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Distances

Figure: points A and B
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Distances

Figure: distance equals
√

42 + 32 = 5
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Distances

Figure: distance equals 4 + 3 = 7
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Balls

(a) x2 + y 2 ≤ 1
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Balls

(a) x2 + y 2 ≤ 1 (b) |x | + |y | ≤ 1
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3-dimensional balls

(a) x2 + y 2 + z2 ≤ 1
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3-dimensional balls

(a) x2 + y 2 + z2 ≤ 1 (b) |x | + |y | + |z| ≤ 1
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Higher dimension

(x1, x2, x3, x4, x5, x6, x7, x8, x9)

7→
√

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9

(x1, x2, x3, x4, x5, x6, x7, x8, x9)
7→ |x1| + |x2| + |x3| + |x4| + |x5| + |x6| + |x7| + |x8| + |x9|
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Slices
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Slices
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Slices
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Slices
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Slices of the 9-dimensional Manhattan ball
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Are slices useful?

Yes: they can see features of the ball.
1 Corners (sharp edges)
2 Flat portions
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Are slices useful?

Yes: they can see features of the ball.
1 Corners (sharp edges)
2 Flat portions
3 Smoothened out corners (sharp-ish edges)
4 Portions that are almost flat
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ℓp-norm:

(x1, x2, x3, x4)
7→ (|x1|p + |x2|p + |x3|p + |x4|p)1/p

Schatten-p-norm: x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3


7→ some funky thing
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My thesis

Theorem
All slices of Schatten-p ball can also be found as slices of ℓp ball.
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My thesis

Theorem
All slices of Schatten-p ball can also be found as slices of ℓp ball.

Proof.
Recipe: Tracial joint spectral measures!
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Definition (Schatten-p spaces)
For p ≥ 1 and a compact operator A, define the Sp-norm with

∥A∥Sp =
( ∞∑

i=1
σi(A)p

)1/p

= (tr |A|p)1/p =
(
tr(A∗A)p/2

)1/p
.

S2 is the Hilbert–Schmidt norm.
S∞ is the operator norm.
S1 is the trace/nuclear norm.
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Unitarily invariant norms

Norm ∥ · ∥ on Mn(C) is unitarily invariant, if for any two unitaries
U and V we have ∥UAV ∥ = ∥A∥ for any A ∈ Mn(C).
Function Cn → R+ is a symmetric gauge function if

Φ is a norm
Φ((xσ(i))n

i=1) = Φ((xi)n
i=1) for any permutation σ

Φ((ωixi)n
i=1) = Φ((xi)n

i=1) for any ω1, ω2, . . . , ωn ∈ S1 ⊂ C.

Theorem (von Neumann, 1937)
Norm ∥ · ∥ on Mn(C) is unitarily invariant iff there exists a
symmetric gauge function Φ such that

∥A∥ = Φ((σi(A))n
i=1).
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Theorem (von Neumann, 1937)
Norm ∥ · ∥ on Mn(C) is unitarily invariant iff there exists a
symmetric gauge function Φ such that

∥A∥ = Φ((σi(A))n
i=1).

Lemma (von Neumann, 1937)
If Φ and Φ′ are dual norms, i.e.

sup
u∈Cn,Φ′(u)≤1

⟨v , u⟩ = Φ(v),

then

sup
B∈Mn(Cn),∥B∥Φ′ ≤1

tr(AB∗) = ∥A∥Φ.
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Similarities and differences

For 1 < p < ∞,
1 Sp is dual to Sq if 1/p + 1/q = 1
2 Sp is uniformly convex and uniformly smooth
3 Sp is the (complex) interpolation space of S1 and S∞
4 Sp has type min(2, p) and cotype max(2, p),

but for p ̸= 2,
1 Sp is not isomorphic to a subspace of Lp([0, 1]) and in fact
2 Sp does not have an unconditional basis
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Uniform convexity

Definition (Clarkson)
A Banach space (X , ∥ · ∥) is uniformly convex, if for any ε > 0

δX (ε) := inf
x ,y∈SX

{
1 −

∥∥∥∥x + y
2

∥∥∥∥ | ∥x − y∥ ≥ ε

}
> 0.

Theorem (Clarkson, 1936)
ℓp and Lp([0, 1]) are uniformly convex.
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Clarkson’s inequalities

δX (ε) := inf
x ,y∈SX

{
1 −

∥∥∥∥x + y
2

∥∥∥∥ | ∥x − y∥ ≥ ε

}
> 0.

Theorem (Clarkson, 1936)
If 1 < p ≤ 2 and f , g ∈ Lp([0, 1]), then∥∥∥∥ f + g

2

∥∥∥∥q

Lp

+
∥∥∥∥ f − g

2

∥∥∥∥q

Lp

≤
(1

2
(
∥f ∥p

Lp
+ ∥g∥p

Lp

))q/p
,

where 1/p + 1/q = 1.

δLp (ε) ≥ 1 −
(

1 −
(

ε

2

)q)1/q
≥ 1

q2q εq
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Theorem (Hanner, 1955)
If 1 ≤ p ≤ 2 and f , g ∈ Lp([0, 1]), then

∥f + g∥p
Lp

+ ∥f − g∥p
Lp

≥ (∥f ∥Lp + ∥g∥Lp )p + |∥f ∥Lp − ∥g∥Lp |p.
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Theorem (Hanner, 1955)
If 1 ≤ p ≤ 2 and f , g ∈ Lp([0, 1]), then

∥f + g∥p
Lp

+ ∥f − g∥p
Lp

≥ (∥f ∥Lp + ∥g∥Lp )p + |∥f ∥Lp − ∥g∥Lp |p.

A question of Ball, Carlen and Lieb (1994)
Does Hanner’s inequality generalize to Sp? Namely, for 1 ≤ p ≤ 2,
is the following true for A, B ∈ Mn(C)?

∥A + B∥p
Sp

+ ∥A − B∥p
Sp

≥ (∥A∥Sp + ∥B∥Sp )p + |∥A∥Sp − ∥B∥Sp |p

Ball, Carlen and Lieb proved that this is true for 1 ≤ p ≤ 4/3.
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Embedding conjecture

Conjecture (H, 2022)
For p ≥ 1 and A, B ∈ Mn(C), there exists functions
f , g ∈ Lp([0, 1]) such that for any x , y ∈ R,

∥xA + yB∥Sp = ∥xf + yg∥Lp .



Normed spaces Background Subspaces of Lp Main result Applications Limitations and future

Embedding result!

Theorem (H, 2023)
For p > 0 and A, B ∈ Mn(C), there exists functions
f , g ∈ Lp([0, 1]) such that for any x , y ∈ R,

∥xA + yB∥Sp = ∥xf + yg∥Lp .
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Characterization of subspaces of Lp

Rk with norm ∥ · ∥ is isometric to a subspace of Lp iff there exists
a (necessarily unique) measure µp on Sk−1 such that for any
(x1, x2, . . . , xk) ∈ Rk ,

∥(x1, x2, . . . , xk)∥p =
∫

Sk−1
|x1t1 + . . . + xktk |p dµp(t1, . . . , tk).
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Characterization of subspaces of Lp

Rk with norm ∥ · ∥ is isometric to a subspace of Lp iff there exists
a (necessarily unique) measure µp on Sk−1 such that for any
(x1, x2, . . . , xk) ∈ Rk ,

∥(x1, x2, . . . , xk)∥p =
∫

Sk−1
|x1t1 + . . . + xktk |p dµp(t1, . . . , tk).

Measure µp can be explicitly calculated for (Hermitian) 2 × 2
matrices (∥(x1, x2)∥ := ∥x1A + x2B∥Sp ), but for bigger matrices,
this seems hopeless.
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Better representing measure?
For A, B ∈ Mn(C), does there exist a natural measure µ on R2

such that for any (x1, x2) ∈ R2,

∥x1A + x2B∥p
Sp

=
∫
R2

|x1t1 + x2t2|p dµ(t1, t2)

for every p > 0?
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Better representing measure?
For A, B ∈ Mn(C), does there exist a natural measure µ on R2

such that for any (x1, x2) ∈ R2,

∥x1A + x2B∥p
Sp

=
∫
R2

|x1t1 + x2t2|p dµ(t1, t2)

for every p > 0?

The measure µ is not unique, so how should it be chosen?
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Simultaneous embedding to Lp?
For A, B ∈ Mn(C), does there exist a measure µ on R2 such that
for any (x1, x2) ∈ R2,

∥x1A + x2B∥p
Sp

=
∫
R2

|x1t1 + x2t2|p dµ(t1, t2)

for every p > 0?
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Simultaneous embedding to Lp?
For A, B ∈ Mn(C), does there exist a measure µ on R2 such that
for any (x1, x2) ∈ R2,

∥x1A + x2B∥p
Sp

=
∫
R2

|x1t1 + x2t2|p dµ(t1, t2)

for every p > 0?

No... µ is usually not a measure, but a distribution.
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Better simultaneous embedding to Lp?
Does there exists a scaling function c : R+ → R+ with the
following property: for A, B ∈ Mn(C), there exists a measure µ on
R2 such that for any (x1, x2) ∈ R2,

∥x1A + x2B∥p
Sp

= c(p)
∫
R2

|x1t1 + x2t2|p dµ(t1, t2)

for every p > 0?

What should c(p) be?
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Simultaneous embedding to Lp (H, 2023)
For A, B ∈ Mn(C), there exists a measure µ on R2 such that for
any (x1, x2) ∈ R2 and p > 0,

∥x1A + x2B∥p
Sp

= p(p + 1)
∫
R2

|x1t1 + x2t2|p dµ(t1, t2).
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Tracial joint spectral measure

Theorem (H, 2023)
For Hermitian A, B ∈ Mn(C), there exists a unique measure µA,B
on R2 \ {0} such that for any x , y ∈ R and k ∈ N+,

tr(xA + yB)k = k(k + 1)
∫
R2

(ax + by)k dµA,B(a, b).

This µA,B is the tracial joint spectral measure of A and B.
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Tracial joint spectral measure

Theorem (H, 2023)
For Hermitian A, B ∈ Mn(C), there exists a unique measure µA,B
on R2 \ {0} such that for any x , y ∈ R and any f : R → R,

tr H(f )(xA + yB) =
∫
R2

f (ax + by) dµA,B(a, b),

where

H(f )(x) =
∫ 1

0
f (xt)1 − t

t dt.

H(tk) = tk/(k(k + 1)).
H(|t|p) = |t|p/(p(p + 1)).
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Formula for tracial joint spectral measures

Theorem (H, 2023)
Decompose µA,B = µc + µs w.r.t. the Lebesgue measure
(µc ≪ m2, µs ⊥ m2). Then

dµc
dm2

(a, b) = 1
2π

n∑
i=1

∣∣∣∣Im(λi

((
I − aA + bB

a2 + b2

)
(bA − aB)−1

))∣∣∣∣ ,
and for φ ∈ Cc(R2 \ {0}),

∫
R2

φ(a, b) dµs(a, b) =
k∑

i=1

∫ 1

0
φ

(⟨Avi , vi⟩
⟨vi , vi⟩

t,
⟨Bvi , vi⟩
⟨vi , vi⟩

t
) 1 − t

t dt.

where {v1, v2, . . . , vk} are eigenvectors of A−1B corresponding to
the real eigenvalues.
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Figure: (A, B) =
([

1 0
0 −1

]
,

[
2 −1

−1 1

])
.
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Figure: (A, B) =
([

2 0
0 −1

]
,

[
1 −2

−2 2

])
.
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Figure: (A, B) =

1 0 0
0 2 0
0 0 −1

 ,

0 1 1
1 −1 −1
1 −1 1

.
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Figure: (A, B) =




−3 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 2

 ,


0 0 0 −1
0 0 0 −1
0 0 −2 −2

−1 −1 −2 2


.
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Basic properties of tracial joint spectral measures

1 The continuous part µc is supported on (a subset of) the joint
numerical range

W(A, B) = {(⟨Av , v⟩, ⟨Bv , v⟩) | v ∈ Sn−1} ⊂ R2.

2 Singular part is supported on tangents from the origin to the
boundary curve of the continuous part, Kippenhahn curve.

3

If A =
[
A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
,

then µA,B = µA1,B1 + µA2,B2 .

4 The continuous part µc vanishes iff A and B commute.
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Theorem (H, 2023)
For p > 0 and A, B ∈ Mn(C), there exists functions f , g ∈ Lp such
that for any x , y ∈ R,

∥xA + yB∥Sp = ∥xf + yg∥Lp .

Proof.
Tracial joint spectral measure of A and B applied to the function
t 7→ |t|p implies that for x , y ∈ R,

∥xA + yB∥p
Sp

p(p + 1) = tr |xA + yB|p

p(p + 1) =
∫
R2

|ax + by |p dµA,B(a, b).

This means that we should choose f , g ∈ Lp(µA,B) with
f = (a, b) 7→ a and g = (a, b) 7→ b.
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Theorem (H, 2023)
If f : R → R has non-negative k:th derivative, then for any
Hermitian A, B ∈ Mn(C) with A ≥ 0, so does

t 7→ tr f (tA + B).

Proof.
Apply tracial joint spectral measure to f (t) = tk−1

+ .

Applying this result to f (t) = exp(t) recovers a result of Stahl
(formerly the BMV conjecture).

Theorem (Stahl, 2011)
Function t 7→ tr exp(B − tA) is a Laplace transform of a positive
measure for Hermitian A, B ∈ Mn(C) with A ≥ 0.
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Any non-negative bivariate polynomial p with p(0, 0) = 0 gives rise
to an (often non-trivial) inequality.

Example
If p(a, b) = (a2 + b2 − a)2,

0 ≤ 6
∫

p(a, b) dµA,B(a, b) = tr(A2) − tr(A3) − tr(AB2)

+ 3 tr(A4) + 4 tr(A2B2) + 2 tr(ABAB) + 3 tr(B4)
10 .
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Tracial joint spectral measures don’t generalize to triplets of
matrices.

Theorem (H, 2022)
If 0 < p < ∞, p ̸= 2, the 3-dimensional space of 2 × 2 real
symmetric matrices is not isometric to a subspace of Lp([0, 1]).
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Proposition (Complex case fails)
There are no functions f , g ∈ L8([0, 1],C) such that for any
z , w ∈ C one has∥∥∥∥∥z

[
1 0
0 −1

]
+ w

[
1 1
1 1

]∥∥∥∥∥
S8

= ∥zf + wg∥L8 .
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Generalizations?

The proof only works for matrices, and while a compactness
argument can deal with compact operators on a Hilbert space:

Question
Do tracial joint spectral measures exist for tracial von Neumann
algebras (M, τ)? That is, if A, B ∈ (M, τ) are self-adjoint, does
there exist a measure µA,B on R2, such that for f : R → R and
x , y ∈ R, one has

τ(H(f )(xA + yB)) =
∫
R2

f (ax + by) dµA,B(a, b)?

Question
Is every 2-dimensional subspace of a non-commutative Lp-space
isometric to a subspace of Lp([0, 1])?



Normed spaces Background Subspaces of Lp Main result Applications Limitations and future

Thank you!

Interactive demo (that generated the above 10 × 10 example):
shikhin.in/tjsm/tjsm.html

https://shikhin.in/tjsm/tjsm.html
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0 Define g(x) =
∫ 1

0 (etx − 1)(1 − t)/t dt and consider the
function

G : (x , y) 7→ tr g(xA + yB).

1 (easy) Prove that the tracial joint spectral measure coincides
with the (distributional) Fourier transform of G outside 0, i.e.

tr H(f )(xA + yB) =
∫
R2

f (ax + by)Ĝ(a, b) da db.

2 (not so easy) Prove that Ĝ satisfies the formula by taking a
test function φ and calculating

(Ĝ , φ) = (G , φ̂) =
∫

G(x , y)φ̂(x , y) dx dy = . . .
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Recall that µA,B has continuous part with density

dµc
dm2

(a, b) = 1
2π

n∑
i=1

|Im (λi (C(a, b)))| ,

where C(a, b) is some auxiliary matrix; and singular part satisfying∫
R2

φ(a, b) dµs(a, b) =
k∑

i=1

∫ 1

0
φ

(⟨Avi , vi⟩
⟨vi , vi⟩

t,
⟨Bvi , vi⟩
⟨vi , vi⟩

t
) 1 − t

t dt.

Key identities:
1 For λ ∈ C,

lim
M→∞

∫
|t|<M

log
∣∣∣∣1 + λ

t

∣∣∣∣ dt = π |Im(λ)| .

2 For Hermitian A, B ∈ Mn(C), if ker(B) = span(v), then

det(B + tA)
det(B + tI) = ⟨Av , v⟩

⟨v , v⟩
+ O(t) as t → 0.
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