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November 22, 2023

1 Introduction

My research interests are matrix/non-commutative inequalities, and their relationship with the geometry of
Banach spaces and with operator theory. Matrix inequalities can be easy to state as a generalization of classic
real/vector inequalities, but the methods to prove them are very different from the classical setting. Many
simple looking inequalities have lead to remarkable discoveries. As a simple example, while the Minkowski
(triangle) inequality ∥f + g∥p ≤ ∥f∥p +∥g∥p for f, g ∈ Lp(0, 1) is relatively straightforward to prove, proving
the triangle inequality for matrices with the Schatten-p norm ∥ · ∥Sp

: Mn(C) → R+,

∥A∥Sp
=
(

tr(A∗A)p/2
)1/p

,

requires a good understanding of the behaviour of the singular values of matrices. My research is inspired
by the driving question: what about inequalities that are as yet out of our reach?

The main motivating example in my work has been the Schatten-p analogue of Hanner’s inequality, which
states that

∥A + B∥pSp
+ ∥A−B∥pSp

≤ (∥A∥Sp
+ ∥B∥Sp

)p + |∥A∥Sp
− ∥B∥Sp

|p (1)

whenever p ≥ 2 and A,B ∈ Sp. This inequality was proven for Lp by Hanner [Han56], and for Sp for p ≥ 4
by Ball, Carlen, and Lieb [BCL94]. While working on the case p ≥ 2, I discovered a novel structural result
for Hermitian matrices which implies this inequality as a corollary.

Theorem 1.1. Let n be a positive integer and A,B ∈ Mn(C) be Hermitian. Then, there exists a positive
measure µA,B, the tracial joint spectral measure, on R2, such that the following is true:

For a nice enough f : R → R, there is a closely associated function H(f) : R → R, such that the trace of
H(f)(xA + yB) for any numbers x, y ∈ R can be computed solely in terms of x, y, the function f , and the
measure µA,B, as follows

trH(f)(xA + yB) =

∫
R2

f(ax + by) dµA,B(a, b). (2)

For the case of f(t) = |t|p the function H(f) is a positive rescaling of f , and this can be used to prove
Hanner’s inequality (1) for every p ≥ 2. Theorem 1.1 has implications that go far beyond merely proving
Hanner’s inequality. As another example of a corollary of it, one can deduce a conceptually new proof of a
conjecture of Bessis–Moussa–Villani [BMV75], which was proven by Stahl in the celebrated work [Sta13].

In my future research, I plan to explore further properties and applications of the tracial joint spectral
measures.

Question 1.2. Does the theory of tracial joint spectral measures extend beyond the setting of Hermitian
matrices?

Question 1.3. What tools are needed to get past the main limitation of tracial joint spectral measures: they
can only be used to prove inequalities for linear combinations of two matrices?
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One of my projects has been investigating, with Vijay Bhattiprolu, Grothendieck’s inequality, intro-
duced in the seminal work [Gro53]. In our ongoing work, we make the conjecture that the 3-dimensional
Grothendieck constant KG(3) = 1/ log(2) ≈ 1.4427. This is based on a careful analysis and modification of
the argument of Braverman–Makarychev–Makarychev–Naor [BMMN13]. Aside from promising numerical
testing of our conjecture, we have also been investigating ways in which one can generalize the arguments
used by Krivine to establish the value of the 2-dimensional constant KG(2) =

√
2.

Computer-aided investigations have been a big part of my research projects, and they were instrumental
in the discovery of tracial joint spectral measures. Mathematical packages like Mathematica and traditional
programming languages such as Python have provided invaluable help to me in stress testing inequalities
and discovering patterns and identities. I hope to explore creative ways to use computers for discovery and
visualization for my future projects.

The remaining two sections contain a detailed exposition of my past research and future research projects.

2 My research

My main contributions to the study of matrix inequalities are the following results.

Theorem 2.1. If A and B are elements of Schatten-p for some p ≥ 1, then their span is linearly isometric
to a subspace of Lp(0, 1).

As a consequence, to prove an inequality that depends on the Sp norms of linear combinations of two
matrices, it suffices to consider real diagonal matrices. This provides a powerful new tool for deducing
non-commutative inequalities from their commutative counterparts. In particular, it resolves a conjecture of
Ball–Carlen–Lieb on the Schatten-p version of Hanner’s inequality (1) for p ≥ 2, given that Hanner proved
it for vectors in [Han56].

I first proved Theorem 2.1 for p equals 3, 4, and 6 in [Hei22].

Theorem 2.2. Let f : R → R be a smooth function with non-negative kth derivative. For any A,B ∈ Mn(C)
Hermitian, consider the function F : R → R defined by

F (t) = tr f(tA + B).

Then, if k is even, F has non-negative kth derivative. The same is true for odd k if we additionally assume
that A is positive semidefinite.

This result is well known for k equals 1 and 2. For k equals 3 and 4, I proved it in [Hei22].
Theorem 2.2 is a vast generalization of a celebrated result of Stahl [Sta13] (formerly the BMV conjecture)

on the completely monotone nature of the function t 7→ tr exp(−tA+B). Indeed, one obtains Stahl’s theorem
by applying Theorem 2.2 to the function f(t) = exp(−t).

The proof of both Theorem 2.1 for p = 3, and Theorem 2.2 for k = 4, follow from the following result,
proven in [Hei22].

Theorem 2.3. Let A,B ∈ Mn(C) be Hermitian. Then the function

t 7→ tr |tA + B|3

has non-negative 4th derivative.

The proof of this result is based on a rather miraculous identity, expressing the fourth derivative as a
sum of clearly non-negative terms. Despite serious efforts, I was unable to find a similar identity for higher
derivatives.

The cases p equals 4 and 6 follow similarly from equally miraculous trace identities that express the
embedding condition in terms of the non-negativity of certain trace polynomials. These trace polynomials
are then given a “sum of squares certificate” to establish their non-negativity. This approach does not
generalize easily for larger even integers p, and might in fact be impossible. Indeed, the recent refutation
of the Connes embedding conjecture [JNV+21] has the following interesting consequence, proven by Klep
and Schweighofer in [KS08]: there exist polynomials p(X,Y ) of matrices such that the trace tr p(X,Y ) is
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non-negative for every Hermitian X and Y , but the non-negativity of tr p(X,Y ) cannot be exhibited by a
“sum of squares certificate” of a certain type.

The general cases of Theorems 2.1 and 2.2 follow from a totally different approach, namely a new
structural result for Hermitian matrices. Given two Hermitian matrices A and B, I introduce in [Hei23] a
positive measure µA,B , which I call the tracial joint spectral measure.

Theorem 2.4. (= Theorem 1.1) Let n be a positive integer and A,B ∈ Mn(C) be Hermitian. Then, there
exists a positive measure µA,B on R2 such that the following is true:

Fix any measurable function f on R such that for any M > 0,∫ M

−M

∣∣∣∣f(t)

t

∣∣∣∣dt < ∞.

Define a function H(f) : R → R by

H(f)(x) =

∫ 1

0

1 − t

t
f(xt) dt.

Then, for any x, y ∈ R, we have

trH(f)(xA + yB) =

∫
R2

f(ax + by) dµA,B(a, b). (3)

If one applies Theorem 2.4 to the function f(t) = |t|p, we have H(f) = f/(p(p + 1)), and hence

tr |xA + yB|p = p(p + 1)

∫
R2

|ax + by|p dµA,B(a, b).

This identity can be interpreted as an embedding of the span of A and B to Lp(µA,B). Strikingly, the
embedding is proportional to an isometry simultaneously for every p > 0. From the embedding for the
Hermitian case, one can deduce the embedding for the Sp case.

Similarly, applying Theorem 2.4 to the function f(t) = tk−1
+ implies Theorem 2.2.

I also give an explicit expression for µA,B .

Theorem 2.5. Let n, A, B, and µA,B be as in Theorem 2.4. Denote by µc = µc,A,B and µs = µs,A,B

the continuous and singular parts of µA,B w.r.t. the Lebesgue measure m2 on R2. We assume some linear
combination of A and B is invertible. Then, the continuous part µc is given by

dµc

dm2
(a, b) =

1

2π

n∑
i=1

∣∣∣∣ℑ(λi

((
I − aA + bB

a2 + b2

)
(bA− aB)−1

))∣∣∣∣ . (4)

Furthermore, if A is invertible and A−1B has n distinct eigenvalues, the singular part µs satisfies

µs(φ) =
∑

v∈E(A−1B)

∫ 1

0

1 − t

t
φ (⟨Av, v⟩t, ⟨Bv, v⟩) dt. (5)

where E(C) denotes a set of normalized eigenvectors of a matrix C ∈ Mn(C) and φ is a smooth function
with compact support that does not contain 0.

See Figure 1 for some illustrations of tracial joint spectral measures.

3 Current and future projects

3.1 Properties of tracial joint spectral measures

In my upcoming work titled “Properties of tracial joint spectral measures”, I will further examine the
properties of tracial joint spectral measures.

One naturally asks to what extent tracial joint spectral measures can be generalized beyond matrices,
especially given that it was proven in [Hei23] that the embedding result Theorem 2.1 extends to the infinite
dimensional setting Sp.
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Question 3.2. Given two compact self-adjoint operators A and B in Sp, does there exist a measure µA,B

satisfying the conditions of Theorem 2.4? How about the setting of von Neumann algebras with n.s.f. trace?

More specifically, one can ask if the isometric embedding result generalizes to non-commutative Lp spaces
in the sense of Haagerup (see [PX03]).

Question 3.3. Is every 2-dimensional subspace of a non-commutative Lp space linearly isometrically em-
beddable into Lp?

Question 3.4. Is there an explicit formula similar to equation (4) in these infinite dimensional settings?

As observed in [Hei23], the tracial joint spectral measure µA,B only depends on the so called Kippenhahn
polynomial

pA,B(x, y, z) = det(zI + xA + yB). (6)

Such polynomials are hyperbolic (of degree n) in the sense of G̊arding [G̊ar59], meaning that for every fixed
x and y, the polynomial in z is of degree n and only has real roots. It was shown by Helton and Vinnikov
in [HV07] that any hyperbolic polynomial with p(0, 0, 1) = 1 arises as in (6) from some pair of Hermitian
matrices. This associates to any hyperbolic polynomial a tracial joint spectral measure µp with the defining
property ∫ 1

0

log |p(1, tx, ty)|1 − t

t
dt =

∫
R2

log |1 + ax + by|dµp(a, b). (7)

Question 3.5. Given a hyperbolic polynomial p, can one see without the introduction of A and B that a
measure satisfying (7) exists?

3.6 Random tracial joint spectral measures

While the illustrations in Figure 1 are of small matrices, one would be interested in seeing figures of measures
µA,B when A and B are, say, Hermitian 100×100 matrices. For such sizes, estimation of the density with (4)
becomes algorithmically infeasible, but one can still approximate the boundary curve. In my upcoming work,
I prove that this boundary coincides with the Kippenhahn curve [Kip51], an algebraic curve the boundary
of which coincides with the joint numerical range

W (A,B) := {(⟨Av, v⟩, ⟨Bv, v⟩) | |v| = 1} .

For two random Gaussian Hermitian matrices, one obtains the curve in Figure 2. The following patterns
can be observed.

1. The convex hull of the support of µc,A,B , i.e. the joint numerical range of A and B, approximates a
disk of radius 2

√
n = 20. This is proven in [CGLZ14], where joint numerical ranges of random matrices

are investigated.

2. The Kippenhahn curve seems to consist of several circle-like curves, at least away from the origin.

3. The singular part has 10 ∼
√
n segments, in superficial agreement with the fact that a random real

characteristic polynomial p should have ∼
√

deg(p) real roots, see [EKS94]. These segments seem to
be close to the origin.

Question 3.7. Is there a way to formalize these observations for some random matrix ensembles? Do
random tracial joint spectral measures converge, properly normalized, to a universal limiting distribution?
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3.8 Beyond two dimensions

In [Hei22], I proved that Theorem 2.1 cannot be generalized to more than two matrices. This implies, in
particular, that there is no natural analogue of Theorem 2.4 for more than two matrices, i.e. any such µA,B,C

would sometimes not be a positive measure.

Question 3.9. While µA,B,C is not a positive measure, can it still shed light on matrix inequalites involving
more than two matrices? Can it be used to characterize inequalities governing three dimensional subspaces
of Sp?

Consider the generalized roundness inequality introduced by Enflo in [Enf69]. We say that a metric space
has generalized roundness p if, for any positive integer n and points x1, x2, . . . , xn, y1, . . . , yn, one has∑

1≤i<j≤n

d(xi, xj)
p +

∑
1≤i<j≤n

d(yi, yj)
p ≤

∑
1≤i,j≤n

d(xi, yj)
p.

Enflo proved that Lp has generalized roundness p for 1 ≤ p ≤ 2, and used this to prove that Lp spaces are
not uniformly homeomorphic for 1 ≤ p ̸= q ≤ 2.

Schatten-p spaces don’t have generalized roundness, but one can still ask for the best constant Cp in the
inequality ∑

1≤i<j≤n

∥Ai −Aj∥pSp
+

∑
1≤i<j≤n

∥Bi −Bj∥pSp
≤ Cp

∑
1≤i,j≤n

∥Ai −Bj∥pSp
.

It turns out that even the case p = 1 here is difficult. Naor and Oleskiewicz [NO20] verified that C1 ≥
√

2,
and answering a question of theirs, I proved that C1 is strictly less than the trivial bound 2. While the
constant C1 is still unknown, I have made the conjecture that the following stronger inequality, which would
imply that C1 =

√
2, is true:∑
1≤i<j≤n

∥Ai −Aj∥2S1
+

∑
1≤i<j≤n

∥Bi −Bj∥2S1
≤ 2

∑
1≤i,j≤n

∥Ai −Bj∥2S1
. (8)

Note that this inequality is unknown even for L1, as it doesn’t directly reduce to a scalar inequality. I have
proved this inequality in non-trivial special cases for L1 based on miraculous identities that I don’t currently
know how to generalize.

Question 3.10. Is the inequality (8) true? Is there an analogue of (8) for Sp for some p > 1?

3.11 Beyond linear

Theorem 2.1 only treats inequalities between linear combinations of matrices. If one introduces non-linear
functions or the product structure, more complicated behaviour arises; new tools are needed.

As the first example, for p, q ≥ 1 consider the Mazur map, Mp,q : Lp(0, 1) → Lq(0, 1), defined by

Mp,q(f) = f |f |
p−q
q .

This map was used my Mazur [Maz29] to show that Lp(0, 1) and Lq(0, 1) are homeomorphic, and his argument
further implies that the balls BLp and BLq are uniformly homeomorphic. The natural analogue for Schatten
classes is also true, as proven by Raynaud [Ray02].

From the work of Mazur it also follows that the Mazur map is min(p/q, 1)-Hölder from BLp
→ BLq

, and
a modification of his argument gives the optimal bounds

∥Mp,q(f) −Mp,q(g)∥Lq ≤

{
2q/p−1∥f − g∥p/qLp

p ≤ q
p
q ∥f − g∥Lp

p ≥ q.
(9)

For Schatten classes, Ricard [Ric15] proved that Mp,q is still min(p/q, 1)-Hölder, but the optimal bounds (as
in (9)) are not known. It was proven by Jocić [Joc97] that if q ≥ 2p, the estimate (9) extends to Sp. Jocić
asked whether the same is true for p < q < 2p, but I have found a counterexample for every p = 1 < q < 2,
which will appear in forthcoming work.
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Question 3.12. What are the Lipschitz/Hölder constants of Mazur maps Mp,q : BSp → BSq?

As the second example, by a celebrated result of Potapov and Sukochev [PS11], for any 1 < p < ∞, there
exists a constant cp, such that for any 1-Lipschitz function and any two Hermitian matrices A and B, one
has

∥f(A) − f(B)∥Sp
≤ cp∥A−B∥Sp

. (10)

It was later shown by Caspers–Montgomery-Smith–Potapov–Sukochev [CMSPS14] that cp ∼ p2/(p−1), but
the exact value of the constant cp is only known for p = 2 (with c2 = 1).

Question 3.13. What is the best constant cp in the inequality (10)?

As the third example, consider the improvement of the triangle inequality for Lp due to Carlen–Frank–
Ivanisvili–Lieb [CFIL21] (see also [IM20]), namely for p ≥ 2

∥f + g∥pp ≤

(
1 +

22/p∥fg∥p/2
(∥f∥pp + ∥g∥pp)2/p

)p−1 (
∥f∥pp + ∥g∥pp

)
(11)

It was also proven in [CFIL21] that the natural generalization of (11) to Sp is true for positive definite A
and B when p is a power of 2.

Question 3.14. Is the Sp-analogue of (11) true for p ≥ 2?

3.15 Grothendieck’s inequality

The d-dimensional Grothendieck constant KG(d) is the smallest constant such that for any A ∈ Mn×m(R),
the following holds

sup
vi,wj∈Sd−1

n∑
i=1

m∑
j=1

Ai,j⟨vi, wj⟩ ≤ KG(d) sup
εi,δj∈{±1}

n∑
i=1

m∑
j=1

Ai,jεiδj .

Grothendieck proved [Gro53] that the constants KG(d) are bounded and that

KG := sup
d≥1

KG(d) = lim
d→∞

KG(d) ≤ sinh
(π

2

)
, (12)

with KG the Grothendieck constant. This bound was later improved to π/(2 log(1+
√

2)) by Krivine [Kri79],
who also conjectured this to be optimal. Both Grothendieck’s and Krivine’s proofs are based on the identity

Eu∈Sd−1

[
sign(⟨v, u⟩) sign(⟨w, u⟩)

]
=

2

π
arcsin (⟨v, w⟩) ,

where the expectation is taken with the Haar measure on Sd−1. This identity is often interpreted as a
hyperplane rounding algorithm: by rounding a unit vector v to sign(⟨v, u⟩) for a random u, one in expectation
preserves the inner product structure on the sphere up to the function 2/π arcsin. Grothendieck and Krivine
use different arguments to get rid of this function, with Krivine pushing the hyperplane rounding to a
logical limit of sorts. It was however proved by Braverman–Makarychev–Makarychev–Naor [BMMN13] that
Krivine’s bound is not optimal, and that more complicated rounding schemes improve the bound.

As observed by Tsirelson [Tsi85], the Grothendieck constants KG(d) play a central role in quantum
mechanics, but despite much interest, only the value KG(2) =

√
2 [Kri79] is known. For other KG(d)

and KG, only lower and upper bounds are known [Kri79, HLZ+15, DBV17, DIB+23]. Besides KG itself,
the constant KG(3) in particular is of great interest for its direct relationship with the non-locality of the
Werner state [AGT06]. The current best bounds are 1.4367 ≤ KG(3) ≤ 1.4546 due to [DIB+23].

Vijay Bhattiprolu and I conjecture that KG(3) = 1/ log(2) ≈ 1.4427 based on a modification of the argu-
ment of [BMMN13]. Roughly speaking, it is proven in [BMMN13] prove that the aforementioned hyperplane
rounding algorithm can be improved by a carefully chosen perturbation. This perturbation emerges from
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a counterexample to a conjecture of König [K0̈1] identifying the worst possible matrix A in Grothendieck’s
inequality (along with the respective vectors vi, wj and signs εi, δj). We observe that the natural ana-
logue of this perturbation argument fails for d = 3, and a variant of König’s conjecture then suggests that
KG(3) = 1/ log(2). We have convincing evidence for the conjecture based on numerical analysis of discretiza-
tions. We are also optimistic that we can generalize the arguments Krivine used to prove that KG(2) =

√
2

for the d = 3 case.
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(1)

([
1 0
0 −1

]
,

[
2 −1
−1 1

])
. (2)

([
2 0
0 −1

]
,

[
1 −2
−2 2

])
.

(3)

1 0 0
0 2 0
0 0 −1

 ,

0 1 1
1 −1 −1
1 −1 1

.
(4)



−3 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 2

 ,


0 0 0 −1
0 0 0 −1
0 0 −2 −2
−1 −1 −2 2


.

Figure 1: Four illustrations of the measures µA,B for the pairs of matrices (A,B) listed below the pictures.
The horizontal and vertical axes correspond to a and b respectively. The density of µc,A,B is represented
with the color running from white (zero) to black (infinity) through red. The green line segments depict the
support of the singular part.
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Figure 2: Representation of the Kippenhahn curve of two Gaussian 100× 100 matrices in blue. In green are
the endpoints of the segments of the singular part µs,A,B . The Hermitian matrices A and B are the real and
imaginary parts of a random complex matrix with iid complex Gaussian entries.
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