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This paper proposes a new semi-parametric identification and estimation approach
to multinomial choice models in a panel data setting with individual fixed effects. Our
approach is based on cyclic monotonicity, which is a defining convex-analytic feature of
the random utility framework underlying multinomial choice models. From the cyclic
monotonicity property, we derive identifying inequalities without requiring any shape
restrictions for the distribution of the random utility shocks. These inequalities point
identify model parameters under straightforward assumptions on the covariates. We
propose a consistent estimator based on these inequalities.

KEYWORDS: Cyclic monotonicity, multinomial choice, panel data, fixed effects, con-
vex analysis.

1. INTRODUCTION

CONSIDER A PANEL MULTINOMIAL CHOICE PROBLEM where agent i chooses from K + 1
options (labeled k =0, ..., K). Choosing option k in period ¢ gives the agent indirect
utility

BXE+ Af + € (1.1)

it it

where X! is a d,-dimensional vector of observable covariates that has support X, 8 is
the vector of weights for the covariates in the agent’s utility, A* is an agent/alternative-
specific fixed effect, and €, are unobservable utility shocks the distribution of which is not
specified. The agent chooses the option that gives her the highest utility:

YE=1BXE+ Al + € > BXE + AY + €5 vk, (1.2)
where Y* denotes the multinomial choice indicator. Let the data be identically and in-
dependently distributed (i.i.d.) across i. As is standard in semi-parametric settings, we
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normalize ||B] =1, X, =0,,, and A} =€), = 0. We do not impose any location normal-
ization on €X or A%, and as a result, it is without loss of generality to assume that X* does
not contain a constant.

In this paper, we propose a new semi-parametric approach to the identification and es-
timation of 8. We exploit the notion of cyclic monotonicity, which is an appropriate gener-
alization of “monotonicity” to multivariate (i.e., vector-valued) functions. The notion has
not been used as a tool for the identification and estimation of semi-parametric multi-
nomial choice models, although the cyclic monotonicity between consumption and price
in a representative consumer basket has been used in econometrics as early as Browning
(1989) for testing rational expectation hypotheses.

In cross-sectional multinomial models, it is easy to show that there is a cyclic monotonic-
ity relationship between the conditional choice probability and the utility index vector
under independence between the unobservable shocks and the utility indices. We apply
that to the panel model given above, find a way to integrate out the fixed effects, and ob-
tain a collection of conditional moment inequalities which, conveniently, are linear in S.
Then we show that these moment inequalities point identify 8 under either of two sets of
primitive verifiable conditions. We finally propose a consistent estimator for 8, the com-
putation of which requires only convex optimization and thus is not sensitive to starting
values of the optimization routine.

This paper is most closely related to several contemporaneous papers. Pakes and Porter
(2013) proposed a different approach to construct moment inequalities for the panel data
multinomial choice model, based on ranking the options according to their conditional
choice probabilities. By comparison, we compare the entire vector of choice probabili-
ties for all options across time periods. Khan, Ouyang, and Tamer (2016) proposed an
approach to point identification in a dynamic panel setting. Some of their identification
strategies are similar to ours, but our estimators are rather different.

Our paper builds upon the existing literature on semi-parametric panel binary choice
models. Manski (1987) proposed the maximum score approach for identification and
estimation. Honoré and Kyriazidou (2000) used a maximum score-type estimator for a
dynamic panel binary choice model. Abrevaya (2000) proposed a general class of rank-
correlation estimators, which is a smoothed version of Manski’s (1987) estimator when
applied to the panel binary choice models. Honoré and Lewbel (2002) generalized the
special regressor approach of Lewbel (1998, 2000) to the panel data setting.

Semi-parametric identification and estimation of multinomial choice models have been
considered in cross-sectional settings (i.e., models without individual fixed effect). Manski
(1975) and Fox (2007) based identification on the assumption of a rank-order property that
the ranking of B'X* across k is the same as that of E[Y*| X}, ..., XX] across k; this is an
ITA-like property that allows utility comparisons among all the options in the choice set to
be decomposed into pairwise comparisons among these options. To ensure this rank-order
property, Manski assumed that the error terms are i.i.d. across k, while Fox relaxed the
i.i.d. assumption to exchangeability. Exchangeability (or the rank-order property) is not
used in our approach. Lewbel (2000) considered identification using a special regressor.
In addition, Powell and Ruud (2008) and Ahn, Ichimura, Powell, and Ruud (2018) con-
sidered an approach based on matching individuals with equal conditional choice proba-
bilities, which requires that the rank of a certain matrix formed from the data be deficient
by exactly 1. This approach does not obviously extend to the panel data setting with fixed
effects.

The existing literature on cross-sectional binary choice models and on the semi-
parametric estimation of single or multiple index models (which include discrete choice
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models as examples) is voluminous and less relevant for us, and thus is not reviewed here
for brevity.'

The paper proceeds as follows. In Section 2, we introduce the notion of cyclic mono-
tonicity and relate it to a generic multinomial choice model. Subsequently, in Section 3,
we present the moment inequalities emerging from cyclic monotonicity for panel multino-
mial choice models, and give assumptions under which these inequalities suffice to point
identify the parameters of interest. This section also contains examples where the point
identification assumptions are verified. Section 4 presents an estimator, shows its consis-
tency, and evaluates its performance using Monte Carlo experiments. Sections 3 and 4
focus on 2-period panels and length-2 cycles. In Section 5, we extend the discussion to
longer panels and longer cycles. In Section 6, we discuss the closely related aggregate
panel multinomial choice model, which is a workhorse model for demand modeling in
empirical industrial organization. This section also contains an illustrative empirical ap-
plication using aggregate supermarket scanner data. Section 7 concludes.

2. PRELIMINARIES

In this section, we describe the concept of cyclic monotonicity and its connection to
multinomial choice models. We begin by providing the definition of cyclic monotonicity.

DEFINITION 1—Cyclic Monotonicity: Consider a function f : 4/ — RX where U € R,

and a length-M cycle of pointsin R¥: u;, us, ..., uy, u;. The function f is cyclic monotone
with respect to the cycle uy, u, ..., uy, u; if
M
Dty — 1) f () = 0, (2.1)
m=1

where uy,; = u,. The function f is cyclic monotone on I/ if it is cyclic monotone with
respect to all possible cycles of all lengths on its domain.

Cyclic monotonicity is defined for mappings from R¥ — RX, which generalizes the
usual monotonicity for real-valued functions. We make use of the following basic result
which relates cyclic monotonicity to convex functions:

PROPOSITION 1—Cyclic Monotonicity and Convexity: Consider a differentiable function
F :U — R for an open convex set U € RX. If F is convex on U, then the gradient of F
(denoted VF (u) := dF (u)/du) is cyclic monotone on U.

The proof for Proposition 1 is available from standard sources (e.g., Rockafellar (1970,
Chapter 24), Villani (2003, Section 2.3)). Consider a univariate and differentiable con-
vex function; obviously, its slope must be monotonically nondecreasing. The above result
states that cyclic monotonicity is the appropriate extension of this feature to multivariate
convex functions.

Now we connect the above discussion to the multinomial choice model. We start with
a generic random utility model for multinomial choices without specifying the random

! An exhaustive survey is provided in Horowitz (2009), Chapters 2 and 3.
>Technically, this defines the property of being “cyclic monotonically increasing,” but for notational simplic-
ity and without loss of generality, we use “cyclic monotone” for “cyclic monotonically increasing.”
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utility function or the data structure in detail. Suppose that an agent is choosing from
K +1 choices 0, 1, ..., K. The utility that she derives from choice k is partitioned into two
additive parts: U* + €*, where U* denotes the systematic component of the latent utility,
while € denotes the random shocks, idiosyncratic across agents and choice occasions. She
chooses choice k* if U¥" + € > max,—y__x U* + €. Let Y* = 1 if she chooses choice k
and 0 otherwise. As is standard, we normalize U’ = € = 0.

Let u* denote a generic realization of U*. Alsolet U= (U, ..., UX)Y,u= (u',..., uf),
and € = (€',...,€X). We introduce the “social surplus function” (McFadden (1978,
1981)), which is the expected utility obtained from the choice problem:

W(u) :E{kin(]%[uk +élu=u}. 2.2)

The following lemma shows that this function is convex and differentiable, that its gradi-
ent corresponds to the choice probability function, and finally that the choice probability
function is cyclic monotone. The first three parts of the lemma are already known in the
literature (e.g., McFadden (1981)), and the last part is immediately implied by the previ-
ous parts and Proposition 1. Nonetheless, we give a self-contained proof in Appendix A
for easy reference for the reader.

LEMMA 2.1—Gradient: Suppose that U is independent of € and that the distribution of €
is absolutely continuous with respect to the Lebesgue measure. Then

(a) W(-) is convex on RX,

(b) W) is differentiable on RX,

(¢) p(u) =V W(u), where p(u) = E[YIU=uland Y= (Y, ..., YX), and

(d) p(u) is cyclic monotone on RX.

The cyclic monotonicity of the choice probability can be used to form identifying re-
strictions for the structural parameters in a variety of settings. In this paper, we focus on
the linear panel data model with fixed effects, composed of equations (1.1) and (1.2).

3. PANEL DATA MULTINOMIAL CHOICE MODELS WITH FIXED EFFECTS

We focus on a short panel data setting where there are only two time periods. An exten-
sion to multiple time periods is given in Section 5. Let U, €, and Y be indexed by both i (in-
dividual) and # (time period). Thus they are now U, = (U}, ..., UX), €, = (€}, ..., XY,
andY;, = (Y}, ..., YX). Let there be an observable d,-dimensional covariate X* for each

choice k, and let U be a linear index of X* plus an unobservable individual effect A%:

Uy =BX} + Af, (3.1)

where B is a d,-dimensional unknown parameter. Let X;, = (X},..., X~) and A, =
(A}, ..., AXy. Note that X,, is a d, x K matrix. In short panels, the challenge in this
model is the identification of 8 while allowing correlation between the covariates and
the individual effects. We tackle this problem using the cyclic monotonicity of the choice

probability, as we explain next.

3.1. Identifying Inequalities

We derive our identification inequalities under the following assumption.
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ASSUMPTION 3.1: (a) €, and €;, are identically distributed conditional on A;, X, Xp:
(€1 ~ €2)|(A;, X1, Xp),

(b) the conditional distribution of €, given A;, X1, Xy, is absolutely continuous with respect
to the Lebesgue measure for t = 1,2 everywhere on the support of A;, X;1, Xi.

REMARK: (i) Part (a) of the assumption is the multinomial version of the group homo-
geneity assumption of Manski (1987), and is also imposed in Pakes and Porter (2013). It
allows us to form identification inequalities based on the comparison of choices made by
the same individual over different time periods, and by doing this to eliminate the fixed
effect. This assumption rules out dynamic panel models where X} may include lagged val-
ues of (Y})§_,. But it allows €; to be correlated with the covariates, and allows arbitrary
dependence between €;, and the fixed effects.

(ii) The assumption imposes no restriction on the dependence amongst the errors. The
errors across choices in a given period can be arbitrarily dependent, and the errors across
time periods, although assumed to have identical marginal distributions, can have arbi-
trary dependence.

To begin, we let i denote a K-dimensional vector with the kth element being n*, and
define

p(M, X1, %, a) (32)
= (Pr[ef + n* > €l + 0" YK'|Xi =x1, X =X, A = al),_
Assumption 3.1(a) implies that
p(M, X, X, a)
(3.3)

= (Pr[efz + T]k > Eg + nk/ Vk/|Xl'| =X, Xi2 =X, A,‘ = a])k:L_“,K.

Assumption 3.1(b) implies that p(n, X, X, a) is cyclic monotone in 7 for all possible val-
ues of x;, X,, a. Using the cyclic monotonicity with respect to length-2 cycles, we obtain,
for any n,, , and x;, x,, a:

(711 - nZ),[p(nl, X1, Xp, a) - P(nz, X1, Xp, a)] = O- (3~4)

Now we let n; =X, B+ A; and 1, = X, 8 + A;. Note that for r = 1, 2, by the definition of
p(7M, X1, X%, a), we have

P(X;tﬁ + A, Xir, Xi, Ai) = E[Y: X1, Xi2, Aj]. (3.5)
Combining (3.4) and (3.5), we have
(E[Y,1Xi1, X2, Ai] — E[Y51Xi1, X2, A]) (X, 8—X[,8) =0 everywhere.  (3.6)

Note that the fixed effect differences out within the second parenthetical term on the left
hand-side. Take the conditional expectation given X;;, X;, of both sides, and we get

(E[Y; X, Xa] = E[Y, X, X2]) (X, 8 — X,8) =0 everywhere. (3.7)
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These inequality restrictions involve only identified/observed quantities and the unknown
parameter 3, and thus can be used to set identify B8 in the absence of further assumptions,
and to point identify 8 with additional assumptions as discussed below. Note that under
binary choice (K = 1), both terms on the LHS of (3.7) become scalars, so that these
inequalities reduce to the rank correlation result in Manski (1987, Lemma 1).

Hence the foregoing derivations have proved the following lemma:

LEMMA 3.1: Under Assumption 3.1,
(E[Y} X0, Xo] — E[Y,Xi1, X2 ]) (X, 8 = X[,8) >0 everywhere.

The extension in Section 5 discusses how longer cycles can be used when more time
periods are available in the data set. The next subsection presents conditions under which
length-2 cycles are enough to produce point identification.

3.2. Point Identification of Model Parameters

To study the identification information contained in the inequalities in (3.7), we rewrite
them as

E[AY”XH, XiZ]AX;'B >0, (3.8)

where AZl = Zi2 — Z,‘].
Define g = (AX;E[AY;|X1, X;»]). For identification, we will want to place restrictions
on the support of the vector g, which we define as

G = supp(g) = supp(AX;E[AY;|X;;, X;]). (3.9

We would like to find conditions on model primitives (X;,, A;;, and €;,) that guarantee
that the support of the vectors g is rich enough to ensure point identification.
First, we impose regularity conditions on the unobservables:

ASSUMPTION 3.2: (a) The conditional support of (€;|A;, X1, Xi») is RX with positive prob-
ability.

(b) The conditional distribution of (€; + A;) given (Xi1, Xn) = (X1, X) is uniformly con-
tinuous in (X1, X,). That is,

: 0 0
lim 0.0 sup |F5it+Ai|xi1’Xi2(e +alx;, x;) — FfitJrAi‘XilyXiZ (e + a|X1’ X2) | =0.
(Xl,Xz)%(Xl ,xz) e,acRK

The role of Assumption 3.2(a) becomes clear when we describe the covariate condi-
tions below. Assumption 3.2(b) is a sufficient condition for the continuity of the func-
tion E[AY;|X; = x;, X = x;]. The latter ensures that the violation of the inequality
E[AY X, =x, X;» = x,]AX'D > 0 for a point (x;, X,) on the support of (X;;, X;,) implies
that the inequality E[AY;|X;;, X;,]JAX}b > 0 is violated with positive probability.

We also need a condition on the observable AX;. In general, this is not straightforward.
Note that the vectors g are equal to

K
AXE[AY[Xq, Xol = > AXFE[AYF (X1, Xa]. (3.10)

k=1
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In general, it is difficult to formulate conditions on the RHS of the previous equation
because the RHS is a weighted sum of AXF where the weight is the conditional choice
probability, which is not a primitive quantity. We proceed by considering two approaches
to reduce the RHS to a single term.

There are two types of events conditional on which we can reduce the summation to a
single term:

1. For a given k, let AX;* = (AX],...,AX"1 AXF, ..., AXK). Conditional on the
event AX;* =0 (i.e., individual i’s covariates are constant across both periods, for all
choices except the kth choice), we have

AXGE[AY,[Xi1, Xp] = AX[E[AY/ Xy, Xan]-

Note that supp(AXFE[AY¥|X,1, Xi2]) = supp(AX} sign(E[AY}|X1, X2])) due to the fact
that E[AY}|X,;, X;2] is a scalar random variable. Assumption 3.2(a) ensures that we
have Pr(E[AYF¥|X,;, X;,] = 0]JAX;* = 0) = 0, which implies that sign(E[AY*|X;;, Xi2]) €
{—1, 1} with probability 1 conditional on AX;* = 0. Thus, it is sufficient to assume a rich
support for AX* and —AX¥ conditional on AX;* = 0. We are thus motivated to define

Gi = |_Jsupp(£AXf|AX;* =0), (3.11)
k

where the conditional support of £AX¥ is the union of the conditional support of AX¥
and that of —AX¥.

2. Conditional on the event AX} = AX] for all k (i.e., individual i’s covariates are
identical across all choices and only vary across time periods), we have

AXE[AY X, X2] = AX}E[—AYan, Xiz],

where AY? = — "¢ | AY¥. Similar arguments as above show that it is sufficient to assume
a rich support for AX} and —AX/, which motivates us to define

Gu = supp(+AX] [AX] = AX] Vk). (3.12)
In what follows, our identification condition will be imposed on the set
G = G[ U G“. (313)

Two assumptions on G are considered, which differ in the types of covariates that they
accommodate. Each assumption is sufficient by itself. We consider each case in turn.

ASSUMPTION 3.3: The set G contains an open R% ball around the origin.

The gist of this assumption is that, beginning from the origin and moving in any direc-
tion, we will reach a point in G. This assumption essentially requires all covariates to be
continuous, but allows them to be bounded.

Our second sufficient condition allows discrete covariates generally, but requires one
regressor with large support. Let g_; denote g with the first element removed, and define
G_1={g1:3g1€Rs.t.(g1,8,) €G}. Let Gi(g-1) ={g1 € R: (81,8 ,) € G}. For j =
2,...,d.,wedefine g_;, G_;, and G;(g_,) analogously.

ASSUMPTION 3.4: For some j* € {1,2,...,d,}:
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(@) Gj(g-j) =R forall g_j- in a subset G° . of G_j.,
(b) G° j+ Is not contained in a proper linear subspace of Réx—1
(c) the j*th element of B, denoted by B+, is nonzero.

The identification result is stated using the following criterion function:
Q(b) = E|min(0, E[AY,X;, X |AX!D)|. (3.14)
We will return to this criterion function below in considering estimation.

THEOREM 3.1: Under Assumptions 3.1, 3.2, and either 3.3 or 3.4, we have Q(B) =0, and
Q(b) > 0 for all b # B such that b € R% and ||b|| = 1.

REMARK: In the binary choice case, our condition 3.3 reduces to conditions similar to
those in Hoderlein and White (2012), and our condition 3.4 reduces to conditions similar
to those in Manski (1987). Hoderlein and White (2012) and Manski (1987) arrived at
their respective conditions via distinct and mutually incompatible arguments. We arrive
at both types of point identification conditions in a single framework, and by doing so
were able to demonstrate the necessity of the large support condition in the presence of a
discrete regressor in the binary choice case. This is reported as Theorem C.1 in Section C
of the Supplemental Material (Shi, Shum, and Song (2018)), which extends, in a small way,
Theorem 1 of Chamberlain (2010) to the case with general discrete regressors rather than
a time dummy, and provides an alternative proof for the case of nonparametric error.’

3.3. Examples

Next, we consider several examples, which show that verifying Assumption 3.3 or 3.4
can be straightforward. For all the examples, we consider the trinary choice (K = 2) case
with two covariates (d, = 2).

EXAMPLE 1: supp((X¥),12.4-12) = [0, 11%. Then, supp((AX¥)s_;,) = [—1, 1]*. Then,
G 2 supp(AX?|AX! =0) = [—1, 1]*. Obviously, [—1, 1]* contains an open neighborhood
of the origin; thus, Assumption 3.3 is satisfied.

EXAMPLE 2: Suppose that the covariates do not vary across k: Xt = X, for k =1, 2,
and supp((X;)i—1.2) = [0, 1]*. Thus, Gy = supp(AX;) = [—1, 1]?, which satisfies Assump-
tion 3.3.

EXAMPLE 3: Suppose that the covariates take continuous values for alternative
1 and discrete values for alternative 2, as an example of which supp((X}).-12) =
[0, 114, supp((X?),=12) = {0, 1}*, and the joint support is the Cartesian product. Then,
supp(AX}|AX? =0) = [—1, 1]*. Thus, Assumption 3.3 is satisfied.

3Ahn et al. (2018), who studied a general model that encompasses the cross-sectional multinomial choice
model, gave a point identification condition that allows discrete regressors without explicitly requiring large
support. Their condition is imposed on a non-primitive quantity that depends on B. This condition may hold
for a subset of values of B, but not for all values of 8 in {b € RX : ||b|| = 1}, as implied by Theorem 1 of
Chamberlain (2010).
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EXAMPLE 4: Suppose that the first covariate is a time dummy: X{ , = ¢ for all k, ¢, and

the second covariate has unbounded support: supp((Xé" Di=1.2:k=12) = (¢, 00)* for some
c € R. Then,

supp(AX/|AX! =AX7)={1} x R.

Hence, G 2 Gy ={—1, 1} x R. Let j* =2 (for j* as defined in Assumption 3.4), and let
G°, ={-1, 1}. Assumption 3.4(b) obviously holds. Assumption 3.4(a) also holds because
G,(—1) = G,(1) = R. Assumption 3.4(c) holds as long as 8, # 0.

3.4. Remarks: Cross-Sectional Model

In this paper, we have focused on identification and estimation of panel multinomial
choice models. Here we briefly remark on the use of the cyclic monotonicity (CM) in-
equalities for estimation in cross-sectional multinomial choice models, which is natural
and can be compared to the large number of existing estimators for these models. In
the cross-sectional model, the individual-specific effects disappear, leading to the choice
model

YE=1{B X! +€ =p X} +€ forallk =0,...,K}.

Hence, to apply the CM inequalities, the only dimension upon which we can difference
is across individuals. Under the assumptions that the vector of utility shocks e; is (i) i.i.d.
across individuals and (ii) independent of the covariates X, the 2-cycle CM inequality
yields that, for all pairs (i, j),

(ELY:1X,] = EIY,1X,1) (Xi = X)) B = 0.
In particular, for the binary choice case (k € {0, 1}), this reduces to
(E[Y!Xi] - E[Y}1X;])(X; = X;)B >0,

which is the estimating equation underlying the maximum score (Manski (1975)) and
maximum rank correlation (Han (1987)) estimators for the binary choice model.

4. ESTIMATION AND CONSISTENCY

In this section, we propose a computationally easy consistent estimator for B, based
on Theorem 3.1. The consistency is obtained when n — oo with T fixed. In particu-
lar, we focus on 7 = 2 and only discuss longer panels in Section 5 below. Based on
the panel data set, suppose that there is a uniformly consistent estimator p,(x;, x,) for
E(Y;| X1 =x4, X =%,) for t =1, 2. Then we can estimate the model parameters using a
sample version of the criterion function given in equation (3.14). Specifically, we obtain a
consistent estimator of 8 as 8 = B/ 8|, where

B = arg min 0,(b) and (4.1)
beRdx maxj_p g4, 1bjlI=1

Qu(b) =n" ) [(b'AX;) (AP(Xi, X)), (4.2)

i=1
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where [z]- = |mln(0, Z)|, and Af)(Xﬂ, Xi2) = ﬁz(X,‘l, XiZ) — ﬁl (Xila X,‘z). The estimator is
easy to compute because Q,(b) is a convex function and the constraint set of the min-
imization problem is the union of 2d, convex sets. If one knows the sign of a parame-
ter, say B; > 0, one can simplify the estimator even further by using the constraint set
{b € R% : b, =1} instead.*> R

The following theorem shows the consistency of S.

ASSUMPTION 4.1: (a) max;_; __, [Ap(Xii, Xi2) — Ap(Xir, Xi2) | =, 0 as n — oo, where
Ap(x1,x2) = E[Yp — Y [Xiy = X1, Xip =X, and
(b) max,—; » E[|X;]] < oo.

THEOREM 4.1—Consistency: Under Assumptions 3.1, 3.2, 4.1, and either 3.3 or 3.4:

E—)I,B as n— oo.

The consistency result in Theorem 4.1 relies on an estimator of Ap(x;, x;) that is uni-
formly consistent over the observed values of (X, X;») (i.e., Assumption 4.1). When
supp(Xi1, X2) is compact, any estimator that is uniformly consistent on supp(X;;, X;;) sat-
isfies this requirement. Such estimators are abundant in the nonparametric regression lit-
erature; see, for example, Devroye (1978) for nearest neighbor estimators, Hansen (2008)
for kernel regression estimators, and Hirano, Imbens, and Ridder (2003) for a sieve logit
estimator. When supp(X;;, X;;) is not compact, at least the nearest neighbor estimators
and the kernel regression estimators can still be shown to satisfy our uniform consistency
requirement using the uniform convergence rate results in the references just given, pro-
vided that the observed n values of (X;;, Xj;) are contained in a slowly expanding subset
of its support with probability approaching 1. The existence of such a slowly expanding
subset can be guaranteed by imposing appropriate tail probability bounds for the covari-
ates. For example, if a kernel regression estimator is used, one can show using Theorem 2
of Hansen (2008) that it suffices to assume that the covariates have tails that are thinner
than polynomial.

Remark: Partial Identification. Here we have focused on point identification of the
model parameters utilizing the cyclic monotonicity inequalities. An alternative would be
to consider the case when the parameters are partially identified. In that case, confidence
intervals for B8 can be constructed using the methods proposed for general conditional
moment inequalities (see, e.g., Andrews and Shi (2013) and Chernozhukov, Lee, and
Rosen (2013)). These methods are partial-identification robust, and thus can be applied
when our point identification assumptions hold or do not hold. Moreover, since our mo-
ment inequalities, based on cyclic monotonicity, are linear in the model parameters, we
can also utilize more specialized methods for models with nonsingleton, convex identified
sets (Bontemps, Magnac, and Maurin (2012), Freyberger and Horowitz (2015)). These
methods may involve easier computation than the general methods.

4 An alternative candidate for Eis argming,. g 51 On(b). However, obtaining this estimator requires min-
imizing a convex function on a non-convex set, which is computationally less attractive.

SInstead of forming the criterion function using a nonparametric estimator of p(-, -), one could also use
weight functions to turn the conditional inequalities into unconditional inequalities, as done in Khan and
Tamer (2009) and Andrews and Shi (2013). We investigate this option in the Monte Carlo experiment and
report the results in Section D of the Supplemental Material.
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4.1. Monte Carlo Simulation

Consider a trinary choice example and a 2-period panel. Let X} be a three-dimensional
covariate vector: X} = (XF,,)j=123. Let (X};,)j=1.23k=12-1.2 be independent uniform ran-
dom variables in [0, 1].° Let A* = (0% + X, » — X1,1)/4 for k =1, 2, where ¥ is uniform
in [0, 1], independent across k& and independent of other model primitives. Consider the
true parameter value g8 = (1, 0.5, 0.5), and use the scale normalization 8; = 1.

We consider two specifications. The first specification is a multinomial logit model. In
the second specification, €X for k = 1, 2 is a difference of two independent Cauchy(x, =
0, y = 2) variates.

In addition to our CM estimator, we also implement Chamberlain’s (1980) conditional
likelihood estimator for comparison.” The conditional likelihood method is consistent
and n~'2-normal for the logit specification, but it may not be consistent in the Cauchy
specification. For both estimators, we report bias, standard deviation (SD), and the root
mean-squared error (rMSE). To implement our estimator, we use the Nadaraya—Watson
estimator with product kernel to estimate p(-, -) with bandwidth selected via leave-one-
out cross-validation. We consider four sample sizes 250, 500, 1000, and 2000, and use 5000
Monte Carlo repetitions. R

The results are reported in Tables I and II. We only report the performance of 3, be-
cause that of B; is nearly the same due to the symmetric design of the experiment. Un-
der the Logit design (Table I), the conditional likelihood estimator not surprisingly has
smaller bias and smaller standard deviation. Yet our CM estimator is close in perfor-
mance with conditional likelihood. Under the Cauchy design, the conditional likelihood
estimator displays larger bias and standard deviation, and the bias shrinks very slowly with
the sample size. This may reflect the inconsistency of the conditional likelihood estimator
in this setup. On the other hand, the CM estimator has a smaller bias and standard devia-
tion, both decreasing significantly as the sample size increases. Overall, our CM estimator
has more robust performance in non-logit setup and leads to only modest efficiency loss
in the logit setups in the range of sample sizes that we consider.®

5. LONGER PANELS (T > 2)

We have thus far focused on 2-period panel data sets for ease of exposition. Our method
naturally generalizes to longer panel data sets as well. Suppose that there are T time
periods. Then one can use all cycles with length L < T to form the moment inequalities.
To begin, consider #,4,...,t, € {1,2,..., T}, where the points do not need to be all
distinct. Assuming the multi-period analogue of Assumption 3.1, we can use derivation

5 Assumption 3.3 is satisfied because all the X variables are supported on the unit interval and they can vary
freely from each other. Thus point identification holds under this design.

"In Section C of the Supplemental Material, we report an instrumental function variation of our estimator,
where the conditional moment inequalities are approximated by unconditional moment inequalities generated
by multiplying the moment function to indicators of hypercubes on the space of the conditioning variables in
the spirit of Khan and Tamer (2009) and Andrews and Shi (2013), instead of estimated nonparametrically. This
variation of our estimator is more difficult to compute and has less desirable Monte Carlo performance.

8As the sample size gets larger, the discrepancy between the standard deviation of the CM estimator and
the conditional likelihood estimator may grow because the latter is n~'/2-consistent while the former likely
converges more slowly.
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TABLE I

n BIAS SD rMSE 25% Quantile Median 75% Quantile
CM Estimator
250 —0.0622 0.1385 0.1519 0.3435 0.4302 0.5242
500 —0.0484 0.0977 0.1090 0.3854 0.4477 0.5141
1000 —0.0328 0.0701 0.0774 0.4192 0.4647 0.5133
2000 —0.0257 0.0488 0.0552 0.4402 0.4726 0.5069
Conditional Likelihood Estimator
250 0.0064 0.1283 0.1284 0.4192 0.4992 0.5862
500 0.0022 0.0888 0.0889 0.4419 0.5009 0.5581
1000 0.0016 0.0621 0.0621 0.4592 0.5004 0.5430
2000 —0.0001 0.0439 0.0439 0.4700 0.4994 0.5287
similar to that in Section 3.1 to obtain
L
> B Xiy, — Xy, VENi, [Xiy 5 -, Xi 1> 0. (5.1)
m=1
To form an estimator, we consider an estimator p,, (X, ..., Xy, ) of E[Yi, [Xit5 .-, Xy, 1
Let the sample criterion function be
n L
Quby=n"'>"" > D VX, = Xigy )P Ki - X)) | - (52)

i=1 t),.tpll,... T Lm=1

The estimator of 3, ,§ is defined based on Q,(b) in the same way as in Section 4.

If L =T, the estimator just defined utilizes all available inequalities implied by cyclic
monotonicity. However, in practice there are disadvantages of using long cycles because
(1) the estimator p,,(X,, ..., Xy, ) can be noisy when ¢, ..., #, contains many distinct
values, and (2) it is computationally more demanding to exhaust and aggregate all cycles
of longer length if T is moderately large. Thus, in the empirical application below, we only
use the length-2 cycles, that is, L = 2.

TABLE II
MONTE CARLO PERFORMANCE OF ESTIMATORS OF $3; (CAUCHY DESIGN, By, = 0.5)

n BIAS SD rMSE 25% Quantile Median 75% Quantile
CM Estimator
250 —0.1164 0.2156 0.2450 0.2393 0.3761 0.5226
500 —0.0698 0.1714 0.1851 0.3124 0.4237 0.5379
1000 —0.0392 0.1291 0.1349 0.3701 0.4587 0.5454
2000 —0.0151 0.0953 0.0965 0.4209 0.4809 0.5462
Conditional Likelihood Estimator
250 0.1791 0.5985 0.6247 0.4118 0.6014 0.8467
500 0.1304 0.2512 0.2830 0.4613 0.6018 0.7607
1000 0.1166 0.1642 0.2013 0.5038 0.6045 0.7182
2000 0.1110 0.1142 0.1593 0.5327 0.6042 0.6809
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TABLE III
MOMENT INEQUALITY ESTIMATOR OF 3, (T = 3, CAUCHY DESIGN, S, = 0.5)

n BIAS SD rMSE 25% Quantile Median 75% Quantile

Based on Length-2 Cycles Only

250 —0.1413 0.1393 0.1984 0.2631 0.3565 0.4506
500 —0.0989 0.1069 0.1457 0.3283 0.3997 0.4716
1000 —0.0693 0.0814 0.1069 0.3755 0.4300 0.4837
2000 —0.0467 0.0616 0.0773 0.4120 0.4529 0.4936
Based on All Cycles
250 —0.1436 0.1391 0.1999 0.2613 0.3553 0.4465
500 —0.1006 0.1069 0.1467 0.3254 0.3973 0.4683
1000 —0.0702 0.0817 0.1077 0.3736 0.4291 0.4837
2000 —0.0478 0.0618 0.0782 0.4108 0.4514 0.4920

For identification, it might be possible to obtain weaker conditions for point identifi-
cation when longer cycles are used, but we were not able to come up with a clean set of
conditions for that. For estimation, inequalities from longer cycles provide additional re-
striction on the parameter and thus could potentially improve efficiency. We investigate
the gain in a Monte Carlo experiment next.

Another interesting question is whether equation (5.1) with L = T exhausts all the
information in the random utility model and leads to the sharp identified set. We believe
this is unlikely in general because the CM inequalities only derive from the convexity of
the social surplus function, and do not use other properties of the random utility model.
For instance, in random utility models, the choice probability of one alternative should
not increase when its own utility index stays constant while the utility indices of the other
alternatives weakly increase, which is not captured in the CM inequalities.” However,
these properties are not straightforward to use in the panel data setting and do not lead
to simple linear (in parameters) moment conditions.

5.1. Monte Carlo Results Using Longer Cycles

Here we use a 3-period extension of the Cauchy design presented in the previous sec-
tion. All the specification details are the same (including the fact that A% depends only
on X{, — X{,)), except that one additional period of data is generated. In Table III, we
report the performance of our moment inequality estimators for 3, using length-2 cycles,
and using both length-2 and -3 cycles (all cycles). As we can see, the performance of the
estimator is nearly identical whether or not the length-3 cycles are used. In practice, one
can try using length-2 cycles only first and then add length-3 cycles to see if the results
change. If not, there should be no reason to consider longer cycles since longer cycles
involve higher computational cost.

6. RELATED MODEL: AGGREGATE PANEL MULTINOMIAL CHOICE MODEL

Up to this point, we have focused on the setting when the researcher has individual-
level panel data on multinomial choice. In this section, we discuss an important and sim-
pler related model: the panel multinomial choice model estimated using aggregate data

9These other properties were studied in Koning and Ridder (2003).
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for which we are able to derive some inference results. Such models are often encoun-
tered in empirical industrial organization.!® In this setting, the researcher observes the
aggregated choice probabilities (or market shares) for the consumer population in a num-
ber of regions and across a number of time periods. Correspondingly, the covariates are
also only observed at region/time level for each choice option. To be precise, we observe
(Ser, Xer = (X, 01;/, XS ) )C 1..—1 Which denote, respectively, the region/time-level choice
probabilities and covarlates Only a “short” panel is required, as our approach works with
as few as two periods. Thus, to get the idea across with the simplest notation possible, we
focus on the case where T =2.

We model the individual choice Y., = (Y., ..., YX) as
Yio=UBXG+ A+ €, = BX( + A + €, VK =0,..., K}, (6.1)
where X?, A%, and €’ are normalized to zero, A;, = (A", ..., AXY is the choice-specific

individual fixed effect, and €,, = (€}, . .., €X,)’ is the vector of idiosyncratic shocks. Cor-

respondingly, the vector of choice probabilities S, = (S}, ..., SX) is obtained as the frac-

tion of /., agents in region i and time ¢ who chose option k, that is, S, = I Zl" Y.,
Make the market-by-market version of Assumption 3.1:

ASSUMPTION 6.1: (a) The error terms are identically distributed (€;.; ~ €;.,) conditional
on market and individual identity. Let market identity be captured by a random element n;
then this condition can be written as (€;.; ~ €;2) |, Ai. and

(b) the conditional distribution of €, given A, 1. is absolutely continuous with respect to
the Lebesgue measure, everywhere in A, 1..

Then arguments similar to those for Lemma 3.1 imply the following lemma.

LEMMA 6.1: Under Assumption 6.1, we have

E(AY|n.)(AX.B) >0, a.s. (6.2)

We no longer need to perform the nonparametric estimation of conditional choice
probabilities because E(Y;.|n.) can be estimated uniformly consistently by S,,."!
Now, we can construct a consistent estimator of 8. The estimator is defined as

B=B/IBll, where (6.3)
B =arg min Q,,(b) =n"! Z[(b/AXc)(ASC)]_. (6.4)

beR%x:max;_;

c=1

This estimator is consistent by similar arguments as those for Theorem 4.1. Estimators
using longer cycles when T' > 2 can be constructed as in the previous section.

10See, for instance, Berry, Levinsohn, and Pakes (1995) and Berry and Haile (2014).

" If inf, , 1., grows fast enough with n x T, this estimator is uniformly consistent, that is, sup,.sup, [|S¢ —
E(Y;t|me) |l = p 0. Section 3.2 of Freyberger’s (2015) arguments (using Bernstein’s Inequality) implies that the
above convergence holds if log(n x T')/min. 1., — 0.
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6.1. Convergence Rate of E in the Aggregate Case

In the aggregate case, I, is typically large relative to n. As a result, it is often reason-
able to assume that /., increases fast as n — oo, and S, converges to the limiting choice
probability E[Y,.|n.] fast enough that /t\he difference between S, and E[Y;.|n.] has neg-
ligible impact on the convergence of 8. Under such assumptions, we can derive a n~"/?
convergence rate for .

The derivation involves differentiating the criterion function with respect to b, which is
easier to explain on a convex parameter space rather than the unit circle that we have been
using as the normalized parameter space. Thus, for ease of exposition, we switch to the
normalization 8, =1 in this section. The parameter space is hence {(1, l;/)/ be Ré&—1y,
Let B denote B with the first coordinate removed. We make the following assumptions.

ASSUMPTION 6.2: (a) (S, Xe)2, is i.i.d. (independent and identically distributed) across
¢, and E(||vec(X.:)|?) < oo.

(b) max,—1 2 E[|IS., — ElYi|n1IIP1=0(n™).

(©) B—, B. )

Let W, = (AX,)E[AY,|n.]. Let W! denote the first coordinate of W,, and let W, denote
W, with the first coordinate removed.

(d) Pr(b'W, =0) =0 for all b such that by =1 and ||b — B|| < ¢, for a constant c.

(e) With probability 1, the conditional cumulative distribution function Fyy_ (- IW,.) of W!
given W. is continuous on [— B’WC, 00), continuously differentiable on (— B’WC, o0) with the
derivative fyw, (-|W,) that is bounded by a constant C.

(f) The smallest eigenvalue of

E[WW., fuw, (~W.B = TW.(b = B)IW.) L (W, (b — B) < 0)]

is bounded below by ¢, > 0 for all T € (0, 1) and all b such that by =1 and ||b — B < c|.

For establishing the rate result, we follow the general methods of Kim and Pollard
(1990) and Sherman (1993), which are useful for dealing with the noise component due
to sample averaging in the criterion function (6.4). This is the only source of noise we
need to consider, as Assumption 6.2(b) ensures that the noise from using the observed
market shares S, to estimate the conditional expectations E[Y,|7.] is negligible. In the
individual-level data setting, an analogue of Assumption 6.2(b) would hold and an n~"/ 2
rate for B would be obtained if the conditional choice probability were either known
or estimable at a parametric rate. However, a known conditional choice probability or
one estimated with parametric rate is implausible in that setting. We conjecture that with
individual-level data, the noise due to estimating the conditional choice probability dom-
inates and determines the rate. However, we have not found a way to handle this part of
the noise.

Parts (d)—(f) of this assumption require further explanation. We need to establish a
quadratic lower bound for the limiting criterion function in a neighborhood of the true
value 8. We do so via deriving the first- and the second-order directional derivatives of
the limiting criterion function in such a neighborhood. Parts (d) and (e) are used to guar-
antee the existence of directional derivatives, while part (f) ensures that the second-order
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TABLE IV
TABLE OF THE SEVEN PRODUCT-AGGREGATES USED IN ESTIMATION

Products Included in Analysis

Charmin

White Cloud

Dominicks

Northern

Scott

Cottonelle

Other good (incl. Angelsoft, Kleenex, Coronet, and smaller brands)

NN R W

directional derivative is bounded from below by a quadratic function.'? The proof of the
following theorem is given in Section B of the Supplemental Material.

THEOREM 6.1: Under Assumption 6.2, we have E— B=0,(n"'"?) for Edeﬁned in equa-
tion (6.3).

6.2. Empirical lllustration

Here we consider an empirical illustration, based on the aggregate panel multinomial
choice model described above. We estimate a discrete choice demand model for bath-
room tissue, using store/week-level scanner data from different branches of Dominicks
supermarket.”®> The bathroom tissue category is convenient because there are relatively
few brands of bathroom tissue, which simplifies the analysis. The data are collected at the
store and week level, and report sales and prices of different brands of bathroom tissue.
For each of 54 Dominicks stores, we aggregate the store-level sales of bathroom tissue
up to the largest six brands, lumping the remaining brands into the seventh good (see
Table 1V).

We form moment conditions based on cycles over weeks, for each store. In the estima-
tion results below, we consider cycles of length 2. Since data are observed at the weekly
level, we consider subsamples of 10 weeks or 15 weeks which were drawn at periodic in-
tervals from the 1989-1993 sample period. After the specific weeks are drawn, all length-2
cycles that can be formed from those weeks are used.

We allow for store/brand-level fixed effects and use the techniques developed in Sec-
tion 3.1 to difference them out. Due to this, any time-invariant brand- or store-level
variables will be subsumed into the fixed effect, leaving only explanatory covariates
which vary both across stores and time. As such, we consider a simple specification with
X* = (PRICE, DEAL, PRICE*DEAL). PRICE is measured in dollars per roll of bath-
room tissue, while DEAL is defined as whether a given brand was on sale in a given store-
week.!* Since any price discounts during a sale will be captured in the PRICE variable

2We use directional derivatives because our limiting criterion function is not fully differentiable to the
second order. In particular, even though it is first-order differentiable, the first derivative has a kink.

BThis data set has previously been used in many papers in both economics and marketing; see a partial list
at http://research.chicagobooth.edu/kilts/marketing-databases/dominicks/papers.

4The variable DEAL takes the binary values {0, 1} for products 1-6, but takes continuous values between
0 and 1 for product 7. The continuous values for product 7 stand for the average on-sale frequency of all the
small brands included in the product-aggregate 7. This and the fact that PRICE is a continuous variable make
the point identification condition, Assumption 3.3, hold.
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TABLE V
SUMMARY STATISTICS

Min Max Mean Median Std.Dev.

10 week data DEAL 0 1 0.4350 0 0.4749
PRICE 0.1776 0.6200 0.3637 0.3541 0.0876

PRICExDEAL 0 0.6136 0.1512 0 0.1766

15 week data DEAL 0 1 0.4488 0 0.4845
PRICE 0.1849 0.6200 0.3650 0.3532 0.0887

PRICExDEAL 0 0.6091 0.1644 0 0.1888

itself, DEAL captures any additional effects that a sale has on behavior, beyond price.
Summary statistics for these variables are reported in Table V.

The point estimates are reported in Table VI. One interesting observation from the
table is that the sign of the interaction term is negative, indicating that consumers are
more price sensitive when a product is on sale. This may be consistent with the story
that the sale status draws consumers’ attention to price (from other characteristics of the
product).

7. CONCLUSIONS

In this paper, we explored how the notion of cyclic monotonicity can be exploited for
the identification and estimation of panel multinomial choice models with fixed effects. In
these models, the social surplus (expected maximum utility) function is convex, implying
that its gradient, which corresponds to the choice probabilities, satisfies cyclic monotonic-
ity. This is just the appropriate generalization of the fact that the slope of a single-variate
convex function is nondecreasing.

We establish sufficient conditions for point identification of the model parameters, and
propose an estimator and show its consistency. Noteworthily, our moment inequalities are
linear in the model parameters, so that the estimation procedure is a convex optimization
problem, which has significant computational advantages. In ongoing work, we are con-
sidering the possible extension of these ideas to other models and economic settings.

APPENDIX A: PROOFS
PROOF OF LEMMA 2.1: (a) By the independence between U and €, we have
W(u):E{mkax[Uk—l—ekhU:u} :E{mkax[uk—i—ek]}. (A1)

TABLE VI
POINT ESTIMATES FOR BATHROOM TISSUE CHOICE MODEL

10 Week Data 15 Week Data
B DEAL 0.1053 0.0725
B2 PRICE —0.9720 —0.9922

B3 PRICExDEAL —0.2099 —0.1017
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This function is convex because max; [u* + €] is convex for all values of € and the expec-
tation operator is linear.

(b), (c) Without loss of generality, we focus on the differentiability with respect to uX.
Let (ul, ..., uX) denote an arbitrary fixed value of (U, ..., UX), and let u = 0. It suffices
to show that lim,_o[W(u!, ..., uf+7m)-=W(ul, ..., uX)]/n exists. We show this using the
bounded convergence theorem. First observe that

W(uy, ... ul +n) = W(u,, ..., ul) _E[A(n,u*, e)]
n n ’

(A.2)

where A(n, u,, €) = max{u! +€', ..., uf +n+€X} —max{u! +€', ..., uf +€X}. Consider

.....

to zero, we have
Am,u,e) (i 4m+et)—(witet) |
7 n '

(A3)

Thus,

lim A(m,u,,e) _

1. (A4)
n—0 T]

.....

we have

A * 9
Atm,u.0) _0_ (A5)
mn n
Thus,
lim 210 _ (A.6)
n—0 T]

By the absolute continuity of the conditional distribution of €, we have Pr(eX + uX =
max;_o. . x_1[u* + €*]) = 0. Therefore, almost surely,

. A(m,u,,€)
111'1’17 =

K K ko K
lim ; l{e +u, > max [uf +e ]} (A7)

0,...,K-1

Also, observe that

A(n,u, Ftn+ef —(uf +€°
' (n,u,€)| _|U +nte (ul +€) 1= (A8)
U] U]
Thus, the bounded convergence theorem applies and yields
lim E A(n, u,, €) =E[1{EK+MK> max [uk+ek]”=pK(u). (A.9)
n—0 n * 0 k=0,..K—-18 ¥
This shows both part (b) and part (c).
Part (d) is a direct consequence of part (c) and Proposition 1. Q.E.D.

PROOF OF THEOREM 3.1: To prove Theorem 3.1, we first prove the following lemma.
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Define the convex conic hull of G as

L
coni(G) = lZ/\Kg[|gg €G, A eR N >0,0,L=12,..}. (A.10)

=1

LEMMA A.1: Suppose that the set {g € R% : B'g > 0} C coni(G); then Q(B) =0, and
Q(b) > 0forall b e {b € R* : ||b'|| =1} such that b # .

PROOF OF LEMMA A.1: The result Q(B) = 0 is straightforward due to equation (3.8).
We next show that for any b # B and ||b|| =1, Q(b) > 0.

Suppose not, that is, suppose that Q(b) = 0. Then we must have b'g >0 forall ge G
because if not, due to G being the support set of g, there must be a subset G, of G such
that Pr(g € Gy) > 0 and b'g < 0 Vg € Gy which will imply Q(b) > 0. Now that b'g > 0 for
all g € G, it must be that

b'g>0 Vgeconi(G). (A.11)
This implies that
coni(G) € {g e R* :b'g > 0}. (A12)

Combining that with the condition of the lemma, we have
{geR‘l":B/gzO}g{geRdX:b/gZO}. (A.13)

By Lemma E.1 in the Supplemental Material, this implies that 8 = b, which contradicts
the assumption that b # B. This concludes the proof of the lemma. Q.E.D.

Now we prove Theorem 3.1 using the lemma we just proved. By the lemma, it suffices
to show that

{geR‘i" :,B/gzO} C coni(G). (A.14)

We break the proof into two cases depending on whether assumption (3.3) or (3.4) is
assumed to hold.

Under Assumption 3.3 (continuous covariates). Suppose that Assumption 3.3 holds. Be-
low we establish two facts:

(i) {geR*:B'g>01C{Ag:AeR,A>0,g€ G, B'g>0};and

(i) {Ag: A eR,A>0,8€G,Bg>01C{Ag:AeR,A>0,g€G}.
These two facts (i) and (ii) together immediately imply that

{§€R™:Bg=0}C{Ag:AeR,1>0,geG)Cconi(9), (A.15)

where the last subset inclusion follows from the definition of coni(-). This proves (A.14).

To show (i), consider an arbitrary point g, € R% such that §'g, > 0. Then by Assump-
tion 3.3, there exist a A > 0 and a g € G such that Ag = go. Because B'gy > 0, we must
have AB'g > 0, and thus 8'g > 0. This shows result (i).

To show (ii), consider an arbitrary pointin {Ag: A € R, A >0, g € G, B'g > 0}. Then this
point can be written as A*g* where A* is a scalar such that A* > 0 and g* is an element in
G such that 8'g* > 0. By the definition of G, we have either g* € supp(FAX¥|AX;* =0),
forsome k € {1, ..., K}, or g* € supp(£AX/|AX} = AX] Vk). We discuss these two cases
separately.
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First, suppose without loss of generality g* € supp(AX¥|AX;* = 0) for some k €
{1, ..., K}. Then there exists x* and x} such that x* — x{ = g* and (x%, x}) is in the condi-
tional support of (X%, X¥) given AX;* = 0. By the definition of G and Assumption 3.2(b),
we have

{E[AY} XS =x5 AX* =0, X =x{]g*} € 6. (A.16)
Note that Assumption 3.2(b) is used to guarantee that E[AY*| X5 = x*, AX;* =0, Xk =

x§](x* — x%) is a continuous function and thus maps the support of (X}, X}) into the
support of E[AY}| X5, AX;* = 0, XX]AX%. Below we show that

a:=E[AYF| X5 =x! AX;* =0, X} = x{] > 0. (A17)
This and (A.16) together imply that
Ng = (Na")ag e{Ag:A€R,A>0,g€G}. (A.18)

This shows result (ii).
The result in (A.17) follows from the derivation:

E[Y5IX5=x5 AX* =0, X} = x{]

_ ok k k sk K K
= Pr(B xXi+ A +ey> klzomi}}k/#kﬁ X5+ AF + €|

Xl = x5, AX £ =0, X} = xt)

=p( 4 AR e XK 4 AN e
I B Xy + i + €1 z k’:OT,ljl_,al'():(k’;ékB i2 + i + €1

Xk =xk AXF =0, XE = x';)
(A.19)

= Pr(ﬁ’x'j + Af + € > max " BXE + Al + €|

k'=0,...,K

k!
k __ Lk —k __ k __ Lk
XE = xk, AX; _o,Xﬂ_xT)

1.k k k vk kK kK
> Pr(B xi+ Af 4 € zkl:oma}}k/#ﬁXﬂ + AY + €|

Xh=xt, AXF =0, X} = xt)
= E[Y{I1X5=x%, AX* =0, X} = xf],

where the first and the last equalities hold by the specification of the multinomial choice
model, the second equality holds by Assumption 3.1(a), the third equality is obvious from
the conditioning event that AX;* = 0, and the inequality holds by Assumption 3.2(a) and
B (x* — x%) > 0.

Second, suppose instead, and without loss of generality, g* € supp(AX}|AXF =
AX! Vk). Then there exists (x*, x¥)X_, in the support of (X%, X}) such that g* = x* — x}
for all k =1,..., K. By the definition of G and Assumption 3.2(b), the following vector
belongs to G:

—E[AY?|XE=x*, X =x{Vk=1,...,K]g, (A.20)
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where AY? =YY — Y9 and Y)=1—- Y1, Y% Below we show that

a:=—E[AY)|X}=x!, X =xiVk=1,...,K]>0. (A.21)

L

The rest of the proof of result (ii) is the same as that in the first case above.
Inequality (A.21) follows from the derivation:

E[Y)IXs=x!, X =xiVk=1,...,K]

2 — i1

= Pr(knllaxKﬁ’xf + Af + €, <0 X5 =xt, X =x} Vk)

= Pr(kgllaxk Bk + AF 4 €k < 0| X5 = x*, X¥ = x* Vk) (A.22)

< Pr( max B'xf+ Af + € <0|X5=x* X} =xt Vk)
k=1,...,.K
=E[Yj|IX=x!, X | =x{Vk=1,... K],

where the arguments for each step are the same as those for the corresponding steps in
(A.19).

Under Assumption 3.4: discrete covariates. The following concepts are useful for the
proof. For a set A C RX for an integer K, we define —A4 = {—x : x € A}, and say that
A is symmetric about the origin if 4 = —A4.

First, we show that it is without loss of generality to assume that the set G° j« in Assump-
tion 3.4 is symmetric about the origin. Suppose that a set G° j satisfying Assumption 3.4
is not symmetric about the origin. Let G‘lj* =G, U(=G’,.). Then (V}SL is symmetric
about the origin. We now show that for any g_;« € é‘;*, Gj-(g_j) = R. It suffices to con-
sider g_ € —=G_;». Then —g_;» € G_j«, which implies that G- (—g_;) = R. Note that G
is defined to be the union of various conditional support sets of +AX; each of which
is symmetric about the origin. Thus, G is symmetric about the origin. That implies that
Gj(—g_y) = =G (g_j+). Therefore, G;«(g_;) = —R = R, which completes the proof
that G;+(g_») = Rforany g_; € G?*. Last, because G is symmetric about the origin, G_j-
is also symmetric about the origin, which, combined with the fact that G‘ij* C G_j, im-
plies that é(lj* C G_j+. Therefore, Assumption 3.4(a) remains valid if we redefine G(lj* to
be G(lj*. It is straightforward to see that Assumption 3.4(b) also remains valid with the
redefinition, and Assumption 3.4(c) is unaffected by the redefinition.

Thus, in the rest of the proof, we assume G? ;. to be symmetric about the origin.

Suppose that Assumption 3.4 holds. It has been shown in the continuous covariate case
above that {Ag: A e R,A>0,8€ G,Bg>0}C{\g:AeR,A>0,g e} under Assump-
tions 3.1(a) and 3.2. That implies

coni({g e G: B'g >0}) € coni(G). (A.23)
Below, we show that
{geR*:B'g>0} Cconi({ge G:Bg=>0}). (A.24)

This combined with (A.23) proves (A.14) and thus proves the theorem.
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Now we show (A.24). Suppose without loss of generality that 8;- > 0. Let G'={ge
R%:g ;e G(lj, gy > —B & j/Bj-},where B_j = (Bi, ..., Bjs—15 Bjs15 - -+ » Ba,)'- By As-
sumption 3.4(a), we have that

G'ClgeG:Bg=0}. (A.25)

Consider an arbitrary point g, € {g € R* : B'g > 0}. Then, go;» > —g _ #B-j/Bj- That
means

d = g(),j* =+ g(/),—j*B—j*/Bf* > O. (A.26)

By Assumption 3.4(b), G” . spans R*~', and is symmetric about the origin. Thus, G* .
spans R%~! with nonnegative weights. Then, there exists a positive integer M, weights
Cloooosey>0,and gy _jo, ..., 8u_j € G(lj* such that g, = ZZZI Cn8m,—j-

Let g = (d/Zﬁf:l cn) — (& _j+B—j+/Bj) for m=1,..., M. Let g, be the vec-
tor whose j*th element is g, ;- and which with the j* element removed is g, _;+, for
m=1,...,M.Then g, € G’ form=1, ..., M because Gm—_j+ € G‘lj by construction and

8mj > —8p_j«B-j+/Bj- due to d > 0. Also, it is easy to verify that g, = M ¢ugm. Thus,
o € coni(G). Subsequently, by (A.25),

goeconi({ge G:B'g=0}). (A.27)
Therefore, (A.24) holds. Q.E.D.

PROOF OF THEOREM 4.1: For any b € R%, let ||b|, = max;_; _,|b;|. Below, we show
that

B~ B/IIBllc- (A.28)

This implies that 8 — , B because B = B/| 8|l and the mapping f : {b € R% : [|b]|, = 1} —
{b € R% :||b|| = 1} such that f(b) = b/||b|| is continuous.
Now we show equation (A.28). Let

Q(b) = E[b'(AX)) (Ap(Xi1, X)) ] (A.29)

Under Assumption 3.1, the identifying inequalities (3.7) hold, which implies that

0(B) = Q(B/IIBllx) =0. (A.30)

Consider any b such that ||b||,, = 1 and b # B/ Bl We have b/||b|| # B/|| Bl because the
function f(b) = b/||b|| : {b € R% : |b|l = 1} — {b € R% : ||b|| = 1} is one-to-one. Thus,
for such a b, Theorem 3.1 implies that

Q) > 0. (A31)

This, the continuity of Q(b), and the compactness of the parameter space {b € R% :
Ibll« = 1} together imply that, for any constant ¢ > 0, there exists a 6 > 0 such that

inf Q(b) > 6. (A32)

beRdx:||blloo=1,|b—Bl>c
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Next, we show the uniform convergence of Q,(b) to Q(b). Combining (A.31) and the
uniform convergence, one can show the consistency of B8 using standard consistency ar-
guments in, for example, Newey and McFadden (1994).

Now we show the uniform convergence of Q,(b) to Q(b). That is, we show that

sup  |Q(b) — Qu(b)| =, 0. (A33)

beR4x:||b||lo=1

First, we show the stochastic equicontinuity of Q,(b). For any b, b* € R%* such that
16l = l16*]loc = 1, consider the following derivation:

< Db = ) (X (8D (Ka, X))
i=1

(A.34)
<Y |6 = b7 (AX) (AP(Xir, X)) |
i=1
<n 'Y IAX | |6 - b7
i=1
Therefore, for any fixed & > 0, we have

lim lim sup Pr( sup 10.(b) — Q,(b%)

=00 b,b*eRx [|blloo=I1b* | co=1, | b—b*[ <5

> )

< limlim sup Pr <8n1 Z AX;] > s)
i=1

0 oo

(A.35)

0 o

< lim lim sup Pr (nl D IAX| > e/a)
i=1
=0,

where the first inequality holds by (A.34) and the equality holds by Assumption 4.1(b).
This shows the stochastic equicontinuity of O, (b).

Given the stochastic equicontinuity Q,(b) and the compactness of {b € R% : ||b|, = 1},
to show (A.33), it suffices to show that for all b € R% : ||b||,, = 1, we have

Q.(b) —, Q(b). (A.36)
For this purpose, let

n

0,(b) =n"" Y [(b'AX,) (Ap(Xi1, X)) ]

i=1

(A.37)

By Assumption 4.1(b) and the law of large numbers, we have 0,(b) —> » Q(b). Now
we only need to show that |Q,(b) — Q,(b)| —, 0. But that follows from the deriva-
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tion:

10,(b) — Q. (b)]

<n Z| (b/AXi) (Aﬁ(Xil, Xiz) — Ap(Xi, Xi2))|
i1

(A.38)

.....

-, 0’

where the convergence holds by Assumptions 4.1(a) and (b). Therefore, the theorem is
proved. Q.E.D.
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