Tracial joint spectral measures Final public oral exam

Otte Heinävaara

Princeton University

May 2024

Distances

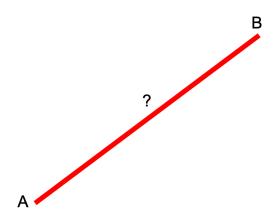


Figure: points A and B

Distances

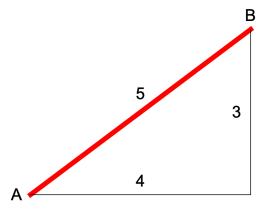


Figure: distance equals $\sqrt{4^2 + 3^2} = 5$

Distances

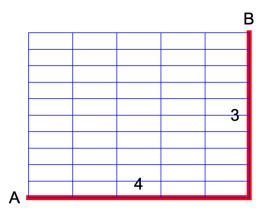
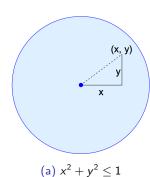


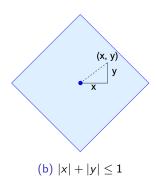
Figure: distance equals 4 + 3 = 7

Balls

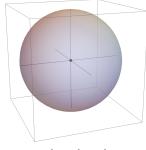


Balls



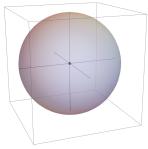


3-dimensional balls

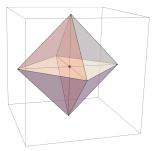


(a) $x^2 + y^2 + z^2 \le 1$

3-dimensional balls



(a) $x^2 + y^2 + z^2 \le 1$



(b)
$$|x| + |y| + |z| \le 1$$

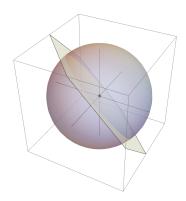
Higher dimension

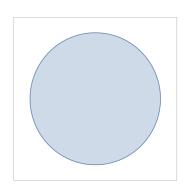
$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$$

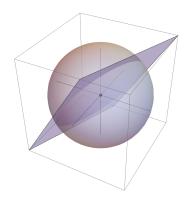
$$\mapsto \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 + x_9^2}$$

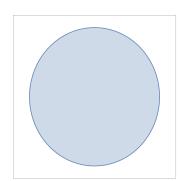
$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$$

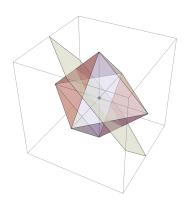
$$\mapsto |x_1| + |x_2| + |x_3| + |x_4| + |x_5| + |x_6| + |x_7| + |x_8| + |x_9|$$

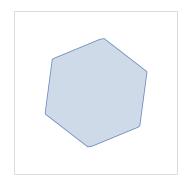


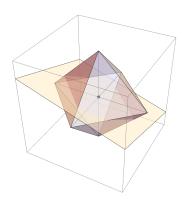


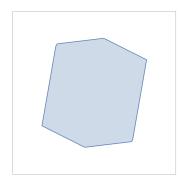


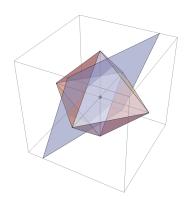


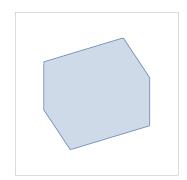




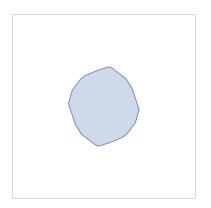


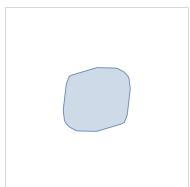






Slices of the 9-dimensional Manhattan ball





Are slices useful?

Yes: they can see features of the ball.

- Corners (sharp edges)
- Flat portions

Are slices useful?

Yes: they can see features of the ball.

- Corners (sharp edges)
- Plat portions
- Smoothened out corners (sharp-ish edges)
- Portions that are almost flat

 ℓ_p -norm:

$$(x_1, x_2, x_3, x_4)$$

 $\mapsto (|x_1|^p + |x_2|^p + |x_3|^p + |x_4|^p)^{1/p}$

Schatten-*p*-norm:

$$\begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \\ x_{3,1} & x_{3,2} & x_{3,3} \end{bmatrix}$$

$$\mapsto \text{some funky thing}$$

My thesis

Theorem

All slices of Schatten-p ball can also be found as slices of ℓ_p ball.

My thesis

Theorem

All slices of Schatten-p ball can also be found as slices of ℓ_p ball.

Proof.

Recipe: Tracial joint spectral measures!

Definition (Schatten-p spaces)

For $p \ge 1$ and a compact operator A, define the S_p -norm with

$$||A||_{S_p} = \left(\sum_{i=1}^{\infty} \sigma_i(A)^p\right)^{1/p} = (\operatorname{tr}|A|^p)^{1/p} = \left(\operatorname{tr}(A^*A)^{p/2}\right)^{1/p}.$$

 S_2 is the Hilbert–Schmidt norm.

 S_{∞} is the operator norm.

 S_1 is the trace/nuclear norm.

Unitarily invariant norms

Norm $\|\cdot\|$ on $M_n(\mathbb{C})$ is **unitarily invariant**, if for any two unitaries U and V we have $\|UAV\| = \|A\|$ for any $A \in M_n(\mathbb{C})$. Function $\mathbb{C}^n \to \mathbb{R}_+$ is a **symmetric gauge function** if

- Φ is a norm
- $\Phi((x_{\sigma(i)})_{i=1}^n) = \Phi((x_i)_{i=1}^n)$ for any permutation σ
- $\Phi((\omega_i x_i)_{i=1}^n) = \Phi((x_i)_{i=1}^n)$ for any $\omega_1, \omega_2, \dots, \omega_n \in S^1 \subset \mathbb{C}$.

Theorem (von Neumann, 1937)

Norm $\|\cdot\|$ on $M_n(\mathbb{C})$ is unitarily invariant iff there exists a symmetric gauge function Φ such that

$$||A|| = \Phi((\sigma_i(A))_{i=1}^n).$$

Theorem (von Neumann, 1937)

Norm $\|\cdot\|$ on $M_n(\mathbb{C})$ is unitarily invariant iff there exists a symmetric gauge function Φ such that

$$||A|| = \Phi((\sigma_i(A))_{i=1}^n).$$

Lemma (von Neumann, 1937)

If Φ and Φ' are dual norms, i.e.

$$\sup_{u\in\mathbb{C}^n,\Phi'(u)\leq 1}\langle v,u\rangle=\Phi(v),$$

then

$$\sup_{B\in M_n(\mathbb{C}^n), \|B\|_{\Phi'} \le 1} \operatorname{tr}(AB^*) = \|A\|_{\Phi}.$$

Similarities and differences

For 1 ,

- S_p is dual to S_q if 1/p + 1/q = 1
- $oldsymbol{\circ}$ S_p is the (complex) interpolation space of S_1 and S_{∞}
- S_p has type min(2, p) and cotype max(2, p),

but for $p \neq 2$,

- **1** S_p is **not** isomorphic to a subspace of $L_p([0,1])$ and in fact
- \circ S_p does **not** have an unconditional basis

Uniform convexity

Definition (Clarkson)

A Banach space $(X, \|\cdot\|)$ is uniformly convex, if for any $\varepsilon > 0$

$$\delta_X(\varepsilon) := \inf_{x,y \in S_X} \left\{ 1 - \left\| \frac{x+y}{2} \right\| \mid \|x-y\| \ge \varepsilon \right\} > 0.$$

Theorem (Clarkson, 1936)

 ℓ_p and $L_p([0,1])$ are uniformly convex.

Clarkson's inequalities

$$\delta_X(\varepsilon) := \inf_{x,y \in S_X} \left\{ 1 - \left\| \frac{x+y}{2} \right\| \mid \|x-y\| \ge \varepsilon \right\} > 0.$$

Theorem (Clarkson, 1936)

If $1 and <math>f, g \in L_p([0,1])$, then

$$\left\| \frac{f+g}{2} \right\|_{L_p}^q + \left\| \frac{f-g}{2} \right\|_{L_p}^q \le \left(\frac{1}{2} \left(\|f\|_{L_p}^p + \|g\|_{L_p}^p \right) \right)^{q/p},$$

where 1/p + 1/q = 1.

$$\delta_{L_p}(arepsilon) \geq 1 - \left(1 - \left(rac{arepsilon}{2}
ight)^q
ight)^{1/q} \geq rac{1}{a2^q}arepsilon^q$$

Theorem (Hanner, 1955)

If
$$1 \le p \le 2$$
 and $f, g \in L_p([0,1])$, then

$$||f+g||_{L_p}^p + ||f-g||_{L_p}^p \ge (||f||_{L_p} + ||g||_{L_p})^p + |||f||_{L_p} - ||g||_{L_p}|^p.$$

Theorem (Hanner, 1955)

If
$$1 \le p \le 2$$
 and $f,g \in L_p([0,1])$, then

$$||f+g||_{L_p}^p + ||f-g||_{L_p}^p \ge (||f||_{L_p} + ||g||_{L_p})^p + |||f||_{L_p} - ||g||_{L_p}|^p.$$

A question of Ball, Carlen and Lieb (1994)

Does Hanner's inequality generalize to S_p ? Namely, for $1 \le p \le 2$, is the following true for $A, B \in M_n(\mathbb{C})$?

$$||A + B||_{S_p}^p + ||A - B||_{S_p}^p \ge (||A||_{S_p} + ||B||_{S_p})^p + |||A||_{S_p} - ||B||_{S_p}|^p$$

Ball, Carlen and Lieb proved that this is true for $1 \le p \le 4/3$.

Embedding conjecture

Conjecture (H, 2022)

For $p \geq 1$ and $A, B \in M_n(\mathbb{C})$, there exists functions $f, g \in L_p([0,1])$ such that for any $x, y \in \mathbb{R}$,

$$||xA + yB||_{S_p} = ||xf + yg||_{L_p}.$$

Embedding result!

Theorem (H, 2023)

For p > 0 and $A, B \in M_n(\mathbb{C})$, there exists functions $f, g \in L_p([0,1])$ such that for any $x, y \in \mathbb{R}$,

$$||xA + yB||_{S_p} = ||xf + yg||_{L_p}.$$

Characterization of subspaces of L_p

 \mathbb{R}^k with norm $\|\cdot\|$ is isometric to a subspace of L_p iff there exists a (necessarily unique) measure μ_p on S^{k-1} such that for any $(x_1,x_2,\ldots,x_k)\in\mathbb{R}^k$,

$$\|(x_1,x_2,\ldots,x_k)\|^p = \int_{S^{k-1}} |x_1t_1+\ldots+x_kt_k|^p d\mu_p(t_1,\ldots,t_k).$$

Characterization of subspaces of L_p

 \mathbb{R}^k with norm $\|\cdot\|$ is isometric to a subspace of L_p iff there exists a (necessarily unique) measure μ_p on S^{k-1} such that for any $(x_1,x_2,\ldots,x_k)\in\mathbb{R}^k$,

$$\|(x_1,x_2,\ldots,x_k)\|^p = \int_{S^{k-1}} |x_1t_1+\ldots+x_kt_k|^p d\mu_p(t_1,\ldots,t_k).$$

Measure μ_p can be explicitly calculated for (Hermitian) 2×2 matrices ($\|(x_1,x_2)\| := \|x_1A + x_2B\|_{\mathcal{S}_p}$), but for bigger matrices, this seems hopeless.

Better representing measure?

For $A, B \in M_n(\mathbb{C})$, does there exist a **natural** measure μ on \mathbb{R}^2 such that for any $(x_1, x_2) \in \mathbb{R}^2$,

$$||x_1A + x_2B||_{S_p}^p = \int_{\mathbb{R}^2} |x_1t_1 + x_2t_2|^p d\mu(t_1, t_2)$$

for every p > 0?

Better representing measure?

For $A, B \in M_n(\mathbb{C})$, does there exist a **natural** measure μ on \mathbb{R}^2 such that for any $(x_1, x_2) \in \mathbb{R}^2$,

$$\|x_1A + x_2B\|_{S_p}^p = \int_{\mathbb{R}^2} |x_1t_1 + x_2t_2|^p d\mu(t_1, t_2)$$

for every p > 0?

The measure μ is not unique, so how should it be chosen?

Simultaneous embedding to L_p ?

For $A, B \in M_n(\mathbb{C})$, does there exist a measure μ on \mathbb{R}^2 such that for any $(x_1, x_2) \in \mathbb{R}^2$,

$$||x_1A + x_2B||_{S_p}^p = \int_{\mathbb{R}^2} |x_1t_1 + x_2t_2|^p d\mu(t_1, t_2)$$

for every p > 0?

Simultaneous embedding to L_p ?

For $A, B \in M_n(\mathbb{C})$, does there exist a measure μ on \mathbb{R}^2 such that for any $(x_1, x_2) \in \mathbb{R}^2$,

$$||x_1A + x_2B||_{S_p}^p = \int_{\mathbb{R}^2} |x_1t_1 + x_2t_2|^p d\mu(t_1, t_2)$$

for every p > 0?

No... μ is usually not a measure, but a distribution.

Better simultaneous embedding to L_p ?

Does there exists a scaling function $c: \mathbb{R}_+ \to \mathbb{R}_+$ with the following property: for $A, B \in M_n(\mathbb{C})$, there exists a measure μ on \mathbb{R}^2 such that for any $(x_1, x_2) \in \mathbb{R}^2$,

$$||x_1A + x_2B||_{S_p}^p = c(p) \int_{\mathbb{R}^2} |x_1t_1 + x_2t_2|^p d\mu(t_1, t_2)$$

for every p > 0?

What should c(p) be?

For $A, B \in M_n(\mathbb{C})$, there exists a measure μ on \mathbb{R}^2 such that for any $(x_1, x_2) \in \mathbb{R}^2$ and p > 0,

$$\|x_1A + x_2B\|_{S_p}^p = p(p+1) \int_{\mathbb{D}^2} |x_1t_1 + x_2t_2|^p d\mu(t_1, t_2).$$

Tracial joint spectral measure

Theorem (H, 2023)

For **Hermitian** $A, B \in M_n(\mathbb{C})$, there exists a unique measure $\mu_{A,B}$ on $\mathbb{R}^2 \setminus \{0\}$ such that for any $x, y \in \mathbb{R}$ and $k \in \mathbb{N}_+$,

$$\operatorname{tr}(xA+yB)^k=k(k+1)\int_{\mathbb{R}^2}(ax+by)^k\,\mathrm{d}\mu_{A,B}(a,b).$$

This $\mu_{A,B}$ is the **tracial joint spectral measure** of A and B.

Tracial joint spectral measure

Theorem (H, 2023)

For Hermitian $A, B \in M_n(\mathbb{C})$, there exists a unique measure $\mu_{A,B}$ on $\mathbb{R}^2 \setminus \{0\}$ such that for any $x, y \in \mathbb{R}$ and any $f : \mathbb{R} \to \mathbb{R}$,

$$\operatorname{tr} H(f)(xA + yB) = \int_{\mathbb{R}^2} f(ax + by) \, \mathrm{d}\mu_{A,B}(a,b),$$

where

$$H(f)(x) = \int_0^1 f(xt) \frac{1-t}{t} dt.$$

$$H(t^k) = t^k/(k(k+1)).$$

 $H(|t|^p) = |t|^p/(p(p+1)).$

Formula for tracial joint spectral measures

Theorem (H, 2023)

Decompose $\mu_{A,B}=\mu_c+\mu_s$ w.r.t. the Lebesgue measure $(\mu_c\ll m_2,~\mu_s\perp m_2)$. Then

$$\frac{\mathrm{d}\mu_{c}}{\mathrm{d}m_{2}}(a,b) = \frac{1}{2\pi} \sum_{i=1}^{n} \left| \operatorname{Im}\left(\lambda_{i}\left(\left(I - \frac{aA + bB}{a^{2} + b^{2}}\right)(bA - aB)^{-1}\right)\right) \right|,$$

and for $\varphi \in C_c(\mathbb{R}^2 \setminus \{0\})$,

$$\int_{\mathbb{R}^2} \varphi(a,b) \, \mathrm{d}\mu_s(a,b) = \sum_{i=1}^k \int_0^1 \varphi\left(\frac{\langle Av_i,v_i\rangle}{\langle v_i,v_i\rangle}t, \frac{\langle Bv_i,v_i\rangle}{\langle v_i,v_i\rangle}t\right) \frac{1-t}{t} \, \mathrm{d}t.$$

where $\{v_1, v_2, \dots, v_k\}$ are eigenvectors of $A^{-1}B$ corresponding to the real eigenvalues.

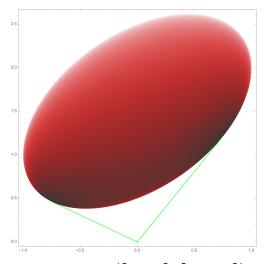


Figure: $(A, B) = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \end{pmatrix}$.

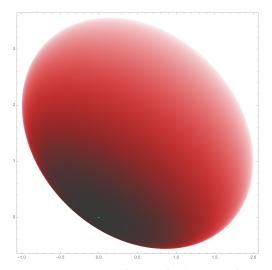


Figure: $(A, B) = \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix} \end{pmatrix}$.

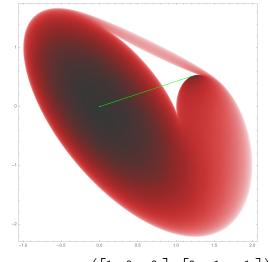


Figure:
$$(A, B) = \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \end{pmatrix}$$
.

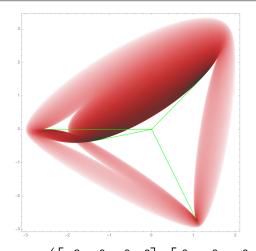


Figure:
$$(A, B) = \begin{pmatrix} \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -2 & -2 \\ -1 & -1 & -2 & 2 \end{bmatrix} \end{pmatrix}$$

Basic properties of tracial joint spectral measures

• The continuous part μ_{c} is supported on (a subset of) the joint numerical range

$$\mathcal{W}(A,B) = \{(\langle Av, v \rangle, \langle Bv, v \rangle) \mid v \in S^{n-1}\} \subset \mathbb{R}^2.$$

Singular part is supported on tangents from the origin to the boundary curve of the continuous part, Kippenhahn curve.

8

If
$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix},$$
 then
$$\mu_{A,B} = \mu_{A_1,B_1} + \mu_{A_2,B_2}.$$

4 The continuous part μ_c vanishes iff A and B commute.

Theorem (H, 2023)

For p > 0 and $A, B \in M_n(\mathbb{C})$, there exists functions $f, g \in L_p$ such that for any $x, y \in \mathbb{R}$,

$$||xA + yB||_{S_p} = ||xf + yg||_{L_p}.$$

Proof.

Tracial joint spectral measure of A and B applied to the function $t\mapsto |t|^p$ implies that for $x,y\in\mathbb{R}$,

$$\frac{\|xA + yB\|_{S_p}^p}{p(p+1)} = \frac{\operatorname{tr}|xA + yB|^p}{p(p+1)} = \int_{\mathbb{R}^2} |ax + by|^p \, \mathrm{d}\mu_{A,B}(a,b).$$

This means that we should choose $f,g \in L_p(\mu_{A,B})$ with $f = (a,b) \mapsto a$ and $g = (a,b) \mapsto b$.

Theorem (H, 2023)

If $f: \mathbb{R} \to \mathbb{R}$ has non-negative k:th derivative, then for any Hermitian $A, B \in M_n(\mathbb{C})$ with $A \geq 0$, so does

$$t\mapsto \operatorname{tr} f(tA+B).$$

Proof.

Apply tracial joint spectral measure to $f(t) = t_+^{k-1}$.

Applying this result to $f(t) = \exp(t)$ recovers a result of Stahl (formerly the BMV conjecture).

Theorem (Stahl, 2011)

Function $t \mapsto \operatorname{tr} \exp(B - tA)$ is a Laplace transform of a positive measure for Hermitian $A, B \in M_n(\mathbb{C})$ with $A \geq 0$.

Applications

Any non-negative bivariate polynomial p with p(0,0) = 0 gives rise to an (often non-trivial) inequality.

Example

If
$$p(a,b) = (a^2 + b^2 - a)^2$$
,

$$0 \le 6 \int p(a,b) d\mu_{A,B}(a,b) = tr(A^2) - tr(A^3) - tr(AB^2)$$

$$+ \frac{3 tr(A^4) + 4 tr(A^2B^2) + 2 tr(ABAB) + 3 tr(B^4)}{10}$$
.

Tracial joint spectral measures don't generalize to triplets of matrices.

Theorem (H, 2022)

If $0 , <math>p \neq 2$, the 3-dimensional space of 2×2 real symmetric matrices is **not** isometric to a subspace of $L_p([0,1])$.

Proposition (Complex case fails)

There are **no** functions $f,g\in L_8([0,1],\mathbb{C})$ such that for any $z,w\in\mathbb{C}$ one has

$$\left\| z \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + w \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\|_{S_8} = \|zf + wg\|_{L_8}.$$

Generalizations?

The proof only works for matrices, and while a compactness argument can deal with compact operators on a Hilbert space:

Question

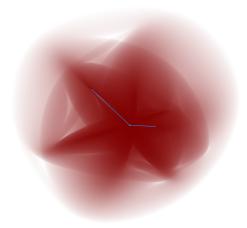
Do tracial joint spectral measures exist for tracial von Neumann algebras (\mathcal{M},τ) ? That is, if $A,B\in(\mathcal{M},\tau)$ are self-adjoint, does there exist a measure $\mu_{A,B}$ on \mathbb{R}^2 , such that for $f:\mathbb{R}\to\mathbb{R}$ and $x,y\in\mathbb{R}$, one has

$$\tau(H(f)(xA+yB))=\int_{\mathbb{R}^2}f(ax+by)\,\mathrm{d}\mu_{A,B}(a,b)?$$

Question

Is every 2-dimensional subspace of a non-commutative L_p -space isometric to a subspace of $L_p([0,1])$?

Thank you!



Interactive demo (that generated the above 10 \times 10 example):

O Define $g(x) = \int_0^1 (e^{tx} - 1)(1 - t)/t \, dt$ and consider the function

$$G:(x,y)\mapsto \operatorname{tr} g(xA+yB).$$

ullet (easy) Prove that the tracial joint spectral measure coincides with the (distributional) Fourier transform of G outside 0, i.e.

$$\operatorname{tr} H(f)(xA + yB) = \int_{\mathbb{R}^2} f(ax + by) \hat{G}(a, b) \, da \, db.$$

(not so easy) Prove that \hat{G} satisfies the formula by taking a test function φ and calculating

$$(\hat{G}, \varphi) = (G, \hat{\varphi}) = \int G(x, y) \hat{\varphi}(x, y) dx dy = \dots$$

Recall that $\mu_{A,B}$ has continuous part with density

$$\frac{\mathrm{d}\mu_c}{\mathrm{d}m_2}(a,b) = \frac{1}{2\pi} \sum_{i=1}^n \left| \operatorname{Im} \left(\lambda_i \left(C(a,b) \right) \right) \right|,$$

where C(a, b) is some auxiliary matrix; and singular part satisfying

$$\int_{\mathbb{R}^2} \varphi(a,b) \, \mathrm{d} \mu_s(a,b) = \sum_{i=1}^k \int_0^1 \varphi\left(\frac{\langle A v_i, v_i \rangle}{\langle v_i, v_i \rangle} t, \frac{\langle B v_i, v_i \rangle}{\langle v_i, v_i \rangle} t\right) \frac{1-t}{t} \, \mathrm{d} t.$$

Key identities:

• For $\lambda \in \mathbb{C}$,

$$\lim_{M o \infty} \int_{|t| < M} \log \left| 1 + rac{\lambda}{t} \right| \mathrm{d}t = \pi \left| \mathrm{Im}(\lambda) \right|.$$

② For Hermitian $A, B \in M_n(\mathbb{C})$, if $\ker(B) = \operatorname{span}(v)$, then

$$\frac{\det(B+tA)}{\det(B+tI)} = \frac{\langle Av, v \rangle}{\langle v, v \rangle} + O(t) \text{ as } t \to 0.$$