Tracial joint spectral measures

Based on "Tracial joint spectral measures." arXiv preprint arXiv:2310.03227 (2023)

Otte Heinävaara

Princeton University

May 2024

Spectral measures

 $A \in M_n(\mathbb{C})$ is Hermitian

Spectral theorem

- A is diagonalizable
- A has real eigenvalues
- A has orthogonal eigenspaces

Spectral measures

 $A\in M_n(\mathbb{C})$ is Hermitian

Spectral theorem

There exists a projection valued measure π_A on $\mathbb R$ such that

- $\pi_A(U \cap V) = \pi_A(U)\pi_A(V)$ for open $U, V \subset \mathbb{R}$,
- $A^k = \int_{\mathbb{R}} a^k d\pi_A(a)$ for $k \in \mathbb{N}$.

Spectral measures

 $A \in M_n(\mathbb{C})$ is Hermitian

Spectral theorem

There exists a projection valued measure π_A on $\mathbb R$ such that

$$f(A) = \int_{\mathbb{R}} f(a) \, \mathrm{d} \pi_A(a)$$

for any f.

As

$$A = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \Rightarrow f(A) = \begin{bmatrix} f(a_1) & 0 \\ 0 & f(a_2) \end{bmatrix},$$

 $\pi_A(\{a_i\})$ equals the projection to the *i*:th coordinate (with distincts a_i 's)

Joint spectral measures

 $A, B \in M_n(\mathbb{C})$ are **commuting** Hermitian.

Joint spectral theorem

There exists a projection valued measure $\pi_{A,B}$ on \mathbb{R}^2 such that

$$f(A,B) = \int_{\mathbb{R}} f(a,b) d\pi_{A,B}(a,b)$$

for any f.

As

$$A = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} B = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix} \Rightarrow f(A, B) = \begin{bmatrix} f(a_1, b_1) & 0 \\ 0 & f(a_2, b_2) \end{bmatrix},$$

 $\pi_{A,B}(\{(a_i,b_i)\})$ equals the projection to the *i*:th coordinate (with distinct (a_i,b_i) 's).

Noncommutative joint spectral measure

If A and B don't commute, what should f(A, B) mean?

We should have

$$A^k = \int_{\mathbb{R}^2} a^k \, \mathrm{d}\pi_{A,B}(a,b)$$

for $k \in \mathbb{N}$.

We should have

$$egin{align} A^k &= \int_{\mathbb{R}^2} a^k \, \mathrm{d}\pi_{A,B}(a,b) \ B^k &= \int_{\mathbb{R}^2} b^k \, \mathrm{d}\pi_{A,B}(a,b) \ \end{gathered}$$

for $k \in \mathbb{N}$.

We should have

$$A^k = \int_{\mathbb{R}^2} a^k \, \mathrm{d}\pi_{A,B}(a,b)$$
 $B^k = \int_{\mathbb{R}^2} b^k \, \mathrm{d}\pi_{A,B}(a,b)$ $(A+B)^k = \int_{\mathbb{R}^2} (a+b)^k \, \mathrm{d}\pi_{A,B}(a,b)$

for $k \in \mathbb{N}$.

We should have

$$(xA+yB)^k = \int_{\mathbb{R}^2} (xa+yb)^k d\pi_{A,B}(a,b)$$

for $k \in \mathbb{N}$ for $x, y \in \mathbb{R}$.

Theorem

There exists a projection valued measure $\pi_{A,B}$ on \mathbb{R}^2 such that for any $x,y\in\mathbb{R}$ and $k\in\mathbb{N}$ one has,

$$(xA+yB)^k=\int_{\mathbb{R}^2}(xa+yb)^k\,\mathrm{d}\pi_{A,B}(a,b).$$

Theorem (Weyl, 1931)

There exists a projection matrix valued measure distribution $\pi_{A,B}$ $\mathcal{W}_{A,B}$ on \mathbb{R}^2 such that for any $x,y\in\mathbb{R}$ and $k\in\mathbb{N}$ one has,

$$(xA+yB)^k=\int_{\mathbb{R}^2}(xa+yb)^k\,\mathrm{d}\mathcal{W}_{A,B}(a,b).$$

Theorem (Weyl, 1931)

There exists a projection matrix valued measure distribution $\pi_{A,B}$ $\mathcal{W}_{A,B}$ on \mathbb{R}^2 such that for any $x,y\in\mathbb{R}$ and $k\in\mathbb{N}$ one has,

$$(xA+yB)^k=\int_{\mathbb{R}^2}(xa+yb)^k\,\mathrm{d}\mathcal{W}_{A,B}(a,b).$$

Anderson (1970): $W_{A,B}$ is measure only if A and B commute.

Tracial joint spectral measure

Theorem

There exists a projection valued measure $\pi_{A,B}$ $\mu_{A,B}$ on \mathbb{R}^2 such that for any $x, y \in \mathbb{R}$ and $k \in \mathbb{N}$ one has,

$$\operatorname{tr}(xA + yB)^k = \int_{\mathbb{R}^2} (xa + yb)^k \, \mathrm{d}\mu_{A,B}(a,b).$$

Tracial joint spectral measure

Theorem (H, 2023)

There exists a measure $\mu_{A,B}$ on $\mathbb{R}^2 \setminus \{0\}$ such that for any $x,y \in \mathbb{R}^2$ and $k \in \mathbb{N}_+$,

$$\operatorname{tr}(xA+yB)^k=k(k+1)\int_{\mathbb{R}^2}(xa+yb)^k\,\mathrm{d}\mu_{A,B}(a,b).$$

This $\mu_{A,B}$ is the **tracial joint spectral measure** of A and B.

Tracial joint spectral measure

Theorem (H, 2023)

For Hermitian $A, B \in M_n(\mathbb{C})$, there exists a unique measure $\mu_{A,B}$ on $\mathbb{R}^2 \setminus \{0\}$ such that for any $x, y \in \mathbb{R}^2$ and any $f : \mathbb{R} \to \mathbb{R}$,

$$\operatorname{tr} H(f)(xA + yB) = \int_{\mathbb{R}^2} f(ax + by) \, \mathrm{d}\mu_{A,B}(a,b),$$

where

$$H(f)(x) = \int_0^1 f(xt) \frac{1-t}{t} dt.$$

$$H(t^k) = t^k/(k(k+1)).$$

Formula for tracial joint spectral measure

Theorem (H, 2023)

Decompose $\mu_{A,B}=\mu_c+\mu_s$ w.r.t. the Lebesgue measure $(\mu_c\ll m_2,\ \mu_s\perp m_2)$. Then

$$\frac{\mathrm{d}\mu_{c}}{\mathrm{d}m_{2}}(a,b) = \frac{1}{2\pi} \sum_{i=1}^{n} \left| \operatorname{Im}\left(\lambda_{i}\left(\left(I - \frac{aA + bB}{a^{2} + b^{2}}\right)(bA - aB)^{-1}\right)\right) \right|,$$

and for $\varphi \in C_c(\mathbb{R}^2 \setminus \{0\})$,

$$\int_{\mathbb{R}^2} \varphi(a,b) \, \mathrm{d}\mu_s(a,b) = \sum_{i=1}^k \int_0^1 \varphi\left(\frac{\langle Av_i,v_i\rangle}{\langle v_i,v_i\rangle}t, \frac{\langle Bv_i,v_i\rangle}{\langle v_i,v_i\rangle}t\right) \frac{1-t}{t} \, \mathrm{d}t.$$

where $\{v_1, v_2, \dots, v_k\}$ are eigenvectors of $A^{-1}B$ corresponding to the real eigenvalues.

$$(A,B) = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \end{pmatrix}.$$

$$(A,B) = \left(\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix} \right).$$

$$(A,B) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \right).$$

$$(A,B) = \left(\begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -2 & -2 \\ -1 & -1 & -2 & 2 \end{bmatrix} \right)$$

Definition (Schatten-p spaces)

For $p \geq 1$ and a compact operator A, define the S_p -norm with

$$||A||_{\mathcal{S}_p} = \left(\sum_{i=1}^{\infty} \sigma_i(A)^p\right)^{1/p} = \left(\operatorname{tr}(A^*A)^{p/2}\right)^{1/p}.$$

If A is Hermitian, then

$$||A||_{S_p}^p = \sum_{i=1}^n |\lambda_i(A)|^p = \operatorname{tr} |A|^p.$$

For p > 0 and $A, B \in M_n(\mathbb{C})$, there exists functions $f, g \in L_p(0, 1)$ such that for any $x, y \in \mathbb{R}$,

$$||xA + yB||_{S_p} = ||xf + yg||_{L_p}.$$

Corollary (Hanner's inequality for Schatten-p)

For $p \geq 2$,

$$||A+B||_{S_p}^p + ||A-B||_{S_p}^p \le (||A||_{S_p} + ||B||_{S_p})^p + |||A||_{S_p} - ||B||_{S_p}|^p$$

For p > 0 and $A, B \in M_n(\mathbb{C})$, there exists functions $f, g \in L_p(0, 1)$ such that for any $x, y \in \mathbb{R}$,

$$||xA + yB||_{S_p} = ||xf + yg||_{L_p}.$$

Proof.

Tracial joint spectral measure of A and B applied to the function $t\mapsto |t|^p$ (for which $H(|t|^p)=|t|^p/(p(p+1))$) implies that for $x,y\in\mathbb{R}$,

$$\frac{\|\mathsf{x}\mathsf{A}+\mathsf{y}\mathsf{B}\|_{\mathsf{S}_p}^p}{p(p+1)} = \frac{\mathsf{tr}\,|\mathsf{x}\mathsf{A}+\mathsf{y}\mathsf{B}|^p}{p(p+1)} = \int_{\mathbb{R}^2} |\mathsf{a}\mathsf{x}+\mathsf{b}\mathsf{y}|^p \, \mathrm{d}\mu_{\mathsf{A},\mathsf{B}}(\mathsf{a},\mathsf{b}).$$

This means that we should choose $f, g \in L_p(\mu_{A,B})$ with $f = (a, b) \mapsto a$ and $g = (a, b) \mapsto b$.

If $f: \mathbb{R} \to \mathbb{R}$ has non-negative k:th derivative, then for any Hermitian $A, B \in M_n(\mathbb{C})$ with $A \geq 0$, so does

$$t \mapsto \operatorname{tr} f(tA + B)$$
.

Proof.

Apply tracial joint spectral measure to $f(t) = t_{+}^{k-1}$.

If $f: \mathbb{R} \to \mathbb{R}$ has non-negative k:th derivative, then for any Hermitian $A, B \in M_n(\mathbb{C})$ with $A \ge 0$, so does

$$t \mapsto \operatorname{tr} f(tA + B).$$

Proof.

Apply tracial joint spectral measure to $f(t) = t_+^{k-1}$.

Applying this result to $f(t) = \exp(t)$ recovers a result of Stahl (formerly the BMV conjecture).

Theorem (Stahl, 2011)

Function $t \mapsto \operatorname{tr} \exp(B - tA)$ is a Laplace transform of a positive measure for Hermitian $A, B \in M_n(\mathbb{C})$ with $A \geq 0$.

Any non-negative bivariate polynomial p with p(0,0)=0 gives rise to an (often non-trivial) inequality.

Example

If
$$p(a,b) = (a^2 + b^2 - a)^2$$
,

$$0 \le 6 \int p(a,b) d\mu_{A,B}(a,b) = tr(A^2) - tr(A^3) - tr(AB^2)$$

$$+ \frac{3 tr(A^4) + 4 tr(A^2B^2) + 2 tr(ABAB) + 3 tr(B^4)}{10}$$
.

Tracial joint spectral measures don't generalize to triplets of matrices.

Theorem (H, 2022)

If $0 , <math>p \neq 2$, the 3-dimensional space of 2×2 real symmetric matrices is **not** isometric to a subspace of $L_p(0,1)$.

Thank you!

Some questions:

- Von Neumann algebras? (cf. Connes)
- Proof without matrices? (cf. hyperbolic polynomials, Helton–Vinnikov)
- [A, B] small \Rightarrow ? (cf. Lin's theorem)
- Simpler proof? (cf. the proof of Stahl's theorem)
- Structure in higher dimensions?

Interactive demo (that generated the above 10×10 example):

shikhin.in/tjsm/tjsm.html

① Define $g(x) = \int_0^1 (e^{tx} - 1)(1 - t)/t \, dt$ and consider the function

$$G:(x,y)\mapsto \operatorname{tr} g(xA+yB).$$

ullet (easy) Prove that the tracial joint spectral measure coincides with the (distributional) Fourier transform of G outside 0, i.e.

$$\operatorname{tr} H(f)(xA + yB) = \int_{\mathbb{R}^2} f(ax + by) \hat{G}(a, b) da db.$$

(not so easy) Prove that \hat{G} satisfies the formula by taking a test function φ and calculating

$$(\hat{G}, \varphi) = (G, \hat{\varphi}) = \int G(x, y) \hat{\varphi}(x, y) dx dy = \dots$$

Recall that $\mu_{A,B}$ has continuous part with density

$$\frac{\mathrm{d}\mu_c}{\mathrm{d}m_2}(a,b) = \frac{1}{2\pi} \sum_{i=1}^n \left| \operatorname{Im} \left(\lambda_i \left(C(a,b) \right) \right) \right|,$$

where C(a, b) is some auxiliary matrix; and singular part satisfying

$$\int_{\mathbb{R}^2} \varphi(a,b) \, \mathrm{d} \mu_s(a,b) = \sum_{i=1}^k \int_0^1 \varphi\left(\frac{\langle A v_i, v_i \rangle}{\langle v_i, v_i \rangle} t, \frac{\langle B v_i, v_i \rangle}{\langle v_i, v_i \rangle} t\right) \frac{1-t}{t} \, \mathrm{d} t.$$

Key identities:

• For $\lambda \in \mathbb{C}$,

$$\lim_{M o \infty} \int_{|t| < M} \log \left| 1 + rac{\lambda}{t} \right| \mathrm{d}t = \pi \left| \mathrm{Im}(\lambda) \right|.$$

② For Hermitian $A, B \in M_n(\mathbb{C})$, if $\ker(B) = \operatorname{span}(v)$, then

$$\frac{\det(B+tA)}{\det(B+tI)} = \frac{\langle Av,v \rangle}{\langle v,v \rangle} + O(t) \text{ as } t \to 0.$$