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Estimate the parameters of a dynamic optimization problem: when to replace engine

of a bus? This is a another practical example of an optimal stopping problem, which

is easily applicable to dynamic economic decisions involving discrete choice variables

(0=don’t replace engine, 1=replace engine).

Engine replacement problem features a standard tradeoff: (i) there are fixed costs

associated with replacing the engine, but new engine has lower associated future

maintenance costs; (ii) by not replacing the engine, you avoid the fixed replacement

costs, but suffer higher future maintenance costs.

General problem fits into “optimal stopping” framework: there is a “critical” cutoff

mileage level x∗ below which no replacement takes place, but above which replacement

will take place. (Just like in Pakes (1986) patents problem, where there is a cutoff

return r̄ beyond which patent will be renewed.)

Compare with Pakes (1986):

1. Rust paper is infinite horizon: focus on stationary solutions. This means that

value function, and optimal decision functions are just functions of the state

variable, which is mileage, and not explicitly functions of time.

2. In Pakes problem, once you “stop” (allow your patent to expire) your problem

ends. In Rust problem, once you “stop” (ie. replace your engine), your bus

becomes good as new, as if your mileage were “reset” to zero. This problem is

regenerative.

Note: A common distinction between papers with infinite-horizon and finite-horizon

DO problems is that stationarity (or time homogeneity) is assumed for infinite-horizon

problems, and they are solved using value function iteration. Finite-horizon problems

are non-stationary, and solved by backward induction starting from the final period.
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BEHAVIORAL MODEL
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Control variable:

it =

{

1 if HZ replaces

0 otherwise.

For simplicity. we describe the case where there is only one bus (in the paper, buses

are treated as independent entities).

HZ chooses the (infinite) sequence {i1, i2, i3, . . . , it, it+1, . . . } to maximize discounted

expected utility stream:

max
{i1,i2,i3,... ,it,it+1,... }

E

∞
∑

t=1

βt−1u (xt, it; θ) (1)

where

• xt is the state variable of the problem, which is the mileage of the bus. Assume

that evolution of mileage is stochastic (from HZ’s point of view) and follows

xt+1

{

∼ G(x′|xt) if it = 0 (don’t replace engine in period t)

= 0 if it = 1: once replaced, bus is good as new
(2)

and G(x′|x) is the conditional probability distribution of next period’s mileage x′

given that current mileage is x. HZ knows G; econometrician knows the form of

G, up to a vector of parameters which are estimated. (x′−x is assumed to follow

multinomial distribution, with unknown probabilities, which are estimated.)

• Since mileage evolves randomly, this implies that even given a sequence of

replacement choices {i1, i2, i3, . . . , it, it+1, . . . }, the corresponding sequence of

mileages {x1, x2, x3, . . . , xt, xt+1, . . . } is still random. The expection in Eq. (1)

is over this stochastic sequence of mileages.

Define value function:

V (xt) = max
iτ , τ=t+1,t+2,...

Et

[

∞
∑

τ=t+1

βτ−tu (xt, it; θ) |xt

]
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where maximum is over all possible sequences of {it+1, it+2, . . . }. Note that we have

imposed stationarity, so that the value function V (·) is a function of t only indirectly,

through the value that the state variable x takes during period t.

What helps us (as usual) is the principle of optimality, which allows us to break down

the DO problem into an (infinite) sequence of single-period decisions, characterized

by Bellman’s equation:

it = i∗(xt; θ) = argmaxi

{

u(xt, i; θ) + βEx′|xt
V (x′)

}

where the value function is

V (x) = max
i=1,0

{

u(x, i; θ) + βEx′|xV (x′)
}

= max
{

u(x, 0; θ) + βEx′|xV (x′), u(x, 1; θ) + βV (0).
}

(3)

Parametric assumptions on utility flow:

u(x, i; θ) = −c ((1 − i) ∗ x; θ) − i ∗ RC + εi

where

• c(· · · ) is the maintenance cost function, which is presumably increasing in x

(higher x means higher costs)

• RC denotes the “lumpy” fixed costs of adjustment. The presence of these costs

implies that HZ won’t want to replace the engine every period.

• εi, i = 0, 1 are structural errors, which represents factors which affect HZ’s

replacement choice it in period t, but are unobserved by the econometrician.

As Rust remarks (bottom, pg. 1008), you need this in order to generate a

positive likelihood for your observed data. Without these ε’s, we observed as

much as HZ does, and model will not be able to explain situations where (say)

mileage was 20,000, but in one case HZ replaces, and in second case HZ doesn’t

replace.

As remarked earlier, these assumption imply a very simple type of optimal decision

rule i∗(x; θ): in any period t, you replace when xt ≥ x∗, where x∗ is some optimal

cutoff mileage level, which is fixed across all periods t.
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Important parameters are (i) parameters of maintenance cost function c(· · · ); (ii)

replacement cost RC; and (iii) parameters of mileage transition function G(x′|x).

ECONOMETRIC MODEL

Data: observe {it, xt} , t = 1, . . . , T for 62 buses. Treat buses as homogeneous and

independent (ie. replacement decision on bus i is not affected by replacement decision

on bus j).

Likelihood function:

l (x1, . . . , xT , it, . . . , iT |x0, i0; θ)

=
T

∏

t=1

Prob (it, xt|x0, i0, . . . , xt−1, it−1; θ)

=

T
∏

t=1

Prob (it, xt|xt−1, it−1; θ)

=
T

∏

t=1

Prob (it|xt; θ) × Prob (xt|xt−1, it−1; θ3) .

(4)

The third line arises from the Markov feature of the mileage transition probability

(2), and the state-contingent nature of the optimal policy function. The last equality

arises due to the conditional independence assumption: conditional on xt, the it

are independent over time. (Note: conditional on xt, the source of randomness in it

is due to the structural shock εt.)

Given the factorization above, we can estimate in two steps:

1. Estimate θ3, the parameters of the Markov transition probabilities for mileage,

conditional on non-replacement of engine (i.e., it = 0). (Recall that xt+1 = 0 wp1 if

it = 1.)

We assume a discrete distribution for ∆xt ≡ xt+1 − xt, the incremental mileage

between any two periods:

∆xt =











[0, 5000) w/prob p

[5000, 10000) w/prob q

[10000,∞) w/prob 1 − p − q
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so that θ3 ≡ {p, q}, with 0 < p, q < 1 and p + q < 1.

This first step can be executed separately from the more substantial second step—

2. Estimate θ, parameters of maintenance cost function c(· · · ) and engine replacement

costs

Expand the expression for Prob(it = 1|xt; θ) equals

Prob
{

−c(0; θ) − RC + ε1t + βV (0) > −c(xt; θ) + ε0t + βEx′|xt,it=0V (x′)
}

=Prob {ε1t − ε0t > c(0; θ) − c(xt; θ) + β [EV (x) − V (0)] + RC}

=
exp (−c(0; θ) − RC + βV (0))

exp (−c(0; θ) − RC + βV (0)) + exp (−c(xt; θ) + βEV (x′))

where the last line follows if we assume that ε1t and ε0t are independent, and each is

distributed iid TIEV, also independently over time. This is called a “dynamic logit”

model, in the literature.

Define

Ṽ (x, i) =

{

V (0) if i = 1

V (x) if i = 0.

Then

Prob (i1, . . . , iT |x1, . . . , xT ; θ) =
∏

t

exp
(

u(xt, it; θ) + βEṼ (x′, it)
)

∑

i=0,1 exp
(

u(xt, i; θ) + βEṼ (x′, i)
) . (5)

This simplification is mainly due to the logit assumption on the errors, as well as the

independence of the errors over time.

ESTIMATION METHOD

The second-step of the estimation procedures is via a “nested fixed point algorithm”.

Outer loop: search over different parameter values θ̂.

Inner loop: For θ̂, we need to compute the value function V (x; θ̂). After V (x; θ̂) is

obtained, we can compute the LL fxn in Eq. (5).

COMPUTATIONAL DETAILS

Compute value function V (x; θ̂) by iterating over Bellman’s equation (3).
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Difference is that the HZ problem is stationary, so that the value function is the same

each period.

A clever feature in Rust’s paper is that he iterates over the expected value function

EV (x, i) ≡ Ex′,ε′|x,iV (x′, ε′; θ). The reason for this is that you avoid having to calcu-

late the value function at values of ε0 and ε1, which are additional state variables. He

iterates over the following equation (which is Eq. 4.14 in his paper):

EV (x, i) =

∫

y

log







∑

j∈C(y)

exp [u(y, j; θ) + βEV (y, j)]







p(dy|x, i) (6)

Somewhat awkward notation: here “EV” denotes a function (not the expectation of

V (x, i)). Here x, i denotes the previous period’s mileage and replacement choice, and

y, j denote the current period’s mileage and choice (as will be clear below).

This equation can be derived from Bellman’s equation (3):

V (y, ε; θ) = max
j∈0,1

[u(y, j; θ) + ε + βEV (y, j)]

⇒ Ey,ε [V (y, ε; θ) | x, i] ≡ EV (x, i; θ) =Ey,ε|x,i

{

max
j∈0,1

[u(y, j; θ) + ε + βEV (y, j)]

}

=Ey|x,iEε|y,x,i

{

max
j∈0,1

[u(y, j; θ) + ε + βEV (y, j)]

}

=Ey|x,i log

{

∑

j=0,1

[u(y, j; θ) + βEV (y, j)]

}

=

∫

y

log

{

∑

j=0,1

[u(y, j; θ) + βEV (y, j)]

}

p(dy|x, i).

The next-to-last equality follows due to extreme value assumption on the ε’s, and

additivity of utility in the error terms. In the above display, x and i denote the

mileage and choice in the “previous” period, and y and j denote the mileage and

choice in the “current” period.

The iteration procedure: Let τ index the iterations. Let EV τ (x, i) denote the

expected value function during the τ -th iteration. Let the values of the state variable

x be discretized into a grid of points, which we denote ~r.
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• τ = 0: Start from an initial guess of the expected value function EV (x, i).

Common way is to start with EV (x, i) = 0, for all x ∈ ~r, and i = 0, 1.

• τ = 1: Use Eq. (6) and EV 0(x; θ) to calculate, at each x ∈ ~r, and i ∈ {0, 1}.

V 1(x, i) =

∫

y

log







∑

j∈C(y)

exp
[

u(y, j; θ) + βEV 0(y, j)
]







p(dy|x, i)

=p ·

∫ x+5000

x

log







∑

j∈C(y)

exp
[

u(y, j; θ) + βEV 0(y, j)
]







dy +

q ·

∫ x+10000

x+5000

log {· · · } dy + (1 − p − q) ·

∫ ∞

x+10000

log {· · · } dy.

Now check: is EV 1(x, i) close to EV 0(x, i)? One way is to check whether

supx,i|EV 1(x, i) − EV 0(x, i)| < η

where η is some very small number (say 0.0001). If so, then you are done. If

not, then go to next iteration τ = 2.
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