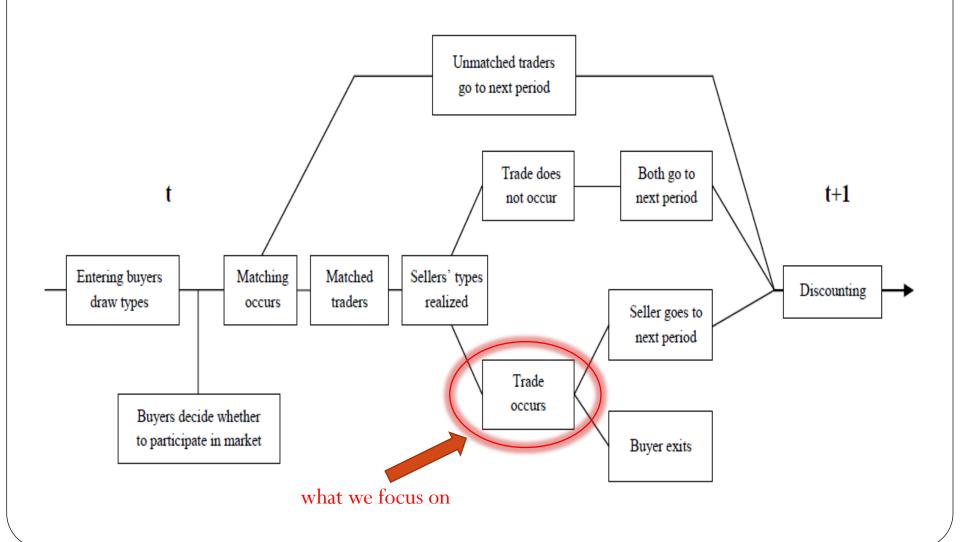
Bargaining and Welfare: A Dynamic Structural Analysis

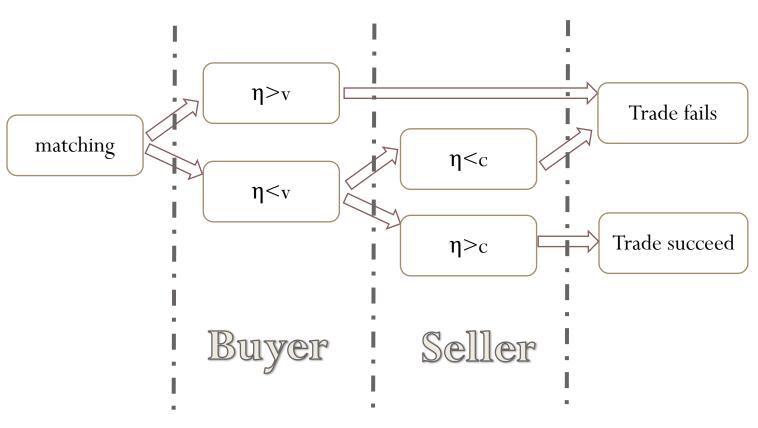
By Daniel E. Keniston

Presented by Yao Yao

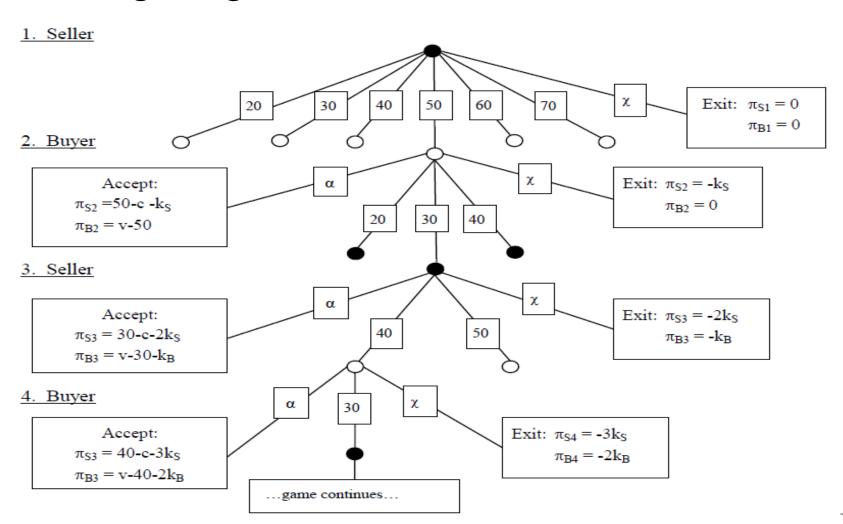

Why important

- The cost or benefit of informal market institution?
- Bargaining: high transaction costs & reduce trade?
- efficient means of bilateral price discrimination?
- Fixed Price: easy, clear?
- inefficient?
- Which is better?

What the story is about


- Autorickshaw market in Jaipur, India
- 2008.1-2009.1 survey data about the offer, time duration and other characteristics

How the Story is Told


Difference in TRADE

• Fixed Price Mechanism

Difference in TRADE

Bargaining Mechanism

Outline

Data survey • Player's valuations Parameters • Bargaining disutility Fixed price VS Welfare Bargainig Comparison

Theoretical Model: Basic Setting

- Buyers: value v; outside option utility: y
- Sellers: cost c; outside option utility: w
- Matching probabilities : $\mu_S(S, B)$ $\mu_B(S, B)$
- Trade probability after matching: p(c,v)
- Searching cost: K
- Bargaining disutility: k
- Discount factor: δ
- Payment and other utility gained or lost from trade: $x_i(c,v)$

Theoretical Model

$$\begin{split} & W_B = \sum_{t=1}^{\infty} \delta^t W_B^t \\ & = \frac{B_0}{1-\delta} \left(1 - F_B\left(\underline{v}\right)\right) \mathbb{E}_{f_B(v)} \left[\mathbb{E}_c\left[U_B\left(c,v\right)\right] | v \geq \underline{v}\right] \\ & W_B^t = B_0 \left(F_B\left(\underline{v}\right) * y + \left(1 - F_B\left(\underline{v}\right)\right) \mathbb{E}_{c,f_B(v)} \left[U_B\left(c,v\right) | v \geq \underline{v}\right]\right) \\ & \mathbb{E}_c \left[U_B\left(c,v\right) | v\right] = -\kappa_B + \mu_B \mathbb{E}_c \left[u_B\left(c,v\right) | v\right] + \left(1 - \mu_B \mathbb{E}_c \left[p\left(c,v\right) | v\right]\right) \delta \mathbb{E}_c \left[U_B\left(c,v\right) | v\right] \\ & \mathbb{E}_c \left[U_B\left(c,v\right) | v\right] = \frac{-\kappa_B + \mu_B \mathbb{E}_c \left[u_B\left(c,v\right) | v\right]}{1 - \delta \left(1 - \mu_B \mathbb{E}_c \left[p\left(c,v\right) | v\right]\right)} \\ & \mathbb{E}_c \left[u_B\left(c,v\right) | v\right] \equiv \mathbb{E}_c \left[vp\left(c,v\right) + x_B\left(c,v\right) | v\right] \end{split}$$

Theoretical Model

•
$$W_{S} = \mathbb{E}_{c,v} [U_{S}(c,v)] = w$$

$$\mathbb{E}_{v} [u_{S}(c,v) | c] \equiv \mathbb{E}_{v} [-cp(c,v) + x_{S}(c,v) | c]$$

$$\mathbb{E}_{c,v} [U_{S}(c,v)] = -\kappa_{S} + \mu_{S} \mathbb{E}_{c,v} [u_{S}(c,v)] + \delta \mathbb{E}_{c,v} [U_{S}(c,v)]$$

$$\mathbb{E}_{c,v} [U_{S}(c,v)] = \frac{1}{1-\delta} (-\kappa_{S} + \mu_{S} \mathbb{E}_{c,v} [u_{S}(c,v)])$$

- \bullet W=W_B+W_S
- The welfare is a function of p(c,v), x(c,v) and k
- The structural parameter: $\{f_B(v), g_S(c), \kappa_S, \kappa_B, \delta, B_0\}$

Theoretical Model: Fixed price

$$x_S(c, v) = -x_B(c, v) = \begin{cases} \eta & \text{if } c \le \eta \le v \\ 0 & \text{otherwise} \end{cases}$$

$$p(c, v) = \begin{cases} 1 & \text{if } c \le \eta \le v \\ 0 & \text{otherwise} \end{cases}$$

- Weakness?
- Rules out some trade probabilities!!!

Theoretical Model: Bargaining

$$a_{it} \in A_{i} \left(x_{-i(t-1)}, x_{ij(t-2)} \right) = \begin{cases} \chi & \text{exit} \\ \alpha & \text{accept player} - i \text{'s offer} \end{cases}$$

$$s_{St} = \left\{ x_{S(t-2)}, x_{B(t-1)}, h_{S} \left(v | \left\{ x_{\tau} \right\}_{\tau=1}^{t-1} \right), c \right\}, \text{ for } t \text{ odd} \end{cases}$$

$$s_{Bt} = \left\{ x_{B(t-2)}, x_{S(t-1)}, h_{B} \left(c | \left\{ x_{\tau} \right\}_{\tau=1}^{t-1} \right), v \right\}, \text{ for } t \text{ even} \end{cases}$$

$$\pi_{S} \left(a_{St} = \chi | s_{St} \right) = \delta \mathbb{E}_{c,v} \left[U_{S} \left(c, v \right) \right]$$

$$\pi_{S} \left(a_{St} = \alpha | s_{St} \right) = x_{B(t-1)} - c + \delta \mathbb{E}_{c,v} \left[U_{S} \left(c, v \right) \right]$$

$$\pi_{S} \left(a_{St} = x_{j} | s_{St} \right) = \Pr \left(a_{B(t+1)} = \chi | x_{j}, s_{St} \right) \delta \mathbb{E}_{c,v} \left[U_{S} \left(c, v \right) \right]$$

$$+ \Pr \left(a_{B(t+1)} = \alpha | x_{j}, s_{St} \right) \left(x_{j} - c + \delta \mathbb{E}_{c,v} \left[U_{S} \left(c, v \right) \right] \right) - k_{S}$$

$$\pi_{B} \left(a_{Bt} = \chi | s_{Bt} \right) = \delta \mathbb{E}_{c} \left[U_{B} \left(c, v \right) | v \right]$$

$$\pi_{B} \left(a_{Bt} = \alpha | s_{Bt} \right) = v - x_{S(t-1)}$$

$$\pi_{B} \left(a_{Bt} = x_{j} | s_{Bt} \right) = \Pr \left(a_{S(t+1)} = \chi | x_{j}, s_{Bt} \right) \delta \mathbb{E}_{c} \left[U_{B} \left(c, v \right) | v \right]$$

$$+ \Pr \left(a_{S(t+1)} = \alpha | x_{j}, s_{Bt} \right) \left(v - x_{j} \right) - k_{B}$$

Theoretical Model: Bargaining

$$\Psi\left(s_{S(t+2)}|s_{St}, a_{it} = x_j\right) = \Pr\left(a_{B(t+1)} = x_{B(t+1)}|s_{St}, x_j\right)$$
$$u_i\left(a|s_{it}\right) = \pi_i\left(a|s_{it}\right) + \int \left(V_i\left(s_{i(t+2)}\right) - k\right) d\Psi\left(s_{i(t+2)}|s_{it}, a\right)$$

• where $V_i(s_{it}) = \max_{a \in A_{it}} \{u_i(a|s_{it})\}$

Estimation

• Specifies extensive form and payoff functions of the bargaining game without solving for a specific equilibrium

Opponent's aciton probabilities

Expected payoff of every action

Estimate the parameters

Estimation

$$\Pr\left(a_{B(t+1)} = \chi | x_{j}, s_{St}\right) = \int \Pr\left(a_{B(t+1)} = \chi | s_{B(t+1)}\left(x_{j}\right)\right) h_{S}\left(v | \left\{x_{\tau}\right\}_{\tau=1}^{t}\right) dv$$

$$= \Pr\left(a_{B(t+1)} = \chi | x_{j}, \left\{x_{\tau}\right\}_{\tau=1}^{t-1}\right)$$

$$\Pr\left(a_{-i(t+1)} = a | s_{-i(t+1)}\left(x_{j}\right)\right) = \frac{\exp\left(\theta_{a}\mathbf{q}\left(s_{-i(t+1)}\left(x_{j}\right)\right)\right)}{\sum_{a' \in A_{it}} \exp\left(\theta_{a'}\mathbf{q}\left(s_{-i(t+1)}\left(x_{j}\right)\right)\right)}$$

$$\bar{V}_{i}\left(s_{iT}\right) = \int_{\varepsilon} \max\left\{\tilde{\pi}_{i}\left(a_{iT} = \chi | s_{iT}, \varepsilon_{T}\right), \tilde{\pi}_{i}\left(a_{iT} = \alpha | s_{iT}, \varepsilon_{T}\right)\right\} d\Gamma\left(\varepsilon\right)$$

$$\mathcal{L}_{i}(\theta) = \prod_{n=1}^{N} \sum_{m=1}^{M} \omega(\theta_{im}) \prod_{t=1}^{I_{in}} \Pr(a_{itn}|s_{itn};\theta_{im})$$

Results and probable contradictions

Table 4: A: Estimated Driver's Parameters - Log-normal Types:						
	Costs		Correlation with bargaining			
	Mean	Std. Deviation	disutility			
2 km	41.86	0.25	-0.01			
	(5.48)	(6.90)	(0.16)			
3 km	42.18	3.03	-0.12			
	(2.80)	(13.20)	(0.15)			
$4~\mathrm{km}$	46.14	4.09	-0.15			
	(2.98)	(1.96)	(0.11)			
5 km	66.14	13.85	-0.37			
	(4.17)	(1.83)	(0.09)			
6 km	56.49	2.11	-0.06			
	(3.18)	(2.37)	(0.10)			
7 km	49.99	6.71	-0.23			
	(5.43)	(6.11)	(0.13)			

10.80

(11.86)

-0.34

(0.15)

Table 5: A: Estimated Passengers' Parameters - Log-normal Types					
	(Costs	Correlation with bargaining		
	Mean	Std. Deviation	disutility		
2 km	31.38 (12.31)	18.05 (8.72)	0.00 (0.21)		
3 km	25.61 (8.64)	9.31 (3.95)	0.00 (0.22)		
4 km	46.14 (4.57)	12.20 (4.57)	0.00 (0.13)		
5 km	49.30 (4.79)	6.81 (3.84)	$0.00 \\ (0.10)$		
6 km	49.86 (1.74)	6.10 (1.44)	$0.00 \\ (0.07)$		
7 km	56.17 (5.98)	12.76 (6.99)	$0.00 \\ (0.10)$		
8 km	87.88 (19.84)	37.96 (21.66)	$0.00 \\ (0.25)$		

B: Drivers' Bargaining Disutility				
Mean	Std. Deviation			
0.31	0.11			
(0.17)	(0.19)			

56.08

(4.24)

8 km

B: Passengers' Bargaining Disutility				
Mean	Std. Deviation			
0.57	2688.75			
(2.88E+06)	(2.70E+21)			

Welfare Comparison

- Optimal fixed price
- Pre-Paid Autorickshaw Stand

```
\eta^* = \operatorname{argma} x_{\eta} \mathbb{E}_{\hat{v}} \left[ \max \left\{ \hat{v} - \eta, \ V_B \left( t = 1; \hat{v}, k \right) \right\} \right]subject to \mathbb{E}_c \left[ \eta - c \right] = \mathbb{E}_{c,k} \left[ V \left( t = 1; c, k \right) \right]
```

- With "option" of fixed price, the welfare increase 28%
- However, still many (63%) prefer to maintain in bargaining market

Further extension

- Where may the contradictions in the data come from?
- Is there any flaw within the data the author collected?
- What's the market like in China and other countries? What's the difference?
- Is there anything we can do to solve similar problem in other market?