Empirical Demand-Supply analysis

- Most of empirical IO focuses on estimation of demand–supply models
- Goal: say something about firm behavior (pricing, advertising, R&D, output decisions)
- While IO theory mostly concerned about supply, data constraints (lack of cost data) focus attention on demand. Fundamental tension: high prices resulting from market power ("bad") or high costs?
- On the other hand, demand characteristics (slopes) crucial to firm behavior.
- Research agenda: Estimate demand model, then simulate firm behavior of interest under alternate assumptions about behavior. Examples.
- Brief review of linear simultaneous equations
- Discrete-choice demand modeling: appropriate for differentiated product markets

Review of Simultaneous Equations

- Review linear simultaneous equations theory in specific context: estimating demand and supply
- Price endogeneity: fundamental problem in much applied IO work
- Appropriate instruments for price in supply ("demand shifters") and demand functions ("cost shifters")
- Estimation methods: IV methods (2SLS, 3SLS); Maximum likelihood

Linear Supply-demand model

•

Demand:
$$q_t = \gamma_1 p_t + \mathbf{x'_{t1}} \beta_1 + u_{t1}$$

Supply: $p_t = \gamma_2 q_t + \mathbf{x'_{t2}} \beta_2 + u_{t2}$

- Demand function summarizes consumer preferences; supply function summarizes firms' cost structure
- If u_1 correlated with u_2 , then p_t is endogenous in demand function, and q_t is endogenous in supply relation: cannot estimate using OLS.
- Graph
- x's are exogenous variables:
 - 1. x_{t1} are demand shifters; affect willingness-to-pay, but not a firm's production costs. Correlated with q_t but not with u_{2t} : use as instruments in supply function. Graph.
 - 2. x_{t2} are cost shifters; affect production costs. Correlated with p_t but not with u_{t1} : use as instruments in demand function. Graph.

Estimation methods (brief) 1

•

Demand:
$$q_t = \gamma_1 p_t + \mathbf{x}'_{t1} \beta_1 + u_{t1}$$

Supply: $p_t = \gamma_2 q_t + \mathbf{x}'_{t2} \beta_2 + u_{t2}$

$$\Rightarrow \left(\begin{array}{cc} 1 & -\gamma_1 \\ -\gamma_2 & 1 \end{array}\right) \left(\begin{array}{c} q \\ p \end{array}\right) = \left(\begin{array}{cc} \beta_1 & 0 \\ 0 & \beta_2 \end{array}\right) \left(\begin{array}{c} x_{t1} \\ x_{t2} \end{array}\right) + \left(\begin{array}{c} u_{t1} \\ u_{t2} \end{array}\right)$$

$$\Rightarrow Y\Gamma = XB + U$$

- IV methods (GMM): population moment conditions $E(u_1 \cdot \mathbf{Z}) = 0$, $E(u_2 \cdot \mathbf{Z}) = 0$ hold at true parameter values.
- Properties of appropriate instrument Z for endogenous variable p:
 - 1. Uncorrelated with error term in demand equation: $E(u_1Z) = 0$. **Exclusion** restriction. (order condition)
 - 2. Correlated with endogenous variable: $E(Zp) \neq 0$. (rank condition)
 - 3. Is rainfall in India a good IV?
- Different IV estimators:
 - 1. Two-stage least squares
 - 2. Three-stage least squares
 - 3. Generally: GMM

Estimation methods (brief) 2

- Maximum likelihood:
 - 1. Make distributional assumptions about $\{(u_{t1}, u_{t2})_{t=1}^T\}$. Example: $(u_{t1}, u_{t2}) \sim \text{ i.i.d } N(0, \Sigma)$
 - 2. Likelihood function of the data is joint density of the endogenous variables $(\mathbf{q_t}, \mathbf{p_t})$ conditional on exogenous variables $(\mathbf{x_{t1}}, \mathbf{x_{t2}})$:

$$f(Y) = g(Y\Gamma - XB) * | \Gamma | \Rightarrow$$
$$\log L(Y | X) \sim T \log | \Gamma | -\frac{T}{2} \log | \Sigma |$$
$$-\frac{1}{2} (Y\Gamma - XB)' \Sigma^{-1} (Y\Gamma - XB)$$

3. Maximize this with respect to Γ, B, Σ .

Empirical Demand analyses 1

Next discuss how we derive estimating equations for demand side.

• In static setting, for two goods 1,2:

$$\max_{x_1, x_2} U(x_1, x_2) \text{ s.t. } p_1 x_2 + p_2 x_2 = M$$

- This yields demand functions $x_1^*(p_1, p_2, M)$, $x_2^*(p_1, p_2, M)$.
- Equivalently, start out with indirect utility function $V(p_1, p_2, M) = U(x_1^*(p_1, p_2, M), x_2^*(p_1, p_2, M))$
- Demand functions derived via Roy's Identity:

$$x_1^*(p_1, p_2, M) = -\frac{\partial V}{\partial p_1} / \frac{\partial V}{\partial M}$$
$$x_2^*(p_1, p_2, M) = -\frac{\partial V}{\partial p_2} / \frac{\partial V}{\partial M}$$

This approach is often more convenient empirically (illustrate this next).

Empirical demand analysis 2

Empirical implementation:

• Take a particular functional form for V (for example, Translog):

$$\log V_k(p_1, p_2, M) = \alpha_0 + \sum_{i=1,2} \alpha_i \log \left(\frac{p_i}{M_k}\right) + \frac{1}{2} \sum_{i=1,2} \sum_{j=1,2} \beta_{ij} \log \left(\frac{p_i}{M_k}\right) \log \left(\frac{p_j}{M_k}\right) + \eta \log \left(\frac{p_i}{M_k}\right) x_k$$

• Log-version of Roy's Identity yields the expenditure shares (i.e., $w_{ik} = \frac{p_i x_{ik}}{M_k}$):

$$w_{ik}(p_1, p_2, M_k) = \frac{\partial V_k}{\partial \log\left(\frac{p_i}{M_k}\right)} / \sum_{i=1,2} \frac{\partial V_k}{\partial \log\left(\frac{p_i}{M_k}\right)}$$

- Only estimate equation for first good (since shares sum to 1)
- Utility max'n behavior places constraints on parameters (H^0 in prices, symmetry Slutsky matrix): can test
- To estimate: add error term to share equation. Literature on interpretation of this error.

Empirical demand analysis 3

Usual approach not convenient for diff. product markets

- Many alternatives (autos, cereals): too many parameters to estimate
- At individual level, usually only choose one of the available options (discrete choices)

These problems have been approached by

- Demand for a product as demand for a characteristic of that product: **Hedonic** analysis (brief sidetrack to Rosen (1971, *JPE*)
- Discrete choice: assume each consumer can choose at most *one* of the available alternatives on each purchase occasion

• There are N alternatives in market. Each purchase occasion, each consumer i divides her income y_i on (at most) one of the alternatives, and on an "outside good":

$$\max_{n,z} U_i(x_n, z) \text{ s.t. } p_n + p_z z = y_i$$

where

- $-x_n$ are chars of brand n, and p_n the price
- -z is quantity of outside good, and p_z its price
- Substitute in the budget constraint $(z = \frac{y-p_n}{p_z})$ to derive conditional indirect utility functions for each brand:

$$U_{in}^*(p_n, p_z, y) = U_i(x_n, \frac{y_i - p_n}{p_z}).$$

Note: if none of the brands are bought:

$$U_{i0}^*(p_z, y) = U_i(0, \frac{y_i - p_n}{p_z}).$$

• Consumer chooses the brand yielding the highest cond. indirect utility:

$$\max_{n} U_{in}^*(p_n, p_z, y_i)$$

Sidetrack: conditional, indirect utility

• U_{in}^* usually specified as sum of deterministic and stochastic part:

$$U_{in}^*(p_n, p_z, y_i) = V_{in}(p_n, p_z, y_i) + \epsilon_{in}$$

Important: ϵ_{in} observed by agent i, not by econometrician (this is a **structural error**). From agent's point of view, utility and choice are deterministic.

- Sidetrack: Deterministic vs. stochastic
- Distributional assumptions on ϵ_{in} , $n = 0 \dots N$ determine the likelihood function for agent *i*'s purchase:

$$D_{in}(p_1 \dots p_N, p_z, y_i) = \operatorname{Prob}\left\{\epsilon_{i0}, \dots, \epsilon_{iN} : U_{in}^* > U_{ij}^* \text{ for } j \neq n\right\}$$

- If consumers are identical, and $\{\epsilon_{i0}, \ldots, \epsilon_{iN}\}$ is *iid* across agents i, then $D_n(p_1 \ldots p_N, p_z, y)$ is also the aggregate market share.
- Sidetrack: *i.i.d.*

Common assumptions:

- $(\epsilon_{i0}, \ldots, \epsilon_{iN})$ distributed multivariate normal: **multinomial probit**. Computationally burdensome (Keane, McFadden)
- $(\epsilon_{in}, n = 0, ..., N)$ distributed *i.i.d.* type II extreme value across *i*:

$$F(\epsilon) = \exp\left[-\exp\left(-\frac{\epsilon - \eta}{\mu}\right)\right]$$

with (usually) $\mu = 1$, and $\eta = 0.577$ (Euler's constant). $E\epsilon = 0$.

Leads to multinomial logit

$$D_{in}(\cdots) = \frac{\exp(V_{in})}{\sum_{n'=1,\dots,N} \exp(V_{in'})}$$

Normalize $V_0 = 0$.

Convenient, tractable form for choice probabilities.

Problems with multinomial logit

• Restrictiveness of multinomial logit: Odds ratio between any two brands n, n' doesn't depend on number of alternatives available

$$\frac{D_n}{D_{n'}} = \frac{\exp(V_n)}{\exp(V_{n'})}$$

Example: Red bus/blue bus problem. Implication: invariant to introduction (or elimination) of some alternatives. Independence of Irrelevant Alternatives

• If interpret D_{in} as market share, implies restrictive substitution patterns:

$$\varepsilon_{a,c} = \varepsilon_{b,c}$$
, for all brands $a, b \neq c$.

If $V_n = \beta_n + \alpha(y - p_n)$, then $\varepsilon_{a,c} = -\alpha p_c D_c$, for all $c \neq a$: Price decrease in brand a attracts proportionate chunk of demand from all other brands. Unrealistic!

Changes to logit framework to overcome IIA:

- Nested logit: assume particular correlation structure among $(\epsilon_{i0}, \ldots, \epsilon_{iN})$. Within-nest brands are "closer substitutes" than across-nest brands (cf. Maddala, ch. 2). Diagram.
- Random coefficients: assume logit model, but for agent *i*:

$$U_{in}^* = X_n' \beta_i - \alpha_i p_n + \epsilon_{in}$$

(coefficients are agent-specific).

Then aggregate market share is

$$\int D_{in}(p_1 \dots p_N, p_z, y_i; \alpha_i, \beta_i) dF(\alpha_i, \beta_i)$$

and differs from individual choice probability. Elasticity implication of IIA disappears.

• Important distinction between nested logit and random coefficients: NL implies IIA disappears at the individual level, RC implies IIA disappears only at aggregate level.

Berry-Levinsohn-Pakes methodology (intro)

Main idea: Control for price endogeneity in aggregate discrete-choice framework.

Background: Trajtenberg's study of demand for CAT scanners. Disturbing finding: coefficient on price is *positive*, implying that people prefer more expensive machines!

Explanation: quality differentials across products not adequately controlled for. In equilibrium of a diff'd product market where each product is valued on the basis of its characteristics, brands with highly-desired characteristics (higher quality) command higher prices. Unobserved quality leads to price endogeneity.

This is the type of price endogeneity tackled by Berry-Levinsohn-Pakes.

- aggregate demand model
- price endogeneity problem
- supply side
- extensions