 + sin(θ)t2, t3) ∈ R2 has

to lie in {(x, x) | x ∈ R} ∪ {(x,−x) | x ∈ R}, for every (t1, t2, t3) in the support of µ. Applying this

for θ = 0, π/4, π/2 we see that

supp(µ) ⊂ {(x, y, z) | |x| = |z|} ∩ {(x, y, z) | |y| = |z|} ∩ {(x, y, z) | |x+ y| =
√
2|z|} = {(0, 0, 0)},

which is a contradiction.

Consider then an even integer p ≥ 4. Again, it is enough to refute the existence of measure µ on

S2 such that (2.20) holds. The same argument as before doesn’t work now since for even integers

the uniqueness result fails. We will instead show that the moment problem doesn’t have a solution

by calculating a couple of the first moments.

Expanding both sides around r = 0 and averaging over θ ∈ [0, 2π] we see that

µ(tp3) = 2

µ(tp−2
3 (1− t23))) = 4

µ(tp−4
3 (1− t23)

2) =
16

3
.

But now µ((2t23 − 1)2tp−4
3 ) = −2/3, which is impossible.

This result has an important consequence in terms of equality cases: there is no version of

Theorem 26 for more than two matrices. In other words: there exists inequalities in Sp all equality

cases of which are truly non-commutative. While the existence of such inequalities of quite explicit

nature follows by the work of Krivine [Kri65] from Theorem 31, one can give quite simple and explicit

examples.

Proposition 7. Let p > 2. Then there exists a constant cp < 2p−2 such that for any f, g, h ∈ Lp

one has

Et∥f + cos(t)g + sin(t)h∥pLp
≤ cp

(
∥f∥pLp

+ Et∥ cos(t)g + sin(t)h∥pLp

)
, (2.21)

where t is uniform on [0, 2π]. Conversely, if 0 < p < 2, there exists a constant cp > 2p−2 such that

Inequality (2.21) holds in reverse.

Proof. Consider first p > 2. It is clearly enough to check the claim for scalars f, g, h ∈ R. Since
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cos(t)g+sin(t)h has the same distribution as cos(t)
√
g2 + h2, one is reduced to consider the inequality

Et|1 + cos(t)x|p ≤ cp (1 + Et| cos(t)x|p) . (2.22)

Applying Clarkson’s inequality to numbers 1 and cos(t)x one sees that

|1 + cos(t)x|p + |1− cos(t)x|p

2
≤ 2p−2 (1 + | cos(t)x|p)

for any 0 ≤ t ≤ 2π. Taking the expectation over t yields (2.22) with constant cp = 2p−2. Since

Clarkson’s inequality is satisfied with equality only for finitely many t (i.e. whenever | cos(t)x| = 1),

the inequality with cp = 2p−2 is strict for every x. Analyzing (2.22) at infinity then implies that one

can improve the constant cp slightly below 2p−2.

Argument for 0 < p < 2 is similar.

Proposition 8. Let p ≥ 2. Then for any A,B,C ∈ Sp

Et∥A+ cos(t)B + sin(t)C∥pSp
≤ 2p−2

(
∥A∥pSp

+ Et∥ cos(t)B + sin(t)C∥pSp

)
, (2.23)

where the constant 2p−2 is the best possible. The reverse inequality is true for 0 < p < 2 with the

constant 2p−2 again the best possible.

Proof. The inequalities follow from Clarkson’s inequality as in the proof of Proposition 7. If

A =

1 0

0 1

 , B =

1 0

0 −1

 , C =

0 1

1 0

 ,
(2.23) holds as equality.

Remark 4. The choice of the uniform measure in Proposition 7 is by no means the only possible:

any symmetric measure on the circle, support of which doesn’t lie on two lines symmetric about the

origin, would work as an counterexample.

Inequality 2.21 is very much inspired by the proof of Theorem 31. The key aspect exploited in

the proof is that for any unit vector (x, y), the matrix

xA+ yB =

x y

y −x


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has the same eigenvalues. This means that if one finds an inequality of two matrices, with I and A

as the equality case, then also I and cos(t)A+sin(t)B should be an equality case for t ∈ [0, 2π]. Such

behaviour cannot occur in commutative world as for real numbers cos(t)x + sin(t)y will fluctuate

between −
√
x2 + y2 and

√
x2 + y2.

2.4 Roundness inequalities

In propositions 7 and 8 we considered an inequality demonstrating difference between Lp and Sp.

This inequality was somewhat artificially constructed but such inequalities also arise naturally from

geometric applications. As an example, we will consider generalized roundness inequalities of Enflo.

Definition 4. For a Banach space X, its generalized p-roundness constant is the least constant

rp(X) for which for any positive integer k and x1, x2, . . . , xk, y1, y2, . . . , yk ∈ X one has

∑
i<j

∥xi − xj∥pX +
∑
i<j

∥yi − yj∥pX ≤ rp(X)
∑
i,j

∥xi − yj∥pX .

For any Banach space X one has rp(X) ≤ 2p, as follows from the inequality

∥x− y∥pX ≤ 2p−1 (∥x− z∥pX + ∥z − y∥pX)

averaged over tuples (x, y, z) = (xi, xj , yk), (yi, yj , xk). Naor and Oleszkiewicz [NO20] asked whether

this trivial bound can be improved for p = 1 and X = S1. We prove that this is indeed the case.

Proposition 9. There exists constant δ > 0 such that for any positive integer k and

A1, A2, . . . , Ak, B1, B2, . . . , Bk ∈ S1 one has

∑
i<j

∥Ai −Aj∥S1 +
∑
i<j

∥Bi −Bj∥S1 ≤ (2− δ)
∑
i,j

∥Ai −Bj∥S1 . (2.24)

Proof of this proposition is based on the following rigidity result, which itself is a quick conse-

quence of a result of Regev and Vidick [RV20].

Lemma 10. For any ε > 0 there exists δ > 0 such that the following is true. If A1, A2, B1, B2 ∈

S1 are such that ∥Ai − Bj∥S1
≤ 1, 1 ≤ i, j ≤ 2 and ∥A1 − A2∥S1

, ∥B1 − B2∥S1
≥ 2 − δ, then

∥A1 +A2 −B1 −B2∥S1 < ε.

Lemma 11 ([RV20, Proposition 4]). Let A,B,C ∈Mn(C) such that C is positive definite with trace
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1,

∥A∥S1 + ∥C −A∥S1 ≤ 1 + δ

∥B∥S1 + ∥C −B∥S1 ≤ 1 + δ

∥A−B∥S1
≥ 1− δ.

Then there exists orthogonal projections P,Q with P +Q = I such that

∥A− C1/2PC1/2∥S1
, ∥B − C1/2QC1/2∥S1

= O(δ1/8).

Proof of Lemma 10. By approximation we may assume that we are working in Mn(C) for some

n ≥ 1, and by translation and unitary invariance that further B2 = 0 and B1 is positive definite.

Lemma 11 then implies that there exists orthogonal projections P and Q in Mn(C) such that

P +Q = I and

∥A1 −B
1/2
1 PB

1/2
1 ∥S1 , ∥A2 −B

1/2
1 QB

1/2
1 ∥S1 = O(δ1/8).

We hence have ∥A1 +A2 −B1 −B2∥S1 = O(δ1/8) and can take δ = cε8 for small enough c > 0.

Proof of Proposition 9. We start by observing that it suffices to show the existence of δ > 0 such

that for any A1, A2, A3, B1, B2, B3 ∈ S1 one has

1

3

∑
1≤i<j≤3

∥Ai −Aj∥S1 +
1

3

∑
1≤i<j≤3

∥Bi −Bj∥S1 ≤ 2

9
(1− δ)

3∑
i=1

3∑
j=1

∥Ai −Bj∥S1 (2.25)

Indeed, by replacing (A1, A2, A3) → (Ai, Aj , Ak) and (B1, B2, B3) → (Bi′ , Bj′ , Bk′) and averaging

over all pairwise disjoint tuples (i, j, k) and (i′, j′, k′) of [k] uniformly and independently then yields

(2.24) with 2− δ replaced by 2(1− δ)(1− 1/k).

It also suffices to consider the case where ∥Ai − Aj∥S1
= ∥Bi′ − Bj′∥S1

for i ̸= j, i′ ̸= j′ and

∥Ai − Bj∥S1 = 1 for 1 ≤ i, j ≤ k. Indeed; if we can find operators on H violating (2.25), the

operators

A′
i =

⊕
σ,σ′∈Sym(k)×Sym(k)

Aσ(i) ⊕Bσ′(i)

B′
i =

⊕
σ,σ′∈Sym(k)×Sym(k)

Bσ(i) ⊕Aσ′(i)
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acting on H2| Sym(k)|2 also violate (2.25) and, properly normalized, satisfy the distance conditions.

The violation then simplifies to ∥Ai −Aj∥S1 , ∥Bi′ −Bj′∥S1 ≥ 2(1− δ) which for small enough δ by

Lemma 10 implies that ∥Ai + Aj − Bi′ − Bj′∥ < ε. This however forces all Ai’s and Bj ’s close to

each other, contradicting our distance conditions whenever ε < 1/2.

Naor and Oleszkiewicz observe that r1(S1) ≥
√
2. This is based on a Clifford algebra construction

of Briët, Regev and Saket [BRS17] that allows one to embed (MN,2(R), ∥ · ∥S∞) into S1.

Proposition 10. For any N ∈ N+ the space (MN,2(R), ∥ · ∥S∞), real 2 × N matrices with the

operator norm, can be isometrically embedded into (M2N (C), S1).

Proof. By [BRS17, Lemma 5.2] there exists a linear map T : CN → M2N (C) for which for any

a ∈ CN

∥C(a)∥S1
=

1

2

√
∥a∥22 + 2Λ(a) +

1

2

√
∥a∥22 − 2Λ(a),

where

Λ(a) =
√

∥ℜ(a)∥22∥ℑ(a)∥22 − |⟨ℜ(a),ℑ(a)⟩|2.

Write (v, w) = (ℜ(a),ℑ(a)) and consider A = (v, w) ∈ MN,2(R). It suffices to check that ∥A∥S∞ =

∥C(a)∥S1
. To that end, observe that

A∗A =

 ∥v∥22 ⟨v, w⟩

⟨w, v⟩ ∥w∥22

 .
One calculates that σ1(A)σ2(A) =

√
det(A∗A) = Λ(a) and σ1(A)

2 + σ2(A)
2 = ∥v∥22 + ∥w∥22 = ∥a∥22,

and thus

∥A∥S∞ =
σ1(A) + σ2(A)

2
+

|σ1(A)− σ2(A)|
2

=
1

2

√
∥a∥22 + 2Λ(a) +

1

2

√
∥a∥22 − 2Λ(a) = ∥C(a)∥S1 ,

as desired.

To prove that r1(S1) ≥
√
2 one may then proceed as follows: pick 2k orthonormal vectors in

R2k, e1, e2, . . . , e2k and let Ai = (ei, 0) and Bi = (0, ei+k) for i ∈ [k]. It is then straightforward to

check that ∥Ai −Aj∥S∞ =
√
2 = ∥Ai −Aj∥S∞ for i ̸= j ∈ [k], while ∥Ai −Bj∥S∞ = 1 for i, j ∈ [k].
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Plugging these matrices in the main definition yields

k(k − 1)
√
2 ≤ r1(S1)k

2

which implies the claim.

For fixed k one may slightly improve this lower bound by having (e1, e2, . . . , ek) and

(ek+1, ek+2, . . . , e2k) as the vertices of two regular (k − 1)-simplices living in orthogonal spaces.

A natural question arises:

Question 3. Does r1(S1) equal
√
2?

While we haven’t been able to answer this question, we introduce the following conjectural

inequality that would that would imply that the answer is yes.

Conjecture 2. Let k, l ≥ 1 be positive integers and A1, A2, . . . , Ak, B1, B2, . . . , Bl ∈ S1. Then

1

k2

∑
1≤i<j≤k

∥Ai −Aj∥2S1
+

1

l2

∑
1≤i<j≤l

∥Bi −Bj∥2S1
≤ 2

kl

∑
1≤i≤k
1≤j≤l

∥Ai −Bj∥2S1
(2.26)

If Conjecture 2 is true, then r1(S1) =
√
2. Indeed, the averaging argument employed in the proof

of Proposition 9 implies that we may assume that all the summands on LHS of (2.24) are equal, and

so are the summands on the RHS. If say ∥A1−A2∥ = t and ∥A1−B1∥ = 1, then (2.26) implies that

(
k − 1

2k
+
l − 1

2l

)
t2 ≤ 2,

which implies that t ≤
√
2. Plugging this back in (2.24) implies that r1(S1) =

√
2.

Noteworthy and desirable aspect of the inequality (2.26) is that it has rich set of equality cases

coming from the aforementioned Clifford algebra construction. It is possible to check Conjecture 2

for such matrices.

Proposition 11. Let k, l ≥ 1 be positive integers and A1, A2, . . . , Ak, B1, B2, . . . , Bl ∈ MN×2(C).

Then

1

k2

∑
1≤i<j≤k

∥Ai −Aj∥2S∞
+

1

l2

∑
1≤i<j≤l

∥Bi −Bj∥2S∞
≤ 2

kl

∑
1≤i≤k
1≤j≤l

∥Ai −Bj∥2S∞
. (2.27)

Equality holds in 2.27 iff there exists orthonormal vectors e1, e2 ∈ C2 and (k + l) vectors all with
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equal norm v1, v2, . . . , vk ∈ CN and w1, w2, . . . , wl ∈ CN such that after a translation

k∑
i=1

vi = 0 =

l∑
j=1

wj

⟨vi, wj⟩ = 0 for 1 ≤ i ≤ k, 1 ≤ j ≤ l

Ai = vi ⊗ e1 ∈ CN ⊗ C2 =MN×2(C) for i ∈ [k]

Bj = wj ⊗ e2 ∈ CN ⊗ C2 =MN×2(C) for j ∈ [l]

Proof. Since for C ∈MN×2(C)

∥C∥S∞ ≤ ∥C∥S2
≤

√
2∥C∥S∞ , (2.28)

to prove the inequality it is enough to check that

1

k2

∑
1≤i<j≤k

∥Ai −Aj∥2S2
+

1

l2

∑
1≤i<j≤l

∥Bi −Bj∥2S2
≤ 1

kl

∑
1≤i≤k
1≤j≤l

∥Ai −Bj∥2S2
,

but this rewrites to

0 ≤

∥∥∥∥∥
∑k

i=1Ai

k
−
∑l

i=1Bj

l

∥∥∥∥∥
2

S2

. (2.29)

From the equality cases in 2.28 one deduces that rank(Ai −Aj), rank(Bi −Bj) ≤ 1 whenever i ̸= j;

and that Ai −Bj is an isometry for any i, j. The first condition easily implies that

Ai = A0 + vi ⊗ e1 for i ∈ [k]

Bj = B0 + wj ⊗ e2 for j ∈ [l]

for some A0, B0 ∈ CN ⊗ C2, e1, e2 ∈ C2 and v1, v2, . . . , vk ∈ CN and w1, w2, . . . , wl ∈ CN . We

further translate vi’s and wj ’s so that
∑
vi =

∑
wj after which equation (2.29) implies we can

assume A0 = 0 = B0.

Direct calculation shows that Ai − Bj is then isometry iff for all i ∈ [k], j ∈ [l] we have ∥vi∥2 =

∥wj∥2 and ⟨vi, wj⟩/(∥vi∥2∥wj∥2) = ⟨e1, e2⟩. Since vi’s and wj ’s sum to zero however, this can only

be the case if ⟨e1, e2⟩ = 0, and ⟨vi, wj⟩ = 0 for all i ∈ [k], j ∈ [l].

Note that while the usual roundness inequality for L1 can be reduced to scalars and then checked
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with relative ease with the aid of the special conic structure of L1, the same is not true for the

quadratic roundness inequality (2.26). Indeed, I don’t know if Conjecture 2 is true even for L1. For

L1 I have obtained a partial result (stated as a conjecture), which I’ll now give a rough proof sketch

for.

Conjecture 3. Let k be positive integer and f1, f2, . . . , fk, g1, g2 ∈ L1. Then

1

k2

∑
1≤i<j≤k

∥fi − fj∥2L1
+

1

4
∥g1 − g2∥2L1

≤ 1

k

∑
1≤i≤k

(
∥fi − g1∥2L1

+ ∥fi − g2∥2L1

)
(2.30)

Proof idea for Conjecture 3. The main idea is to write the difference of RHS and LHS as a sum

of various terms that are clearly non-negative. Interpreting f1, . . . , fk, g1, g2 as k + 2 points in L1,

and rewriting (f1, f2, . . . , fk, g1, g2) = (h1, h2, . . . , hk+2), consider the vector of distances (∥hi −

hj∥L1)1≤i<j≤k+2. It turns out that such distance vectors from a polyhedral cone, so called cut cone

CUTk+2. While the extreme rays of this cone are very simple, its dual cone is very complicated. In

fact it is NP-complete problem to determine whether a given rational vector of length
(
k+2
2

)
arises

from distances in ℓ1. This result along with wealth of information about cut cones can be found in

the book of Deza and Laurent [DL10].

While all inequalities constraining the distance vectors are hard to describe, many families are

known. It is for instance known and quite easy to show that if b1, b2, . . . , bk+2 are integers summing

to 1, one has

∑
1≤i<j≤k+2

bibj∥hi − hj∥L1
≤ 0

If (b1, b2, . . . , bk+2) is an reordering of (1, 1,−1, 0, 0, . . . , 0), this simplifies to the triangle inequality,

but for other tuples rich family additional inequalities, so called hypermetric inequalities, is obtained.

Taking products of such inequalities one obtains family of quadratic inequalities that can used

to certify 2.30. For fixed k, denote by Q
(k+2)
1 , Q

(k+2)
2 , . . . , Q

(k+2)
Nk+2

a generating list of extremal

inequalities spanning the dual cut cone of order k + 2.

In addition to the inequalities arising from the dual cut cone, one can also consider sums of

squares of linear combinations of distance. This is the same as specifying a positive semidefinite(
k+2
2

)
×
(
k+2
2

)
matrix M indexed by pairs (i, j), 1 ≤ i < j ≤ k + 2, and considering expressions of
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the form

∑
1≤i<j≤k+2
1≤i′<j′≤k+2

M(i,j),(i′,j′)∥hi − hj∥L1∥hi′ − hj′∥L1 .

All in all, to prove inequality (2.30), it is enough to find a positive definitive matrix M and non-

negative scalars ti′,j′ for 1 ≤ i′ ≤ j′ ≤ Nk+2 such that

RHS − LHS =
∑

1≤i<j≤k+2
1≤i′<j′≤k+2

M(i,j),(i′,j′)∥hi − hj∥L1
∥hi′ − hj′∥L1

+
∑

1≤i′≤j′≤Nk+2

ti′,j′Q
(k+2)
i′ ((∥hi − hj∥L1

)1≤i<j≤k+2)Q
(k+2)
j′ ((∥hi − hj∥L1

)1≤i<j≤k+2).

While this problem is still intractable as Q
(k+2)
i ’s cannot be enumerated for large k, it turns out to

be possible to find such a representation by only allowing hypergeometric inequalities. Exploiting

some inherent symmetries of the problem, the task of finding the representation boils down to a

semidefinite programming problem which can solved efficiently for small k. The emerging structure

of the certificates can be then used to write a guess for the general form of the certificate, and this

guess is straightforward if somewhat tedious to formally verify.

This approach could in theory work for any fixed k, l ≥ 2, but it was for l = 2 when special

pattern (for varying k) emerged for the matrix M ; and it happened to be enough to consider cone

inequalities of simpler hypergeometric form.

It is worth noting that even if this approach could generalize to deal with the full L1-case, for

S1 the cone structure is lost, and the approach is doomed to fail. Indeed, assume we are able to

express the quadratic inequality (2.26) as sum of squares, and terms of the form

 ∑
1≤i<j≤k+l

ti,j∥Ci − Cj∥S1

 ∑
1≤i<j≤k+l

si,j∥Ci − Cj∥S1

 (2.31)

where (A1, A2, . . . , Ak, B1, B2, . . . , Bk) = (C1, C2, C3, . . . , Ck+l), ti,j , si,j ∈ R, and

∑
1≤i<j≤k+l

ti,j∥Ci − Cj∥S1
≥ 0 (2.32)

∑
1≤i<j≤k+l

si,j∥Ci − Cj∥S1
≥ 0 (2.33)
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for any (Ci)
k+l
i=1 ∈ Sk+l

1 . Since this inequality is not true for every norm, expressions of the form

(2.31) are needed. Choose k = 5 = l and consider an equality case which in the notation of the

proof of Proposition 11 corresponds to vectors (v1, v2, v3, v4, v5, w1, w2, w3, w4, w5). The inequalities

(2.32) and (2.33) now read

5∑
i,j=1

ti,j+5 +
∑

1≤i<j≤5

ti,j∥vi − vj∥2 +
∑

1≤i<j≤5

ti+5,j+5∥wi − wj∥2 ≥ 0

5∑
i,j=1

si,j+5 +
∑

1≤i<j≤5

si,j∥vi − vj∥2 +
∑

1≤i<j≤5

si+5,j+5∥wi − wj∥2 ≥ 0

Since the corresponding matrices Ci constitute an equality case in Proposition 11, at least one of

the inequalities has to however hold as an equality. By varying vi’s and wi’s, it is not hard to see

that either ti,j = 0 = ti+5,j+5 for i, j ∈ [5] and
∑

i,j ti,j = 0, or similarly for s. It therefore suffices

to analyse inequalities of the form

5∑
i,j=1

ti,j∥Ai −Bj∥S1 ≥ 0

where
∑

i,j ti,j = 0. It is however easy to see this implies ti,j = 0 for i, j ∈ [5] by picking Ai’s and

Bj ’s to be either 0 or 1 combining the resulting inequalities with the condition
∑

i,j ti,j = 0.

In conclusion, new ideas are needed to tackle conjectures like Conjecture 2.
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espaces et des algèbres de Banach. Studia Math., 41:315–334, 1972.
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