RAND Journal of Economics
Vol. 37, No. 2, Summer 2006
pp. 257-275

Using price distributions to estimate
search costs

Han Hong*
and

Matthew Shum™*

We show how the equilibrium restrictions implied by standard search models can be used to
estimate search-cost distributions using price data alone. We consider both sequential and non-
sequential search strategies, and develop estimation methodologies that exploit equilibrium re-
strictions to recover estimates of search-cost heterogeneity that are theoretically consistent with
the search models. We illustrate the method using online prices for several economics and statistics
textbooks.

1. Introduction

m  Eversince the seminal article by Stigler (1964), search models have played an important role
in economics. Search frictions resulting from agents’ imperfect information about sellers’ prices
have been used to explain many economic phenomena, including equilibrium price dispersion in
otherwise homogeneous product markets. While the search paradigm has been and continues to
be very important in the theoretical literature, explicit measures of search costs are few and far
between.!

In this article we develop a methodology for recovering search-cost estimates that requires
only observed price data, and that is theoretically consistent with the equilibrium search models.
By doing this, we can evaluate the ability of these theoretical models to explain observed patterns
of price dispersion. We consider equilibrium models of sequential and nonsequential search, two
important search strategies considered in the theoretical literature.

We illustrate our methods using prices obtained from a number of online booksellers. Our
emphasis on estimating search costs that are theoretically consistent with equilibrium search
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models distinguishes our approach from existing empirical studies of search in online markets.
For example, Brynjolfsson and Smith (2000), Clay, Krishnan, and Wolff (2001), and Goolsbee
(2001) have attempted to understand the nature of search costs by comparing the degree of price
dispersion between online and traditional retail markets.?

However, one difficulty in measuring search costs is that often the only data the researcher
has at her disposal are prices. This is true for the articles cited above, and is especially true for
online markets, in which price data are easily obtained but quantities are difficult to measure:
indeed, recent work by Chevalier and Goolsbee (2003) illustrates how difficult it is to obtain
quantity information about online commerce, and they use several methods—some quite costly,
as they involve actual book purchases —to infer online book sales from sales rankings.

The main message of this article, however, is that sometimes price data alone suffice for esti-
mating search costs. This is because the equilibrium supply-demand restrictions of the theoretical
models place many restrictions on the observed price data, so that one can exploit these restrictions
to recover estimates of search costs using only observed prices.? We illustrate our methodology by
obtaining search-cost estimates implied by online price data for several economics and statistics
textbooks.

Our emphasis on the identification of search costs using only price data requires some strong
modelling assumptions. For instance, we assume that each observed price quote is “real” in the
sense that it generates positive sales for the retailer, so that our empirical framework does not
accommodate “bait and switch” strategies whereby consumers are lured by a low price to a website
where they are then steered to a higher-priced product.*

The remainder of the article is organized as follows. In Section 2 we describe the two search
paradigms we considered and describe our methodologies for recovering estimates of search costs
from observed price data alone. In Section 3 we present illustrative estimation results using online
prices for several economics and statistics textbooks. Section 4 concludes.

2. Equilibrium search models with heterogeneous consumer search

B We begin by reviewing two main equilibrium search paradigms considered in the existing
theoretical literature, and derive the equilibrium restrictions on prices. In each case, we discuss
how we recover estimates of search costs that are consistent with those models. These two
paradigms —the nonsequential and sequential search models—are distinguished by the differing
assumptions made about consumers’ search strategies.

In our analysis, we take consumers’ search strategies as given and do not consider the
optimality of these search strategies. For a discussion of these issues, see the treatment in Manning
and Morgan (1985). Generally speaking, nonsequential (of “fixed sample size”) search strategies
can be optimal when there is a fixed-cost component to search (so that even if the per-sample
search cost is constant, average search costs are decreasing in the number of samples taken).
Sequential search can be optimal when such fixed costs are absent. We have not been able to
obtain identification and estimation results for a more general model in which consumers choose
their search strategy.

Throughout, we assume that the price dispersion observed in the data arises as an equilib-
rium outcome due to heterogeneity in consumers’ search costs (i.e., their costs associated with
discovering a given retailer’s price). Furthermore, we maintain the assumption that all firms offer

2 Also see Brown and Goolsbee (2002) and Scott-Morton, Zettelmeyer, and Silva-Risso (2001) for studies of how
the Internet has reduced transactions costs (part of which are price search costs) for insurance and automobiles.

3 See Sorensen (2001) and Hortacsu and Syverson (2005) for structural analyses of search in traditional non-online
markets, in which they employ unique datasets in which both price and quantity are observed. It is difficult to get this type
of data for typical online markets. Similarly, the large empirical search literature in labor economics (e.g., Eckstein and
Wolpin, 1990) often uses not only wage data, but also auxiliary data (such as unemployment and employment durations)
to pin down “arrival rate” parameters in job-search models that are missing from price-dispersion models.

4 See Ellison and Ellison (2001) for a study of such phenomena in online computer parts retailers.
© RAND  2006.
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FIGURE 1
RAW HISTOGRAMS OF ONLINE PRICES
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homogeneous products, so that only search frictions (arising from consumers’ imperfect informa-
tion about stores’ prices) and heterogeneity in search costs in the consumer population generate
price dispersion in this market.

As a motivating example, we consider 20 online prices for the classic mathematical statistics
textbook Probability and Measure (Billingsley, 1992), retrieved by the MySimon (www. mysi-
mon.com) and Pricescan (www.pricescan.com) search engines, on February 5,2002. A histogram
of these prices is given in the third panel of Figure 1.5

The long left tail of the histogram suggests that consumers may have an incentive to search,
because the potential cost savings can be over $15 (the lowest price, $85.58, is over $15 less
than the highest price of $100.87). On the other hand, the large spike in the histogram around
$100 suggests that despite the low prices, consumers may not be searching very much, because
otherwise firms would not find it optimal to “pile up” at a relatively high price. These arguments
illustrate that the search models may imply conflicting interpretations of observed prices, if only
the consumer or firm side is considered in isolation. For this reason, in this article we impose
the optimality conditions for both consumer search and firm pricing in obtaining our estimates of
search costs, thus rationalizing the observed prices as equilibrium outcomes for a given theoretical
model.

5 These prices include shipping costs.

© RAND 2006.
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Following Burdett and Judd (1983), we assume that there is a continuum of firms and
consumers and interpret the equilibrium price distribution £, as the symmetric equilibrium mixed
strategy employed by all firms.® Let p and p denote, respectively, the lower and upper bound of the
support of F,.r denotes the common unit selling cost of each retailer.” A maintained assumption
of our empirical models is that » is common across retailers. This seems reasonable because
heterogeneity in » cannot, per se, generate price dispersion without heterogeneity in search costs
(because high r generally leads to higher prices, so that high-search-cost consumers are required
to generate demand for the high-r stores). Furthermore, the focus of this article is on estimating
equilibrium search models using price data alone, and price data alone will not suffice to identify
both the consumers’ search cost and the retailers’ selling cost distributions.

We assume that consumers have inelastic demand for a single unit of the good and incur a
search cost ¢ to retrieve each price quote after the first quote obtained, which, as is standard in
the literature, we assume is obtained at no cost. Across the consumer population, search costs are
heterogeneous and assigned via i.i.d. draws from a distribution F,. The focus of this article is to
develop methodologies for estimating F, using only a sample of random prices drawn from F),.

O  Nonsequential search. The first of the two search paradigms we shall consider is nonse-
quential search. Consumers who search nonsequentially are those who commit to buying from the
lowest-priced store after obtaining a random sample of £ (> 1) prices. A consumer with per-price
search cost ¢ chooses the number of stores £ to canvass to minimize her total expected cost, which
is the sum of her total search costs and the price she expects to pay for the product:

£*(c) = argmin ¢ - (£ — 1) + /pﬁ -p(1 = Fy(p)~" f(p)dp = C(t;0). 6))
>1 P

Since the cost ¢ only enters the first term of the above expression, it is obvious that £*(c) is
monotonically decreasing in c.

Nonparametric estimation of nonsequential-search model. The optimality condition (1) allows
us to recover a nonparametric estimate of the population search-cost distribution F, just from the
observed prices. Since consumers are assumed to draw i.i.d. samples from the equilibrium price
distribution F,, the marginal expected savings from searching i + 1 versus i stores is simply

A; = Epri — Epriisi, i=12,..., @)

where pi.; denotes the lowest price out of i draws from the equilibrium price distribution F,. That
is, the expected savings is just the expected difference in the lowest out of i + 1 price quotes, and
the lowest out of i price quotes.

Since the sequence of marginal expected savings A;,i = 1,2, ... is nonincreasing in i for
any price distribution F,,% while the cost per search is constant, a consumer with search cost ¢
will search as long as the marginal expected savings A; exceeds his marginal search cost ¢, so
that £*(c) = argmax; A; such that A; > c. Therefore, the sequence of marginal expected savings
Ay, Ay, ... can also be interpreted as the search costs of the “indifferent” consumers: A; is the
search cost faced by the consumer who is indifferent between searching i + 1 and i stores.

This is illustrated in Figure 2, where the areas of the regions A, B, C, and D are the measure
of consumers who obtain (respectively) one, two, three, or four price quotes. Ay, A,, A3, and

6 This contrasts with Stahl (1989), in which a finite number of firms is considered.

7 From the online retailer’s viewpoint, this selling cost includes not only its wholesale cost, but also its selling
costs—the labor involved in taking and fulfilling orders, the degradation of the firm’s computer or warehouse capital, etc.

8 This can be seen by noting that Epy;; = p + f(l — F(p))'dp, which is a nonincreasing and convex function
of i (as can be seen by differentiation).
© RAND  2006.
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FIGURE 2

IDENTIFICATION SCHEME FOR SEARCH-COST DISTRIBUTION IN
NONSEQUENTIAL-SEARCH MODEL
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A4 are the search costs of the indifferent consumers, where a consumer with search costs Ay is
indifferent between obtaining k and k + 1 price quotes.

Let F, denote the empirical distribution of the observed prices. First, we note that we can
obtain estimates of these indifference points from the empirical price distribution £ p» via the
relation (2). Second, define

g1 =1— F.(A;): the proportion of consumers with one price quote;
g» = F. (A1) — F.(Ay): the proportion of consumers with two price quotes;
g3 = F.(A;) — F.(A3) :  the proportion of consumers with three price quotes. 3)

We can estimate g, g, . . . by exploiting the firms’ equilibrium pricing conditions. To see
this, note that a firm’s profits from following the mixed pricing strategy F,(-) are (see Burdett and
Judd, 1983)

M(p)=(p —r) [Z Guk(1 — Fp(p»“}
k=1

forall p € [p, p]. The characterization of the equilibrium price distribution starts with the mixed-
strategy condition that firms be indifferent between charging the monopoly price p (and selling
only to people who never search but receive an initial free draw equal to p) and any other price
p in the equilibrium support [ p, pl:

P —rgi=(p-r) [Z Guk(1 — F,,(p»’”} : @)

k=1

The optimality equation (4) allows us to recover a nonparametric estimate of the search-
cost distribution F,. from F alone, as we now show. Let p and p denote the lowest and highest
observed prices, respectlvely For convenience, we index the n observed prices in ascending order,
so that

P=p<p< < pui1 < pa=D.

Let K (< n — 1) denote the maximum number of firms from which a consumer obtains price
quotes in this market. Given this condition, the indifference condition (equation (4)) for each of
© RAND  2006.
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the observed prices is

K
P =g =(pi =) [Zékk(l - F,,(p,-»k—‘} .di=ln—l ©)
k=1
Since g =1 — Z,ﬁ:l gk, the above constitutes n — 1 equations from which we can solve for the
K unknowns {r, qi, ..., gdx—1}.)
Subsequently, through equation (3), we use the values of gy, ..., gx—; to solve for

FC(AI)a RN FC(AK—l)a

the cumulative distribution function of the search costs evaluated at the indifference points
A], ey AK—1~

To obtain standard errors for the estimates, we formulate the estimation problem as an em-
pirical likelihood problem. The firms’ equilibrium indifference condition (4) implies a potentially
infinite number of moment conditions, because it holds for every p (excepting p) in the support
of F,,. However, in estimation, we will use only a finite number M < oo of these conditions (with
M > K).In practice, the values of K and M will be dictated by the number of observed prices, as
will be illustrated in our empirical work. In deriving the asymptotic standard errors, we assume
that K and M are fixed and finite, as the number of prices n — oo. Complete details are given in
the Appendix.'”

As noted by Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson (1998), empirical
likelihood has several advantages. First, it provides an alternative method of obtaining the efficient
GMM estimates using an optimal weighting matrix. The variance-covariance matrix of the empir-
ical likelihood estimates is asymptotically equivalent to that for the efficient GMM estimates (see
Owen, 2001). Additionally, even if the underlying model is misspecified, the empirical likelihood
estimates still have an interpretation as the estimates that minimize an information-theoretic cri-
terion between the true (but unknown) model and the family of (potentially misspecified) models
defined by the estimating moment conditions.

A first example: Billingsley (1992). We illustrate the estimation procedure for nonsequential-
search models using Billingsley. The indifferent search-cost values were computed directly from
equation (2), using the observed empirical distribution of prices. The first five cutoff points are
Ay =$290; Ay =$2.00; Az =$1.49; Ay =$1.04; As =$0.81.

In the top panel of Figure 3, we graph the population search-cost distribution, estimated in
the manner detailed above, for K = 3 and M = 5. The corresponding estimates of §;, §», and g3
are .633, 309, and .058. Note that we cannot identify the shape of the search-cost distribution
above the 35th quantile: the estimates indicate that 63.3% of the consumers only search once, so
that all we can say about these consumers is that their search costs lie above A; = $2.90. These
costs rationalize a sample of 20 prices for Billingsley’s Probability and Measure, from online
retailers and were retrieved on February 5, 2002 by the MySimon and Pricescan search engines.

O  Sequential search. The second paradigm we consider is the sequential-search model. The
sequential-search strategy differs from the nonsequential-search process in that, after each search,
consumers can choose to purchase at the lowest price observed so far, or make an additional
search. At any price, there is an option value associated with searching again, and the optimal
search problem is analogous to an “optimal stopping” problem. Sequential search is the standard
assumption made in job-search models in labor economics (see Mortensen’s (1986) survey).

9 For this reason, we required K < n — 1 above.

10 Asymptotically, as n grows large, we can recover an arbitrarily accurate estimate of F, by taking larger and
larger values for K and M . This fully nonparametric case (where both K and M also approach infinity at some rate relative
to n) is technically challenging (because the limit problem involves an infinite (M — co) number of estimating moment
conditions) and beyond the scope of this article.

© RAND 2006.
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FIGURE 3
ESTIMATED SEARCH-COST CDFs
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An important early result in the sequential-search literature is the “Diamond (1971) para-
dox” that the equilibrium price distribution in a sequential-search economy with homogeneous
consumers facing identical and positive search costs is degenerate at the monopoly price (i.e., the
highest acceptable price of consumers). In this article, we follow the work by Albrecht and Axell
(1984), Stahl (1989), and Rob (1985) in positing a model with heterogeneous search costs in
order to generate a nondegenerate equilibrium price distribution. Intuitively, with heterogeneity
in consumer search costs, low-price firms can “cater” to consumers with low search costs, and
high-price firms cater to consumers with high search costs. However, consumer search-cost het-
erogeneity is not sufficient to ensure the existence of a continuous equilibrium price distribution.
Rob (1985) provides a discussion of restrictions on the population search-cost distribution that
are necessary for nondegenerate equilibrium price dispersion in the sequential-search model.!!

11 Specifically, Rob’s Theorem 3 states that a sufficient condition for nonexistence of a continuous equilibrium
price distribution is that the search-cost density vanishes in some positive interval [0, A) with A > 0. We rule this out in

© RAND 2006.
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Specifically, in his Theorem 4, Rob shows that a continuous equilibrium price distribution, if it
exists, must satisfy an equation analogous to (10) below. Hence, one can check for the existence
of a continuous equilibrium price distribution by verifying that the function in (10) is a valid CDF;
equivalently, we can check that the likelihood function (9) is a proper density function, which is
positive along its support. We shall return to this issue below.

As before, let F. denote the population distribution of search costs and F, the equilibrium
price distribution, with support [ p, p]. A standard result in the sequential-search literature is that
the consumers’ optimal stationary-search strategy is a reservation price policy, where they search
until they obtain a price that is no larger than some reservation price p*, which is independent of
the number of searches that have been made. The empirical question is whether observation of
the price distribution F, is enough to identify the search-cost distribution F.

For consumer i, who has per-price search costs c¢;, let z*(c;) denote the price z that satisfies
the indifference condition

¢ = / (2 — p)F(dp) = f Fy(p)dp. ©)
)4 V4

where the second equality follows from integration by parts. This equation has a straightforward
economic interpretation: the left-hand side is the cost of search, and the right-hand side is the
expected benefit if the best currently held price is z. Note that z*(c) is increasing in c¢. Now, for
each cost ¢;, we define the reservation price as

pi = p(c;) = min(z*(¢;), D). )

Let G denote the distribution of reservation prices in the population, given F, and the mapping
(7). Note that there is a mass « = 1 — G(p) of consumers for whom the reservation price is p,
and that G(p) = 0.

Turning to the firms’ decision problems, we use (as before) an indifference condition to
define the equilibrium price distribution. Suppose consumer i has reservation price p;. The firm
charging p will sell only to consumers i for whom p < p?. Since we assume that all firms are
symmetric, a firm’s demand at price p is proportional to (1 — G(p))."> Note that at the highest
price p, the firm obtains demand proportional to «, the measure of consumers with reservation
price equal to p. Therefore the firms’ indifference condition is, for each p € [p, p),

(P =r)D(P)=(p—r)D(p) <= (p—r)xa=(p—r)x( - G(p). ®)

Before proceeding, we note that the indifference conditions above capture only the stationary
search dynamics in this market and do not allow the consumer population to be distributed
differently over time, due perhaps to the entry and exit of consumers. This simplification is a
matter of convenience, given that what we exploit in estimation is a single cross-section of prices.
If the population of consumers changed over time, firms would wish to change their pricing strategy
over time. This would feed back to consumers, who would wish to change their reservation price
over time. The resulting dynamic equilibrium involves modelling issues that we believe to be
beyond the scope of this article.'?

our empirical work below by assuming that search costs are distributed according to the gamma distribution, which has
support [0, 00).

12 This derivation relies on the assumption that there is an infinite number of firms. With only a finite (N < oo)
number of firms, the probability that a consumer with reservation price p; encounters a firm charging a price she accepts

is no longer 1 (as in the infinite-firm case) but rather 1 — (1 — F),(p} )N . Hence, the expected demand for a firm charging
P would be proportional to f i? (I — (1 — Fp( P )N)dG(p*), which is substantially more involved to compute than the
expression for the continuum-firm case (which is 1 — G(p)).

13 We thank Randal Watson for this insight.
© RAND  2006.
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Estimation of the sequential-search model. Unlike the nonsequential-search model, it is difficult
to estimate the equilibrium sequential model nonparametrically. This is because equation (8)
defines n — 1 equations, for each of the n — 1 observed prices (with p excluded).'* However, there
are n unknowns: G(p; = p), G(p2), ..., G(p._1), G(p, = p). Therefore, the model cannot be
estimated without some additional assumptions.

Hence, we find it natural to consider parametric maximum-likelihood estimation (MLE)
of this model, assuming that the search-cost distribution F,(-;0) is parameterized by a (finite-
dimensional) vector 8.'5 After some algebraic manipulation, the likelihood function for each
price can be derived as

2a(p — 1) @ (e(1-af0))
T (e D e e (=)

(See the Appendix for details.) The corresponding equilibrium price CDF is

fp(p;0) =— 5- 9

a(p—r)
(p—r)?x*fe (c (1 —ozi::;é’);()).

F,(p;6) = (10)

In the above equations, we denote c(t;0) = F;l(t;e), the inverse CDF for the search-cost
distribution. Given @, the auxiliary parameters « and r can be solved for as follows: first, o, the
proportion of consumers with reservation price equal to p, is defined via the initial condition
G(p) = 0, which implies, via (8), that

(p—r)

P-rxa=(p-rxl<soa=—= .
- (p—r)

1D

Second, the selling cost parameter  can be determined by the restriction that F,(p) = 1 so that,
given 6 and (10) and (11), » must satisfy
(p—r)

1= F,(p) = S (c (1 _ %::;0> ;0),

(12)

The likelihood function for the whole sample of prices, then, is just L(0, 7) = [, f,(pi;0).

The discussion in Rob (1985) suggests that a necessary condition for the existence of a non-
degenerate continuous equilibrium price distribution for this model within an interval [ p, p] is that
the price CDF in (10) is nondecreasing in this range or, equivalently, that the likelihood function
(9) be positive for all p € [p, p]. This is a strong condition; examination of (9) suggests that it
requires the search-cost density f. to be strictly decreasing in the range [0, c(p — p)/(P — r); 0)].

In our empirical work, we use a gamma distribution for the search-cost distribution. The
gamma distribution was chosen for its flexible shape and for the fact that it is one of the few two-
parameter distributions that allows for the density to be strictly decreasing along its full support.
For the gamma density,

f(c;81,80) = A lexp(—c/8), 81,82 >0, (13)

8T (8))

14 If there are multiple observations of the same prices, then there are even fewer equations.
15 As before, p and p can be (superconsistently) estimated from the data. See Donald and Paarsch (1993) for a
discussion of maximum-likelihood estimation when a subset of the parameters can be superconsistently estimated.

© RAND 2006.
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the decreasing density requirement restricts §; < 1. We confirm that this restriction is satisfied
at all the estimates we report below. Moreover, this restriction has important implications for the
search-cost estimates that we obtain from this model, as we discuss below.

Example: Billingsley (1992). Returning to the example of prices for Billingsley considered earlier,
we estimated the parameters of the gamma search-cost distribution. The estimated search-cost
CDF is plotted in the bottom panel of Figure 3. Comparing the search-cost estimates in the top and
bottom panels of Figure 3, one notices that the estimated search-cost distributions are similar in
magnitude in the range of the quantiles that are identified, but the parametric specification of the
sequential search model allows one to extrapolate the shape of the entire search-cost distribution.
At the estimated parameter values, the median search cost implied by these estimates is $9.22
(and the mean search cost is even higher, at over $51). We return to the effects of parametric
extrapolation below.

3. Empirical illustration: a snapshot of February 5, 2002

B In this section we illustrate the use of our methodology to recover the search costs that
are consistent with these two models, estimated for a series of online book prices collected on
February 5, 2002 from the Pricescan.com and MySimon.com websites.'® We attempted to select
product markets that most resemble the prototypical markets considered in the search models,
namely homogeneous-product markets in which consumers would demand only a single unit of
the product. For this reason, we focus on several economics and statistics textbooks. An attempt
was made to verify each price so that, in most cases, visits were made to each retailer’s website
to confirm not only availability but also shipping and handling information.!”

Since our analysis is on a product-by-product basis, and given the computational issues
related to the estimation technique (especially for the nonsequential-search models), we restrict
our analysis to four books. We supplemented our empirical exercise with an informal survey of
a dozen economists regarding their book-buying behavior. All the respondents stated that if they
had to purchase these four books, they would do so online. Given these findings, we believe
that the search-cost distributions we are recovering may pertain to the population of academic
economists.

Summary statistics for the prices used in the estimation are given in Table 1. Throughout,
we report results for prices inclusive of shipping and handling charges.'® Raw histograms of the
prices are given in Figure 1.

Note that the four histograms are quite varied in shape: there is some evidence of a long
upper tail for Stokey-Lucas (1989) and long lower tails for Billingsley (1992) and Duffie (1992).
There are prominent spikes around the list price for the Stokey-Lucas, Billingsley, and Duffie
texts. Prices for the Lazear (1995) text are relatively uniformly distributed within their range.

In recent work, Ellison and Ellison (2001) suggested that online retailers employed “bait-
and-switch” strategies with price search engines, by advertising low prices but overcharging
for shipping and handling. We expect that these strategies might be reflected in the data by
lower dispersion in the prices with shipping costs than without shipping costs, as well as a low
correlation between prices with and without shipping costs. However, for each of the four books,

16 We also estimated the models using similar data from June 2001 and June 2002, but because prices did not
change substantially over this period, the results were not noticeably different. The search models we use are stationary in
nature and cannot capture the price persistence across time that we observe. Accommodating these dynamics in a search
context may require a model incorporating dynamic learning by consumers and dynamic pricing by firms, similar to the
models explored in Bergemann and Vilimaki (1997, 2004).

17 Often the shipping and handling information was not directly available on the pricescan.com search engine’s
page. Also, our price data were collected before the two major online booksellers, amazon.com and barnesandnoble.com,
instituted free shipping for orders over $25. Furthermore, we checked a number of booksellers’ websites and confirmed
that these books were available, although the estimated shipping times varied.

18 We also estimated the models without the shipping costs but do not report them because the results were largely
unchanged.

© RAND 2006.
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TABLE 1 Summary Statistics on Prices for Different Products

Standard
Product n List Mean Deviation Median P P
Stokey-Lucas 19 60.50 66.60 5.64 64.98 59.75 86.80
Lazear 17 3195 3473 248 3527 29.51 37.70
Billingsley 20 99.95 9548 5.87 98.90 83.58 100.87
Duffie 15 65.00 62.71 491 63.48 50.58 69.95

Note: Including shipping and handling costs. Price data for all products downloaded from Pricescan.com and MySimon.com: February
5,2002. Summary price including S&H costs may not exceed the corresponding summary price without S&H costs, since we could not
determine the shipping and handling charges from some of the websites.

the standard deviation of the prices with shipping costs was roughly the same magnitude as the
prices without shipping costs. Moreover, the Spearman rank correlation statistics between the two
sets of prices was around .90, indicating strong correlation. This evidence might cast some doubt
on the possibility that online retailers are engaging in bait-and-switch strategies with regard to
shipping costs.

Table 2 contains estimates for the nonsequential-search model. The estimates of the §’s
indicate that in most markets, about half of the consumers never search (more precisely, they
shop at the store where they received their initial “free” price). For the Stokey-Lucas text, 52%(=
100 * (1 — .480)) of purchasers have search costs exceeding A; = $2.32, while over 60% of
the Lazear book purchasers have search costs exceeding A; = $1.31. As was the case with the
example considered above, the substantial proportion of people who don’t search implies that
we cannot identify the shape of the distribution for these people. For example, we know nothing
about the shape of the search-cost distribution above the 52nd quantile for the Stokey-Lucas book,
and above the 65th quantile for the Lazear book.

Table 3 presents the maximum likelihood estimates for the sequential-search model. Com-
paring these results to those obtained from the nonsequential-search models, we see that the
sequential-search model predicts higher magnitudes for search costs: as an example, the median

TABLE 2 Search-Cost Distribution Estimates for Nonsequential-Search Model

Selling MEL
Product K* MP s I 7 Cost r Value

Parameter estimates and standard errors: nonsequential-search model

Stokey-Lucas 3 5 480 (.170) 288 (433) 49.52 (12.45) 102.62
Lazear 4 5 364 (.926) 351 (.660) 135 (.692) 27.76 (8.50) 84.70
Billingsley 3 5 633 (.944) 309 (:310) 69.73 (68.12) 199.70
Duffie 3 5 627 (1.248) 314 (.195) 35.48 (96.30) 109.13

Search-cost distribution estimates

Ay Fe(Ay) Ay Fe(Ar) A3 Fe(A3)
Stokey-Lucas 232 520 .68 232
Lazear 1.31 636 83 285 57 150
Billingsley 2.90 367 2.00 058
Duffie 241 373 142 059

% Number of quantiles of search cost F. that are estimated (see equation (5)). In practice, we set K and M to the largest possible
values for which the parameter estimates converge. All combinations of larger K and/or larger M resulted in estimates that either did not
converge or did not move from their starting values (suggesting that the parameters were badly identified).

b Number of moment conditions used in the empirical likelihood estimation procedure (see equation (17)).

¢ For each product, only estimates for g1, ..., gx— are reported; gx = 1 — Zkzjl Gk -

dIndifferent points Ay computed as Ep(.xy — Epq+1) (the expected price difference from having k versus k + 1 price quotes),
using the empirical price distribution. Including shipping and handling charges.

© RAND 2006.



268 / THE RAND JOURNAL OF ECONOMICS

TABLE 3 Estimates of Sequential-Search Model

Median® Selling Log-L
Product 81 8 Search Cost Costr ab F[l (1 —a; 0) Value
Stokey-Lucas 46 (02) 1.55(.03) 29.40 (1.45) 22.90 (1.31) .58 19.19 31.13
Lazear 40 (01) 1.15 (01) 16.37 (1.00) 11.31 (.79) 69 4.56 3435
Billingsley 25(01) 2.01 (.04) 9.22 (.94) 65.37 (.83) 51 843 23.73
Duffie 21(.02) 4.57(29) 10.57 (2.01) 28.24 (1.63) 54 7.00 18.93

Note: Including shipping and handling charges. Standard errors in parentheses. §; and 8, are parameters of the gamma distribution; see
equation (13).

* As implied by estimates of the parameters of the gamma search-cost distribution.

b Proportion of consumers with reservation price equal to p, implied by estimate of r (see equation (11)).

search cost for the Stokey-Lucas text consistent with the nonsequential-search model (as reported
in the bottom panel of Table 2) is roughly $2.32, whereas the corresponding number for the
sequential-search model (as reported in Table 3) is $29.40, over 10 times higher. Moreover, the
estimates of r, the selling costs, are uniformly lower across the four books than the corresponding
estimates in the nonsequential-search model."”

At first glance, the larger search-cost magnitudes for the sequential-search model might
lead one to support the nonsequential-search model as a better descriptor of search behavior
in the markets we consider. As pointed out by Morgan and Manning (1985), nonsequential-
search strategies may be optimal when consumers face nonzero fixed costs of initiating a search,
regardless of how many prices one obtains. Such a situation may describe the online market, since
there may be nonzero search costs associated with, say, seeking out a computer, logging on, and
so forth. Moreover, due to search engines, price quotes might tend to be obtained in groups, which
may fit better with the nonsequential-search assumption.

However, as we remarked earlier, the large median search-cost estimates for the sequential
model are due in part to parametric extrapolation. In the fourth column of Table 3, we report the
implied estimates of o, the proportion of consumers with reservation price equal to p and, hence,
the proportion of consumers who never search.?’ a exceeds .50 for all four products, suggesting
that the high median search costs estimated in this specification are due in part to extrapolation
based on the gamma functional form for the search-cost distribution. To see if this is true, we also
computed, in the fifth column, implied estimates of F;l(l — «), which are the search costs for
the consumer who has a reservation price just equal to p. We see that for three out of the four
cases (excepting the Lucas-Stokey book), the value of F,"!(1 — «) is comparable in magnitude
to the search costs from the nonsequential model (and reported in the bottom panel of Table 2).2!

O  Specification checks for the sequential-search model. On the other hand, we might worry
that the sequential-search model may be biased toward large search-cost estimates, due to the
necessary condition (remarked above) that the slope of the search-cost density f.(- - -) be negative
in order for the price density (9) to constitute a valid equilibrium price density. For the gamma
density function in (13), we found that when §; < 1 (which was required for the density to be
strictly decreasing), the hazard rate parameter §, must be increased so that the tail of the density
does not die off too quickly, which we need in order to fit the price data (which do not have thin

19 As remarked above, we confirmed that at the reported estimates, the implied search-cost distribution had a strictly
decreasing density. This was true for all four books. Furthermore, to verify the robustness of these estimates, we also
reestimated the sequential-search models using a variety of starting values, but the reported results were very robust.

20 ¢ in the sequential model corresponds to §; in the nonsequential model.

21 For the Lucas-Stokey text, the high search costs implied by the sequential-search model appear to be driven
by the outlier price of $86.80 (more than $20 above the list price) charged by opengroup.com. We have confirmed that
this price was not a temporary oversight: on February 7, 2004, the price on this site was still $83.70 (without shipping
costs). However, we note again that our modelling approach assumes that each price is “real,” in the sense that it generates
positive sales in equilibrium. This assumption may not apply to this website.
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upper tails, as Figure 1 shows) well. This behavior of the gamma density function may lead to
larger mean and median search-cost estimates.?

Hence, to evaluate the sensitivity of the results to the gamma distribution assumption, we
also considered a variety of alternative parametric specifications for the search-cost distribution,
including a lognormal, Weibull, a mixture of two gamma distributions, and truncated gamma and
normal distributions. In all these cases, either we were not able to obtain estimates that satisfied
the nonnegative density restriction for all of the observed prices, or the converged likelihood
function was lower than that obtained under the gamma assumption.?*

As an additional check of the influence that the parametric assumptions may be having on the
search-cost estimates for the sequential model, we considered alternative search-cost estimates
that rely less on parametric assumptions. Note that for a fixed value of r, we can solve for the

FIGURE 4

SEARCH-COST CDF FOR SEQUENTIAL-SEARCH MODEL: PARAMETRIC VERSUS
NONPARAMETRIC ESTIMATES
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22 To confirm that the larger search costs may be related to the decreasing density restriction, we fit the nonparametric
estimates of the search-cost distribution quantiles obtained for the nonsequential-search model (reported in the bottom of
Table 2) to the gamma distribution. At the best-fitting parameter values, indeed, the mean and median search costs were
smaller than the sequential model estimates, but the gamma densities evaluated at these parameters were characterized by
an increasing density along part of its support, which would violate the equilibrium restrictions of the sequential model.

23 According to Vuong (1989), when testing between two nonnested parametric models, a model with a higher
converged log-likelihood function cannot be rejected in favor of a model with the lower converged log-likelihood function.
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TABLE 4 Nonparametric Estimates of Sequential-Search
Model, Holding r Fixed

Product r Search-Cost Estimates

r fixed at sequential-model estimates®

Stokey-Lucas 22.90 F1(0.42) =20.20
Lazear 1131 F71(0.31) =2.97
Billingsley 65.37 F710.49) = 5.39
Duffie 28.24 F1(0.46) = 7.24

r fixed at nonsequential-model estimat

Stokey-Lucas 4952 F1(0.5) = 4.52¢
Lazear 27.76 F10.5)=0.26
Billingsley 69.73 F710.5) =321
Duffie 35.48 F10.5)=3.51

2 For fixed r, quantiles of search-cost distribution are obtained nonparametrically using
equation (14).

b As reported in Table 2.

¢ As reported in Table 3.

4 Median obtained by linear interpolation.

quantiles of the search-cost distribution nonparametrically via the relation

p—r r P p—p
1-G(p)==——=1—-F, / Fp(x)dx | = F, / Fp(x)dx | = ——=, (14)
p—-r P P p—r
which must hold for all p = py, ..., p,. This allows us to solve for the values of the search-cost

distribution F, at the points f pp YF »(x)dx for k = 2,..., n, which, from (6), denote the cutoff
search costs for the consumers who have reservation prices exactly equal to the observed prices
P2s---s Pn-

First, we perform this exercise by fixing r at the estimate obtained for the sequential-search
model (and reported in Table 3). The results are reported in the top panel of Table 4. As expected,
we were only able to estimate the shape of the search-cost distribution up to the (1 — «r)th quantile,
so that the nonparametric estimates of F, !(1 — «) are reported in Table 4. For all four books,
these estimates are comparable to the parametric estimates of F."'(1 — «;#8) reported earlier
in Table 3. Furthermore, in Figure 4, we graph the search-cost distributions estimated using
both the parametric and nonparametric methods (with r fixed at the sequential-model estimates).
The nonparametric and parametric estimates coincide quite closely, suggesting that the gamma
functional-form assumption is not unduly driving the estimates of the search-cost distribution, in
the range below the (1 — «)th quantile ?*

Second, to see whether the sequential-search model is capable of generating the lower search
costs estimated for the nonsequential model, we performed the same exercise again but fixed r
at the higher values estimated for the nonsequential-search specification (given in Table 2). The
results, presented in the bottom panel of Table 4, show that once r is raised and fixed at the estimated
levels of the nonsequential-search model, the implied median search costs for the sequential-search
model are roughly of the same magnitude as the nonsequential-search estimates. For example,
the median search cost for the Stokey-Lucas text is now $4.52, not much higher than the $2.32
obtained from the nonsequential-search model; furthermore, for the Lazear book, the median
search cost of $.26 is lower than the corresponding nonsequential estimate.?> Hence, it appears

24In Chen, Hong, and Shum (2004), we derive formal likelihood-ratio tests for distinguishing between nonpara-
metric and parametric competing models.

25 For these results, we also verified informally that the implied search-cost density function is consistent with an
equilibrium price density of the form in (9) by confirming visually that the search-cost CDF was concave, at least in the
range defined by the relation (14).
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that the sequential-search model can, in principle, generate estimates of search costs comparable
to, or even lower than, those of the nonsequential-search model. (However, the parameters that
maximize the likelihood function are those that imply larger search costs.2®)

4. Concluding remarks

m In this article, we proposed new methods to estimate consumer search costs. An important
benefit of our approach is that we require data on prices alone; this may make our methods useful
for analyzing online markets, for which prices are often the only available data, and quantity
data are difficult to obtain. In estimating the population search-cost distribution, we exploit the
equilibrium restrictions of several theoretical price-search models.

Although we have focused in this article on search explanations for observed price dispersion,
some recent work on online markets has emphasized nonsearch explanations for price dispersion
in ostensibly homogeneous-good markets. For example, Ellison and Ellison (2001) focus on
sellers’ incentives to engage in “obfuscation” or “bait-and-switch” strategies. An assumption of
our empirical approach is that all observed prices result in positive sales, which may not hold
if retailers engage in bait and switch. Jin and Kato (2002) investigate the increased incidence of
adverse selection in online markets due to the buyers’ lack of opportunities to inspect products.
These features, along with the potential unreliability of retailers to deliver products when promised,
can enhance the importance of seller reputation in online markets, thereby leading to retailer
differentiation and price dispersion even in the absence of consumer search costs and explicit
product heterogeneity.

A challenging extension would be to combine the equilibrium search models considered
in this article with rich individual-level datasets (such as supermarket scanner panel datasets
or the individual-level drug purchase dataset used in Sorensen (2001)). It would be interesting
to investigate how to exploit the equilibrium restrictions of the theoretical search models in
identifying consumer search costs with more detailed data. Such additional data would allow us
to fit richer models of supply and demand, including models of retailer differentiation (such as
Wolinsky (1986)). Hortagsu and Syverson (2005) use both price and market share data for mutual
funds to assess the relative importance of search versus product differentiation in driving price
dispersion.

We have not considered the possibility that consumers may substitute between online and
traditional retailers. While such an extension involves data collection efforts that are beyond the
scope of this article, we mention in conclusion that we also conducted a small telephone survey
of electronics retailers in the Baltimore metropolitan area in February 2002 to canvass prices
for Palm Pilots, a homogeneous product easily comparable across retailers. Somewhat to our
surprise, we found practically no price dispersion for each Palm Pilot model.?” In the equilibrium
search framework, no price dispersion can arise, for two reasons: (i) search costs are zero, and
prices represent the Bertrand (zero-profit) equilibrium; (ii) search costs are prohibitively high,
and the observed prices represent the equilibrium in which all firms charge the monopoly price.?®
Furthermore, collusion is an additional possibility not considered by these models. Since all of
these scenarios lead to observationally equivalent pricing outcomes, it is difficult to test between
them without additional data (such as costs or quantities).

26 Indeed, when we reestimated the sequential-search model using the higher nonsequential-search estimates for r
as starting values, we converged again to the parameter values reported in Table 3.

27'We could not do a similar exercise for the economics and statistics books used for the empirical illustration in
this article, because none of the large brick-and-mortar bookstores in the Baltimore metropolitan area had them in stock.

28 The uniformity of prices in brick-and-mortar stores could also be due to resale price maintenance. While explicit
RPM is prohibited by law, it might be implemented in practice via “manufacturer’s suggested retail prices,” which, in fact,
exist for Palm Pilots. (However, RPM cases are few and far between, perhaps due to the reluctance of the U.S. Department
of Justice to prosecute them.)
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Appendix

m  Maximum empirical likelihood (MEL) estimation procedure for nonsequential search model. Here, we de-
scribe our empirical likelihood approach for estimating the model parameters. As noted by Imbens, Spady, and Johnson
(1998) and Kitamura and Stutzer (1997), empirical likelihood also provides an alternative (and potentially more con-
venient) method for obtaining the efficient GMM estimates of model parameters, based on moment restrictions on the
data-generating process.

Our data consist of n prices, p;,i = 1,...,n. Consider a discrete price distribution with n points of support, at
pi,i =1,...,n, with probability weight 7; at point p;. Thus F,(p) = Y i m;1(p; < p). As before, p and p can be
estimated at a superconsistent rate, so in what follows we treat these parameters as known and nonstochastic.

Using the discrete distribution for F),(p), we obtain, foralli =1,...,n — 1 and fixed K:

K n k=1
P —na =i —r) | Y ak (1 - {Zn,l(p,- st : (A1)
k=1

J=1
From (5), evaluated at p (and using F},(p) = 0), we rewrite r as a function of p, p,and @ = g, ..., gk:

@ [SE k] -7 +a
r =
R P

(A2)

This can be plugged into each of the equations in (A1) in order to eliminate r.
Let

05{)’,(}1,...,(}1{}

denote the unknown parameters to be estimated. We can transform the restrictions (A1) into estimating equations (or
moment conditions) of the form Ef(x;#) = 0, as follows. For s,, € [0,1], m=1,...,Mand M > K,

K
AD & G —r@)ar = (F, o) = r@) {Z Gk (1 — sm)’“}
k=1
7 — r@)a
Sk Gik(1 = s

= F, ) =r@+ = 40, (@)
[ ]

This population quantile restriction (that the s;,th quantile of Fj(p) equals g, (§)) can be written as a population
mean restriction (see Owen, 2001):

@ —r@)q

Ed1n <r@+
[ aikct = sy ]

)—sm¢ =0, m=1,....,M, M > K. (A3)

The sample analogs are

n - _ ~ -~
Sy |1 py <r@e L@ o, )
= [Zk=1 k(1 — Sm)k"]
Hence, the empirical likelihood program is to maximize

n
Z log 7; (A5)

i=1
with respect to the weights 7r;,i = 1, ..., n and the parameters 0, subject to the sample moment restrictions (A4) and the

summing-up condition 37 7; = 1.2

29 Because we use only M moment conditions for estimation, but the indifference condition in (5) holds for all
prices in the support of F),, there are “leftover” moment conditions not used in estimation that can be employed as the
basis for specification tests. We do not consider this possibility in this article.
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Itis well known (see Qin and Lawless, 1994) that the empirical likelihood estimate 0 can be solved from the following
saddle-point problem:

P — r@)aq:
K Gik(1 — sm)kfl}

n n
maxmin Y log | 1+¢ 1] p; <r @@ + — = maxmin Y log(l +'m(p;;9)),
0,;g p,,<q>[ n 0r;g( (pi:0)

where ¢ denotes an M-vector of Lagrange multipliers associated with the sample moment conditions (A4).
Optimizing this objective function yields the empirical likelihood estimates of the parameters. Subsequently, via

equation (3), we use the estimated values of Gy, . .., Gg—1 tosolve for Fc(Ay), ..., Fe(Ag_1),the cumulative distribution
function of the search costs evaluated at the indifference points Ay, ..., Ag_1:
Fe(AD=1—-4q;

Fe(A)=1—g1 —q2
Fe(A3)=1—q1 — G2 — §3

Fe(Ag—1)=1—q1 —q2— ... —Gk-1- (A6)

Asymptotic theory for MEL estimates. Using results from Qin and Lawless (1994), we obtain the limiting distribution of
the above empirical likelihood estimate:

A -1
\/E(ofo)i»zv(o, (AB"A) )
where the matrices in the limiting distribution are given by

P — r@a
YK ak( = 5]

a
A= @FP r (@) + [

S](l - S])

min(sy, s2) — 5152 s2(1 — 52)
B=

min(sy, Sy) — S1Sm cooosy(—spp)

As noted above, the variance-covariance matrix for the MEL estimates corresponds to the variance-covariance matrix
for the GMM estimates of € using the M moment restrictions (A3) and the optimal weighting matrix. The A matrix can
be consistently estimated using numerical derivatives. Subsequently, the estimates of F.(Ay), ..., Fc(Ag_1), which are
linear transformations of the estimated ¢’s, can be obtained using the delta method.

O  Derivation of likelihood function for the sequential-search model. Given « and r, we can estimate the tth
quantile of the reservation price distribution, denoted G];l (t; @, r), using the firm indifference condition (8):

(p—r)

@-rae=G (ta,r)—rN1—-1)< G (t;a,r) =«
(1-1)

+7. (A7)

Let F."'(t;0) denote the tth quantile of the parameterized cost distribution, where 8 denotes the parameters of this
distribution that we wish to estimate. By the consumers’ reservation price condition, we know that
G (tar)

Fl(t:0) = / Fp(p)dp (A8)
2

and therefore

(Fzril),(f;o) = Fp (a(ﬁ_r) +r> (p—r)a

(1—-1) (1—1)2"°

In what follows, let c¢(t; @) denote the tth quantile of F.(-;0) (i.e., Fc(c(t;0);6) = 7). Changing variables from t to
p =a[(p —r)/(1 — )] +r, we can derive the price CDF corresponding to @, &, and 7,

@ -
F,(p;0) = ad — ,
r(pif) (p— ) fole(l — aZ=2:6);0)

P
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with a corresponding density function f,(p; @) that can be derived by differentiating the above with respect to p:

Fr(p:6) = {—a(ﬁ—r)* [2(;7 e (c<1 _aﬁ";o> ;0)
p

+(p—r)2>s<fé<c(1—aﬁ_r;0);0)*c’(l—aﬁ_rﬂ)*ot(ﬁ_r)i“
p—r p—r (p —r)?
_ 2
+{(pfr)z*fc<c(lfap_r;O)ﬂ)}
p—r

2a(p —r1) o*(p =S (c (1 —ag::;O))
p—r

» ,;0);0) - (p_r)4*[ﬂ. (c(l —agj;());a)]y

The maximum likelihood estimates for the @ parameters are estimated by maximizing the sample log-likelihood
function )", log f(p;;@). The variance-covariance matrix of the estimates is approximated by the inverse of the sample
analog of the outer product of the gradient vector:

o fe(e(i-

—1
_ dlog f(pi;0) dlog f(pi;0)
V'[Z 00 FYZ ] '

i
where the gradient vector for each observation i is, in turn, approximated by numerical derivatives.

References

ALBRECHT, J. AND AXELL, B. “An Equilbrium Model of Search Unemployment.” Journal of Political Economy, Vol. 92
(1984), pp. 824-840.

BERGEMANN, D. AND VALIMAKI, J. “Market Diffusion with Two-Sided Learning.” RAND Journal of Economics, Vol. 28
(1997), pp. 773-795.

AND . “Monopoly Pricing of Experience Goods.” Working Paper no. 1463R, Yale University, 1992.

BILLINGSLEY, P. Probability and Measure. New York, NY: John Wiley & Sons, 1992.

BrownN, J. AND GOOLSBEE, A. “Does the Internet Make Markets More Competitive? Evidence from the Life Insurance
Industry.” Journal of Political Economy, Vol. 110 (2002), pp. 481-507.

BRYNJOLFSSON, E. AND SMiTH, M. “Frictionless Commerce? A Comparison of Internet and Conventional Retailers.”
Marketing Science, Vol. 46 (2000), pp. 563-585.

BURDETT, K. AND JUuDD, K. “Equilibrium Price Dispersion.” Econometrica, Vol. 51 (1983), pp. 955-969.

CHEN, X., HONG, K., AND SHUM, M. “Likelihood Ratio Model Selection Tests between Parametric and Moment Condition
Models.” Mimeo, NYU, 1983.

CHEVALIER, J. AND GOOLSBEE, A. “Measuring Prices and Price Competition Online: Amazon and Barnes and Noble.”
Quantitative Marketing and Economics, Vol. 1 (2003), pp. 203-222.

CLAy, K., KrRISHNAN, R., AND WOLFF, E. “Prices and Price Dispersion on the Web: Evidence from the Online Book
Industry.” Journal of Industrial Economics, Vol. 49 (2001), pp. 521-540.

DiamonD, P. “A Model of Price Adjustment.” Journal of Economic Theory, Vol. 2 (1971), pp. 156—168.

DoNALD, S. AND PAaARSCH, H. “Piecewise Pseudo-Maximum Likelihood Estimation in Empirical Models of Auctions.”
International Economic Review, Vol. 34 (1993), pp. 121-148.

DUFFIE, D. Dynamic Asset Pricing Theory. Princeton: Princeton University Press, 1992.

ECKSTEIN, Z. AND WOLPIN, K. “Estimating a Market Equilibrium Search Model from Panel Data on Individuals.” Econo-
metrica, Vol. 58 (1990), pp. 783-808.

ELLISON, G. AND ELLISON, S. “Search, Obfuscation, and Price Elasticities on the Internet.” Manuscript, MIT, 2001.

GOOLSBEE, A. “Competition in the Computer Industry: Online vs. Retail.” Journal of Industrial Economics, Vol. 49
(2001), pp. 487-499.

HorTACSU, A. AND SYVERSON, C. “Search Costs, Product Differentiation, and the Welfare Effects of Entry: A Case Study
of S&P 500 Index Funds.” Quarterly Journal of Economics, Vol. 119 (2004), pp. 403—456.

IMBENS, G., SPADY, R., AND JOHNSON, P. “Information Theoretic Approaches to Inference in Moment Condition Models.”
Econometrica, Vol. 66 (1998), pp. 333-357.

JIN, G. AND KATO, A. “Dividing Online and Offline: A Case Study.” Manuscript, Department of Economics, University
of Maryland, 2002.

KITAMURA, Y. AND STUTZER, M. “An Information-Theoretic Alternative to Generalized Method of Moments Estimation.”
Econometrica, Vol. 65 (1997), pp. 861-874.

LAZEAR, E.P. Personnel Economics. Cambridge, Mass.: MIT Press, 1995.

MORGAN, P. AND MANNING, R. “Optimal Search.” Econometrica, Vol. 53 (1985), pp. 923-944.

© RAND  2006.




HONG AND SHUM / 275

MORTENSEN, D. “Job Search and Labor Market Analysis.” In O. Ashenfelter and R. Layard, eds., Handbook of Labor
Economics, Vol. II. Amsterdam: North-Holland, 1986.

OWEN, A. Empirical Likelihood. Boca Raton, Fla.: Chapman and Hall/CRC, 2001.

PRATT, J., WISE, D., AND ZECKHAUSER, R. “Price Differences in Almost Competitive Markets.” Quarterly Journal of
Economics, Vol. 93 (1979), pp. 189-211.

QIN, J. AND LAWLESS, J. “Empirical Likelihood and General Estimating Equations.” Annals of Statistics, Vol. 22 (1994),
pp. 300-325.

Ros, R. “Equilibrium Price Distributions.” Review of Economic Studies, Vol. 52 (1985), pp. 487-504.

ScoTT-MORTON, F., ZETTELMEYER, F., AND S1LVA-R1ss0, J. “Internet Car Retailing.” Journal of Industrial Economics,
Vol. 49 (2001), pp. 487-500.

SORENSEN, A. “Price Dispersion and Heterogeneous Consumer Search for Retail Prescription Drugs.” NBER Working
Paper no. 8548, 2001.

StAHL, D. “Oligopolistic Pricing with Sequential Consumer Search.” American Economic Review, Vol. 79 (1989), pp.
700-712.

STIGLER, G. “The Economics of Information.” Journal of Political Economy, Vol. 61 (1964), pp. 213-225.

STOKEY, N.L. AND Lucas, R.E. JR. Recursive Methods in Economic Dynamics. Cambridge, Mass.: Harvard University
Press, 1989.

VUuong, Q. “Likelihood-Ratio Tests for Model Selection and Non-Nested Hypotheses.” Econometrica, Vol. 57 (1989),
pp. 307-333.

WoOLINSKY, A. “True Monopolistic Competition as a Result of Imperfect Information.” Quarterly Journal of Economics,
Vol. 101 (1986), pp. 493-511.

© RAND  2006.





