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Motivation

Applied researchers usually cannot afford to obtain information on the
full network, for example, the entire social network of everyone in a
big city.

Instead, they randomly sample a subset of nodes and ask the nodes to
name connections and links to other nodes.

In the previous literature, this sampled network is then treated as the
true network.

This sampled network is then used in studies to estimate how network
structure affects economic outcomes.

This paper examines and addresses the econometric problems that
arise, i.e. biases in the estimation, when a sampled network is used
instead of the true network.

Chandrasekhar, Lewis () Econometrics of Sampled Networks March 1, 2012 2 / 19



Notation and setup

A network or a graph is a pair G = (V ,E ) consisting of a set V of
nodes and a set E of edges.

w(G ), graph-level network statistics for the network G :

Average path length
Average degree
Maximum eigenvalue of the adjacency matrix
Average clustering

wi (G ), node-level network statistics for node i and network G :

Degree
Clustering
Eigenvector or betweenness Centrality
Path length
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Sampling

Typically, there are two types of sampled network data

Sample a set of m nodes and ask each node about the social
connections with the other m − 1 nodes in that data set. This is
called the induced subgraph, as it restricts the network among those
who are sampled.
Sample m nodes from the network and each node can name his or her
social connections to anyone in the entire network, the sampled
network is called the star subgraph.
Let ψ be the sampling rate. S be the set of surveyed nodes randomly
chosen from V , with m = |S |. Then m = bψnc. G |S = (S ,E |S) is the
induced subgraph, whereas GS = (V ,ES) is the star subgraph.
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Econometric Models

Regression of economic outcomes on network characteristics.
y = α + w(G )β0 + ε

Graph-level regression: the observed data is
{(yr ,w(Gr )) : r = 1, . . . ,R}, where w(Gr ) is a vector of network
statistics, and there are R observations.

Node-level regression: the data is
{(yir ,wir (Gr )) : i = 1, . . . n, r = 1, . . . ,R}, and the regression has nR
observations.

Using sampled networks, y = α+ w(Ḡ )β0 + ε is run instead, where Ḡ
is either G |S or GS .

Measurement error in w(G ) may result in attenuation bias, expansion
bias, or even sign switching.

Chandrasekhar, Lewis () Econometrics of Sampled Networks March 1, 2012 5 / 19



Econometric Models

Regression of economics outcomes on network characteristics.

y = (y1, . . . , yn)′ vector of outcome variables, x = (x1, . . . , xn)′ vector
of exogenous covariates.

We want to estimate y = α1 + ρ0w(G )y + γ0x + δ0w(G )x + ε,
where the economic parameter is β0 = (ρ0, γ0, δ0).

This captures an economic outcome yi that depends on exogenous
covariates of the individual xi , as well as the outcome of i ’s peer
group, as captured by w(G )y , where w(G ) is a (possibly weighted)
adjacency matrix that describes how much yi is affected by others in
the network.

Due to sampling, we mistakenly estimate the model
y = α1 + ρw(Ḡ )y + γx + δw(Ḡ )x + u
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Analytical examples of bias: Average degree

In some cases, we can analytically characterize the bias, and can then
correct for the bias.

The degree of a node, di (G ) is its number of connections. The

average degree of a network G is d(G ) =
∑n

i=1 di (G)
n .

The authors proposed the following analytical correction:

d̃(GS) = m−1
∑

i∈S di (G
S), i.e. constructing the average degree

among the randomly sampled nodes.
d̃(G |S) = ψ−1d(G |S), where ψ is the sampling rate.

Intuitively, the average degree is scaled down as a function of
sampling rate, since only a share of social connections are observed.

Because the regressors are scaled down, the estimated coefficient
expands, while dispersion around this expectation induces attenuation.

They show that using the above correction results in consistency,
under some regularity conditions.
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Analytical examples of bias: Graph clustering

Let ρ(G ) denote the number of triangles in the graph G , and τ(G )
denotes the number of connected triples. Then the graph clustering is
c(G ) = ρ(G)

τ(G) .

Mobius and Szeidl (2006) and Karlan et al. (2009) use a model of
trust and social collateral to microfound clustering as a measure of
social capital.

The authors similarly provide the following analytical corrections:

c̃(GS) = ( ψ(3−2ψ)
1+ψ(1−ψ) )−1c(GS)

c̃(G |S) = c(G |S)
Under the induced subgraph sampling, to obtain a triangle, we must
sample all three nodes. So under random sampling, the ratio c(G |S)
consistently estimates c(G ).
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Analytical examples of bias: A model of diffusion

There are two states: whether or not a household endorses
microfinance in a weekly village gathering.

A non-endorsing household with di links choose to endorse with
probability v0diσi , where v0 is a transmission parameter and σi is the
fraction of i ’s neighbors that have decided to endorse.

An endorsing household may naturally decide not to endorse, with
probability δ0.

The model is identified up to β0 = v0
δ0

.

For a particular network Gr with degree distribution Pr , the
equilibrium average endorsement rate of the network Gr is given by

ρr =
∑

d
βσr (β)d

1+βσr (β)dPr (d), where σr (β) = (E d)−1
∑

d
βσr (β)d2

1+βσr (β)dPr (d)
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Analytical examples of bias: A model of diffusion

If we observed the average endorsement rate of R villages
{y1, . . . , yr , . . . , yR} each with network G1, . . . ,GR .

Assume that the relationship between yr and ρr =
∑

d
βσr (β)d

1+βσr (β)dPr (d)
is given by yr = ρr + ε, where ε is an exogenous zero mean shock,
then we can estimate β0 via nonlinear least squares.

Using sampled network, the parameter estimates exhibit expansion
bias: plim β̂(GS) > β0, and plim β̂(G |S) > β0

Intuitively, sampled network seems as if it has poorer diffusive
properties; to generate the same average endorsement rate, the
parameter governing the diffusion process must be higher.
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Graphical reconstruction estimation

In general, it is difficult to provide analytical correction to many other
network statistics (such as betweenness and eigenvector centrality, spectral
statistics, etc) the authors proposed a graphical reconstruction method to
consistently estimate economic parameter using sampled network.
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Random Graphs and Asymptotic Framework

The idea is to think of the network as a realization of a random
network formation process. So G is a random variable and the
network characteristic w(G ) is a random variable as well.

Consider a simple but commonly used model: the probability that
individuals i and j are connected, conditional on covariate zij , is given
by P(Aij = 1|zij , θ0) = Φ(z ′ijθ0)

Why? This allows us to compute the conditional expectation of the
regressor w(G ) given the observed portion of the network Aobs , i.e.
E[w(G )|Aobs ; θ0].

If E[w(G )|Aobs ; θ0] consistently estimates w(G ) (say we know the
true distribution of G ), we can use E[w(G )|Aobs ; θ0] in the regression,
which then allows us to consistently estimate β0.
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Random Graphs and Asymptotic Framework

More generally,

If we have R networks, then we allow each network to be
independently but not identically distributed, so each
{Gr , r = 1, . . . ,R} is a random draw from a distribution Pr (Gr ; θ0r ),
where θ0r is a parameter governing the distribution.

In practise, the parameter θ0r is unknown for each network, and we
need to estimate θ̂r for each network.

This motivates a two-stage estimation procedure.

In the first stage, given a collection of sampled network
{GS

r : r = 1, . . . ,R}, and the variables that predictive in network
formation {zr : r = 1, . . . ,R}. {θ̂r : r = 1, . . . ,R} is estimated.

In the second stage, the conditional expectation of the regressor is
computed given the observed data, that is E[wr (Gr )|GS

r , zr ; θ̂r ], or

E[wr (Gr )|G |Sr , zr ; θ̂r ].
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First stage of the graphical reconstruction estimation

To illustrate the first stage of the procedure, consider a class of models in
which edges are formed independently, given covariates.

Let Ξ denote the set consisting of all pairs ij , and s ∈ Ξ is an element
of the set. zs denote a covariate for the pair of nodes i and j .
Examples include whether two villages are of the same caste, the
distance between their households, etc.

The probability that an edge forms in graph r is:
P(Asr = 1|zsr ; θ0r ) = Φ(z ′srθ0r )

For each graph r , the log-likelihood function is
|Ξ|−1

∑
s∈Ξ q(Asr , zsr ; θr ), where

q(Asr , zsr ; θr ) = Asr log Ψ(z ′srθr ) + (1− Asr ) log(1−Ψ(z ′srθr ).

So given the observed part of the network, we can find θ̂r that
maximizes the log-likelihood above.
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First stage of the graphical reconstruction estimation in
practice.

1 Use (zr ,A
obs
r ) to estimate θ̂r based on the assumed network formation

model.
2 Estimate Er (Aobs

r , zr ; θ̂r ) = E[wr (Gr )|Aobs
r , zr ; θ̂r )]

1 Given (zr ,A
obs
r ), for simulations s = 1, . . .S , draw Amiss

r ,s from

Pθ̂r (A
miss
r |Aobs

r , zr ).

2 Construct wr (G
∗
rs), where G∗rs = (Amiss

rs ,Aobs
r ).

3 Estimate Êr (Aobs
r , zr ; θ̂r ) = 1

S

∑S
s=1 wr (G

∗
rs).
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First stage of the graphical reconstruction estimation

The authors present the asymptotic distribution of β̂ under high-level
assumptions on θ̂r .

We need conditions on n,R and the random graph models such that
every network {Gr , r = 1, . . . ,R} asymptotically contains enough
information to estimate θ0r consistently.

In particular, they argue that not only do we need θ̂r to be consistent,
but we also need θ̂r to be uniformly consistent, i.e.
supr ||θ̂r − θ0r || = Op(a−1

R R1/b), where aR is the rate of convergence

of θ̂r .

For example, under the random graph formation model described
above, the high-level assumptions on θ̂r roughly translate to the rate
requirement that the number of networks R, must grow sufficiently
slower than the number of nodes n.
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Numerical experiments

Numerical simulations are used to characterize the biases due to sampling,
as well as testing the behavior of the analytical and graph reconstruction
estimators.

1 Generation of data.

Draw R networks from the network formation families.
Generate outcome data from a model with β0 and data-generating
process (y , ε)|G ;β0

For each graph Gr , construct sampled graphs GS
r ,G

|S
r .

2 Estimation of β̂ using GS
r ,G

|S
r .

Estimate β̂(GS) and β̂(G |S) directly.
If applicable, estimate the analytically corrected estimator β̃(GS) and
β̃(G |S).
Estimate the graphical reconstruction estimators.

3 Perform (1)-(2) for ψ ∈ {1/4, 1/3, 1/2, 2/3}.

Chandrasekhar, Lewis () Econometrics of Sampled Networks March 1, 2012 17 / 19



Numerical experiments

Overall, sampling the network leads to significant biases.

Consider 1/3 sampling for the graph and node level.

At the graph level, the maximum bias is 260% (λmax), the mean is
90.9%, and the minimum is 15 %. (Column 2 of Table 1, page 44)

At the node level, the maximum bias is 91%, the mean is 63%, and
the minimum is 7%. (Column 2 of Table 2, page 45)

Analytically adjusted estimators perform uniformly better. For
example, at 1/3 sampling rate, when comparing to the raw network
statistic, the mean reduction in bias percentage is 69 %, with a
maximum of 243 %. (Column 7 of Table 1).

Graphically reconstructed estimators nearly uniformly outperform all
the raw estimators. At 1/3 sampling rate, the median bias is 5.7%,
the minimum is 0.6%, and the mean reduction in bias is 73 %, and
the maximum reduction is 254 %. (Column 12, Table 1)
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Application to diffusion of microfinance

The networks are randomly sampled at around 46%.
To graphically reconstruct the network, they assume that an edge
forms between a pair of households conditionally independently, given
a set of covariates such as the Euclidean distance between the two
households, the difference in the number of beds, number of rooms,
electricity access, and roofing materials.
The increase of the average eigenvector centrality of the initially
informed households by 0.1 corresponds to a 16.3% increase in
take-up rate when using the sampled data; graph reconstruction
places this estimate as a 24.3% increase in take-up rate. (Column 1
of Table 7)
Similarly, an increase of 1 on the average path length decreases
take-up rate by 5.4% using sampled data, and 9.3% decrease using
the graphical reconstruction estimation.
Thus, sampling causes significant under-estimation of the network
effect.
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