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Abstract. A growing literature studies social networks and their implications for economic out-
comes. This paper highlights, examines, and addresses econometric problems that arise when a
researcher studies these network effects using sampled network data. In applied work, researchers
generally construct networks from data collected from a partial sample of nodes. For example, in
a village, a researcher asks a random subset of households to report their social contacts. Treating
this sampled network as the true network of interest, the researcher constructs statistics to describe
the network or specific nodes and employs these statistics in regression or GMM analysis. This
paper shows that even if nodes are selected randomly, partial sampling leads to non-classical mea-
surement error and therefore bias in estimates of the regression coefficients or GMM parameters.
The paper presents the first in-depth look at the impact of missing network data on the estimation
of economic parameters. We provide analytical and numerical examples to illustrate the severity of
the biases in common applications. We then develop two new strategies to correct such biases: a set
of analytical corrections for commonly used network statistics and a two-step estimation procedure
using graphical reconstruction. Graphical reconstruction uses the available (partial) network data
to predict what the full network would have been and uses these predictions to mitigate the biases.
We derive asymptotic theory that allows for each network in the data set to be generated by a
different network formation model. Our analysis of the sampling problem as well as the proposed
solutions are applied to rich network data of Banerjee, Chandrasekhar, Duflo, and Jackson (2011)
from 43 villages in Karnataka, India.
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1. Introduction

A growing literature examines social networks and their implications for economic outcomes (see
e.g., Jackson, 2008b, 2009a,b for an extensive survey of the literature). A network represents a set of
connections (edges) among a collection of agents (nodes). For example, in a village network, nodes
may represent households and edges may represent risk-sharing ties between households. Applied
researchers typically construct a network from data that has been collected from a partial sample
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of nodes rather than from all nodes in the network. Henceforth, such a network will be called the
“sampled network”. This sampled network is naively treated as the true network of interest. The
researcher uses a collection of sampled networks to estimate how network structure affects economic
outcomes. This paper highlights, examines, and addresses econometric problems that arise when a
researcher studies these network effects using sampled network data.

Concrete examples of network-based regressions in applied work include Kremer and Miguel
(2007), who study the diffusion of deworming pill take-up, and Hochberg et al. (2007), who regress
fund performance on measures of network importance of venture capital firms.1 The applied work
typically has low sampling rates (the share of nodes sampled), with a median of 25%, and 2/3 of the
papers having a sampling rate below 51% (see Figure 3). Despite the prevalence of partial sampling,
its implications for the estimation of economic parameters are rarely considered. One exception is
Conley and Udry (2010) who study the diffusion of information among pineapple farmers in Ghana.
Aware of the sampling problem, they conduct robustness exercises.

Our goal is to analyze the effect of using sampled network data on the estimation of parameters
in network models of economic behavior. Henceforth, we call these the “economic parameters”
without meaning to suggest that network formation is not economic.2 In general, we are interested
in parameters in a generalized method of moments (GMM) model, motivated by theory, describing
the behavior of nodes in a network. The biases in estimates of economic parameters have not
yet been systematically dealt with. While GMM is a general framework, two common classes of
models allow us to explicitly characterize biases and are easier to work with due to their linearity:
regressions of economic outcomes on network characteristics and regressions of a node’s outcomes
on its network neighbors’ outcomes. After characterizing the biases, we propose two new strategies
to correct such biases: a set of analytical corrections for commonly used network statistics and a
two-step estimation procedure using graphical reconstruction that can be applied more broadly.

We focus on a running example throughout the paper: the diffusion of microfinance in 43 villages
in rural Karnataka, India (Banerjee et al., 2011). A microfinance institution (MFI) based in Ben-
galuru expanded into these villages. Upon entering a village, the MFI informed certain households
about its intentions and asked them to encourage others to join. The researcher wants to estimate
how networks affect the diffusion of microfinance participation through these villages.

The present paper makes two core contributions. Our first contribution is to highlight and
analyze the biases in estimates of economic parameters when using sampled network data. We
develop analytical examples for commonly used network statistics, motivated by a number of applied
questions concerning diffusion of information, social collateral, and risk-sharing. Next, we derive
the corresponding biases that emerge when each of these statistics is used in regression. We show
that the standard argument for attenuation due to classical measurement error does not apply;
1There are numerous other examples. Kinnan and Townsend (2011) study whether whether households that are
socially closer to credit sources smooth consumption better. Leider et al. (2009) and Goeree et al. (2010) study the
effect of social proximity between pairs on the offers made in dictator games. Alatas et al. (2011) and examines
whether networks with better diffusion properties actually induced greater information spreading. De Giorgi et al.
(2010) study how network neighbors’ major choices affect a student’s own major choice.
2Parameters which describe the process by which networks are formed certainly are economic. We reserve “economic
parameters” in our environment for parameters that describe a process that occurs on fixed networks.
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coefficients may expand, attenuate, or switch signs depending on the network statistic of interest.
In addition, we consider a model in which a node’s outcome depends on its peers’ outcomes and a
node’s peer group is defined by the set of its social connections (Bramoulle et al., 2009; De Giorgi
et al., 2010). We show that the instrumentation technique used in the literature to overcome the
reflection problem (Manski, 1993) in such models is invalid since the measurement error in the
instrument will be correlated with the measurement error in the endogenous variable. Similarly,
we consider GMM estimation of the Jackson and Rogers (2007b) model of diffusion and show
that sampling the network induces expansion bias in the diffusion parameter. We supplement our
analysis with numerical evidence for a wide array of examples to illustrate how sensitive econometric
estimation is to the sampling of a network. In our numerical experiments, we estimate many models
across a number of network statistics. At a sampling rate of 1/3 we find that the estimates of the
economic parameters have a mean absolute bias of 90% with a maximum of 260% for network-level
regressions and a mean absolute bias of 63% with a maximum of 91% for node-level regressions.

Our second contribution is to develop two strategies to alleviate the biases: analytical corrections
that apply to commonly used network statistics and two-step estimation using graphical reconstruc-
tion, which uses the observed part of the data to probabilistically reconstruct the missing part and
then estimate the economic parameter accordingly.

First, by explicitly characterizing the biases, we derive simple bias corrections when the prob-
lem is tractable. We discuss several corrections and explore their reliability in addressing the
biases. While computationally simple and easy to implement, these methods are typically limited
to network-level regressions and are dependent on the particular network statistic of interest. Thus
we develop a second, more general method that works well in practice – estimation by graphical
reconstruction – to consistently estimate the economic parameter. This technique does not limit
the researcher to network-level regressions nor to specific and tractable network statistics.

Consider the case where a researcher wants to perform a network-level regression of the rate of
microfinance participation in a village on the average path length of the network.3 Without the
entire network, the researcher falsely codes some existing links between individuals as if they do
not exist. Graphical reconstruction builds on the simple idea that replacing every regressor for
each village with a conditional expectation of the regressor delivers a consistent estimate of the
regression coefficient. In our example, instead of using the mismeasured average path length of
each network, the researcher ought to use the conditional expectation of the average path length,
given the observed data. This requires integrating over all the missing data, given the observed
information and sampling scheme, as opposed to treating missing links as if they did not exist.
Furthermore, because different village networks likely formed in heterogenous manners, researchers
ought to respect this heterogeneity in their analysis. By treating every network as an independent,
but not identically distributed, random variable, we estimate the conditional expectation of the
average path length in every network and consistently estimate the regression coefficient.

In practice, the researcher will have to estimate the distribution of missing links. We propose a
two-step procedure. In the first stage, the researcher fits a potentially different model of network

3The average path length is the mean of all shortest paths between all pairs of nodes in a network.
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formation to each network in the sample by making use of the observed data. Having done so,
the researcher uses the network formation models to take draws of networks from their respective
distributions, conditional on the observed information. Using these draws, the researcher estimates
the conditional expectation of the regressor or moment in a GMM setting. In the second stage these
conditional expectations are used in the usual way to estimate the economic parameter of interest.
Conley and Udry (2010) perform a robustness exercise where they estimate missing neighborhood
data in their regression model, which is an instance of graphical reconstruction.4

This two-step procedure is useful for several reasons. First, it allows the researcher to capture
realistic heterogeneity by estimating a different model of network formation for every network.
Second, our theoretical frame is general and we establish sufficient conditions ensuring that a desired
class of network formation models can be used in graphical reconstruction. To build intuition,
we make the analogy with panel data. Every network (individual in a panel) is independent,
but the edges within a network (outcomes for an individual across time periods time periods)
exhibit dependence. Under regularity conditions, a large network, similar to a large time series,
may contain enough information such that the researcher can use the observed data to accurately
estimate the distribution which generates the network formation process. The technical challenge
that we overcome is to control an incidental parameter problem, where a parameter for every
network must be estimated.5 Third, in our numerical experiments, it performs well. Even at a
sampling rate of 1/3, the median bias is 5.7% for network-level regressions and 1.4% for node-level
regressions. The median reduction in bias is 62%. Each of the 96 estimated parameters exhibits
reduction in bias when the reconstruction estimator is applied. Fourth, in addition to regression
of economic outcomes on network statistics, the methodology can be applied to GMM models and
even indexed GMM models where we may have a family of moment functions indexed by some
parameter which presents technical challenges. Covering these cases is essential to network analysis
as natural models, such as stopping time models for diffusion, may carry an index.

Given that estimation by graphical reconstruction requires integrating over missing links, this
procedure demands more data than the analytical corrections. In addition to having a collection
of sampled networks and outcome variables, we assume that the researcher has a covariates for
each node (or pair of nodes) that will be predictive in the network formation models. Examples
of such covariates include GPS coordinates, ethnicity, and caste, which are often readily available
in development applications and are obtained during the listing process in each enumeration area.
For a non-development example, consider school networks, where it is straightforward to obtain
school rosters and demographic data for the entire collection of students.

To demonstrate another practical application of our results, we describe how researchers can
employ our framework to make better decisions in collecting sampled network data, given their
budget constraints. We provide an algorithm to assess the trade-off between the number of networks
in a sample and the sampling rate a researcher uses. This exercise is similar in spirit to power
4The present paper develops a general theoretical framework, along with asymptotic analysis, that nests this strategy.
We believe that estimates from graphical reconstruction ought to be used not only for robustness checks but also as
estimates in their own right that exhibit substantially less bias.
5This is similar to non-linear fixed effects in panel settings (Hahn and Kuersteiner, 2004; Hahn and Newey, 2004).
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calculations frequently used in applied field work. First, the researcher obtains 100%-sampled
network data for a small number of randomly chosen villages, using a pilot budget. Second, the
researcher performs a numerical experiment by simulating outcome data from a specification that
the researcher anticipates studying. In our microfinance example, the researcher simulates outcome
data as a function of the path length from the initially informed households by assuming a regression
coefficient and an R-squared. Third, the researcher draws, with replacement, a set of villages
sampled at a given rate such that her budget is exhausted. By applying graphical reconstruction,
the researcher can assess the mean-squared error minimizing choice of sampling rate.

We then apply our analysis of the sampling problem as well as the proposed solutions to sampled
network data, collected in part by the authors, from 43 villages in Karnataka, India. Banerjee et al.
(2011) study the diffusion of microfinance and, inspired by this analysis, we study natural specifica-
tions motivated by diffusion theory. We examine parameter estimates using the raw sampled data
and compare them to those obtained by applying graphical reconstruction or analytical corrections.
We find that applying our methods at times greatly changes parameter estimates and economic
inferences. For instance, the impact of the network importance of initially informed households
on the microfinance take-up rate in the village is under-estimated by 33% using the raw sampled
network data when compared to using graphical reconstruction. In addition, a regression of a
node’s take-up decision on its neighbors’ decisions shows that endogenous network effects may be
severely under-estimated (with a 60% bias relative to the corrected estimate) or even switch signs
(with a 166% bias relative to the corrected estimate). Moreover, regression coefficients in several
specifications are not significantly different from zero at conventional levels when using the raw
sampled data but are significantly different when applying the reconstruction estimator.

Related literatures across a number of fields including economics, epidemiology, statistics, sociol-
ogy, and computer science have noted problems due to partial network data. The classical literature
begins with Granovetter (1973), Frank (1980, 1981), and Snijders (1992) who identify how aver-
age degree and clustering are affected by several modes of random sampling. Rothenberg (1995)
provides an excellent overview of the literature. More recently, the literature has focused on two
classes of numerical experiments, typically with a single network.6 The first class documents biases
that emerge when estimating parameters in a network formation model with partial data (e.g.,
in economics, Santos and Barrett, 2008). Second, the literature numerically describes behavior of
certain network statistics under sampling (e.g., in epidemiology, Ghani et al., 1998 and sociology,
Kossinets, 2006). Handcock and Gile (2010) offer the straightforward solution to the first problem:
by augmenting the likelihood to include the sampling scheme one can, in expectation, recover the
correct network formation parameter.7 Finally, Golub and Jackson (2010b) explain how selection
bias affects the estimation of a diffusion process and solve the puzzle raised by Liben-Nowell and
Kleinberg (2008) as to why chain letter data exhibited very long average paths.

6Santos and Barrett (2008) also provide an extensive discussion of survey methodology and Thompson (2006) discusses
sampling methodology and inferences on the degree distribution and network size.
7In simulations Huisman (2009) shows that for small amounts of missing data, an ad hoc method of imputing edges
may reduce the bias in the network characteristics, though this is insufficient for larger amounts of missing data.
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Our work builds on the above literature, with several key differences. First, the literature typ-
ically has not focused on nor developed a methodology to consistently estimate parameters from
models of behavior on networks with sampled data. The substantive distinction here must be
stressed. We are not interested in recovering the structural properties of the unobserved part of
the network per se; instead, our goal is to understand the biases in estimation of these economic
parameters and develop a method to recover them. Second, while augmented likelihood tech-
niques for missing data are well-known in econometrics and statistics, we note that a collection
of networks provides the researcher with a unique opportunity to set up the reconstruction prob-
lem in a manner which respects the substantial heterogeneity across networks. That is, a number
of technical assumptions needed to control incidental parameter problems (e.g., nonlinear panel
with fixed effects, Hahn and Kuersteiner, 2004; Hahn and Newey, 2004) become very palatable in
the network context, given that each network carries within it tremendous amounts of information.
Consequently, graphical reconstruction focuses on conditional expectations of network regressors or
moments to consistently estimate economic parameters when graphs are drawn from heterogenous
network formation models. This environment generates distinct technical challenges.

Finally, we note that partially observed networks constitute a special case of a broader class of
network measurement problems.8 Our framework for analyzing the nature of biases in economic
parameter estimates may provide intuition in these environments as well. If the researcher mis-
specifies the network, biases will emerge. For example, if one is interested in economic behavior
of individuals in a social network, but one defines the network based on social media data, biases
will be induced as individuals may meaningfully interact with a subset of their social media neigh-
bors. Another example is survey fatigue. Imagine that an individual forgets to name each of her
connections independently with probability 1 − p . Studying the OR network (where we denote
two nodes as connected if either names the other) yields a network with only 1 − (1 − p)2 of the
average number of friendship ties, while studying the AND network (where we denote two nodes
as connected if both name each other) produces a network with only p2 of the average number of
friendship ties. A straightforward argument extends the results in section 3, with minor modifica-
tion, to characterize the biases present in this example. Another common environment that induces
bias is survey top-coding, where the survey limits the number of edges an individual can name.

The rest of the paper is organized as follows. Section 2 establishes the framework. The main
results are in sections 3 and 4. Section 3 provides analytical examples of bias along with corrections.
Section 4 discusses graphical reconstruction estimation. Section 5 contains numerical experiments
which supplement sections 3 and 4. Section 6 applies the results to a study of the diffusion of
microfinance. In section 7 we offer an algorithm for researchers to trade off the sampling rate
against the number of networks. Section 8 concludes. All proofs are in the appendices.

2. Framework

In this section we establish the framework. Section 2.1 introduces the notation, section 2.2
presents the econometric environment, and section 2.3 previews the asymptotic frame.
8Observed network data may miss information for a variety of reasons (see Kossinets, 2006 for a discussion).
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Figure 1. (a) G = (V,E). (b) the sampled nodes, S, in red. (c) the induced subgraph, G|S =
(S,E|S). (d) G, highlighting the sampled nodes and the edges that are induced if each sampled
node reports all of its links from the census, ES . (e) the star subgraph, GS .

2.1. Notation and setup. A network or a graph is a pair G = (V,E) consisting of a set V of
nodes and a set E of edges, with n := |V |. Nodes i and j are either connected or unconnected (the
graph is unweighted) and if i is connected to j, then j is connected to i (the graph is undirected).
Most of what follows in this paper is applicable to directed and weighted graphs, though following
the bulk of the applied research we restrict our attention to the undirected, unweighted case. A
graph with n nodes is a member of the set of all undirected, unweighted graphs, denoted by Gn.

A graph is represented by its adjacency matrix, A := A (G). It is a matrix of 0s and 1s that
depicts whether two nodes are connected, where Aij = 1{ij ∈ E} with the convention that Aii = 0.
We denote the neighborhood of i, the set of nodes it is connected to, by Ni := {j ∈ V : ij ∈ E}.
Researchers are interested in economic models where an economic behavior or outcome is predicted
by network statistics. We let w(G) represent a dw-dimensional vector of these network statistics.
Since the data set may contain multiple networks, we use R to denote the number of graphs. The
researcher is interested in economic parameter β0.

2.1.1. Sampling. Typically researchers obtain one of two types of sampled network data. First,
the researcher may survey a set of m nodes and ask each node about the social connections with
the other m − 1 nodes in that data set. We call this the induced subgraph, as it restricts the
network among those who are sampled. Second, the researcher may have a list of the nodes in the
network (e.g., a household census list in a village). From this list, a sample of m nodes may be
surveyed. These nodes can name their social connections, not only to other m− 1 surveyed nodes,
but connections to anyone from the list of n nodes. We call this the star subgraph.

Let S be the set of surveyed nodes, randomly chosen from V , with m = |S|. Let m = bψnc,
where ψ is the sampling rate. The researcher obtains a subgraph of the graph in question. There
are two potential resulting networks: the induced subgraph G|S = (S,E|S), which consists of the
sampled nodes and the edges restricted to the set of surveyed nodes (E|S), and the star subgraph
GS = (V,ES), where ES are edges such that at least one of the nodes is in S.
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Figure 1 provides an illustration of the problem that this paper intends to address. Figure 1(a)
displays G, the target network, Figure 1(c) shows the induced subgraph and Figure 1(e) depicts
the star subgraph. We will also write A = (Aobs, Amis) to denote the observed and missing part
of the adjacency matrix, which are random variables under the sampling procedure. Although this
framework idealizes the random sampling used in many applied contexts, our setting can easily be
extended to other sampling methods such as independent edge sampling or snowball sampling.9

2.2. Econometric Models. The researcher intends to study economic behavior on R networks,
{Gr : r = 1, ..., R}. For simplicity, we assume every network has n nodes. An economic process
has taken place on every network and can be described by an econometric model depending on an
economic parameter β0. Returning to the microfinance example, information about microfinance
has been introduced to certain households in every village and households decide to participate as
the information propagates throughout the villages. Our goal is to estimate an economic parameter.
We could easily do so if the networks were fully observed. The general framework for analyzing
such models is to presume that a conditional moment restriction is satisfied,

(2.1) E [m(y, w(G);β0)|G] = 0.

where y ∈ Rdy is an outcome random variable, m(·, ·; ·) is a moment function, w(·) is function on
Gn, and β ∈ B is a parameter with true value β0.

Examples include discrete choice models, stopping time models (e.g., Iyer and Puri, forthcoming),
quantile regression (e.g., Angelucci et al., 2010), and network-based matching models (e.g., Aral
and Walker, Forthcoming; Banerjee et al., 2011). More generally, our results apply to indexed
GMM models with parameter β0 (u) where u ∈ U (e.g., time in a stopping time model or quantile
in quantile regression). Partial sampling will generally generate biases as the moment will be a
nonlinear function of the network statistic, so the estimated parameter will be inconsistent.

While GMM is a general framework, two common classes of econometric models with network
data are easier to analyze due to their linearity. The first class consists of models wherein economic
outcomes are regressed on network characteristics. The second class consists of models where a
node’s outcome depends on its network neighbors’ outcomes.

Regression of Economic Outcomes on Network Characteristics. A researcher wants to study how
network structure affects the economic outcome of interest, y, in regressions of the form10

(2.2) y = α+ w (G)β0 + ε.

The researcher can estimate this regression at various observation levels. At the graph level, the
data is {(yr, w(Gr)) : r = 1, ..., R} where w(Gr) is a dw-vector of network statistics (e.g., average
degree, clustering) and the regression contains R observations. In our example, the researcher
may regress the microfinance take-up rate in a village on the average network importance of the

9Our graphical reconstruction solutions often apply to missing-at-random samples, where the probability of graph
information being missing is independent of the missing data itself (Rubin, 1976).
10A vector of demographic covariates may be included, though we omit it for simplicity.
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random set of households which were initially informed about microfinance. We anticipate that the
centrality of these initial nodes correlates positively with take-up rates.

At the node level, the data is {(yir, wir(Gr)) : i = 1, ..., n, r = 1, ..., R} where wir(Gr) is a
dw-vector of statistics (e.g., degree of i, eigenvector centrality of i) and the regression has nR
observations.11 In our example, the researcher regresses a household’s decision to join microfinance
on its centrality. Theory suggests that central nodes will be more likely to learn new information.
Similarly, one may estimate regressions at the edge level. Here wij(Gr) is a dw-vector of edge level
statistics (e.g., social distance between the nodes) and the regression contains

(n
2
)
·R observations.

Using sampled networks, the researcher runs regressions of the form

y = α+ w(Ḡ)β + u,

where Ḡ is either G|S or GS , depending on the sampling scheme. In general, the measurement error
will not be classical and may result in attenuation bias, expansion bias, or even sign switching.
Sections 3.1 contain examples of common and economically meaningful network statistics where
such biases exist and section 5 provides further numerical evidence on these biases.

Regression of Economic Outcomes on Network Neighbors’ Outcomes. In a social equilibrium model,
an economic outcome, yi, depends on exogenous covariates of the individual, xi, as well as the
outcome of i’s peer group, {yj : j ∈ Ni}. In our running example, yi is the microfinance meeting
attendance rate of a household and xi represents whether the researcher has exogenously informed
the household. Estimating such a model is difficult in the usual way (Manski, 1993), but with
network data, assuming exogeneity of xi as in the above examples, Bramoulle et al. (2009) and
De Giorgi et al. (2010) show that the model may be identified as the peer groups for individuals
are overlapping but not identical.

Formally, let y = (y1, ..., yn)′ be the vector of outcome variables, x = (x1, ..., xn)′ be the vector
of exogenous covariates and ι = (1, ..., 1)′. A researcher is interested in estimating

(2.3) y = α0ι+ ρ0w(G)y + γ0x+ δ0w(G)x+ ε,

where w(G) is a (possibly weighted) adjacency matrix that describes how much yi is affected by
others in the network. The economic parameter is β0 = (ρ0, γ0, δ0). Due to sampling, the researcher
mistakenly estimates the model,

(2.4) y = αι+ ρw(Ḡ)y + γx+ δw(Ḡ)x+ u,

where w̄ is defined analogously with Ḡ either G|S or GS . The neighborhoods will be misspecified
and the estimator exhibits bias. We discuss this model in Section 3.2.

2.3. Random Graphs and Asymptotic Framework.

Random Graphs. Until now we have described an economic process, such as diffusion, occurring
on a given collection of networks. Consider the example of a regression of y on network covariate
w(G). With missing data the researcher does not observe the true network statistic. In section 3 we

11With missing data, there will be O(nR) observations. For instance with G|S , one has mR = ψnR observations.
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demonstrate the biases induced by using w(Ḡ) where Ḡ is the star or induced subgraph. Section 4
develops graphical reconstruction. We think of the network as the realization of a random network
formation process. Consider a simple but commonly used model: the probability that individuals
i and j are connected, conditional on covariate zij , is given by

P(Aij = 1|zij , θ0) = Φ(z′ijθ0),

where Φ is some link function. Thinking of the network as a random graph allows us to compute
the conditional expectation of the regressor w(G) given the observed portion of the network Aobs

and the sampling scheme: E[w(G)|Aobs; θ0]. If we knew the distribution of G we could compute this
expectation. By properties of conditional expectation using E[w(G)|Aobs; θ0] as a regressor allows
us to consistently estimate β0.

Formally, each network Gr is a random graph that is independently though not identically dis-
tributed over the space GnR . We model the random networks as a triangular array of independent
but not identically distributed random graphs, G1,R, ..., GR,R. Each graph Gr,R is a random draw
from a distribution Pr,R(Gr; θ0r) over GnR , where θ0r ∈ Θr,R is a parameter governing the distribu-
tion. In what follows, we omit the R subscript indexing the triangular array.

Asymptotic Frame. Graphical reconstruction requires estimating a conditional expectation for every
network. Since the parameter θ0r for each network is unknown we must be able to consistently
estimate all of these together. Intuitively, we need conditions such that every network has enough
information in it so that its parameter can be precisely estimated. This is similar to panel data
with non-linear fixed effects, where both the number of individuals and the number of periods grow.

Formally, we will assume that nR → ∞ as R → ∞. The rate requirements of n and R are
discussed in Section 4. Moreover, Θr,R is typically finite dimensional, though we discuss an example
where its dimension grows as R → ∞. We assume conditions on n, R, and the random graph
models such that every network asymptotically contains enough information to estimate θ0r very
well. In turn, we can estimate the conditional expectation very accurately and therefore recover
the economic parameter β0.

Finally, we employ the following notation throughout the paper. E [·] denotes expectation, En [·]
the empirical expectation,12 ‖·‖ = ‖·‖2 the `2-norm, ‖·‖∞ the sup-norm, and `∞ (U) the space of
bounded functions on U . Also, fn ∈ Θ(gn) means ∃k1, k2 > 0, n0 such that ∀n > n0 |gn| · k1 ≤
|fn| ≤ |gn| · k2, and the falling factorial is given by (n)j = n (n− 1) ... (n− j + 1).

3. Analytical Examples of Bias

In this section we provide several analytical examples which demonstrate the biases due sampled
network data. We provide three classes of examples: regression of economic outcomes on network
statistics in section 3.1, regression of outcomes on network neighbors’ outcomes in section 3.2, and
a nonlinear GMM model of diffusion in section 3.3.

12For a = (a1, ..., an),En [ai] = 1
n

∑
i
ai. Similarly, ER [ar] = 1

R

∑
r
ar and En,R [ai,r] = 1

n

∑
r

∑
i
ai,r.
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3.1. Regression of Economic Outcomes on Network Characteristics. To gain an intuition,
we relate our problem to general measurement error. If the researcher is interested in a regression

yr = wrβ0 + εr

but instead uses mismeasured regressors w̄r, the resulting estimator satisfies plim β̂ = β0
cov(w̄,w)
var(w̄) .

Expansion, attenuation, and sign-switching bias are all possible. In our environment, wr = w(Gr),
the relevant network statistic, but due to sampling the researcher uses w̄r = w(Ḡr), where Ḡr is
the star or induced subgraph. Consequently, we are primarily interested in the covariance of the
network statistic with its true value, under the sampling scheme.

The covariance is typically not tractable to characterize. However, we partition our examples
into two sets: those for which the mismeasurement has a scaling effect, in expectation and those
that have a nonlinear effect. The scaling effect roughly means that E [w̄|w] = πw + o(1), where
π = π(ψ) is some known deterministic function. Thus,

plim β̂ = β0 · π−1︸︷︷︸
Scale

· var(w)
var(w) + var(v)π−2︸ ︷︷ ︸
Classical attenuation

where v = w̄ − E [w̄|w]. There are two sources of biases: a scale effect which depends purely on
π(ψ) and a dispersion effect which generates attenuation. Average degree and graph clustering
are commonly used network statistics that exhibit scale transformations. However, more general
statistics such as path length and eigenvalues are not merely scaled in this manner. Through the
remainder of the section we use β̂(Ḡ) to denote the estimator using the raw network data Ḡ and
β̃(Ḡ) to denote the analytical correction, should one exist.

3.1.1. Scaling transformations due to sampling.

Average Degree. The degree of a node is its number of connections. Degree is a common measure
of network importance. Kremer and Miguel (2007), Hochberg et al. (2007), Angelucci et al. (2009),
Banerjee et al. (2011), Alatas et al. (2011), among others, use degree as a regressor. In addition
to its ubiquitous use in applied work, average degree is a transparent, linear example which easily
demonstrates the problem and has an intuitive (though not generalizable) solution.

We define d(Gr) := 1
n

∑
i∈V

∑
j∈V Aijr as the average degree for graph r and use d(Ḡr) for

Ḡ ∈ {GS , G|S} to denote the average degree computed with sampled data. As above, we are
interested in the conditional expectation under a sampling scheme. One can show that

E
[
d(GSr )|Gr

]
=
(
1− (1− ψ)2 + o(1)

)
d(Gr) and E

[
d(G|Sr )|Gr

]
= (ψ + o(1)) d(Gr).

Intuitively, a node will miss links in proportion to the number of links it has. For instance, in
the star subgraph an edge only appears in the data if at least one of the two nodes are sampled,
yielding 1−(1−ψ)2. Notice that similar computations can be performed for other random sampling
schemes the researcher may face. We define regressors to use in the analytical correction

w̃(GSr ) := m−1∑
i∈S

∑
j∈V

Aijr and w̃(G|Sr ) := ψ−1d(G|Sr ).
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The former involves simply constructing the average degree among the randomly sampled nodes,
for which there is no missing data,13 and the latter simply accounts for the scaling effect. Notice
that the former solution is highly non-generic; while it works for degree, it will work for nearly no
other network statistic since other network characteristics will depend on other links as well. In
addition, such a solution typically will not work for other sampling schemes which may not leave
a portion of the neighborhoods intact. We define the limiting cross-network variance in the degree
and the disturbance terms,

σ2
〈d〉 := plim

R→∞
a−2
R ER [d(Gr)− ERd(Gr)]2 and σ2

vj := a−2
R plim

n→∞
ERv2

rj for j ∈ {S, |S}

where vrj := d(Ḡr)− E[d(Ḡr)|Gr] and (aR) is some sequence of normalizing constants.
Proposition 3.1. Assume that m = bψnc nodes are uniformly randomly sampled from each graph
and the data (yrR, d(GrR))r≤R is a triangular array satisfying the regularity conditions of Assump-
tion A.2. Then,

(1) β̂(G|S) P−→ β0
ψ ·

σ2
〈d〉

σ2
〈d〉+ψ

−2σ2
v|S

and β̂(GS) P−→ β0
1−(1−ψ)2 ·

σ2
〈d〉

σ2
〈d〉+(ψ(2−ψ))−2σ2

vS
.

(2) β̃(GS) P−→ β0 and if σ2
v|S → 0, β̃(G|S) P−→ β0.14

In expectation, the average degree will be scaled down as a function of the sampling rate, since only
a share of social connections are observed. Because the regressors are scaled down the coefficient
expands, while dispersion around this expectation induces attenuation. The behavior of the ana-
lytical corrections is straightforward. The case with GS is clear so we discuss G|S . The analytical
correction directly removes the rescaling bias, leaving only the attenuation term involving σ2

v|S .

Graph Clustering. The clustering coefficient of a node is the fraction of its neighbors that are
themselves connected to each other. Bloch et al. (2008) study risk-sharing on social networks and
find that networks which have theoretical properties that lend themselves to higher levels of risk-
sharing tend to have higher clustering, which motivates clustering as a regressor with risk-sharing
data.15 Moreover, under certain assumptions, Möbius and Szeidl (2006) and Karlan et al. (2009)
use a model of trust and social collateral to microfound clustering as a measure of social capital.
The clustering of the graph (denoted c(G)) is the ratio of the number of triangles (three nodes
where every node is connected to every other node, denoted ρ(G)) to the number of connected
triples (three nodes that have at least two social connections between them, denoted τ(G)). That
is, the graph clustering is c(G) := ρ(G)

τ(G) , where

ρ(G) := 3
∑
i

∑
k>i

∑
j 6=i,k

AijAjkAki and τ(G) :=
∑
i

∑
k>i

∑
j 6=i,k

AijAjk.

The analysis of graph clustering is similar to degree. One can show that

E
[
ρ(GSr )|Gr

]
= (3ψ2(1−ψ)+ψ3+o(1))·ρ(Gr) and E

[
τ(GSr )|Gr

]
= (ψ(1−ψ)2+3ψ2(1−ψ)+ψ3+o(1))·τ(Gr).

13One could also simply account for the scaling effect.
14In Appendix D we demonstrate how this can be done without assuming σ2

v|S → 0 by instead estimating σ̂2
v|S .

15One may also be interested in the support of a graph defined in Jackson et al. (Forthcoming). The analysis of the
bias in using support as a regressor will follow in a similar manner
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This comes from the fact that to obtain a triangle one needs to sample at least two of the nodes,
while to obtain a connected triple, one can additionally sample the middle node. Meanwhile, for the
induced subgraph we have E[ρ(G|Sr )|Gr] = (ψ3 +o(1)) ·ρ(Gr) and E[τ(G|Sr )|Gr] = (ψ3 +o(1)) ·τ(Gr)
since all three nodes must be sampled.

We assume a sequence of graphs which have non-zero clustering such that the sequence also has
non-zero clustering in the limit. We define

vrj := c(Ḡr)− E[ρ(Ḡr)|Gr]/E[τ(Ḡr)|Gr] for j and Ḡ indexing the sampling scheme.

In turn, σ2
〈c〉, σ

2
vS , and σ2

v|S are defined analogously as in section 3.1.1. For adjusted least squares

we use w̃(GS) =
(
ψ(3−2ψ)

1+ψ(1−ψ)

)−1
c(GS) and w̃(G|S) ≡ c(G|S). The analytical correction is identical

to the sampled statistic in the case of the induced subgraph as the graph clustering of the induced
subgraph consistently estimates the underlying graph clustering.
Proposition 3.2. Assume that m = bψnc nodes are uniformly randomly sampled from each graph,
the data (yrR, c(GrR))r≤R is a triangular array from a deterministic sequence of graphs satisfying
supR≥1 supr≤R aRρr ∨ aRτr ≤ ᾱ, infR≥1 infr≤R aRρr ∨ aRτr ≥ α, and the regularity conditions of
Assumption A.2. Then

(1) β̂(G|S) P−→ β0 ·
σ2
〈c〉

σ2
〈c〉+σ

2
v|S

and β̂(GS) P−→
(
ψ(3−2ψ)

1+ψ(1−ψ)

)−1
β0 ·

σ2
〈c〉

σ2
〈c〉+

(
ψ(3−2ψ)

1+ψ(1−ψ)

)−2
σ2
vS

,

(2) if σ2
v|S , σ

2
vS → 0 then β̃(G|S) P−→ β0 and β̃(GS) P−→ β0.

As random sampling yields on average the same share of connected edges between each possible
triangle, c(G|S) consistently estimates c(G). Dispersion about the mean yields the attenuation
bias in regression. For GS , there is an expansion bias owing to the fact that a triangle appears
as an intransitive triad (where exactly two of the three nodes are connected) when an edge of the
triangle is missing due to sampling. The usual attenuation term also applies. A perhaps surprising
consequence is that using the unbiased estimator of clustering, c(G|S), in a regression may perform
worse than using w̃(GS).

3.1.2. Nonlinear transformations due to sampling.

Average Path Length and Graph Span. The path length between two nodes i and j is given by the
minimum number of steps taken on the graph to get from i to j, denoted γ(i, j) := minl∈N∪∞[Ak]ij >
0. If there is no such finite path, we put γ(i, j) = ∞. The average path length of a graph is the
mean taken over all finite paths,

γ(G) :=
∑

i,j:γ(i,j)<∞
γ(i, j)/

∣∣∣{(i, j) ∈ V 2 : γ(i, j) <∞}
∣∣∣ .

Models of diffusion of information, flows of finance, risk-sharing, nepotism, and other phenomena,
build on the principle that the farther apart agents are, the less is transmitted between them.
For example, Kinnan and Townsend (2011) study how the network distance to a bank affects
consumption smoothing. Other papers that use path length or average path length include Golub
and Jackson (2010) who simulate diffusion processes; Leider et al. (2009) and Goeree et al. (2010)
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who study dictator games between members of a school; Alatas et al. (2011) who look at the diffusion
of information about poverty; and Banerjee et al. (2011) who study the diffusion of microfinance.

The average path length of a network is known to be a very difficult object to study analytically.16

Both the economics and statistical physics literatures study an object we term the graph span,
which mimics average path length. Jackson (2008a) shows that for a general family of random
graph models the ratio of the graph span to average path length asymptotically almost surely is
one. The statistical physics literature uses such an approximation as well (e.g., Newman et al.,
2001; Watts and Strogatz, 1998, Watts and Strogatz, 1998). These literatures motivate the study
of the graph span as a regressor. Let d2 (G) := 1

n

∑n
i=1

∑n
j>i

∑
k 6=i,j AijAjk be the average number

of second neighbors.17 The graph span is

`(G) := logn− log d(G)
log d2(G)− log d(G) + 1.

Larger networks have higher spans. Networks that are more expansive in the sense that the number
of second neighbors far exceeds the number of neighbors have lower spans; it takes fewer steps to
walk across the network. We first describe some useful properties of average degree and average
number second neighbors for randomly sampled graphs and then study regression bias.
Lemma 3.1. Put k(ψ) = ψ + ψ2 − ψ3. For any sequence of random graphs (Gn)n∈N satisfying, as
n→∞, d(G)/a1n

P−→ c1, d2(G)/a2n
P−→ c2, a1n, a2n ∈ o(n), and c1, c2 > 0,

(1)
∣∣∣d(G|S)− ψd(G)

∣∣∣ = oP(1),
∣∣∣d2(G|S)− ψ2d2(G)

∣∣∣ = oP(1),

(2)
∣∣∣d(GS)− (1− (1− ψ)2)d(G)

∣∣∣ = oP(1),
∣∣∣d2(GS)− k(ψ)d2(G)

∣∣∣ = oP(1).
This observation is general in the sense that it only requires that degree and the number of second
neighbors to grow sufficiently slowly, which is reasonable for realistic applications. We now study
the behavior of regressions with `(G|S) and `(GS). If a sufficiently high fraction of nodes are
sampled, the estimator exhibits attenuation. Meanwhile, if a sufficiently low fraction of nodes are
sampled, the estimator may exhibit sign-switching.

Put d̃(Ḡ) as the corrected estimate of degree from section 3.1.1, d̃2(GS) = d2(GS)/k(ψ), and
d̃2(G|S) = d2(G|S)/ψ2. Define

˜̀(GS) := logn− log d̃(GS)
log d̃2(GS)− log d̃(GS)

+ 1 and ˜̀(G|S) := log(ψ−1m)− log d̃(G|S)
log d̃2(G|S)− log d̃(G|S)

+ 1,

which we use in the adjusted least squares estimators.
Proposition 3.3. Assume that m = bψnc nodes are uniformly randomly sampled from each graph
and the data sequence satisfies the regularity conditions of Assumption A.3. Then

(1) β̂ is sign-consistent with attenuation if ψ ∈ (c1, 1) or k(ψ)/(1− (1− ψ)2) ∈ (c1, 1)

plim |β̂(G|S)| < |β0| and plim |β̂(GS)| < |β0|,

16Bollobas (2001) approaches path length from an exact analytical perspective but only for a very specific random
graph family. This approach is not suitable for gaining intuition for broader classes of graphs.
17Notice this defines second neighbor in the sense of taking a random node and then counting the number of neighbors
of each of the node’s neighbors. The definition is different from counting the number of distinct nodes at path length
two from a given node, which would be 1

n

∑
i

∑
k>i

∑
j 6=i,k AijAjk (1−Aik).
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(2) β̂ may be sign-inconsistent otherwise, and
(3) analytical corrections are consistent, plim β̃(G|S) = β0 and plim β̃(GS) = β0,

where ξrR := d(GrR)/d2(GrR), 0 < c0 < c1 < 1, c0 := infR≥1 infr≤R ξrR, and c1 := supR≥1 supr≤R ξrR.
Sampling a network thins out the set of edges, resulting in a higher graph span. As the graph
span approximates behavior of average path length, it captures the intuition that due to sampling,
paths on graphs seem longer than they truly are. The expansion of the graph span has a slope
effect on β̂, and as logψ < 0 and log(k(ψ)/(1 − (1 − ψ)2)) < 0, the effect is either attenuation
unless the sampling rate is too low, in which case sign-switching becomes a possibility. One must
proceed with caution when discussing cases where the sampling probability is too low. In this case
the network can shatter, yielding “islands” of disconnected sets of nodes which have short average
path lengths within the set but have infinite distance across the sets.18 Since average path length
is defined as a mean conditional on all finite paths, this is precisely where sign-switching may occur
in practice. Alatas et al. (2011) contains an example where this happens in Indonesian networks.

Spectral Functions. Spectral functions are network statistics that relate to the set of eigenvalues of
matrices which represent the graph, such as the adjacency matrix. They are useful in characterizing
properties of the network. The distribution of eigenvalues has applications to models of information
diffusion and risk-sharing as well. The number of k-length walks that cycle back to the original
node correspond to k-th moment of the eigenvalue distribution, denoted µk(G),

µk(G) = n−1 ∑
i1,..,ik∈V k

Ai1i2 ...Aiki1 = n−1Tr(Ak)

where V k = V × ... × V (Barabasi and Albert, 1999). Given that the graph spectrum carries a
great deal of information about the diffusive properties of a network, it is a useful regressor.19

There are several applications of spectral statistics in economic theory. For instance, the first
eigenvalue of the adjacency matrix, λmax(G), describes how well the graph diffuses information (e.g.,
Bollobás et al., 2010).20 In models of social learning Golub and Jackson (2009, 2010a) show that the
second eigenvalue of a weighted adjacency matrix is related to the time it takes to reach consensus;
similar results are shown in DeMarzo et al. (2003). Ambrus et al. (2010) also characterize the risk-
sharing capacity of a network as a function of the expansiveness of the network; it is well-known
in network theory that this maps into the eigenvalues of a transformation of the adjacency matrix
(Chung, 1997). It is difficult to precisely characterize the behavior of these spectral regressors,
though we present bounds on their behavior under sampling.
Proposition 3.4. For an arbitrary graph G, we have

(1) µk(GS) < µk (G) and E
[
µk(G|S)|G

]
=
∑k
j=2

(m−1)j
(n−1)j

ηj < µk(G), where ηj is the number of
sets of j-distinct nodes that are counted.

18One can check that a graph H with d2(H)/d(H) < 1 cannot be connected. The sign-switching case requires at
least some d2/d < 1 which we note the researcher can immediately detect.
19For a discussion of how spectral distributions correlate with graphical properties, see Barabasi and Albert (2002).
20In a percolation process the threshold probability above which a giant component emerges is precisely 1/λmax. For
another intuition, if A is diagonalizable, then the dominant factor in

∥∥Ak∥∥ is λkmax.
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(2) λmax(G|S) ≤ λmax(GS) ≤ λmax(G).

Since λmax can be thought of as measuring the number of walks through the graph (and with
missing edges there are fewer walks) we expect expansion bias in β̂ when using these regressors.21

This means that networks will appear to be more diffusive than they actually are.

3.2. Regression of Outcomes on Network Neighbors’ Outcomes. We discuss the impact of
sampled networks on regressions of nodes’ outcomes on network neighbors’ outcomes. The models
we consider are developed in Bramoulle et al. (2009) and De Giorgi et al. (2010) and naturally
extend the models discussed in Manski (1993) to a network setting. Blume et al. (2011) contains
an extensive review of the literature. The network allows for nodes to have overlapping but not
identical peer groups.

The model is given by (2.3) and we are interested in β0 = (ρ0, γ0, δ0). There are two natural
examples for how neighbors’ outcomes ought to affect a node’s outcome. First, every node’s outcome
may be affected by the average outcome of its neighbors.22 Second, every node’s outcome may be
affected by the total sum of its neighbor’s outcomes.23 The reduced form is

y = αι/(1− ρ0) + γ0x+ (γρ0 + δ0)
∞∑
k=0

ρk0w
k+1x+

∞∑
k=0

ρk0w
k+1ε.

Since a node’s neighborhood outcome, wy, is the endogenous regressor, the reduced form suggests
that extended neighborhood effects, powers wkx (k ≥ 2), can be used as instruments for wy.
We focus on the instrument Z = [ι, x, wx,w2x].24 Setting X = [ι, wy, x, wx], the estimator is
(X ′PZX)−1X ′PZy.

Identification comes from intransitive triads.25 If i and j are connected and j and k are connected,
but i and k are not connected, then k affects i only through j. As such, xk is used as an instrument
for yj ’s effect on yi. We caution that this identification strategy convincingly works only when
x is randomly assigned (e.g., Ngatia, 2011; Dupas 2010) as identification crucially depends on
exogeneity of x.

We examine the estimation of (2.4) using w̄ = w(GS) or w̄ = w(G|S) with instrument ZḠ =
[ι, x, w̄x, w̄2x]. We show that the exclusion restriction is invalid when using sampled network data,
even if the covariates are exogenous and the usual identification requirements are met if the full
network data was available.26

Proposition 3.5. Assume γ0ρ0 + δ0 6= 0 and w2 6= 0, so 2SLS is valid for (2.3). Then 2SLS with

21Whether there is expansion bias depends on how the eigenvalues shrink across the initial distribution. For instance,
if the contraction is by translation, the regression slope would clearly not change. Numerical with simulated networks
and empirical data provide evidence of expansion bias.
22We can write the model as yi = α+ βENi [yj ] + γxi + δENi [xj ] + εi as ENi [yj ] =

∑
j∈Ni

yj/di =
∑

j
yjAij/di.

23We discuss the first case, though clearly by mimicking the argument the results follow for the second.
24Other estimation strategies are suggested in the literature, on the basis of efficiency (Bramoulle et al., 2009; Lee et
al., 2009). They require the validity of the instrument Z.
25Bramoulle et al. (2009) provide formal identification conditions.
26De Giorgi et al. (2010) are aware that measurement error may cause problems in this model and conduct a numerical
robustness exercise.
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(a) True structure: transitive triangle.
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(c) True structure: square.

(d) Missed effect kl to li due to sampling.

Figure 2. Red nodes are sampled. (a) and (c) show examples of true network
structures. (b) shows the star subgraph from (a) when j is sampled. The effect of
k on i is missed. (d) shows the induced subgraph from (c) when i, j, and k are
sampled. The effect of k on i through l is missed.

(1) w(GS) generically yields E [ZGSuGS ] 6= 0,27

(2) w(G|S) generically yields E [ZG|SuG|S ] 6= 0,
(3) an analytical correction, using w(GS) while restricting the second stage to i ∈ S, yields

E [ZGSuGS ] = 0.

Sampling induces an errors-in-variables problem, wherein the neighborhood effect is mismeasured
since the neighborhoods themselves are misspecified. Though typically one uses instruments to
address such a problem, here the instrument is correlated with the measurement error in the
regressor, as the instrument involves powers of the mismeasured adjacency matrix. As such, the
exclusion restriction is violated.

Figure 2 provides two examples where invalid instrumentation is generated. Figure 2(a,b) show
that if j is sampled but i and k are not, the sampled network falsely suggests that k is a valid
instrument for j’s effect on i. Similarly, figure 2(c,d) show a case with the induced subgraph, where
k instrumenting for j’s effect on i will be invalid as the other channels through which k affects i
are not accounted for due to sampling. In this case, the channel through l is omitted.

With GS data, however, we propose a simple analytical correction. For i ∈ S, notice that
[w̄x]i = [wx]i and [w̄y]i = [wy]i. Consequently, there is no measurement error in the second stage
for these observations. As only the first stage contains measurement error, uncorrelated with the
second stage residual, such an exercise satisfies the exclusion restriction.

Finally, we note that the results presented in this section also have implications for the opposite
case, wherein the researcher incorrectly adds edges to the network architecture and then estimates
peer effects using modified network data. For instance, if the researcher assigns friendship links
among students who share classes, when in fact the peer effect channel is through friendship links
only, then for analogous reasons the estimation will be biased.

3.3. A Model of Diffusion. Having discussed several examples of network-based regressions, we
now turn to a model of diffusion examined in Jackson and Rogers (2007b) which we discuss in

27We say generically in the sense that given (G, x, β0), only a finite set of ψ ∈ [0, 1] satisfy E [ZGSuGS ] = 0.
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the context of our microfinance example.28 The researcher is interested in estimating this diffusion
model which satisfies equilibrium moment equations. There are two states: whether or not a
household endorses microfinance in a weekly village gathering. A non-endorsing household with di
links may choose to endorse with probability ν0diσi where ν0 is a transmission parameter and σi is
the fraction of i’s neighbors that have decided to endorse. However, an endorsing household may
naturally decide not to endorse, which can happen with probability δ0. Jackson and Yariv (2007)
extend this model to a number of strategic environments.

The model is identified up to parameter β0 := ν0/δ0, which is the transmission to recovery rate.
Let P (d) denote the degree distribution and ρ(d) the share of nodes with degree d that endorse.
Finally, ρ̄∗ :=

∑
d ρ(d)P (d) is the average endorsement rate in the network and the researcher

observes y := ρ̄+ ε, with ε an exogenous zero mean shock.
The second neighbors endorsement rate is given by σ = (Ed)−1∑

d ρ(d)P (d) · d. Jackson and
Rogers (2007b) use a mean-field approximation to derive a steady state equation,

ρ(d) = β0σd

1 + β0σd
.

The equilibrium satisfies

(3.1) σ(β0) = (Ed)−1∑
d

β0σ(β0)d2

1 + β0σ(β0)dP (d).

By combining (3.1) with the definition of ρ̄, we find that h(Gr;β) :=
∑
d

βσr(β)d
1+βσr(β)dP (d) = ρ̄.

Therefore the researcher can use as moments

m(yr, Gr;β) := yr − h(Gr;β),

and estimate β0 via nonlinear least squares. Jackson and Rogers (2007b) show that an equilibrium
with non-zero endorsement rate exists only if β > Ed/Ed2. The ratio of squared degree to degree,
similar to what we have encountered when studying graph span, again becomes an important feature
of the network. We put ζ := Ed2/Ed. Note that the typical summand of h(Gr, β) is monotone
and convex in d. Therefore, stochastic dominance relations among various distributions P (d) will
play a central role. We show that due to sampling of networks the researcher will overestimate the
transmission parameter. An intuition for this is provided by the case of the star subgraph. This form
of subsampling leads to a degree distribution that will be first order stochastically dominated by the
true distribution. Therefore, the sampled network seems as if it has poorer diffusive properties; to
generate the same average endorsement rate, the parameter governing the diffusion process must be
higher. In addition, we show that the diffusion with the true parameter β0 occurring on the sampled
network may have no non-zero equilibria. When β0 is close enough to the threshold 1/ζ(G), the
partially sampled network will make threshold ratio 1/ζ(Ḡ) rise and therefore β0 may appear to be
less than 1/ζ(Ḡ).

28They study the SIS (susceptible, infected, susceptible) model of epidemiology, which they and others show have
applications in a wide variety of economic contexts.
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Proposition 3.6. Assume we have a triangular array (yRr, GRr) with degree distributions PRr(d)
and (i) (3.1) holds in expectation for each r, (ii) β0 is such that there is a positive endorsement in
every equilibrium, (iii) B is a compact subset of (0,∞), (iv) (εr) are iid zero mean finite variance
disturbances, and (v) lim supR→∞ supr≤R supd |PRr(d)− P∞r(d)| = 0.

(1) The parameter estimates exhibit expansion bias: plim β̂(GS) > β0 and plim β̂(G|S) > β0.
(2) For all r, β0 is outside the range generating positive endorsement rate in the estimated

equilibrium, with probability approaching one, under the following additional assumptions.
Put δr := β0 − 1/ζr > 0 and assume
(a) for star subgraphs, lim infR→∞ ζr > 1 + ψ and lim supR→∞ δr < (1− ψ) · 1−ζ−1

r (1+ψ)
ζr+(1−ψ2) ,

(b) or for induced subgraphs, lim supR→∞ δr < (1− ψ) · 1+ζ−1
r

ψζr+(1−ψ) .

It is easy to see that for the star subgraph, an analytical solution to the bias is to use the degree
distribution of the sampled nodes. However, this is a highly non-generic solution. The induced
subgraph, for instance, does not allow this approach nor do other sampling schemes (e.g., randomly
chosen edges, etc.) A natural question to ask is whether we may use the sampled degree distribution,
such as P |S(d), to obtain P (d). We note that this will not be straightforward to do, in general,
because it generates an ill-posed inverse problem. The researcher is faced with an under-determined
system; while we can describe how P (d) maps into P |S(d) due to sampling, there appears to be no
unique inverse. Graphical reconstruction, however, will provide a way to address the problem.

3.4. From Analytical Examples to Graphical Reconstruction. In this section we have ana-
lytically examined biases that emerge from sampled networks. We focused on three main network
statistics: degree, graph span, and clustering. This choice was motivated by a number of ap-
plied questions concerning diffusion of information, network importance, risk-sharing, and social
collateral. By analytically characterizing the biases, we were able to describe the mechanics of
the non-classical measurement error and construct analytical corrections to eliminate the biases,
under regularity conditions. The analytical study required us to focus on graph-level regressions;
moreover, to be consistent, the analytical corrections focused on eliminating a slope effect of the
biases, but needed to assume away or estimate a dispersion effect.

We also examined a model where a node’s outcome depends on its neighbors’ outcomes and
demonstrated that a network-based instrumentation method violates the exclusion restriction when
the network is sampled. With certain data structures, we provided a simple solution. Furthermore,
we extended our analysis to a GMM model of diffusion and pointed out how the estimated param-
eters would exhibit expansion bias.

In general, our discussion has been on a case-by-case basis in this section. We have mostly
focused on graph-level regressions and have been only able to examine very tractable network
statistics. Numerous network statistics such as betweenness centrality, eigenvector centrality, and
the aforementioned spectral statistics do not permit easy analytical examination nor corrections.
The next section provides a more general method to estimate the economic parameter. Though
the method is not limited to graph level regressions nor tractable network statistics, it comes at
the cost of requiring more data and putting more structure on the problem by assuming models.
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4. Graphical Reconstruction Estimation

In this section, we discuss a two-step estimation procedure to consistently estimate economic
parameters from linear regression and GMM models. In our asymptotic frame, both the size of
each network and the number of networks grow. Every network is a draw from a distribution
governed by its own parameter θ0r. This will force us to control an incidental parameter problem.
Clearly, we can nest the special case where every network is drawn from the same distribution,
θ0r = θ0 for every r, and thereby assume away the incidental parameter problem.

We present an informal overview of our method in section 4.1. In section 4.2, we present the
asymptotic distribution of β̂ under high level assumptions on θ̂r and detail the estimation procedure
in section 4.3. We discuss low level conditions for θ̂r by studying several key classes of network
formation models, which also shed light on the limits of our approach, in section 4.4. Section 4.5
reflects on the interplay between network formation models and graphical reconstruction.

4.1. Informal Overview. In our overview we describe our procedure for regression,

yir = α0 + wir(Gr)β0 + εir.

We assume that the researcher has the following data. First, she has outcome data for every
node in every graph, {yir : i = 1, ..., n, r = 1, ..., R}, such as whether household i in village r
participates in microfinance.29 Second, she has a set of partially observed graphs, {GSr : r =
1, ..., R} or {G|Sr : r = 1, ..., R}. Third, she has variables which are predictive in a network formation
model {zr : r = 1, ..., r}.30 For instance, the researcher may have basic demographic characteristics
such as religion, caste, household amenities, occupation or geographic location. This data structure
is relatively innocuous and common in numerous applications. In development, when deciding how
to draw a random sample to administer treatments, researchers usually conduct a listing in each
enumeration area. This requires obtaining a census of the economic units, which can be done
directly (e.g., Townsend, 2007; Suri, 2011; Banerjee et al., 2011) or indirectly by obtaining census
information from the village representatives (e.g., Macours, 2003; Takasaki et al., 2000).31 It is well-
known that obtaining GPS and basic demographic data during enumeration is cheap; the bulk cost
of a network survey is the network module itself. For a different example, consider school networks
where it is straightforward to obtain rosters and demographic data for all students. The full set of
observed data is (yr, Aobsr , zr), consisting of yr the vector of outcome data, Aobsr the observed part
of the graph, and zr the vector of network formation covariates. The missing data for each network
is Amisr and recall Gr = (Aobsr , Amisr ).

Every network is thought of as a realization of a random network formation process, drawn from
a distribution which depends on zr and parameter θ0r ∈ Θr. To estimate β0 we use an argument
based on conditional expectations. If θ0r were known for all r, we could estimate a conditional

29In what follows it is not necessary for yir to be observed for every node, but it simplifies notation.
30E.g., zr = {zir : i = 1, ..., n} or zr = {zij,r : i, j ∈ V } where zir or zij,r are covariates for nodes or pairs.
31Researchers can either collect simple covariate data from all nodes or from representatives who carry information.
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expectation of wir(Gr) given the observed data,

Eir(Aobsr , zr; θ0r) := E
[
wir(Gr)|Aobsr , zr; θ0r

]
.

By the properties of conditional expectation, using Eir in the regression instead of wir yields con-
sistent estimation of β0. The least squares estimator is given by32

β̂ols =
(

R∑
r=1

n∑
i=1
Eir(θ̂r)Eir(θ̂r)′

)−1

·
R∑
r=1

n∑
i=1
Eir(θ̂r)yir.

A similar but more involved result is true for GMM. Notice β̂ols depends on θ̂r for all r.
To control the estimation of θ̂r, we need to argue not only that it is consistent for θ0r, but

uniformly so. That is, supr ‖θ̂r − θ0r‖ = OP(a−1
R · R

1/b
n ), where aR is the rate of convergence of θ̂r

to θ0r for every r, and b > 1 is the number of moments that the network formation model has.
This imposes a rate requirement on the problem which says that the network-formation parameter
needs to be estimated fast enough:

√
nR · a−1

R ·R1/b → 0.
The consistency of θ̂r follows from assumptions on the model of graph formation and the sampling

procedure. With missing-at-random data, under assumptions on the graph model, a consistent
estimator exists. Consider a model where an edge forms independently, conditional on covariates,

P(Aijr = 1|zr; θ0r) = Λ
(
f(zir, zjr)′θ0r

)
,

where Λ(·) is some link function (e.g., logistic or normal), zi is a vector of covariates for vertex i,
and f is a vector-valued function. For instance, f may be the difference between characteristics of
two nodes f(zi, zj) = ‖zi − zj‖. If the sampling procedure is orthogonal to the network formation,
a random subset of the

(n
2
)
pairs of nodes is observed. Therefore, θ̂r is consistent.

This model converges with aR = n, since we have on the order of n(n− 1)/2 observations. The
requirement becomes n−1/2R1/2+1/b → 0, so the number of networks must grow sufficiently slower
than the number of nodes. In other models, the rate aR may be different (e.g., n/ logn, nτ for
τ ∈ [1/2, 2),

√
n/ logn). If the rate is too slow, the requirement for node level regression may not

be met, though usually the requirement for graph level regressions will be satisfied.

4.2. Formal Theory for β̂. We begin by establishing that β̂ is consistent and asymptotically
normal. The main theorem is stated in section 4.2.2, under regularity conditions, including simple
high level assumptions about the behavior of θ̂r, which we will verify in section 4.4. In section 4.2.1
we discuss the regularity conditions in depth.

We have already introduced the regression environment. We consider the GMM environment
of (2.1). Relative to regression, in GMM the value of y affects the conditional expectation of w.
Observe (2.1) implies an unconditional moment restriction holds:

0 = Em(X;β0) =
∑
G∈Gn

E [m(X;β0)|G] Pθ0(G)

32For notational simplicity, assume the regressors are demeaned.
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where X = (y, w(G)). Let xr denote the triple of observed data, xr := (yr, Aor, zr). By iterated
expectations, the conditional function

(4.1) Eir(xr;β0, θ0) := E [m(Xir;β0)|xr;β0, θ0]

satisfies EEir(xr;β0, θ0) = 0. Given an observed data series {(Xir, zir) : i = 1, ..., n, r = 1, ..., R}
and an estimator θ̂r of θ0r, the estimator is

β̂gmm := argmin
β∈B

(
En,REir(xr;β, θ̂r)

)′
Ŵ
(
En,REir(xr;β, θ̂r)

)
where Ŵ is a consistent estimator of W .33

In order to compute the conditional moment in (4.1) we need to be able to integrate with
respect to a conditional probability for every graph in our sample, Pβ0,θ0(Amisr |xr). Computing the
expectation requires a reweighting term,

Eir(xr;β0, θ0r) =
∑
Amr

m(Xir;β0)Pβ0,θ0r(Amisr |xr),

with Pβ0,θ0r(Amisr |xr) ∝ fβ0(yr|Gr)Pθ0r(Amisr |Aobsr , zr). To be able to utilize this approach, the
researcher must make assumptions on the distribution of y given G.34

4.2.1. Regularity Conditions. The main results are presented in section 4.2.2, to which the reader
may skip ahead if desired. In this section we discuss the regularity conditions on which the results
depend. Let P(Gr|zr; θr) be the distribution of the graph Gr given covariates zr.
Assumption 1 (Random Graph Model and First Stage Estimation).

(1) ∀r, Θr is a compact subset of Rdθ ; Gr is a Gn-valued random graph with P(Gr|zr; θr) ∈
C2(Θr) at every (G, z) ∈ Gn×Z; H̄r,R := supz maxG,θr

∣∣∣ ∂∂θP(G|z; θ)
∣∣∣, supR supr H̄R,r <∞.

(2) The first stage estimation satisfies for some sequence of normalizing constants (aR), b > 1,
and r ≤ R, aR · (θ̂r − θ0r) = OP(1) and supr≤R ‖θ̂r − θ0r‖ = OP(a−1

R ·R1/b).
(3) For node level analysis a−1

R ·
√
nR1+2/b → 0 and for graph level analysis a−1

R ·
√
R1+2/b → 0.

(4) β0(u) is an interior point of B, a compact subset of Rdβ , for every u ∈ U .

Condition 1 ensures that the random graph family is smooth enough in the parameter, so small
deviations from the true parameter do not result in very different probability distributions. Con-
dition 2 is a high-level condition on the first stage estimation which we will microfound in section
4.4. It guarantees that we can uniformly replace the estimated network formation parameter for
every graph in the sequence with its true value. Condition 3 is a rate requirement which relates the
rate of estimation of the network formation process to the rate of estimating the economic model
of interest. Condition 4 is a standard interiority condition. Let h denote a random variable.

33In the case of maximum likelihood where E is the conditional score, W = I.
34With an index u ∈ U , β̂(u) := argminβ∈B

(
En,REir(xr;β, θ̂r, u)

)′ (
En,REir(xr;β, θ̂r, u)

)
.
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Definition 4.1. A sequence of measurable (potentially matrix-valued) functions {φi,r(hir;α) : i =
1, .., nR, r = 1, ..., R} satisfies an envelope condition over α ∈ A if there exist measurable func-
tions Li,r(hir), with ‖φi,r(hir;α)‖ ≤ Li,r(hir) for every hir and α, and

√
nEnLi,r,R has uniformly

integrable vth moment for v ≥ 2.
Definition 4.2. A sequence of measurable (potentially matrix-valued) functions {φi,r(hir;α) : i =
1, .., nR, r = 1, ..., R} is Lipschitz continuous in α ∈ A if there exist measurable functions Mi,r(hir)
with ‖φi,r(hir;α)− φi,r(hir; ᾱ)‖ ≤ Mi,r(hir) ‖α− ᾱ‖ for every hir and α, ᾱ ∈ A, and

√
nEnMi,r,R

has uniformly integrable vth moment for v ≥ 2.
In addition, we use Ih|x(α) := E

[
∂
∂α′ log f(h|x;α) ∂

∂α log f(h|x;α)|x;α
]
to denote the conditional

information matrix with random variable h|x, density or pmf f(h|x), and parameter α.
Turning to the economic model, observe that the network statistic w(G) may be growing or

shrinking in n. For instance, the eigenvector centrality declines as it is a unit norm object. The
degree of a node may be Θ(1), Θ(logn), or Θ(n) depending on the graph family. In what follows,
in regression we assume that the model is such that all regressors are rescaled at the appropriate
rate: if they exhibit growth or shrinkage at bn, we assume that the models are specified using
w̃ := b−1

n w as regressors. Similarly, in GMM we assume that the moments and network statistics,
both of which may depend on R, are appropriately rescaled. For two reasons we present regularity
conditions for least squares, GMM, and GMM with an index separately, though they essentially
can be nested. First, least squares does not require assuming the joint distribution of y and G.
Second, GMM conditions are more transparent than the more general case where parameters carry
an index. After presenting the assumptions we discuss what they mean for networks.
Assumption 2 (Linear Regression).

(1) E [ε|w] = 0, E [εε′|w] = Ω, p.d. with supR λmax (Ω) <∞
(2) E

[
‖wir‖k |xr; θr

]
and

∥∥∥Iwir|xr(θr)∥∥∥ for k = 1, 2 satisfy the envelope condition with Li,r(xr).
(3) supR≥1 supr≤R var (

√
nEnwir(Gr)) < C1 < ∞ and infR≥1 infr≤R var (

√
nEnEir(xr; θ0r)) >

C0 > 0, uniformly over the array.

Define gR(β) := En,REm(yir, wir(Gr);β) and f(m|x;β, θ) be known up to parameters.
Assumption 3 (GMM).

(1) Ŵ = W + oP(1), W is p.s.d. and the model satisfies limR→∞WgR(β) = 0 only if β = β0.
(2) The limits limR→∞ En,R [EEir(xr; θr, β)] and limR→∞ En,R

[
E ∂
∂β′Eir(xr; θr, β)

]
exist uniformly

over B ×
∏
r∈N Θr.

(3)
∥∥∥Imir|xr(β, θr)∥∥∥, E

[∥∥∥ ∂
∂β′m(Xir;β)

∥∥∥ |xr; θr, β′], and E
[
‖m(Xir;β)‖k |xr; θr, β′

]
for k = 1, 2

satisfy the envelope condition with envelope Li,r(xr).
(4) m(X;β) is continuously differentiable on the interior of B for every X ∈ X and both

m(X;β) and ∂
∂β′m(X;β) satisfy the Lipschitz condition with constant Mi,r(Xir), where

E [Mi,r(yir, wir)|xr] ≤ Li,r(xr).
(5) supR≥1 supr≤R var (

√
nEn [m(Xir;β0)]) < C1 <∞ and infR≥1 infr≤R var (

√
nEn [Eir(xr;β0, θ0r)]) >

C0 > 0, uniformly over the array.
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Finally define function classes F∗R := {
√
nEnm(Xir;β(u), u) : (β, u) ∈ B × U} and for β′, u′ ∈ B×U ,

HR|β′,u′ := {
√
nEnE [m(Xir;β′, u′)|xr;β, u] : (β, u) ∈ B × U}. This nests the above with U = {u}.

Assumption 4 (Indexed GMM).

(1) The maps m(Xir;β, u) are measurable and is continuous at each (β, u) with probability one
and P (Amr |xr;β, u) is continuous at each (β, u) with probability one.

(2) EEir(β(u), u) is continuously differentiable at β0(u) uniformly in U and ∂
∂β′EEir(β, u) is

uniformly non-singular at β0(u) over U .
(3) ‖E [m(Xir;β, u)|xr;β, u]‖ ≤ Lir(xr), supR supr E (EnLi,r(xr))2+δ = O(1) for some δ > 0.
(4) The following uniform entropy integral condition holds:

ˆ ∞
0

sup
Q∈Q

√
logN

(
ε
∥∥F̄ ∗R∥∥Q,2 ,F∗R, L2(Q)

)
dε+ sup

(β′,u′)∈B×U

ˆ ∞
0

sup
Q∈Q

√
logN(ε

∥∥H̄∥∥
Q,2 ,HR|β′,u′ , L2(Q))dε <∞.

Assumptions 2, 3, and 4 are similar, so we discuss the GMM case. Assumption 3.1 is a standard
identification condition. Assumption 3.2 is standard (e.g., Andrews, 1994) and Assumption 3.3
places uniform restrictions on higher moments of the conditional moment, slope of the moment,
and information matrix allowing weak laws of large numbers to be applied. Assumption 3.4 allows
these convergences to be uniform over the parameter space.

Assumption 3.5 is what allows us to pass a central limit theorem to the conditional random vari-
able if the unconditional satisfies one.35 It is reasonable in practice because we use independence
across graphs and simply a uniform boundedness condition within graph. This is substantially
weaker than having to assume a within-graph central limit theorem for mir, which would depend
on the idiosyncrasies of the network formation model and network statistics. However, it comes
at the cost of requiring data from multiple networks. We make this assumption because currently
the statistics of networks literature has not characterized within-graph node characteristic interde-
pendencies (e.g., the correlation of eigenvector centrality between nodes for various random graph
families). Assumption 4.4 allows for a functional central limit theorem to be applied. Intuitively,
the condition on F∗R would have to be assumed for the result to be true even without missing data
and HR|β′,u′ controls how much the conditional expectation changes as (β, u) change.

4.2.2. Asymptotic Distribution. In this section we show that β̂ols, β̂gmm, and β̂(u) are consistent
and asymptotically Gaussian. We define covariance matrices which characterize the asymptotic
variance. For linear regression,

Hols := lim
R→∞

EnR
[
EEirE ′ir

]
and Vols := lim

R→∞
ER

[
var

(√
nEn

[
Eirεir + Eir(wir − Eir)′β0

])]
,

and for GMM,

M := lim
R→∞

En,R
[
E ∂

∂β′
Eir(xr;β0, θ0r)

]
, Ω := lim

R→∞
ER

[
var

(√
nEnEir(xr;β0, θ0r)

)]
,

Hgmm := M ′WM and Vgmm := M ′WΩW ′M.

35Since this paper focuses on the effect of sampling on network analysis and not on regression or GMM models
on graphs, we make the assumption that the underlying model satisfies reasonable regularity conditions if the full
networks were observed and focus on the effect of sampling and graphical reconstruction.
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Theorem 4.1 (Asymptotic Distribution). Under Assumptions 1,
(1) Assumption 2 implies

√
nR(β̂ols − β0) N

(
0, H−1

ols VolsH
−1
ols

)
.

(2) Assumption 3 implies
√
nR(β̂gmm − β0) N

(
0, H−1

gmmVgmmH
−1
gmm

)
.

(3) Assumption 4 implies
√
nR(β̂(·)− β0(·)) −Ψ̇β,u(β0(·), ·)−1Z(β0(·), ·), in `∞(U), a mean-

zero Gaussian process with covariance function

Ω(u, ũ) := lim
R→∞

ER

n−1∑
i,j

E [Eir(xr;β0(u), u)Ejr(xr;β0(ũ), ũ)]


where Ψ̇β,u(β, u) = limR→∞ En,RE ∂

∂βEir(β, u).

Intuitively, if we can uniformly replace θ̂r with θ0r, since conditional expectations are centered
correctly and, under regularity conditions, also satisfy central limit theorems if the unconditioned
random variables do, the estimator is consistent and normal. While we wrote the theorem for
vertex-level analysis, similar results with modified regularity conditions extend to regressions at the
graph-level, edge-level, vertex-triples, etc. Each will allow for different amounts of interdependency
in the graph formation process. To be concrete, under the above normalizing assumptions, graph
level regression converges at

√
R while edge level regression converges at

√(n
2
)
R = n

√
R.

To build further intuition, we comment on what could go wrong. First, for GMM, if one estimates
the conditional expectation without reweighting, unless the model was additively separable, β̂gmm

would be inconsistent. Second, there are several reasons why uniform estimation may fail: the
size of the networks relative to the number of networks may be too small, the network formation
process may have dim(Θr) exploding too fast, and the level of interdependency in the random graph
processes may be too high. We provide a more detailed discussion in section 4.5.

4.3. Estimation in Practice. We describe the estimation algorithm for linear regression.
Algorithm (Estimation of β̂ols).

(1) Use (zr, Aobsr ) to estimate θ̂r based on the assumed network formation model.
(2) Estimate Eir(Aobsr , zr; θ0r) := E

[
wir(Gr)|Aobsr , zr; θ0r

]
.

(a) Given (zr, Aobsr ), for simulations s = 1, ..., S, draw Amis∗r,s from P
θ̂r

(Amisr |Aor, zr).
(b) Construct wir(G∗rs) where G∗rs = (Aobsr , Amis∗r,s ).
(c) Estimate Êir(Aobsr , zr; θ̂r) := 1

S

∑S
s=1wir(G∗rs).

(3) Estimate β̂ols using data {(yir, Êir(Aobsr , zr; θ̂r)) : i = 1, ..., n, r = 1, ..., R}.
The GMM algorithm is similar, requiring a reweighting term. We provide an overview of standard
errors and estimation methods in Appendix C. In practice, clustering at the graph level in vertex-
level regressions and using heteroskedasticity robust standard errors for network-level regressions
perform well, though we have explored various bootstrapping procedures (available upon request).

4.4. Formal Theory for θ̂r. In this section we discuss the uniform estimation of the network
formation model parameters. We are interested in the joint convergence of supr

∥∥∥θ̂r − θ0r
∥∥∥ in

the sense of Assumption 1.3. The literature on consistently estimable network formation models is
young and limited. Most models of network formation lack asymptotic frames (see, e.g., exponential
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random graphs models (ERGMs)). That is, larger networks do not lead to tighter parameter
estimates. In general there are no known results characterizing consistency for ERGMs and is
currently the topic of research in Chandrasekhar and Jackson (2011). In addition, Goldsmith-
Pinkham and Imbens (2011) and Kolotilin (2011), among others, are working papers currently
developing consistently estimable random graph models. There are a few classes of models known
to be consistent and we discuss several as examples below. Given how new this literature is, it is
useful to reflect on a simple, checkable sufficient conditions for joint convergence so that one could
check new models as they develop. After this, we discuss three common classes of network formation
models and check the condition that can be used in graphical reconstruction. The examples have
been chosen to provide intuition about different problems that may arise.

We have a collection of network formation models which maximize criterion functions, θ0r =
arg maxθQ(r)(θ0r). We estimate these parameters with a collection of empirical criterion functions,
Q̂(r)(θr), with θ̂r = arg maxθ Q̂(r)(θr). The lemma is analogous to Hahn and Newey (2004).
Lemma 4.1. Let V(r)(θr) := ∇θQ(r)(θr) and V̂(r)(θr) := ∇θQ̂(r)(θr). Assume the following.

(1) ∀r, Q(r)(θr) has unique maximum θ0r; Θr is compact; Q(r)(θ) ∈ C2(Θ); supθ |Q̂(r)(θ) −
Q(r)(θ)| = oP(1).

(2) The criterion functions uniformly converge in the sense that for some v > 0

P
(

sup
r≤R

sup
θ∈Θr

∣∣∣Q̂(r)(θ)−Q(r)(θ)
∣∣∣ ≥ η) = o(a−vR ).

(3) There exists a sequence of constants (aR) such that (i) for all r, aR · V̂(r)(θ0r) = OP(1); (ii)

for some b > 1, supr≤R E
∥∥∥aR · V̂(r)(θ0r)

∥∥∥b <∞.
(4) ∇V̂(r)(θr) satisfies a Lipschitz condition with coefficient Br, supr ‖Br‖ = OP(1).
(5) The Hessian satisfies supr

∥∥∥∇V̂(r)(θr)−∇V(r)(θr)
∥∥∥ = oP(1).

Then aR ·R−1/b · supr≤R
∥∥∥θ̂r − θ0r

∥∥∥ = OP(1).
This comes from a usual first order expansion argument. Condition 1 adds extra smoothness to a
standard assumption for consistency. Condition 2 requires that all the criterion functions Q̂(r)(θ)
uniformly lie in an η-“sleeve”, [Q(r)(θ)−η,Q(r)(θ)+η]; in practice this is argued by applying union
bounds and controlling interdependencies across summands in the objective function. Condition
3 provides a rate of convergence of the first-order term and a moment requirement. Condition
4 requires an envelope condition for the third derivative of the objective. Condition 5 requires
uniform convergence of the Hessian. Below, Lemma 4.1 holds under low-level assumptions.

4.4.1. Mixing Coefficient. To describe interdependence in the data, we define a mixing coefficient.
Let D ⊂ Zd be an integer lattice and to each s ∈ D we associate a random variable zs. Then
{zs : s ∈ D} is a random field and we are interested in controlling the dependence of zs and zs′ .
Let AΩ be the σ-algebra generated by a random field {zs : s ∈ Ω}. We define the mixing coefficient

αk,l(m) := sup {|P (A1 ∩A2)− P (A1) P (A2)| : Ai ∈ AΩi , |Ω1| ≤ k, |Ω2| ≤ l, d (Ω1,Ω2) ≥ m}
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where d(Ω1,Ω2) = minx,y∈Ω1×Ω2 ‖x− y‖1. We will need to assume that the level of interdependence
goes to zero as the distance between the two subsets goes to infinity.36

4.4.2. Classes of Models. We discuss three common classes of network formation models that may
be used in graphical reconstruction. The examples are intended to provide a broad view of the
assumptions that need to be made. The first example is the most parsimonious and assumes that
the probability that an edge forms is independent given covariates. The second example allows for
more flexibility in describing the structure of the network by having a rapidly growing a number
of parameters. Despite this, network level reconstruction meets sufficient conditions, though node
level reconstruction does not. The third example allows for network effects, where the probability
of an edge forming depends on the probabilities of other edges as well as covariates.

Class 1: Conditional Edge Independence Models. We begin by considering a class of models in
which edges form independently, given covariates. This is the most common class of model used
in the literature (see e.g., Jackson 2008, Christakis et al., 2010, Goldsmith-Pinkham and Imbens,
2011, and Santos and Barrett, 2008). Let Ξ be a set consisting of all pairs ij. Ξ is implicitly
indexed by n and has n(n − 1)/2 elements. We denote an element s ∈ Ξ and, when referencing
explicitly which pair it corresponds to, we write s = sij . Let zs denote a covariate for the pair of
nodes sij . Examples include whether two villagers are of the same caste, the distance between their
households, etc. The probability that an edge forms in graph r is

(4.2) P (Asr = 1|zsr; θ0r) = Φ
(
z′srθ0r

)
where Φ (·) is some link function. This framework allows us to consider undirected graphs, directed
graphs, and models in which nodes have to agree for a link to form. The undirected case is
clear. If the graph formation model is directed, then Ξ consists of all n(n − 1) ordered pairs of
ij. When the model is undirected but both nodes need to agree, one may use a model such as
Aijr = 1{z′ijθ0r − εijr ≥ 0} ·1{z′jiθ0r − εjir ≥ 0} with link function Φ (z′srθ0r) := Ψ(z′ijθ0r)Ψ(z′jiθ0r),
where Ψ (·) is the cdf of ε.37

We maximize the log-likelihood, |Ξ|−1∑
s∈Ξ q(Xs; θr), Xs = [As, z′s], with summand

q(Xs; θr) = Asr log Φ(z′srθr) + (1−Asr) log
(
1− Φ(z′srθr)

)
.

For joint convergence, we require that Φ is such that the following hold.
Assumption 5 (Joint Convergence). Let Q(r)(θr) := plimn→∞ |Ξ|

−1∑
s∈Ξ Eq(Xs; θr).

(1) ∀η > 0, infr≤R
[
Q(r)(θ0r)− supθ:‖θ−θ0r‖>η Q(r)(θ)

]
> 0.

(2) D|v|q(Xsr; θ) satisfies a Lipschitz condition with B(Xsr) , for some multi-index |v| ≥ 2.
(3) 2b−1 moments exist for envelope B(zsr) ≥ ‖∂Q(r)(θr)/∂θr‖.

36The triangular array notation is cumbersome, see Jenish and Prucha (2009), but formally is {zs,R : s ∈ DR, R ∈ R}
a triangular array defined on a sequence of probability spaces where DR is a finite subset of D and
αk,l(m) := sup

R≥1
sup
{∣∣PR (A1 ∩A2)− PR (A1) PR (A2)

∣∣ : Ai ∈ ARΩi ,
∣∣ΩR1 ∣∣ ≤ k, |Ω2| ≤ l, Ωi ⊂ DR, d (Ω1,Ω2) ≥ m

}
.

37A more realistic model may have εij and εjr being jointly normal.
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Condition 1 is standard for identification, 2 requires sufficient smoothness, and 3 requires that the
score functions have well-behaved envelopes. Many assumptions about Φ (·) ensure that Assumption
5 holds (e.g., if the link function is logistic).

To be able to apply Lemma 4.1, we need to control the interdependence in the covariates zsr.
We assume that the set of nodes itself has an embedding into an integer lattice, Λ ⊂ Zd. Let
t ∈ Λ denote a generic element, and when referencing the corresponding node we write t = ti. To
build intuition imagine that the nodes are embedded in Z2 as analogous to geographic placement;
households in a village are placed on a grid on the ground and certain households are closer to
others. This closeness determines the covariance of their other characteristics. Then, every node is
given a random covariate zi, ti ∈ Λ. The pair level covariate zij is given by zij = f(zi, zj) for some
function f(·, ·). The interdependency in the node level covariates will translate to interdependencies
among the edge level covariates which is what we will ultimately use in our argument.38

We define a distance (pseudo-metric) dΞ(·, ·) over the set of pairs, given by Ξ, where two pairs
ij and kl’s distance is said to be the minimum coordinate-wise distance between an element of the
first pair and an element of the second pair. Specifically, for sij , skl ∈ Ξ and dΛ(ti, tj) := ‖ti − tj‖1,

dΞ(sij , skl) := dΛ(ti, tj) ∧ dΛ(ti, tl) ∧ dΛ(tj , tk) ∧ dΛ(tk, tl).

Assumption 6 (Mixing Conditions). ∀r, zr :=
{
zir : ti ∈ Λ ⊂ Zd

}
is a stationary mixing random

field, zijr := f(zir, zjr) satisfies supr E‖zijr‖p+δ . supr E‖z1r‖p+δ, and supr E ‖z1r‖p+δ < ∞, with
(i) supr αr2,∞ (m) ≤ Cam for a ∈ (0, 1) or (ii) supr αr2,∞ (m) = o(m−d).
While hard to verify, this assumption is analogous to those made in time series and spatial econo-
metrics contexts. We require that the random fields zr satisfy uniform mixing requirements where,
as the distance between the sites of two random variables increase, the level of interdependency
decays fast enough. The assumption on f is not very restrictive. The most natural example is a
covariate based on the difference in characteristics of nodes i and j: zij = ‖zi − zj‖. It is easy to see
that E‖zij‖k ≤ 2kE‖z1‖k by the binomial theorem and stationarity. Because Asr is a measurable
function of zsr, it will inherit stationarity and mixing properties and therefore so will Xsr.
Proposition 4.1. Assumptions 5 and 6 imply the conditions of Lemma 4.1.

Since there are effectively n(n− 1)/2 edge formation outcomes being estimated, usually aR = n.
Compared to slower rates, this enables us to have relatively more graphs for a given level of network
size while still satisfying the rate requirement of Assumption 1.3.39

Until now we have not discussed the role of random sampling. It is easy to see with random
sampling of nodes (GS or G|S) or random sampling of pair data Aij that the criterion function
Q(r)(θ) := limn→∞

∣∣∣ΞS∣∣∣−1∑
s∈Ξ E[q(Xsr; θ)1{s ∈ ΞS}] is minimized at true parameter θ0r. For

instance, under the star subgraph we have E[q(Xsr; θ)1{s ∈ ΞS}] = (1− (1−ψ)2)Eq(Xs; θ0r) while

38Notice |P (Aij ∩Akl)− P (Aij) P (Akl)| ≤ Cam for pairs ij, kl where i, j 6= {k, l} and d(ij, kl) = m since Λ1 = {i, j}
and Λ2 = {k, l} generate sub-algebras. The only time when we cannot control the probabilities like this is for the
2(n− 1) terms where two distinct pairs share one index, but there are only O(n) of these and |Ξ| = O(n2).
39One can modify this model to change aR (e.g., Christakis et al., 2010 and Goldsmith-Pinkham and Imbens, 2011)
by introducing truncation terms which make certain nodes i and j have essentially zero probability of being linked.
A simple example uses a covariate − |i− j| with nodes i ∈ N yields aR =

√
n.
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(n

2
)
. More generally, if the sampling procedure is known, then in such a model

augmenting the likelihood to account for the sampling will produce consistent estimates.

Class 2: Group Models. By allowing for an increasing number of parameters, a network formation
model may be able to better and more flexibly describe the random graph process. Models of this
vein are discussed in Bickel and Chen (2009), among others, who provide a discussion of what
they call a nonparametric view of network models. Our specific example comes from Chatterjee
et al. (2010), who study an environment in which the degree distribution is the sufficient statistic
for graph formation: given (d1, ..., dn), one estimates a formation model.40 Following Diaconis and
Freedman (1984) they show the network is described by

P(Aij = 1) ∝ exp (θ0i + θ0j) ,

which is a model that allows the number of parameters to grow at a Θ(n) rate.
We extend this framework to our environment and assume there are kn categories of nodes. For

instance, if graph formation depends on two characteristics, gender (male/female) and education
(high/low), there are four such categories. By allowing kn to grow rapidly with n, we can capture
substantial variation in the formation of the network. We allow kn = Θ(n). Define an equivalence
class of nodes: if i and j are in the same class, then they have the same parameter, θ0i = θ0j . In
our example, two individuals in the same category (e.g., female and high education) are governed
by the same parameter θ0,female,high. If we have qn characteristics with a uniformly bounded values
(e.g., two genders, a bounded number of education levels), the number of categories can grow
at qn = Θ (logn), which yields kn = Θ(n). One can think of this model as having group fixed
effects with a growing number of groups. It turns out that with probability approaching one,
supr≤R

∥∥∥θ̂r − θ0r
∥∥∥
∞
.
√

logn/n which is a very slow rate, though expected given how rapidly we
are increasing the parameter dimension.
Proposition 4.2. Let the maximum coordinate value of θr ∈ Θr be uniformly bounded over all r,
R = o(n · log−1 n), and kn = Θ(n), kn < n. Then, under stratified random sampling with either the
induced or star subgraph and Assumptions 2, 3, or 4, the conclusion of Theorem 4.1 holds.
This example shows that even when we are adding parameters at rate n, graphical reconstruction
is possible in network level analyses. Here aR =

√
n/ logn and therefore a−1

R ·
√
R1+2/b → 0.

Meanwhile, the sufficient condition is not met for vertex level analysis as a−1
R ·
√
nR1+2/b →∞. This

example provides an illustration of both the strengths and limitations of graphical reconstruction
by testing the limits as we add dimensions at the same rate as the number of nodes. Certainly
more slowly growing parameter dimension will only help.

Class 3: Models with Network Effects. Our last example studies a graph formation model with
network effects where the edge-formation probability depends on other edges up and beyond through
the correlated covariate effect. In general, the principle difficulty in studying network formation
models is balancing the interdependency while still allowing consistent estimation of parameters.
As previously discussed, most off-the-shelf network formation models lack asymptotic theory. In

40Conditional on the degree distribution there is no information about the model from the actual network data.
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this example we illustrate the consistency of graphical reconstruction with a simple model that
exhibits network effects, taken from the dynamic binary choice literature (De Jong and Woutersen,
2010). Similar to Christakis et al. (2010), we assume that pairs of nodes meet in a sequence, and
for simplicity we assume the sequence is known. Consequently there are

(n
2
)
periods in which pairs

meet. Assume that the probability that i and j, meeting at period s, form a link is given by

P
(
As,r = 1|zsr, As−1

r ; θ0r
)

= Φ
(

l∑
k=1

θ0r,kAs−k,r + θ′0r,l+1zsr

)
where As−1

r is the structure of the graph that has formed through period s− 1. The probability i
and j form an edge depends on covariates as well as a finite collection of previously formed edges.
Assumption 7 (Mixing Conditions). (1) For each r, zr :=

{
zsr : s = 1, ...,

(n
2
)}

is a stationary
mixing random sequence satisfying supr E ‖z1r‖p+δ <∞, with (i) supr αr (m) ≤ Cam for a ∈ (0, 1)
or (ii) supr αr (m) = o(m−d); (2) εsr|As−1

r , zs−1
r are iid N (0, 1).

Proposition 4.3. Assumption 7 implies the conditions of Lemma 4.1.
In this example, randomly sampled data such as the induced subgraph, star subgraph, or even
randomly sampled edges are easy to accommodate. The key take-away here is not that this ex-
ample is a particularly good model of network formation, but rather that it demonstrates how
interdependencies in edge formation can be accommodated.

4.5. Discussion of Boundaries. In this section we have developed a general method to consis-
tently estimate the economic parameter using graphical reconstruction. The method allows the
researcher to estimate network effects using a general set of network statistics, such as eigenvec-
tor centrality, where no analytical corrections are available. We now discuss how the effectiveness
of graphical reconstruction may vary with network formation models, statistics of interest, and
misspecification.

First, we may be interested in how misspecification of the network formation model affects
graphical reconstruction. In practice, we do not know the family of models which generated the
empirical networks. Clearly, misspecification is problematic only to the extent of the covariance
between the conditional expectation of the misspecified model and its deviation from the true model.
While this is not easy to analytically characterize, it does suggest that the model one needs relates
to the network statistic one is interested in studying. For instance, graphical reconstruction with
Erdos-Renyi style models may be sufficient to study questions pertaining to the degree distribution,
but may perform poorly if one is interested in clustering. Numerical simulations confirm precisely
this intuition, suggesting that chosen models ought to be a function of the statistic of interest.

Second, if the model is consistently estimable, one may ask whether a dense versus sparse version
of the model will exhibit better convergence properties. A dense graph has expected average degree
growing asymptotically and a sparse graph has bounded degree. While dense graphs have more
edge-decisions than the sparse counterparts, it turns out that such a statement cannot be made.41

41Consider two examples with Ed(G) = Θ(1). The first example in general is an Erdos-Renyi graph with pn = δn−γ ,
γ ∈ [1, 2), which is sparse when γ = 1. The second is a block model where a node has d links in expectation, there
are kn blocks with m nodes per block, and nodes only connect to other nodes in the same block with iid probability
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Third, models of conditional edge independence where we flexibly introduce covariates can cap-
ture substantial co-variation in network formation. Bickel and Chen (2009) present a discussion of
the literature where any probability distribution on an infinite undirected graph can be represented
as edges emerging conditionally independently given some latent variables and discuss how group
based models are natural parametric models that approximate the nonparametric models which
can capture any network formation process. In practice we lack these latent variables and therefore
conditional edge independent models do poorly precisely for statistics such as clustering, raising
the necessity for models with network effects.

5. Numerical Experiments

This section reports the results of numerical simulations that characterize the biases due to
sampling as well as the behavior of the analytical and graph reconstruction estimators.

5.1. Simulation Setup. We specify a data-generating process for a set of random graphs and
outcome data, and then carrying out the following steps.
Algorithm (Simulation).

(1) Generation of data.
(a) Draw R networks the network formation families (below).
(b) Generate outcome data from a model with β0 and data-generating process (y, ε)|G;β0.
(c) For each graph Gr construct sampled graphs {GSrb, G

|S
rb : b = 1, ..., B}.

(2) Estimation of β̂ using {GSrb, G
|S
rb : b = 1, ..., B}.

(a) Estimate β̂b(G|S) and β̂b(GS).
(b) If applicable, estimate the adjusted estimator β̃b(G|S) and β̃b(GS).
(c) Estimate the graphical reconstruction estimators.

(3) Perform (1)-(2) for ψ ∈ {1/4, 1/3, 1/2, 2/3}.
We generate networks of n = 250 nodes using the following simple conditional edge independence
model. We set parameters such that the average degree, clustering, path length, maximal eigenvalue
and variance of the eigenvector centrality distribution from networks in our simulations mimics those
moments in the empirical Indian networks data-set. Dividing the set of nodes into 6 approximately
equally sized groups, we place those groups on a line, indexed from 1 to 6. The probability that
an edge formed between two members within the same group is high. The probability that an
edge formed between two members of two different groups declines in the cross-group distance,
represented by the difference in the indexed location of those groups on the line. Formally, let g(i)
denote the group of vertex i. We set

P(Aijr|zijr) = z′ijrθ0r.

θ0r is a
(6
2
)
-vector with elements θ0r,lm with 1 ≤ l < m ≤ 6 and zijr is a

(6
2
)
-vector with zijr,lm with

1 ≤ l < m ≤ 6. θ0r,lm is the probability that a member of group l is linked to a member of group

p = d/m. The first model has p̂ − p = OP(n−1−γ) and the latter has p̂ − p = OP(n−1/2). The dense Erdos-Renyi
model has p̂− p = OP(n−1).
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m. The lm-component of zijr is a dummy for whether i and j are in groups l and m respectively,
zijr,lm = 1 {g(i) = l}1 {g(j) = m}. In order to generate θ0r,lm we use a simple distance function,
with θ0r,lm = pr (1− |l −m| /6) where pr is a uniform random variable chosen such that the average
degree generated mimics the average degree from the empirical application.42

5.2. Regression of Outcomes on Network Characteristics. We simulate and estimate a
model with heteroskedastic residuals, yir = α0 + wir(Gr)β0 + σ0 · uir, where (α0, β0) = (1, 2) and

uir := N
(
0, σir/

√
µ̂2
σir

)
, σir := 3 wir − wirmin

wirmax − wirmin
+ 0.2, and µ̂2

σir := En,R
[
σ2
ir

]
.

This formulation creates a fan-like heteroskedasticity. We then can easily set the R2 of the regression
to approximately 0.3 by defining σ2

0 :=
(
1/R2 − 1

)
· En,R(ỹir − ¯̃yir)2 for ŷir = α0 + wir(Gr)β0.

Columns 1-5 of Tables 1 and 2 show the estimation bias, in percentages, for regression parameters
when using sampled network data for a variety of network statistic regressors. Table 1 shows
the biases when estimating regressions at the network level while Table 2 shows the biases when
estimating regressions at the node level.

At the network level, we consider average degree, graph clustering, graph span, average path
length, and λmax. In addition, we show results for the standard deviation of the eigenvector
centrality distribution and the spectral gap. The eigenvector centrality represents how important a
node is in information transmission (Jackson, 2008b) and the spectral gap of a graph characterizes
how rapidly diffusion processes on networks spread (Chung, 1997). The latter is closely related
to the expansiveness of a network that Ambrus et al. (2010) show characterizes good risk-sharing
properties. Hochberg et al. (2007) use eigenvector centrality in applied work.

At the node level, we show results for the degree, clustering coefficient, and eigenvector centrality
of a node. Moreover we consider two regressions which characterize how far a node i is from another
node j. We select a random node j (corresponding to a randomly treated node in an experimental
setting) and generate a regressor which is the path length from i to j. In addition, we partition
the nodes into two subsets which communicate the most within themselves and least across the
sets. We say i is on the same side of the spectral partition of j if they are in the same subset.
This partition is related to the spectral gap (Chung, 1997) and therefore has implications for the
Ambrus et al. (2010) approach to characterizing risk-sharing.

Overall we find that sampling the network leads to significant biases. To illustrate this, we
discuss the biases at 1/3 sampling for the graph and node level. At the graph level the maximum
bias is 260% (λmax), the mean is 90.9%, and the minimum is 15%.43 The biases include expansion
bias in the cases of degree, maximal eigenvalue, spectral gap, and graph clustering (for the star
subgraph). The node level regressions exhibit a similar pattern: the maximum bias magnitude is
91%, the mean is 63%, and the minimum is 7% (same side of the spectral partition).

42We have conducted simulations for alternative formation models, such as one in which covariates are generated
by an autoregressive process and the edge formation probability is governed by a logistic regression. Results are
qualitatively and quantitatively similar.
43When we looking at maximum, mean, and minimum, we are interested in the magnitude of the biases, so our
discussion focuses on the absolute value of the bias.
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In columns 6-10 of Table 1, we present the results using the analytical corrections from section
3.44 We find that the adjusted regression estimators perform uniformly better than the unadjusted
estimators. The biases are usually low. Overall, the analytical corrections improve 100% of the
parameter estimates in the simulations. At 1/3 sampling, the mean reduction in bias percentage
when comparing the analytical correction to the raw network statistic is 69pp with a median
reduction of 69pp and a maximum of 243pp. Columns 6-10 of Table 2 applies the analytical
corrections which were derived for the case of graph level regression, to node level analysis; the
results are not motivated by theory and of course are mixed.45

We consider the graphical reconstruction estimators in columns 11-15 of Tables 1 and 2. It
nearly uniformly outperforms the estimator using the sampled data alone. Biases are mostly very
low across a number of linear and nonlinear network statistics. For illustration we discuss examples
with 1/3 sampling: at the graph level the median bias is 5.7%, the minimum is 0.6%, and the
reconstruction estimator reduces the bias in 54 of the 56 parameters estimated in Table 1. The
mean reduction in bias is 73pp and the maximum reduction is 254pp. We find similar results at
the node level. The median bias is 1.4% and graph reconstruction reduces the bias in 100% of
the parameters estimated in the table. Furthermore, the median reduction in bias is 62pp with
a maximum of 85pp. Not surprisingly, at a given sampling rate reconstruction with GS performs
uniformly better than with G|S . The effective share of edges observed in the star subgraph is
1− (1− ψ)2 but is ψ2 in the induced subgraph. Typically 2/3 sampling with G|S (4/9 share of the
edges observed) yields a reconstruction procedure which is only as good as 1/4 sampling with GS

(7/16 share of the edges observed).
In Table 4 we study the behavior of significance testing and provide evidence that graphical

reconstruction may often increases t-statistics.46 Specifically, we present the ratio of the t-statistic
under graphical reconstruction to the t-statistic under the naive estimator using the sampled net-
work statistic. We find that at the network level across 86% of the cases the t-statistic increases (48
of 56 estimated parameters) and at the node level across 96% of the cases (46 of the 48 estimated
parameters) graphical reconstruction yields a higher t-statistic than the naive estimator. Moreover,
we find that the average ratio of the t-statistic of reconstruction to the naive estimator is high.

5.3. Regression of Outcomes on Network Neighbors’ Outcomes. Table 3 presents the re-
sults for simulations for the model of equation (2.3) with (α0, ρ0, γ0, δ0) = (1, 0.5, 2, 0.5). We use
three specifications to demonstrate the emergence of biases in peer effects regression due to two
distinct causes: correlation of the instrument with the errors-in-variables problem and a weak in-
strument/finite sample problem induced by sampling. The table presents the mean bias percentage
as well as the standard error of the bias.

We present three methods of estimating peer effects with sampled data and one correction. First,
we show an estimate of the peer effect model with the network given by the induced subgraph.

44In Table 8 of Appendix D we show an example of an analytical correction that involves estimating σ̂2
v.

45The correction working for degree with GS is mechanical since there is no mismeasurement for di with i ∈ S.
46Note that this is a numerical result and not a theoretical one. The results may be specific to network formation
models and statistics examined.
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Second, we present an estimation of the model where (y, x) are known for every node, but the
network used is the star subgraph. Finally, we present the same specification but only allow the
researcher to have covariates for surveyed nodes. Each specification exhibits biases.

We vary the number of networks and disturbance size across three models to study how the bias
varies. In Model 1, we use one network with 250 nodes per simulation drawn from the aforemen-
tioned model and set the number of simulations to 50, 000. In Model 2, we use one network with
250 nodes per simulation and use 50, 000 simulations, but reduce the variance of the disturbance.
Model 3 presents results a from 2, 500 simulations of 20 networks each with 250 nodes, drawn from
the model.47

All three specifications show significant bias in the estimates of the endogenous and exogenous
peer effects. Comparing Panels A and B of the first and second set of columns shows the biases are
greater when there is more noise in the system. Moreover, comparing Panels A and B of columns
1-5 and 11-15 shows that increasing the number of graphs in the estimation from 1 to 20 only
modestly reduces the bias due to sampling. There are still non-trivial biases which remain.

Overall, the analytical correction performs well. In the Models 2 and 3, the estimates are
essentially unbiased across all sampling levels presented. Moreover, the analytical correction for
Model 1 exhibits negligible bias for sampling rates of 2/3 and 1/2. However, biases emerge at very
low sampling rates, 1/3 and 1/4, in the case of Model 1. Furthermore, as evidenced by the standard
errors at 1/4, the estimates are extremely unstable.

To measure whether there is a weak instruments problem, in Panel C we display a generalization
of the concentration parameter of the first stage, allowing for interdependence in the variance
following Kleibergen (2007).48 The intuition is that in these networks, even for the analytical
correction there is measurement error in the instrument. Since the number of connections to
neighbors and second neighbors in a network is low, the amount of noise in the first stage increases.49

Panel C shows that the concentration parameter is very low for the first stage estimates in Model 1,
especially at low sampling levels. Moreover, once the number nodes in the network is high enough
or the amount of independent data (20 networks) is high enough, the concentration parameter
is extremely high. In these cases our analytical correction removes the bias entirely while biases
remain with the sampled estimators.

5.4. A Model of Diffusion. We numerically study the Jackson and Rogers (2007b) model of
diffusion and present the results in Table 5. In Panel A we use the aforementioned simulated network
data to generate a model with β0 = e−2.50 Columns 1-5 present evidence of severe expansion bias
in the estimates β̂ when using sampled data. At 1/3 sampling, the transmission parameter is
47The number of simulations was chosen to roughly equate the computation time, on the order of n4 ·# of simulations,
for each of the three specifications.
48For a first stage X = Zπ+v, we use the generalized concentration parameter µ2 := π′Σ−1

π π where π̂ = (Z′Z)−1
Z′X

and Σπ = var (π̂).
49The extent to which this matters can be seen by noticing that the concentration parameter is 2 for ψ = 1/4, while
if the signal to noise ratio had stayed the same in the first stage, the concentration parameter should have only
decreased from 16 to 4.
50This choice was motivated by Jackson and Rogers (2007b) who numerically show this corresponds to a 20% steady-
state rate of diffusion. This matches the microfinance take-up rate in our empirical application.



ECONOMETRICS OF SAMPLED NETWORKS 35

overestimated by 250% when we study the induced subgraph and 85% when we turn to the star
subgraph. Columns 6-10 presents the graphical reconstruction results; the procedure removes the
entire bias.

5.5. Robustness to Misspecification. To investigate how well the procedure works with empir-
ical data, where we do not know the data generating processes, we conduct numerical experiments
using the networks of the Banerjee et al. (2011) data-set, described in greater detail in section 6.
We repeat the simulation algorithm of section 5.1 with the only difference coming in step 1(a).
Instead of generating networks from the aforementioned model, we take 50 independent draws with
replacement from the Banerjee et al. (2011) data-set.51 When we fit a network formation model in
step 2(c), we use the model given by (4.2). We use as covariates the GPS distance between house-
holds as well as the difference in the number of rooms, beds, roofing material type, and electricity
access. Table 6 presents summary statistics from graphical reconstruction exercises analogous to
those of Tables (1) and (2). We find that graphical reconstruction reduces the bias in 98% of the
network statistics when using the induced subgraph and 100% when using the star subgraph. In
addition, the median bias is 9% with the star subgraph when using reconstruction with a median
reduction of bias of 23pp. Similarly, the median bias is 32% with the induced subgraph and the
median reduction in bias is 32pp.

Panel B of Table 5 presents the results from numerical experiments done for the Jackson and
Rogers (2007b) model of diffusion using the empirical networks instead of simulated networks. We
find that at 1/3 sampling graphical reconstruction yields biases of 5% and 8% for the star and
induced subgraphs, respectively. Taken together, the results of these exercises suggest that even
when allowing for network formation model misspecification, graphical reconstruction typically
outperforms what the researcher otherwise would have estimated.

6. Empirical Application: Diffusion of Microfinance

This section presents an empirical application using data from Banerjee, Chandrasekhar, Duflo,
and Jackson (2011), which studies how households’ decisions to participate in microfinance diffuses
through village networks. We use detailed demographic and social network data in 43 villages in
Karnataka, India, which range from a 1.5 to 3 hour’s drive from Bengaluru. The data was collected
six months before a microfinance institution started its operation in those villages. The networks
are randomly sampled at ~46%.

The key outcome variable is the microfinance take-up decisions of households in the network.
Information about microfinance access is typically spread by members and the MFI has admin-
istrative data which allows us to observe the diffusion of membership. Identification is based on
the principle that the MFI followed the same procedure in informing villagers about microfinance
in each village. The MFI identified a collection of pre-set individuals in the village (anganwadi
teachers, shop keepers, etc.), informed them about the program in a private meeting, and then

51We treat the networks as if they are fully-observed. In step 1(c) of the algorithm we sample each graph at rate ψ.
The authors of Banerjee et al. (2011) currently are obtaining a 100% network sample in a resurvey.
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asked them to invite individuals to an information session. Banerjee et al. (2011) contend that this
scheme provides arguably exogenous variation in the centrality of those households.

To account for the partial sampling, we assume that an edge forms between a pair of households
conditionally independently, given a set of covariates (GPS coordinate Euclidean distance between
the two households and the difference in the number of beds, number of rooms, electricity access,
and roofing material of the two households). We estimate the model separately on each village using
a logistic regression in which the observed data between two households are coded as 1 (connected)
and 0 (not connected).

Panel A of Table 7 reports estimates of village-level regressions where the microfinance take-
up rate in a village is regressed on network characteristics. Columns 1-4 presents regressions of
microfinance take-up on network statistics, suggested by diffusion theory to be associated with take-
up. Column 1 shows the regression of take-up rate on the average eigenvector centrality of the set
of initially informed households. Diffusion theory suggests that eventual take-up of microfinance
ought to be higher when the first people to be informed are more central. The increase of the
average centrality in the set of nodes by 0.1 corresponds to a 16.3pp increase in take-up rate when
using the sampled data; graph reconstruction places this estimate as a 24.2pp increase in take-up
rate. If the initially informed households were from the 75th percentile of the centrality distribution
as compared to the 25th percentile, this represents a 7.5pp increase in microfinance take-up when
estimated using reconstruction as compared to a 4.5pp increase when using the sampled data.
Recalling that the average take-up rate is 18.49%, this suggests that sampling the network causes
significant under-estimation of the network effect. Column 2 presents the regression of take-up
on the average path length. If it takes one extra step on average to traverse the graph, this
corresponds to a 5.4pp decrease in take-up of microfinance, according to the sampled network,
though reconstruction suggests that the estimate ought to be a 9.3pp decrease (with a t-statistic
of 1.56). Furthermore, consistent with the results of Table 4, the t-statistics associated with the
estimates typically increase after reconstruction, suggesting that the researcher can better detect
anticipated effects with reduced measurement error.

In Panel B, we turn to household-level regressions where whether a household joins microfinance
is regressed on network characteristics. Column 1 reports a regression on the eigenvector centrality
of a node. Graphical reconstruction only yields a modest change in this example: an increase in
0.1 of a household’s eigenvector centrality corresponds to a 5.5pp increase in take-up likelihood
using the sampled data and a 6.6pp increase in take-up likelihood using graphical reconstruction.
Column 2 provides a more stark example in a regression of take-up on the inverse social distance
of a household to the set of initially informed households. The network effect more than doubles
when using graphical reconstruction. Being distance 1 versus 4 increases the probability of joining
microfinance by 3.4pp under graphical reconstruction but only 1.6pp using the star graph. In
addition, the point estimate is not statistically significant at conventional levels (with a t-statistic
of 0.9), but graphical reconstruction establishes that zero is nearly excluded from a 90% confidence
interval (with a t-statistic of 1.62).
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Finally, in Panel C we consider the regression of a household’s decision to join microfinance or not
on the sum of its neighbors’ decisions.52 The of ρ estimate corresponds to the impact of one neighbor
joining microfinance on the probability that a household joins microfinance. Column 2 displays the
parameter estimate of the effect of the exogenous covariate, γ, whether a household is initially
informed about microfinance. Column 3 displays the parameter estimates of exogenous network
effect, δ. This estimate describes the impact of one extra neighbor being a initially informed on a
household’s likelihood of joining microfinance. We focus on column 1 as the endogenous network
effect is the key parameter of interest. The star subgraph data suggests that a one neighbor’s
take-up corresponds to a 2.7pp decrease in the likelihood of a household joining microfinance.
Meanwhile, the star subgraph data where we use the microfinance data and injection point data
only for sampled households suggests that a one more neighbor’s take-up corresponds to a 4.7pp
increase in the likelihood of a household taking up. Finally, the analytical correction shows that
a one neighbor’s take-up corresponds to a 7pp decrease in likelihood of take-up by a household.
Therefore, the sampled data has lead to severe under-estimation and even sign-switching of the
endogenous network effect of interest. In particular, partial sampling may cause the researcher to
mistake a substituting peer effect for a complementary peer effect. The remainder of the table
suggests that, in addition, the exogenous peer effect is also under-estimated and, in the sampled
data cases, the effects seem to load on the exogenous own covariate coefficient.

7. Using the Results to Better Collect Data

In this section we discuss how researchers can adopt our framework to think about data collection.
The question we are interested in is: given that a researcher faces a budget constraint and needs to
trade off the sampling rate and the number of networks in her sample, is there a method by which
she can assess the trade-off?

We suppose that a researcher is interested in estimating a coefficient in a regression of an outcome
on a network statistic. Assume that the researcher has a project budget b and a pilot budget p.
Each village has a fixed cost f associated with the survey as well as a variable cost c for sampling.53

We assume that the cost to sample individuals is linear and therefore the cost to sample a ψ-sample
of the village is cψn. Finally, let R̄ be the maximum number of villages available to study.

We posit that the researcher is interested in minimizing mean-squared error (MSE) in the esti-
mation of β0.54 The relevant program is55

(7.1) min
ψ∈[0,1],R≤R̄

MSE(ψ,R) s.t. (cψn+ f)R ≤ b.

At the optimum ψ = (b/R − f)/(cn) and therefore we may consider the concentrated objective
function MSE(R) = MSE(ψ(R), R). The researcher may estimate the MSE by fully sampling a

52The estimating approach ignores problems raised by a discrete dependent variable, following the approach taken
in this literature (e.g., Bramoulle and Kranton, 2007; Gaviria and Raphael, 2001; Sacerdote, 2001). The estimated
standard errors handle the heteroskedasticity of the binary response variable.
53This method can be applied to richer budgeting frameworks.
54Researchers can replace this with an objective function of their choosing.
55For formal asymptotics we may have to let b = bn grow such that bn

R̄n
→ k some positive constant.
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small number of networks and hypothesizing β0 and R2 from the linear regression, in a manner
analogous to performing power calculations by positing effect sizes and intra-cluster correlations
before conducting a field experiment (e.g., Duflo et al., 2007). A researcher first randomly selects
k of the R̄ graphs using the pilot budget, where k = p/(cn + f). Then, using these k networks,
the researcher conducts a numerical experiment, sampling them at different rates and applying
graphical reconstruction to estimate the MSE. By doing this, she can select the optimal ψ and R.
Algorithm (Research Design).

(1) Pick network statistics and network-based hypotheses to test.
(2) Hypothesize β, R2, and generate outcome variable.
(3) Randomly sample k = p/(cn+ f) out of R̄ villages and obtain entire networks.
(4) For each R ∈ {R, ..., R̄}

(a) Randomly draw, with replacement, R villages from the collection of k networks.
(b) Estimate MSE(R) using the sample and hypothesized parameter values.

(i) Sample each of the R village networks at rate ψ(R) = (b/R− f)/(cn).
(ii) Apply graphical reconstruction to estimate β̂ols using outcome variable from (2).
(iii) Repeat 4(a) and 4(b).i-ii for B simulations.

(5) Pick R∗ ∈ argminR M̂SE(R) and pick ψ∗ = ψ(R∗).

The algorithm enables the researcher to estimate the trade-off she faces, given her interest in specific
network effects and the distribution of graphs in her region of study. We conduct a simulation
exercise to demonstrate this procedure. We set b = $152, 400, f = $1200, c = $12, n = 200, R̄ = 150
and assume that the networks are drawn from the family described in section 5 and the empirical
Indian networks.56 We consider a grid of R ∈ {33, 40, 50, 60, 70} and ψ ∈ {1, 0.7, 0.4, 0.2, 0.1}.

Figure 4 displays results for two node-level statistics, eigenvector centrality and clustering, as
well as a network-level statistic, the maximal eigenvalue of the adjacency matrix (λmax). We repeat
the exercise for both our simulated network data as well as the Indian networks. The figure shows
MSE(ψ(R), R) for sampled networks and graphical reconstruction. It also displays a theoretical
lower bound on MSE by plotting the MSE corresponding to using R graphs sampled at 100%
instead of at ψ(R). Of course, we find that MSE increases greatly as we move away from 100%
sampling and use the raw sampled data. Next we turn to graphical reconstruction and focus on the
star subgraph. Looking at the Indian networks, eigenvector centrality has the lowest MSE at 40%
sampling while clustering has an optimum at 70%. For these statistics, the simulated networks give
100% as the optimum. Meanwhile, λmax has the lowest MSE at 100% sampling with the Indian
networks but 20% sampling is the optimum in the simulated networks.

Taken together, the results suggest that, first, performing graphical reconstruction is very impor-
tant, even with model misspecification as the researcher will not know the true families generating
the empirical networks. Second, the MSE-minimizing sampling rate depends greatly on parameters,
the network family, and the statistic of interest. It is difficult, if not impossible, to say ex ante
where the optimum lies, and systematic procedures that depend on the setting may be better than

56The numbers are motivated from Banerjee et al. (2011).
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rules of thumb. Third, the results push against the prevailing habit of researchers to obtain more
cluster-units (e.g., villages) at lower sampling rates when conducting cluster-level analysis. Our re-
sults suggest that, at times, just obtaining better data with fewer cluster-units may be worthwhile.
Though it is not surprising that network-level statistics exhibit higher levels of MSE, as there are
only R as opposed to nR observations, this says nothing about the trade-off between the sampling
rate and number of villages.

8. Conclusion

Applied social network analysis often use graphs constructed from data collected from a partial
sample of nodes. Even when nodes are selected randomly, the partial sampling induces non-classical
measurement error and consequently biases estimates of regression coefficients and GMM parame-
ters. Moreover, these biases are of unclear sign and magnitude. We analytically examine the biases
in the estimation of a number of network-based regression and GMM models with applications to a
variety of economic environments. To address the problem in general, we develop a consistent and
asymptotically normal method to estimate the economic parameters using graphical reconstruction,
while allowing for substantial heterogeneity across networks. Specifically, the method allows for
every network in the sample to be generated by a different model.

We conclude that network-based applied work must proceed cautiously, paying close attention
to network data quality. From an applied perspective, researchers should be careful to work either
with specifications which provide conservative results when facing sampled data or implement bias
correction procedures if possible. Moreover, researchers ought to address the bias problem ex ante,
either by choosing a unit of study where more complete data is available or using graphical recon-
struction to understand how mean-squared error may vary with the sampling rate. Undoubtedly,
the performance of graphical reconstruction with empirical network data will only improve as the
burgeoning literature on consistently estimable network formation models matures. To that end,
from a theoretical perspective the lacuna in the literature is the absence of network formation
models that both allow for higher-order dependencies in link formation and are also consistently
estimable.
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Table 4. t-statistic Diagnosis (Simulated Network Data)

1/4 1/3 1/2 2/3 1/4 1/3 1/2 2/3

[1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Graph Level Regressions

6/7 7/7 7/7 7/7 5.32 2.15 1.61 1.29

5/7 7/7 6/7 3/7 1.61 1.41 1.26 1.08

Panel B: Node Level Regressions

5/6 5/6 6/6 6/6 4.09 2.74 2.21 1.83

6/6 6/6 6/6 6/6 3.23 2.94 2.46 1.93

# of Stats where tGR / tNaive > 1 out of total Mean of tReconstructed / tNaive

G|S

GS

G|S

GS

Notes: The left panel displays the fraction of times the t-statistic increases when using graphical reconstruction as compared to using the raw 
sampled network statistic across network statistics. The right panel displays the average ratio of t-statistic under graphical reconstruction to t-
statistic under the raw sampled network statistic across network statistics. We use 7 graph-level statistics and 6 node-level network statistics, 
identical to those used in Tables 1 and 2.  The simulation data is the same as that used in Tables 1 and 2.

Table 5. Bias in Estimation of β0 in Jackson and Rogers (2007a) Model

Raw Network Data Graphical Reconstruction

1/4 1/3 1/2 2/3 1/4 1/3 1/2 2/3

[1] [2] [3] [4] [5] [6] [7] [8]

329.0% 250.0% 104.0% 55.0% 1.0% 0.0% 0.0% 0.0%

117.0% 85.0% 28.0% 12.0% 0.0% 0.0% 0.0% 0.0%

263.0% 230.0% 103.0% 53.0% 8.0% 8.0% 7.0% 6.0%

129.0% 92.0% 31.0% 14.0% 6.0% 5.0% 3.0% 1.0%

Panel A: Simulated Networks, Bias % in Estimation of β0

G|S

GS

Panel B: Indian Networks, Bias % in Estimation of β0

G|S

GS

Notes: Table presents bias in estimation of β0 the transmission parameter in the Jackson-Rogers diffusion model described in section 
3.3 of the text. Data generating process for the simulated networks is the same as in Table 2. Networks in panel B are same as those 
described in Table 6. We set β0 to exp(-2) and perform each simulation 100 times.
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Table 8. Bias for Network Level Regression for Average Degree (Simulated Graphs)

Edge Sampling Rate
Estimator for Regression on Avg. Degree Property (1/4)^2 (1/3)^2 (1/2)^2 (2/3)^2 1

% Bias 1361.2% 756.8% 291.4% 123.0% 0.0%
Coverage 0% 0% 0% 0% 96%

% Bias -8.7% -4.8% -2.2% -0.9% 0.0%
Coverage 39% 61% 81% 87% 95%

% Bias 0.3% 0.3% -0.2% -0.1% 0.0%
(Using Analytic Variance of Correction) Coverage 97% 96% 96% 96% 95%

% Bias -0.4% -0.1% -0.4% -0.1% 0.0%
(Using Analytic Variance of Correction) Coverage 97% 96% 96% 96% 95%

β Naïve Estimator

β Analytic Correction

β Regularized Analytic Correction

β Reg. Analytic Correction, Bootstrap BC

Estimators: The naïve estimator uses the subgraph generated by independently sampling edges at the given sampling rates. 
The analytic correction estimator, as noted, has residual bias.  The regularized analytic correction adjusts for the dispersion 
term using an analytic formula for the variance of the remaining measurement error left after performing the analytic 
correction, which is only correct in expectation.

Notes: The sampling rates have been chosen to be comparable with the edge count in the G|S sampling simulations. Coverage 
computed using bootstrapped standard errors for all estimators. R2 was set to 0.7.  There were 200 simulations done using 
the standard setup: homophilic networks with 6 groups, graphs with 250 nodes, and 50 graphs per regression.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
cdf of sampling rate ψ

sampling rate: 0 ≤ ψ ≤ 1

Figure 3. A CDF of the sampling rate in the literature. A detailed description of
the literature survey is available from the author upon request.
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Appendix A. Proofs for Section 3

A.1. Proofs for Section 3.1.1. Let (aR) be a sequence of normalizing constants.
Assumption A.1. The mismeasured regressor is X∗rR = πRXrR+vrR, limR→∞ πR = π, plimR→∞ a

−2
R ER [vrXr] = 0.

Assumption A.2.

(1) The data consists of (yrR, XrR)r≤R with E [εR|XR] = 0 and the model is yrR = α+XrRβ0 + εrR.
(2) 0 < σ2

x <∞ where σ2
x := plimR→∞ a

−2
R ER

(
Xr − X̄Rr

)2.
(3) σ2

v := plimR→∞ a
−2
R ERv2

r <∞.

Lemma A.1. Under Assumption A.1 and A.2, β̂ P−→ π−1β0
σ2
x

σ2
x+π−2σ2

v
.

Proof. The proof is classical and follows from plim β̂ = plim
(
a−2
R X∗

′
RX

∗
R

)−1
a−2
R (πRXR + vR)′XRβ0 = β0

π

σ2
x

σ2
x+π−2σ2

v
.
�

Proof of Proposition 3.1. From Lemma A.2 and A.3, Assumption A.1 holds,

E[d(G|SrR)|GrR] = (ψ + Θ(n−1))︸ ︷︷ ︸
πR

d(Gr)︸ ︷︷ ︸
XrR

and E[d(GSr )|Gr] = (1− (1− ψ)2 + Θ(n−1))︸ ︷︷ ︸
πR

d(Gr)︸ ︷︷ ︸
XrR

.

The assumptions of the proposition ensure Assumption A.2 holds. The result follows from Lemma A.1. �

In what follows, we let t(G) :=
∑

i<j<k
AijAjk denote the number of two-stars (AijAjk = 1), and p(G) :=

∑
i<j<k<l

AijAkl

denote the number of disjoint pairs in the graph.

Lemma A.2. Under uniform random sampling of m out of n nodes, with m/n→ ψ and as n→∞,

E[d(G|S)|G] = (ψ + Θ(n−1))d(G) and var(d(G|S)|G) = Θ(n−1d(G)) + Θ(n−1t(G)) + Θ(n−2p(G)).

Proof. Step 1: Let S be the set of all combinations of m vertices with σ a generic element. Then

E[d(G|S)|G] =
∑
σ∈S

d(σ)P (σ) =
(
n

m

)−1∑
σ∈S

m−1
∑
i∧j∈σ

Aij .

Each pair ij appears |{σ ∈ S : i ∧ j ∈ σ}| =
(
n−2
m−2

)
times, it follows that E[d(G|S)|G] = m−1

n−1 ·
1
n

∑
i,j
Aij = (ψ +

Θ(n−1))d(G).
Step 2: Use |{σ ∈ S : i1 ∧ ... ∧ ik ∈ σ}| =

(
n−k
m−k

)
and let ε1 :=

∑
Aij , ε2 :=

∑
{AijAkl : i ∨ j ∈ {k, l} ,¬i ∧ j ∈ {k, l} },

and ε3 :=
∑
{AijAkl : i /∈ {j, k, l} , j /∈ {k, l} , k 6= l }. Then ε1 = 2 |E|, ε2 = 8t(G), ε3 = 8p(G), and

E[d(G|S)2|G] = 1
m2

m!
(n)m

3∑
j=1

(
n− (j + 1)
m− (j + 1)

)
εj .

Some algebra yields E[d(G|S)2|G] = 1
m

(m−1)
(n−1)

2|E|
n

+ 1
m

(m−1)2
(n−1)2

8t(G)
n

+ 1
m

(m−1)3
(n−1)3

8p(G)
n

. Meanwhile, we can expand the

square of the mean and obtain coefficients with the exact same summand terms (E[d(G|S)|G])2 = 1
n2

(
m−1
n−1

)2 (∑
i,j
Aij +

∑
AijAkl

)
.

We have three sets of coefficients. Working with the coefficients on
∑

i,j
Aij , we have that

1
m

(m− 1)
(n− 1)

2 |E|
n
− 1
n

(
m− 1
n− 1

)2 2 |E|
n

= 1
n− 1

(
m− 1
m

− (m− 1)2

n (n− 1)

)
d(G) =

(
n−1(1− ψ2) + Θ(n−2)

)
d(G).

The second term is given by(
1
m

(m− 1)2
(n− 1)2

− 1
n

(
m− 1
n− 1

)2
)

8t(G)
n

= 1
n− 1

(
1
m

(m− 1) (m− 2)
(n− 2) − (m− 1)2

n (n− 1)

)
8t(G) =

(
n−1ψ (1− ψ) + Θ(n−2)

)
8t(G).

Finally, we compute the last term
(

1
m

(m−1)3
(n−1)3

− 1
n

(
m−1
n−1

)2) 8p(G)
n

= Θ(n−2)p(G), which completes the proof. �
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Lemma A.3. Under uniform random sampling of m out of n nodes, with m/n→ ψ and as n→∞,

E[d(GS)|G] = ψ(2− ψ + Θ(n−1))d(G) and var
(
d(GS)|G

)
= Θ(n−1d(G)) + Θ(n−1t(G)) + Θ(n−2p(G)).

Proof. Same as previous lemma, noting each pair ij appears |{σ ∈ S : i ∨ j ∈ σ}| = 2
(
n−1
m−1

)
−
(
n−2
m−2

)
times in S. �

Proof of Proposition 3.2. Step 1: For GS , the expected number of triangles is given by E[ρ(GS)|G] = (3ψ2(1−
ψ) + ψ3 + o(1))ρ(G) since with probability 3ψ2(1 − ψ) a transitive triangle can be counted with two nodes being
sampled and ψ3 with all three being sampled.57 Meanwhile, E[τ(GS)|G] = (ψ(1−ψ)2 + 3ψ2(1−ψ) +ψ3 + o(1))τ(G)
where the extra term comes from the fact that the exact center of the triple in question can be selected. In turn,

ρ(GS)
τ(GS) = 3ψ2(1− ψ) + ψ3 + o(1)

ψ(1− ψ)2 + 3ψ2(1− ψ) + ψ3 + o(1) ·
ρ(G)
τ(G) = ψ(3− 2ψ)

1 + ψ(1− ψ) ·
ρ(G)
τ(G) + o(1).

For G|S , since the sampling probability is ψ3 + o(1) for both the numerator and the denominator, there is no bias
asymptotically in the estimate of clustering.

Step 3: From steps 1 and 2, Assumption A.1 holds. The assumptions of the proposition ensure Assumption A.2
holds. The result follows from Lemma A.1. To check A.2, let φρ and φτ be the limiting scalings above. Notice∣∣∣∣∣φρρrφττr

−
E
[
ρ(Ḡr)|Gr

]
E
[
τ(Ḡr)|Gr

] ∣∣∣∣∣ ≤
∣∣∣∣∣φρρrφττr − E

[
ρ(Ḡr)|Gr

]
φττr

φττrE
[
τ(Ḡr)|Gr

] ∣∣∣∣∣+

∣∣∣∣∣φρρrE
[
τ(Ḡr)|Gr

]
− φρρrφττr

φττrE
[
τ(Ḡr)|Gr

] ∣∣∣∣∣ .
Then we want to show plim 1

R

∑R

r=1
ρr
τr

∣∣∣φρρr−E[ρ(Ḡr)|Gr]
E[τ(Ḡr)|Gr]

∣∣∣ = 0 and plim 1
R

∑R

r=1
φρρ

2
r

φτ τ
2
r

∣∣∣E[τ(Ḡr)|Gr]−φτ τr
E[τ(Ḡr)|Gr]

∣∣∣ = 0. It is

easy to check each summand converges to zero, e.g. aRρr
aRτr

aR|φρρr−E[ρ(Ḡr)|Gr]|
aRE[τ(Ḡr)|Gr] = O(1) · o(1)

O(1) since aRE
[
τ(Ḡr)|Gr

]
≥

o(1) + α > 0, and similarly for the second term. Notice that each summand is dominated by ᾱ
α

and a uniform
constant. The result follows. �

A.2. Proofs for Section 3.1.2.

Proof of Lemma 3.1. We show
∣∣d(GS)− (1− (1− ψ)2)d(G)

∣∣ = oP(1). The arguments for G|S and d2(·) are analo-
gous. We have already shown that E

[
d(GS)|G

]
= (1− (1−ψ)2 +Θ(n−1))d(G)in Lemma A.3. Let χij be an indicator

of i ∨ j ∈ S. Condition on the sequence of events En := {d(G) ∈ (c1a1n ± ε1a1n) ∩ d2(G) ∈ (c2a2n ± ε2a2n)}. By
assumption of growth rates a1n and a2n, we these events happen with probability approaching one,

P
(∣∣∣d(G)

a1n
− c1

∣∣∣ < ε1

)
→ 1 and P

(∣∣∣d2(G)
a2n

− c2
∣∣∣ < ε2

)
→ 1.

Notice that the probability distribution and d(G) are both implicitly indexed by n. Then using Chebyshev’s inequality
and letting ϕ = (1− (1− ψ2) + Θ(n−1)),

P

(∣∣∣∣∣ 1
n

∑
i

∑
j

Aijχij − ϕd(G)

∣∣∣∣∣ > ε

∣∣∣∣∣ En
)

= P

(∣∣∣∣∣ 1
n

∑
i

∑
j>i

Aij(χij − ϕ)

∣∣∣∣∣ > ε/2

∣∣∣∣∣ En
)
≤

4
n2ε2

var

(∑
i

∑
j>i

Zij |En

)
where Zij = Aij(χij − ϕ). If we condition on a graph G ∈ En,

var

(∑
i

∑
j>i

Zij |G

)
= |E (G)| var (Zij |G) +

∑
i

∑
j>i

∑
k 6=i,j

cov(Zij , Zjk|G),

since var(Zij |G) = ϕ(1− ϕ) and cov(χij , χi′j′ |G) = ψ3(1− ψ), with the covariance terms only entering when ij and
i′j′ share a vertex. Recall that d(G) = 2 |E(G)| /n, we have

P

(∣∣∣∣∣ 1
n

∑
i

∑
j

Aijχij − ϕd(G)

∣∣∣∣∣ > ε

∣∣∣∣∣ En, G
)
.

1
n

{
d (G)ϕ(1− ϕ) + d2 (G)ψ3 (1− ψ)

}
57We simply count, e.g.,

{
3
(
n−3
m−2

)
+
(
n−3
m−3

)}(
n
m

)−1
= m(m−1)(m−2)

n(n−1)(n−2) = ψ3 + o(1).
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for every G ∈ En where the constant is uniform. Notice that d(G) ∈ (c1a1n ± ε1a1n) implies d(G)/n→ 0 because by
assumption a1n/n→ 0. The same is true for a2n/n→ 0. This proves the result.

Next we look at
∣∣d2(GS)− k(ψ)d2(G)

∣∣ = oP(1).

E[n−1∑
i

∑
j 6=i

∑
k 6=i,j

AijAjkχijχjk|G] = n−1∑
i

∑
j 6=i

∑
k 6=i,j

AijAjkE [χijχjk|g] = k(ψ)d2(G).

This follows from E[χijχjk|G] = 1− (1− ψ)2 [2− (1− ψ)]. A similar argument to the above completes the proof. �

We relate the above to the statistical physics literature. To characterize the degree distribution we define a probability
generating function Ψ0 (x) =

∑∞
k=0 pkx

k such that Ψ0 (1) = 1, where pk := P(k). Note that the expected degree is given by
the derivative of the function evaluated at one, 〈d〉 =

∑
k∈N kpk = Ψ′0(1). Assume nodes are sampled iid with probability ψ

and let Ψ|S0 (x) be the generating function describing G|S and ΨS0 (x) be that describing GS .

Lemma A.4. ΨS
0 (x) = ψΨ0(x) + (1− ψ)Ψ0(1− ψ(1− x)).

Proof. The proof for Ψ|S0 (x) = Ψ0(1 − ψ(1 − x)) comes from Stumpf et al. (2005). We study ΨS
0 (x). Consider a

random node of degree i. With probability ψ, the node is selected and thus the degree in the subgraph is i. With
probability (1− ψ), the node is not selected and thus the degree is k ≤ i. The sampled probability is ps,k, given by

ps,k =
∞∑
i≥k

piP(k|i) =
∑
i≥k

pi

[
ψ1{i = k}+ (1− ψ)

( i
k

)
ψk(1− ψ)i−k

]
= ψpk+(1−ψ)

∑
i≥k

pi
( i
k

)
ψk(1−ψ)i−k = ψpk+(1−ψ)p∗k

where pk∗ is the sampled probability under G|S (e.g., Stumpf et al. (2005)). Thus, we have ΨS
0 (x) = ψΨ0(x) + (1−

ψ)Ψ|S0 (x) = ψΨ0(x) + (1− ψ)ΨS
0 (1− ψ(1− x)). �

Note that the implied expected degrees under this approximation are
〈
d(G|S)

〉
= ψ 〈d〉 and

〈
d(GS)

〉
= ψ(2− ψ) 〈d〉,

which matches the previous derivations in lemmas A.2 and A.3.
Lemma A.5.

〈
d2(G|S)

〉
= ψ2 〈d2〉 and

〈
d2(GS)

〉
= k(ψ) 〈d2〉.

Proof. Follows by inspection. �

Assumption A.3 (Graph Span Conditions). Let (1) E [ε|`] = 0, (2) 0 < plimR→∞ ER log−2(γd2rd
−1
r ) < ∞ for

γ ∈ (0, 1], (3) the conditions of 3.1 hold with d(G), d2(G) ∈ oP
(
nγ1/2−1 logγ2/2 n

)
for γ1 < 2 and γ2.

Proof of Proposition 3.3. Recall ζr = d2(Gr)/d(Gr) and let log ζ̄r := log ζr + log γ. To sign the bias we are
interested in

lim
R→∞

R−1
∑

cov
(
log−1(d2(Ḡr)d(Ḡr)−1), log−1 ζr

)
R−1

∑
var
(
log−1(d2(Ḡr)d(Ḡr)−1)

) .

First observe that

R−1
∑

cov
(
log−1(d2(Ḡr)d(Ḡr)−1), log ζr

)
= R−1

∑
cov
(
log−1 ζ̄r, log−1 log ζr

)
+ oP(1).

This follows from
∣∣log−1(d2(Ḡr)d(Ḡr)−1)− log−1 ζ̄r

∣∣ = oP(1) which we can see by considering the numerator of the
fraction and noting∣∣log ζ̄r − log(d2(Ḡr)d(Ḡr)−1)

∣∣ ≤ ∣∣log d2(Gr)− log d(Gr) + log γ − log d2(Ḡr) + log d(Ḡr)
∣∣ = oP(1),

by Lemma 3.1, where γ = k(ψ)/ψ or ψ depending on GS or G|S , using the fact that log (·) is Lipschitz on R≥1.

Therefore we are interested in limR→∞
R−1

∑
cov(log−1 ζ̄r,log−1 ζr)

R−1
∑

var(log−1 ζ̄r) .

If γ > ζ−1
r for every r, then cov

(
log−1 ζ̄r, log−1 ζr

)
is positive for every r by definition. In addition, for every r,

since log γ < 0,
cov
(
(log ζr + log γ)−1, log−1 ζr

)
< var

(
log−1 ζr

)
.

This shows limR→∞
R−1

∑
cov(log−1 ζ̄r,log−1 ζr)

R−1
∑

var(log−1 ζ̄r) < 1.

Next, assume that γ < ζ−1
r . Then sign

{
cov
(
log−1 ζ̄r, log−1 ζr

)}
depends on the distribution of ζr; it cannot be

signed. Therefore plimR−1∑ cov
(
log−1 ζ̄r, log−1 ζr

)
can take either sign. This is easily seen geometrically.
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Finally, that the analytical corrections are consistent follows from the above argument in the first step, noting
that we use log(γd2(Ḡr)d(Ḡr)−1) and therefore∣∣log ζr − log(γd2(Ḡr)d(Ḡr)−1)

∣∣ ≤ ∣∣log ζ̄r − log(d2(Ḡr)d(Ḡr)−1)
∣∣+ |log γ − log γ| = oP(1)

which completes the result. �

A.3. Proofs for Section 3.1.2.

Proof of Proposition 3.4. Step 1: It is clear that Tr(A(GS)k) < Tr(Ak), since we can partition

n−1
∑

i1,..,ik∈V k

Ai1i2 ...Aiki1 = n−1
∑
A

Ai1i2 ...Aiki1 +
1
n

∑
V krA

Ai1i2 ...Aiki1

with A = {i1, ..., ik : ∀t ∈ [k], it ∨ it+ε(t) ∈ S, ε(t) ∈ {−1, 1}} and
∑

V krAA(GS)i1i2 ...A(GS)iki1 = 0. Let Sk,σ be
the set of all k-sequences using elements from σ. Let ηj be the number of terms in the sum with j distinct nodes.
Then notice 1

n

∑
ηj = µk. For A(G|S), we have

E
[
µ
k(G|S)|G

]
= m

−1
∑
σ∈S

∑
i1,...,ik∈Sk,σ

Ai1i2 ...Aiki1P (σ) = m
−1P (σ)

∑
σ

k∑
j=2

(
n− j
m− j

)
ηj = m

−1
k∑
j=2

(m)j
(n)j

ηj = n
−1

k∑
j=2

(m− 1)j
(n− 1)j

ηj .

Step 2: G|S is a compression of both GS and G, so λk(G|S) ≤ λk(G), λk(GS) by the Cauchy’s interlacing theorem.
Noticing [A(GS)]ij ≤ [A(G)]ij , λmax(GS) = supα∈Sn−1 α′A(GS)α ≤ supα∈Sn−1

∑
αiαj [A(G)]ij = λmax(G). �

A.4. Proofs for Section 3.2. We use T to denote the row-stochastized adjacency matrix, Tij = Aij/di, instead of
w, where di is the degree of node i to follow the literature (e.g., Jackson, 2008b).

Proof of Proposition 3.5. Step 1: We show the argument for the case with GS . The argument for G|S is similar,
but omitted. Let

ū = M0 (ρ(T − T̄ )y + δ(T − T̄ )x+ ε
)

= M0u,

where M0 = In − ιι′/n. The instrument is Z̄ = [ι, x, T̄ x, T̄ 2x]. It suffices to show E[Z̄′M0u] 6= 0. We can write

E
[
Z̄′ū|x,G

]
= E

[(
ι′M0u, x′M0u, x′T̄ ′M0u, x′T̄ 2M0u

)′∣∣∣x,G] .
The first two components mechanically have expectation zero. By the reduced form representation in section 3.2,
we can write y as a function of x and powers of T . The third component requires considering terms of the form
x′E
[
T̄ ′M0 (T̄ − T) |x,G] δx. For generic x, this is zero if and only if E

[
T̄ ′M0 (T̄ − T) |x,G] = 0. If we show

Tr
(
E
[
T̄ ′M0T̄ |G

])
6= Tr

(
E
[
T̄ ′M0T |G

])
, the preceding equation does not hold. We pass the expectation by linearity,

use a cyclic permutation and write

E
[
Tr(T̄ ′M0T̄ )

]
= E

[
Tr(M0T̄ T̄ ′)

]
= E

[
Tr(T̄ T̄ ′)

]
− n−1E

[
Tr(T̄ ′ιι′T̄ )

]
.

Let 〈·, ·〉F be the Frobenius inner product, 〈A,B〉F = Tr (AB′) and ‖·‖F the Frobenius norm, ‖A‖2F = Tr(AA′). In
Lemmas A.6, A.7, A.8, and A.9 we compute the following four terms E

[
‖T̄‖2F

]
, E
[〈
T, T̄

〉
F

]
, n−1E

[
Tr(T̄ ′ιι′T̄ )

]
, and

n−1E
[
Tr(T̄ ′ιι′T )

]
which we then use to complete the argument. We find

Tr
(

E
[
T̄
′
M

0
T |G
])

= (1−n−1){‖T‖2F+
∑
i

ξ2(di, ψ)}−n−1
ξ4(~d, ψ), Tr

(
E
[
T̄
′
M

0
T̄ |G
])

= (1−n−1){‖T‖2F+
∑
i

ξ1(di, ψ)}−n−1
ξ3(~d, ψ).

In Lemma A.10 we show that (n− 1)
∑

i
{ξ2(di, ψ)− ξ1(di, ψ)} −

{
ξ4(~d, ψ)− ξ3(~d, ψ)

}
6= 0 for all but finitely many

ψ ∈ (0, 1), with an upper bound of 2 ·maxi di points, which completes the argument.
Step 2: We now show that the restriction of the set of observations in the second stage to i ∈ S yields E [ZGSuGS ] =

0. This follows from the fact that T̄ y = Ty for all such i ∈ S, and therefore ū = ε. The result follows from the fact
that the instrument is correlated with Ty but orthogonal to ε, despite measurement error. �

Lemma A.6. E
[∥∥T̄∥∥2

F

]
= ‖T‖2F +

∑
i
ξ1(di, ψ), where ξ1(di, ψ) := 1

1−(1−ψ)di

∑di
r=1

1
r

(
di
r

)
ψr(1−ψ)di−r+1−(1−ψ)/di.
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Proof. Observe that
∥∥T̄∥∥2

F
=
∑n

i=1

∑n

k=1 T̄
2
ik =

∑
i:d̄i>0 d̄

−1
i since T̄ 2

ik = d̄−2
i is greater than zero exactly d̄i times.

Note that E
[
d̄−1
i |i /∈ S, d̄i > 0

]
is the conditional expectation of the first negative moment of a binomial Bin(di, ψ),

namely58

E
[
d̄−1
i |i /∈ S, d̄i > 0

]
= 1

1− (1− ψ)di

di∑
r=1

1
r

(
di
r

)
ψr(1− ψ)di−r.

The result follows from the fact that

ψ
1
di

+(1−ψ) 1
1− (1− ψ)di

di∑
r=1

1
r

(
di
r

)
ψr(1−ψ)di−r = 1

di
+(1− ψ) 1

1− (1− ψ)di

di∑
r=1

1
r

(
di
r

)
ψr(1−ψ)di−r− (1− ψ)

di
= 1
di

+ξ1i.

Summing over the i nodes yields the result. �

Lemma A.7. E
[〈
T, T̄

〉
F

]
= ‖T‖2F +

∑
i
ξ2(di, ψ), where ξ2(di, ψ) := −d−1

i (1− ψ)di+1.

Proof. We can wite
〈
T, T̄

〉
F

=
∑n

i=1

∑n

k=1 TikT̄ik =
∑

i:d̄i>0 d̄
−1
i d−1

i d̄i =
∑

i:d̄i>0 d
−1
i . As P

(
d̄i > 0

)
= 1 − (1 −

ψ)di+1, where none of the di neighbors nor i is sampled, E
[〈
T, T̄

〉
F

]
=
∑

i

1−(1−ψ)di+1

di
= ‖T‖2F +

∑
i
ξ2(di, ψ). �

Lemma A.8. E
[
Tr(T̄ ′ιι′T̄ )

]
= ‖T‖2F +

∑
i
ξ1(di, ψ) + ξ3(~d, ψ), where ξ3(~d, ψ) is defined in the proof.

Proof. Notice that

Tr(T̄ ′ιι′T̄ ) =
∑
i

∣∣[ι′T̄]
i

∣∣2 =
∑
i

(∑
k

T̄ 2
ki + 2

∑
l>k

∑
k

T̄kiT̄li

)
=
∑
k:d̄k>0

d̄−1
k

+2
∑
l>k

∑
k

∑
i

T̄kiT̄li =
∥∥T̄∥∥2

F
+2

∑
l>k:d̄l>0

∑
k:d̄k>0

∣∣N̄k ∩ N̄l∣∣
d̄kd̄l

.

With probability ψ2 both k ∈ S and l ∈ S, so d̄−1
k d̄−1

l

∣∣N̄k ∩ N̄l∣∣ = d−1
k d−1

l |Nk ∩Nl| =: c(k, l). With probability
ψ(1 − ψ) we have ζ4(k, l) and with the same probability we have ζ4(l, k), where ζ4 is defined in Lemma A.9 below.
Finally, with probability (1− ψ)2

ζ3(k, l) :=
Nl−|Nk∩Nl|∑

r=1

Nk−|Nk∩Nl|∑
t=1

|Nk∩Nl|∑
s=1

(Nl − |Nk ∩Nl|
r

)(Nk − |Nk ∩Nl|
t

)(|Nk ∩Nl|
s

)ψs+t+r(1− ψ)|Nk∪Nl|−s−t−r

(t+ s)(r + s)
.

Then E
[
Tr(T̄ ′ιι′T̄ )

]
= ‖T‖2F +

∑
i
ξ1(di, ψ) + ξ3(~d, ψ) where

ξ3(~d, ψ) := 2
∑
l>k

∑
k

{
ψ2c(k, l) + ψ(1− ψ)ζ4(l, k) + ψ(1− ψ)ζ4(k, l) + (1− ψ)2ζ3(k, l)

}
.

�

Lemma A.9. E
[
Tr(T̄ ′ιι′T )

]
= ‖T‖2F +

∑
i
ξ2(di, ψ) + ξ4(~d, ψ), where ξ4(~d, ψ) is defined below.

Proof. We have

Tr(T̄ ′ιι′T ) =
∑
i

[T̄ ′ι]i
[
ι′T
]
i

=
∑
i

(∑
k

T̄kiTki + 2
∑
l>k

∑
k

T̄kiTli

)
=
〈
T, T̄

〉
F

+ 2
∑
l>k

∑
k:d̄k>0

∑
i

T̄kiTli.

The first term has already been controlled in Lemma A.7. To compute the second term, observe that with probability
ψ, k ∈ S and therefore and in this case

∑
i
T̄kiTli = c(k, l). Wwith probability 1−ψ, k /∈ S, and as such the conditional

expectation is given by

ζ4(k, l) :=
Nk−|Nk∩Nl|∑

t=1

|Nk∩Nl|∑
s=1

(
|Nk ∩Nl|

s

)(
Nk − |Nk ∩Nl|

t

)
ψs+t(1− ψ)Nk−s−t

(s+ t)dl
.

Therefore E
[
Tr(T̄ ′ιι′T )

]
= ‖T‖2F +

∑
i
ξ2(di, ψ) + ξ4(~d, ψ) where ξ4(~d, ψ) = 2

∑
l>k

∑
k
{ψc(k, l) + (1− ψ)ζ4(k, l)}.

�

58See, e.g., Stephan (1945).
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Lemma A.10. Given a graph with non-degenerate coefficients above, for only a finite number of ψ ∈ (0, 1) can
Tr
(
E
[
T̄ ′M0T̄ |G

])
6= Tr

(
E
[
T̄ ′M0T |G

])
.

Proof. Let f (ψ,G) := (n− 1)
∑

i
{ξ2(di, ψ)− ξ1(di, ψ)} −

{
ξ4(~d, ψ)− ξ3(~d, ψ)

}
. Showing Tr

(
E
[
T̄ ′M0T̄ |G

])
6=

Tr
(
E
[
T̄ ′M0T |G

])
is equivalent to showing f(ψ,G) 6= 0. By the definitions of ξk, f(ψ,G) is a rational function in ψ,

with a numerator polynomial of degree bounded by 2 ·maxi di and coefficients given by G. As we assume that the
graph does not yield coefficients so that the rational function is degenerate at zero, by the fundamental theorem of
algebra, there are at most 2 ·maxi di roots of the numerator polynomial in ψ. This bounds the number of sampling
rates ψ ∈ (0, 1) that would exactly satisfy the exclusion restriction for G. �

A.5. Proofs for Section 3.3. As before let 〈d〉 := Ed, 〈d2〉 := Ed2, and ζ := 〈d2〉/ 〈d〉.

Proof of Proposition 3.6. Step 1: Let β∗ solve ρ̄ =
∑

d

β∗σ(β∗)d
1+β∗σ(β∗)d P̄(d) where P̄(d) is a sampled degree distri-

bution. By (3.1) and that βσ(β)d
1+βσ(β)d is strictly increasing in d when β > 0, we have β∗ > β0 provided first order

stochastic dominance of P(d) over P̄(d). For GS , for every d the count of nodes with at most degree d is weakly
increasing under sampling; first order stochastic dominance follows. For G|S the argument is more delicate and relies
on this being true in the limit. We use lim supR→∞ supr≤R supd |PRr(d)− P∞r(d)| = 0 which we did not need for

the star subgraph, which implies lim supR→∞ supr≤R supd
∣∣∣P|SRr(d)− P|S∞r(d)

∣∣∣ = 0. Let F|S(x) be the CDF for P|S∞
and F (x) for P∞.

F|S(x) =
∑
d≤x

∑
i≥d

P(i)
(
i

d

)
ψd(1− ψ)i−d =

∞∑
i=1

P(i)
∑
d≤i∧x

(
i

d

)
ψd(1− ψ)i−d

=
x∑
i=1

P(i) · FBin(i,ψ)(i) +
∞∑

i=x+1

P(i) · FBin(i,ψ)(x) =
x∑
i=1

P(i) +
∞∑

i=x+1

P(i) · FBin(i,ψ)(x) ≥
∑
d≤x

P(d) = F (x),

which confirms the stochastic dominance. The usual argument for GMM consistency shows plim β̂ > β0 since in the
limit β∗ for every graph is greater than β0, proving the result.

Step 2: By Jackson and Rogers (2007b), in graph r infection can spread only if β0 > ζ−1
rR . By arguments analogous

to those in Lemma 3.1,

E[d(G|S)]/E[d2(G|S)] = ψEd
ψ2Ed2 + (1− ψ)ψEd + o(1) = ζ−1 + (1− ψ) · 1 + ζ−1

ψζ + (1− ψ)︸ ︷︷ ︸
Positive

+o(1) and

E[d(GS)]/E[d2(GS)] = ψ(2− ψ)Ed
ψEd2 + ψ(1− ψ2)Ed + o(1) = ζ−1 + (1− ψ)

{
1− ζ−1(1 + ψ)
ζ + (1− ψ2)

}
︸ ︷︷ ︸
Positive if ζ>(1+ψ).

+o(1).

The result follows since, by assumption on δrR, β0 < ζ−1(ḠrR) w.p.a.1 for every r, for Ḡ either G|S or GS . �

Appendix B. Proofs for Section 4

B.1. Useful Results. In what follows, for p× q matrix D, let ‖ · ‖ := ‖ · ‖2 be the matrix norm induced by vector
norm ‖ · ‖, with ‖D‖ := maxx∈Sq−1 ‖Dx‖.
Lemma B.1. Assume for all θr ∈ Θr, ζir(θr, u) are q×kq matrix (or vector) valued functions satisfying supu∈U supi,r ‖ζir(θr, u)‖ ≤
Bir with lim supR→∞ EnR[EBir] <∞ and Assumption 1.3 hold. Then

sup
u∈U

(nR)1/2
∥∥∥En,R [ζir(θ̄r, u)(Iq ⊗ (θ̂r − θ0r))

]∥∥∥ = oP(1)

for θ̄r on the line between θ̂r and θ0r.59

59Each component of θ̄r may be at a different intermediate point.
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Proof of Lemma B.1. This follows from

sup
u∈U

(nR)1/2En,R
[∥∥ζir(θ̄r, u)

∥∥∥∥∥Iq ⊗ (θ̂r − θ0r)
∥∥∥] ≤ (EnR[Bir])·

√
nR sup

r≤R

∥∥∥θ̂r − θ0r

∥∥∥ ≤ EnR[Bir]·OP

(
a−1
n ·
√
nR1+2/b

)
= oP(1)

as the mean of the envelopes converges and the rates obey the assumed relationship. �

Proof of Lemma 4.1. For every network an ·(θ̂r−θ0r) = −
(
∇θV̂(r)(θ̄r)

)−1
·an · V̂ (θ0r). By the Lipschitz condition

4 of the Lemma and Lemma B.2, supr
∥∥∥∇θV̂(r)(θ̄r)−∇θV̂(r)(θ0r)

∥∥∥ = oP(1), which can be seen from

sup
r

∥∥∥∇θV̂(r)(θ̄r)−∇θV̂(r)(θ0r)
∥∥∥ ≤ sup

r

‖Br‖ · sup
r

∥∥∥θ̂r − θ0r

∥∥∥ = oP(1).

By condition 5 of the Lemma supr
∥∥∥an · (θ̂r − θ0r) +

(
∇θV(r)(θ0r)

)−1 · an · V̂ (θ0r)
∥∥∥ = oP(1). By condition 3, we have

that an · supr ‖V̂(r)(θr)‖ = OP(R1/b), since E[‖ supr an · V̂(r)(θ0r)‖b]1/b ≤ R1/b supr ‖an · V̂(r)(θ0r)‖`b and therefore
an · supr

∥∥∥θ̂r − θ0r

∥∥∥ = OP(R1/b). If instead of b moments we assume all moments exist, then
√

log(R+ 1) replaces

R1/b by a standard Orlicz inequality (e.g., Van der Vaart and Wellner, 1996). �

Lemma B.2. Conditions 1 and 2 of Lemma 4.1 imply supr
∥∥∥θ̂r − θ0r

∥∥∥ = oP(1).

Proof of Lemma B.2. Arguing along the lines of Theorem 5 of Supplementary Appendix I of Hahn and Newey
(2004), among others, pick η > 0, define ε := infr≤R

[
Q(r)(θ0r)− supθr :‖θr−θ0r‖>η Q(r)(θr)

]
, and condition on the

event
{

supr≤R supθ
∣∣∣Q̂(r)(θ)−Q(r)(θ)

∣∣∣ < ε
3

}
which has probability 1 − o(a−vn ) by Condition 2. If we look for θ̂r

outside an η-radius ball of the true parameter, we have supθr :‖θr−θ0r‖>η Q̂(r)(θr) < supθr :‖θr−θ0r‖>η Q(r)(θr) + ε
3 <

Q(r)(θ0r)− 2ε
3 < Q̂(r)(θ0r)− ε

3 , contradicting Q̂(r)(θ̂r) ≥ Q̂(r)(θ0r), implying
∥∥∥θ̂r − θ0r

∥∥∥ < η for all networks. �

The next lemma is useful throghout and we make explicit the dependence on R in PR(·) and ER here.
Lemma B.3 (Extended Vitali Convergence). Let {ZR : R ∈ N} be L1

R-integrable functions on a sequence of measure
spaces indexed by R. (1) ZR

P−→ 0 and (2) ZR is uniformly integrable, supR≥1 ER [|ZR| · 1 {|ZR| > c}]→ 0 as c→∞,
imply ER [ZR]→ 0.

Proof. The argument is analogous to the proofs of Theorem 10.3.5 and 10.3.6 in Dudley (2002). Let ZR ≥ 0
w.l.o.g. First, observe (2) implies that for every ε > 0 there exists δ > 0 such that for each AR with PR(AR) < δ,
ER [ZR · 1 {AR}] < ε for all R. To see this, by uniform integrability, given ε > 0 and pick δ < ε/(2K) where K is
large enough such that ER [ZR · 1 {ZR > K}] < ε/2. Then

ER [ZR · 1 {AR}] ≤ ER [ZR · 1 {AR} · 1 {ZR ≤ K}] + ER [ZR · 1 {AR} · 1 {ZR > K}] < ε

2 + ε

2 = ε

as PR(AR) < δ. Second, given ε > 0, let AR := {ZR > ε}. By (1), PR(AR) → 0 as R → ∞. As such, for R large
enough PR(AR) < ε/(2K). Therefore ER [ZR] = ER [ZR · 1 {ZR ≤ ε}] + ER [ZR · 1 {AR}] ≤ 2ε. �

B.2. Proof of Theorem 4.1. The argument is straightforward and follows by expanding around θ̂ uniformly and
then checking that conditional expectations preserve asymptotic normality.

Proof of Theorem 4.1.1. Consistency is clear so we directly check normality. Let uir = εir+(wir(Gr)−Eir(xr; θ̂r))β0

and HR(θ̂) := (nR)−1E(x; θ̂)′E(x; θ̂). As usual
√
nR
(
β̂ − β0

)
= HR(θ̂)−1 · (nR)−1/2E(x; θ̂)′u.Step 1: To show

HR(θ̂)−HR,0(θ0) = oP(1), where HR,0(θ0) := EnR [E[Eir(xr; θ0r)Eir(xr; θ0r)′]]. By a term-by-term expansion,

HR(θ̂) = HR(θ0) + EnR
[
Ψ̇ir(θ̄r)

(
Ip ⊗ (θ̂r − θ0r)

)]
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where Ψ̇ir(θ̄r) = ∂
∂θ′

{
Eir(xr; θ̄r)Eir(xr; θ̄r)′

}
is a p× pk matrix of derivatives w.r.t. θrk, which exists by Assumption

1. By Lemma B.5 the second term oP(1) since
∥∥Ψ̇ir(θ̄r)

∥∥ . ∥∥ ∂
∂θ′ Eir(xr; θ̄r)

∥∥∥∥Eir(xr; θ̄r)∥∥ . Li,r(xr)2, which by
Assumption 2.2 follows from∥∥Eir(xr; θ̄r)∥∥ ≤ Li,r(xr) and

∥∥∥ ∂

∂θ′
Eir(xr; θ̄r)

∥∥∥ ≤√E
[
‖wir‖2 |xr; θ̄r

]
·
√

E
[∥∥Iwir|xr (θ̄r)

∥∥ |xr; θ̄r] ≤ Li,r(xr).
That HR(θ0)−HR,0(θ0) = oP(1) follows from Vitali convergence.

Step 2: We show (nR)−1/2E(x; θ̂)′u N (0, V ). Let fir(θr;β) := Eir(xr; θr)(wir(Gr)− Eir(xr; θr))′β. Then

E(x; θ̂)′u/
√
nR = f(θ0;β0)/

√
nR+ E(x; θ0)′ε/

√
nR+

√
nREnR

[
Φ̇ir(θ̄r)

(
Ip ⊗ (θ̂r − θ0r)

)]
where Φ̇ir(θ̄r) = ∂

∂θr

{
fir(θ̄r;β0) + Eir(xr; θ̄r)εir

}
. Clearly E [fir(θ0r, β0)] = 0 and E [Eir(xr; θ0r)εir] = 0.60 Let

gir(θ0r;β0) := fir(θ0r;β0)+Eir(xr; θ0r)εir. That
√
nREn,Rgir(θ0r, β0) N (0, V ), where V = limERvar

(√
nEngir(θ0r, β0)

)
,

follows from Lemma B.5 which can be applied by Assumption 2.3.
Finally, the Ψ̇ir(θ̄r) term is controlled by Lemma B.1 using

∥∥ ∂
∂θ′ fir(θ̄r;β0)

∥∥ .P Li,r(xr)2, which follows from∥∥∥ ∂

∂θ′
fir(θ̄r;β0)

∥∥∥ ≤ sup
β∈B
‖β‖·

∥∥∥ ∂

∂θ′
Eir(xr; θ̄r)

∥∥∥∥∥∥wir(Gr)− ∂

∂θ′
Eir(xr; θ̄r)

∥∥∥ . Li,r(xr) ‖wir(Gr)‖+Li,r(xr)2 .P Li,r(xr)2

as ‖wir(Gr)‖ .P E [‖wir(Gr)‖] ≤ E [Li,r(xr)]. �

Next, we turn to GMM. The argument is conceptually similar and depends on uniform expansions. The main
difference is control of score functions. Let us define the conditional score61 with respect to β and the conditional
score with respect to θr as Smir|xr (β; θr) := ∂

∂β′ log f(mir|xr;β, θr) and Smir|xr (θr;β) = ∂
∂θ′r

log f(mir|xr;β, θr). The
corresponding information matrices are

Imir|xr (β; θr) = E
[
Smir|xr (β; θr)Smir|xr (β; θr)′|xr;β, θr

]
and Imir|xr (θr;β) = E

[
Smir|xr (θr;β)Smir|xr (θr;β)′|xr;β, θr

]
.

Notice that
∥∥Imir|xr (β; θr)

∥∥ ≤ ∥∥Imir|xr (β, θr)
∥∥ and

∥∥Imir|xr (θr;β)
∥∥ ≤ ∥∥Imir|xr (β, θr)

∥∥, since each is a projection of
the larger information matrix, by Cauchy’s interlacing theorem. We also use a shorthand Eir(β, θr) for Eir(xr;β, θr).
Lemma B.4. Under Assumptions 1 and 3, β̂gmm

P−→ β0.

Proof. In four steps we check conditions 1-4 of Andrews (1994), Theorem A-1. Step 1: The first part is clear by
Assumption 3.2, since E [m(yir, wir;β)|xr; θr, β] = Eir(β, θr). That Eir(β, θr) satisfies a uniform law of large numbers,
sup(β,θ)∈B×

∏
r∈N

Θr
‖EnR {Eir(β, θr)− EEir(β, θr)}‖ = oP(1), follows from a pointwise convergence, which is clear,

and stochastic equicontinuity. Stochastic equicontinuity follows from a Lipschitz condition. Define the following.

ε1i,r(β̄, β, θ′r) := E
[
∂

∂β′
m(yir, wir(Gr); β̄)|zr, Aor, yr; θr, β

]
, ε2i,r(β′, β̃, θ′r) := E

[
m(yir, wir(Gr);β′) · Smir|xr (β̃; θ′r)′|zr, Aor, yr; θr, β̃

]
,

and ε3i,r(β′, θ̄r, θr) := E
[
m(yir, wir(Gr);β′) · Smir|xr (θ̄r;β′)′|zr, Aor, yr; θr, β′

]
.

By a Taylor expansion it follows that ‖E [m(yir, wir(Gr);β′)|zr, Aor, yr; θ′r, β′]− E [m(yir, wir(Gr);β)|zr, Aor, yr; θr, β]‖
is bounded by

∥∥ε1i,r(β̄, β, θ′r) + ε2i,r(β′, β̃, θ′r)
∥∥ ‖β′ − β‖+

∥∥ε3i,r(β̄, θ′r)∥∥ ‖θ′r − θr‖. Then we have by Assumption 3.3,∥∥ε1i,r(β̄, β, θ′r)
∥∥ ≤ E

[∥∥∥ ∂

∂β′
m(yir, wir(Gr); β̄)

∥∥∥ |xr; θ′r, β
]
≤ Li,r(xr),∥∥ε2i,r(β′, β̃, θ′r)

∥∥ ≤
√

E
[
‖mir(β′)‖2 |xr; θ′r, β̃

]
·
√∥∥Imir|xr (β̃; θ′r)

∥∥ ≤ Li,r(xr), and∥∥ε3i,r(β′, θ̄r, θr)
∥∥ ≤

√
E
[
‖mir(β′)‖2 |xr; θ′r, β̃

]
·
√∥∥Imir|xr (θ̄r; β′)

∥∥ ≤ Li,r(xr).

60The former by iterated expectations and the latter by assumption on ε.
61The right-hand side of the expression abuses notation. Given that graphs occupy a discrete space, with continuously distributed
disturbances in the model we may formally have to decompose the measure into its absolutely continuous part and its pure point part
(e.g., Lebesgue decomposition theorem). We rule out the singular part by assumption.
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As such, with dB×
∏

r∈N
Θr

((β, θ), (β′, θ′)) := ‖β − β′‖ ∨ supr∈N ‖θr − θ′r‖,∥∥En,R {Eir(β, θr)− Eir(β′, θ′r)}∥∥ ≤ En,RLi,r · sup
r≤R

(∥∥β′ − β∥∥+
∥∥θ′r − θr∥∥) ≤ En,RLi,r · dB×

∏
r∈N

Θr
((β, θ), (β′, θ′))

Since supR≥1 En,R [ELi,r] <∞, by Andrews (1992) Lemma 2 it follows that stochastic equicontinuity holds and that
En,REEir(β, θr) is uniformly continuous in (β, θ) ∈ B ×

∏
r∈N Θr.

Step 2: The second and third part of the second condition are clear: by Assumption 3.1 Ŵ−W = oP(1) and by As-
sumption 1

(
θ̂1, ..., θ̂R

)
∈
∏R

r=1 Θr. We need only show supβ∈B
∥∥∥limR→∞ En,REEir(β, θ̂r)− limR→∞ En,REEir(β, θ0r)

∥∥∥ =
oP(1) for θ0 ∈

∏
r∈N Θr. This follows from a Taylor expansion and the fact that

sup
β∈B

lim
R→∞

En,R
∥∥∥E ∂

∂θ′
Eir(β, θ̄r) ·

(
I ⊗ (θ̂r − θ0r)

)∥∥∥ ≤ lim sup
R→∞

En,RELi,r · sup
r

∥∥∥θ̂r − θ0r

∥∥∥ = oP(1)

where supr
∥∥θ̂r − θ0r

∥∥ = oP(1) by Assumption 1.3 and lim supR→∞ ER,RELi,r <∞ by 3.3. This, in turn, results from
the fact that

∥∥E ∂
∂θ′ Eir(β, θ̄r)

∥∥ ≤ ELi,r. To see this, note
∥∥E ∂

∂θ′ Eir(β, θ̄r)
∥∥ ≤ E

[∥∥E
[
mir(β)Smir|xr (β; θ̄r)|xr;β, θ̄r

]∥∥].
By Assumption 3.3,

∥∥E ∂
∂θ′ Eir(β, θ̄r)

∥∥ ≤ E
[√(

E
[
‖Mi,r(Xir)‖2 |xr;β, θ̄r

])
·
√∥∥Imir|xr (β; θ̄r)

∥∥] ≤ ELi,r(xr).
Step 3: This follows from E ‖Eir(β, θr)‖ ≤ ELi,r and lim supn→∞ En,RELi,r <∞.
Step 4: By iterated expectations gn(β) = En,RE [E [m(Xir;β)|xr; θ0r, β0]] = En,REηir(β, θ0r, β0) where ηir(β, θr, β) :=

Eir(β, θr). By the identification condition, Assumption 3.1

W lim
R→∞

En,REηir(β, θ0r, β0) 6= 0 and W lim
R→∞

En,REEir(β, θ0r) 6= 0

for β 6= β0, but W limR→∞ En,REEir(β0, θ0r) = W limR→∞ En,REηir(β0, θ0r, β0) = 0. By positive semi-definiteness
of W , letting K′K = W , observe that 0 6= Wf(β) = K′Kf(β) implies Kf(β) 6= 0. It follows that Q(β, θ0,W ) >
Q(β0, θ0,W ) for any β 6= β0. �

Proof of Theorem 4.1.2. Step 1: The estimator satisfies for γ̂n,R(β̂; θ̂) := En,R
[
Eir(β̂, θ̂r)

]
,[

∂

∂β′
γ̂n,R(β̂; θ̂)

]′
Ŵ
√
nRγ̂n,R(β̂; θ̂) = oP(1).

A term-by-term expansion yields
√
nRγ̂n,R(β̂; θ̂) =

√
nRγ̂n,R(β̂; θR0 )+

√
nREn,R

[
Ψ̇ir(θ̄r; β̂)

(
Iq ⊗ (θ̂r − θ0r)

)]
, where

Ψ̇ir(θ̄r; β̂) = ε3i,r(β̂, θ̄r, θ̄r) has been controlled in the preceding lemma. Similarly ∂
∂β′ γ̂n,R(β̂; θ̂) = ∂

∂β′ γ̂n,R(β̂; θR0 ) +

En,R
[
Φ̇ir(θ̄r; β̂)

(
Iq ⊗ (θ̂r − θ0r)

)]
,

Φ̇ir(θ̄r; β̂) = E
[
∂

∂β′
m(yir, wir; β̂)Smir|xr (θ̄r; β̂)|Aor, yr, zr; θ̄r, β̂

]
+ E
[
m(yir, wir; β̂)Smir|xr (β̂; θ̄r)Smir|xr (θ̄r; β̂)|Aor, yr, zr; θ̄r, β̂

]
.

We can bound the first term by (E[‖ ∂
∂β′m(yir, wir; β̂)‖2|xr; θ̄r, β̂] ·E[‖Smir|xr (θ̄r; β̂)‖2|xr; θ̄r, β̂])1/2 and the second by√

E
[∥∥∥ ∂

∂β′
m(yir, wir; β̂)

∥∥∥2
|xr; θ̄r, β̂

]√√
E
[∥∥Smir|xr (β̂; θ̄r)

∥∥4
|xr; θ̄r, β̂

]
·

√
E
[∥∥Smir|xr (θ̄r; β̂)

∥∥4
|xr; θ̄r, β̂

]
and therfore

∥∥∥Φ̇ir(θ̄r; β̂)
∥∥∥ ≤ 2Li,r(xr). By Lemma B.1,

[
∂
∂β′ γ̂n,R(β̂; θR0 )

]′
Ŵ
√
nRγ̂n,R(β̂; θR0 ) = oP(1).

Step 2: A term-by-term expansion for the jth term yields
√
nRγ̂jn,R(β̂; θR0 ) =

√
nRγ̂jn,R(β0; θR0 )+

√
nR ∂

∂β′ γ̂n,R(β̃; θR0 )
(
β̂ − β0

)
,

so it remains to be seen that
∥∥ ∂
∂β′ γ̂n,R(β̃; θR0 )−M

∥∥ = oP(1), where M = limn→∞ EnR
[
E ∂
∂β′ Eir(xr;β0, θ0r)

]
, and

that
√
nRγ̂n,R(β0; θR0 ) N (0,Ω), where Ω := limn→∞ ER

[
var
(√

nEnEir(xr;β0, θ0r)
)]
. For the derivative,∥∥∥ ∂

∂β′
γ̂n,R(β̃; θR0 )−M

∥∥∥ ≤
∥∥∥ ∂

∂β′
γ̂n,R(β̃; θR0 )− EnRE

∂

∂β′
Eir(xr; β̃, θ0r)

∥∥∥+
∥∥∥EnRE

∂

∂β′
Eir(xr; β̃, θ0r)− lim

n→∞
EnRE

∂

∂β′
Eir(xr; β̃, θ0r)

∥∥∥
+
∥∥∥ lim
n→∞

EnRE
∂

∂β′
Eir(xr; β̃, θ0r)−M

∥∥∥ .
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The first term is oP(1) by a uniform law of large numbers for the derivative which exists by Assumption 3.4 and
the second term is oP(1) by as the limit exists uniformly over B by Assumption 3.2. The final term is oP(1) as
β̃ − β0 = oP(1) by continuity.

To show
√
nRγ̂n,R(β0; θR0 )  N (0,Ω), by Assumption 3.5 we may apply Lemma B.5 with m(Xir;β0) = Yir,

Eir(xr;β0, θ0r) = Zir, and xr = Xr in the notation of the lemma. It is clear that Ω := limn→∞ ER
[
var
(√

nEnEir(xr;β0, θ0r)
)]
,

exists under these conditions since for every r, λmax
(
var
(√

nEnm(Xir;β0)
))
≥ λmax

(
var
(√

nEnEir(xr;β0, θ0r)
))
.
�

Lemma B.5. Let Yir,R be a triangular array of mean-zero random variables, Zir,R := E [Yir,R|Xr], and define

λr :=
√
nEn [Yir] and ζr :=

√
nEn [Zir] .

If (1) supR supr var (λr) < C1 and (2) infR infr var (ζr) > C0, then
√
nREn,R [Zi,r] N (0, VZ).

Proof. Identical to the proof of step 1 in “Proof that Lemma 11 of Chernozhukov et al. (2009) applies”.
�

Finally, we turn to GMM with an index, which clearly nests GMM with U = {u}. The argument is nearly identical
to the above, so we only focus on the difference below. The key distinction is that we need to check conditions such
that a functional central limit theorem applies. This setup allows the moments to be not differentiable everywhere, per
se, in the parameter, though their expectations indeed will be smooth. Therefore, we need to control the complexity
of the function class. The usual argument in the iid case would make use of P -Donskerity of function classes, though
in our inid case we use Theorem 2.11.1 of Van der Vaart and Wellner (1996), which is analogous. Let us put

√
n-sums

ζRr(β, u) =
√
nEnEir(β, u)/

√
n and λRr(β, u) =

√
nEnmir(β, u)/

√
n

where Eir(β, u) denotes Eir(β, u, θ0r). Our estimator is a root of Φ̂(·, u, θ̂), Φ̂(β̂(u), u, θ̂) := En,R[Eir(β̂(u), u, θ̂r)] = 0.
Define Ψ(β, u) := limR→∞ ERE[ζr(β, u)/

√
n] = limR→∞ EnRE[Eir(β, u)] and Ψ̂(β, u) = En,R[Eir(β, u)]. By definition

Ψ(β0(u), u) = 0. Under an identical argument presented above, using Lemma B.1, we can uniformly write

Φ̂(β̂(u), u, θ̂) = Ψ̂(β̂(u), u) + oP(1).

Therefore, it sufficies to consider the behavior of the root of Ψ̂(·, u), which will converge in probability to the root of
Φ̂(·, u). Our proof focuses on the differences in the indexed case. The empirical estimator satisfies

Ψ̂(β̂(u), u) = En,R[Eir(β̂(u), u)] = oP(1).

If we can apply Lemma 11 of Chernozhukov et al. (2009), we are done. It will be useful to define a function class

FR :=
{
ζRr(β, u) =

√
nEn[Eir(xr;β, u)] : (β, u) ∈ B × U

}
.

Proof that Lemma 11 of Chernozhukov et al. (2009) applies. We need to check the three conditions of the
lemma. Conditions 1 and 2 are straightforward to verify and have been mostly assumed in Assumption 4. To see that
condition 3,

√
nR
(

Ψ̂−Ψ
)
 Z in `∞(B ×U), holds we apply Theorem 2.11.1 of Van der Vaart and Wellner (1996)

which allows a functional central limit theorem for the inid case with triangular arrays. This proceeds in three steps.
Step 1: To show ERE

(
‖ζRr(β, u)‖2FR · 1

{
‖ζRr(β, u)‖FR > η

√
R
})
→ 0 for every η > 0. Define

ZR := ER ‖ζRr(β, u)‖2FR · 1
{
‖ζRr(β, u)‖FR > η

√
R
}

and show that ZR
P−→ 0. A summand is non-zero only if ‖ζRr(β, u)‖FR > η

√
R. By Chebyshev’s inequality

max
r≤R

P
(
‖ζRr(β, u)‖2+δ

FR
> η2+δR1+δ/2) ≤ maxr≤R E ‖ζRr(β, u)‖2+δ

FR
η2+δR1+δ/2 .
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Observe ‖ζrR‖FR ≤
√
nEnLi,r =: Lr,R. Under Assumption 4.3, as supR≥1 maxr≤R E

(√
nEnLi,r(xr)

)2+δ = O(1),

sup
r≤R

P
(
‖ζRr‖FR > η

√
R
)
≤

supr≤R E |Lr,R|2+δ

η2+δR1+δ/2 = O
(
R−1−δ/2) .

All summands are zero with probability at least
(
1− cR−1−δ/2)R → 1, so ZR

P−→ 0. Next, ZR ≤ ERL2
r,R =: L̄2

R.
Since the envelope L̄2

R is uniformly integrable, by Vitali convergence the result follows.
Step 2: Show supρ((β,u),(β′,u′))<δR ERE [ζRr(β, u)− ζRr(β′, u′)]2 → 0 for every δR ↓ 0. Notice ‖(β, u)− (β′, u′)‖ →

0 implies ζRr(β, u) a.s.−→ ζRr(β′, u′), from Assumption 4.1. Next, apply the extended Vitali convergence theorem since
lim(nR)−1∑

r
E(2

∑
i
Li,r(xr))2 <∞, meaning that ERE [ζRr(β, u)− ζRr(β′, u′)]2 → 0 as δR → 0.

Step 3: To show that
´ δR

0

√
logN(ε,FR, dn)dε P−→ 0 for every δR ↓ 0. First, FR consists of measurable functions

by 1 so we have ˆ δR

0

√
logN (ε,FR, dn)dε ≤

ˆ ∞
0

sup
Q∈Q

√
logN

(
ε ‖FR‖Q,2 ,FR, L2(Q)

)
dε

which follows from62

ˆ δR
0

√
logN (ε,FR, dn)dε ≤

ˆ δR/‖FR‖µR
0

√
logN

(
ε ‖FR‖Q,2 ,FR, L2(Q)

)
dε ‖FR‖µR ≤

ˆ ∞
0

sup
Q∈Q

√
logN

(
ε ‖FR‖Q,2 ,FR, L2(Q)

)
dε

by the standard argument (Van der Vaart and Wellner, 1996, Proof of Lemma 2.11.6). The strategy is to show show
that the uniform entropy integral of FR can be controlled by the uniform entropy integral of F∗R, the unconditional
moment functions, added with the uniform entropy integral of supβ′,u′ HR|β′,u′ , functions which characterize how the
probability distribution changes as (β, u) change.

To control F∗R, we begin by noting∥∥ζRr(β, u)− ζRr(β′, u′)
∥∥
Q,2

=
√
n
∥∥EnE [m(Xir; β, u)|xr; β, u]− EnE

[
m(Xir; β′, u′)|xr; β′, u′

]∥∥
Q,2

≤(i)
√
n
∥∥E
[
En
{
m(Xir; β, u)−m(Xir; β′, u′)

}
|xr; β, u

]∥∥
Q,2

+
√
n
∥∥EnE

[
m(Xir; β′, u′)|x; β, u

]
− EnE

[
m(Xir; β′, u′)|x; β′, u′

]∥∥
Q,2

by the triangle inequality. Applying Jensen’s inequality to the first term,∥∥E
[
λr(β, u)− λr(β′, u′)|xr;β, u

]∥∥
Q,2
≤ E

[∥∥λr(β, u)− λr(β′, u′)
∥∥
Q,2
|xr;β, u

]
≤
∥∥λr(β, u)− λr(β′, u′)

∥∥
Q,2

since Q is a measure over X. By Assumption 4.4,
´∞

0 supQ∈Q
√

logN
(
ε ‖F ∗R‖Q,2 ,F

∗
R, L2(Q)

)
dε < ∞. Next, we

control the second term in the triangle inequality (i) above. These are functions of the form h(xr;β, u), mem-
bers of HR|β′,u′ and it has envelope H̄(xr) =

√
nEnLir(xr) by Assumption 4.3. By Assumption 4.4, we have´∞

0 supQ∈Q
√

logN(ε
∥∥H̄∥∥

Q,2
,HR, L2(Q))dε < ∞. Combining the above steps, the result follows as we can bound

´∞
0 supQ∈Q

√
logN

(
ε ‖FR‖Q,2 ,FR, L2(Q)

)
dε by

ˆ ∞
0

sup
Q∈Q

√
logN

(
ε
∥∥F∗

R

∥∥
Q,2

,F∗
R
, L2(Q)

)
dε+ sup

(β′,u′)∈B×U

ˆ ∞
0

sup
Q∈Q

√
logN(ε

∥∥H̄∥∥
Q,2

,HR|β′,u′ , L2(Q))dε <∞.

�

B.3. Example 1: Conditional Edge Independent Models.

Proof of Proposition 4.1. We check the conditions of Lemma 4.1. The first condition is clear by definition and
Assumption 5. Condition 2 is shown in Lemma B.7. We show directly supr

∣∣|Ξ|−1/2 EΞ[v(Xrs; θ0r)]
∣∣ = OP(R1/b) in

Lemma B.6, which is what condition (2) is used for in the proof of Lemma 4.1. The Lipschitz condition follows from
a secondary expansion and the assumption of the existence of an envelope function. That is,

|Ξ|−1
∑
s∈Ξ

{∇θv(Xrs; θ∗r )−∇θv(Xrs; θ0r)} = |Ξ|−1
∑
s∈Ξ

Frs (I ⊗ (θ∗r − θ0r))

62We have ‖FR‖µR > δR if the covering number is 1/ε, so the integrand is defined as zero for ε > 1.
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where Frs is a conformable matrix of derivatives evaluated at an intermediate value and Frs ≤ B, which can be done
by Assumption 5.2. The Hessian condition hold by the envelope condition and Chebyshev’s inequality. �

Lemma B.6. Under Assumption 5.3, supr
∣∣∣ 1√
|Ξ|

∑
s∈Ξ v(Xrs; θ0r)

∣∣∣ = OP(R1/b).

Proof. Let T := |Ξ| and define yrT :=
∑

v(Xrs; θ0r)/
√
T . We assume yrT has bth moments, supr≤R E ‖yrT ‖b <∞,

which will be shown below. That
(
E ‖supr yrT ‖

b
)1/b ≤ R1/b supr

(
E ‖yrT ‖b

)1/b implies supr yrT = OP(R1/b). Notice

E
[
‖yrT ‖b

]
= E

[∥∥∑
s
v(Xrs; θ0r)

∥∥b]T−b/2. We need only control E
[∥∥∑

s
v(Xrs, θ0r)

∥∥b] ≤ E
[(∑

s
B(Xrs)

)b].
Observe E

[(∑
s∈Ξ

B(Xrs)
)b]

= E
[∑

B(Xrs)b
]

+ E
[∑∏

j
B(Xrsj )γj

]
where

∑
γj = b. If 2b−1 moments exist for

the envelopes, then this can be majorized into terms of
∏

E[B(Xrsj )δj ] where δj ≤ 2b−1 by repeated application of
Holder inequalities. �

Lemma B.7. Under Assumptions 5 and 6, P
(

supr supθ∈Θ

∣∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣∣ ≥ η) = o

(
|Ξ|−1).

Proof. The argument is along the lines of Lemma 2 of Hall and Horowitz (1996) and Lemma 3 of Supplementary
Appendix I of Hahn and Newey (2004). We use Lemma B.8. First we use a union bound over the R graphs and
focus on

∑R

r=1 P
(

supθ∈Θ

∣∣∣Q̂(r) (θ) (θ)−Q(r) (θ)
∣∣∣ ≥ η). Next, considering a given graph, we choose ε > 0 such that

2ε · supr E[B(Xrs)] < η
3 . Divide Θ into subsets Θ1, ...,ΘM(ε) such that ‖θ − θ′‖ ≤ ε when θ and θ′ are in the same

subset. A second union bound gives us
∑M(ε)

j=1 P
(

supθ∈Θj

∣∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣∣ ≥ η).

Let θj denote a point in Θj . Noticing that,∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣ ≤

∣∣Q̂(r)(θj)−Q(r)(θj)
∣∣+
∣∣Q̂(r)(θ)− Q̂(r)(θj)−Q(r)(θ) +Q(r)(θj)

∣∣
≤

∣∣Q̂(r)(θj)−Q(r)(θj)
∣∣+

ε

|Ξ|

∣∣∑B(Xrs)− E[B(Xrs)]
∣∣+ 2εE[B(Xrs)], and

P

(
sup
θ∈Θj

∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣ ≥ η) ≤ P

(∣∣Q̂(r)(θj)−Q(r)(θj)
∣∣ ≥ η

3

)
+ P
(
|Ξ|−1

∣∣∑
s∈Ξ

(B(Xsr)− EB(Xsr))
∣∣ ≥ η

3ε

)
= o(|Ξ|−k)

by Lemma B.8, the result holds as R = o(|Ξ|k). �

Lemma B.8. For each r, suppose {Xsr : s ∈ Ξ} be covariates satisfying Assumption 6. Let R = O
(
|Ξ|h

)
, and let

h, k, p, γ, with k, p, γ defined below, satisfy h+ 1 ≤ k < p/2− γpd. Then ∀η > 0,

max
r

P
(∣∣∣|Ξ|−1∑

s∈Ξ
Xsr

∣∣∣ > η
)

= o
(
|Ξ|−k

)
and P

(
max
r

∣∣∣|Ξ|−1∑
s∈Ξ

Xsr

∣∣∣ > η
)

= o
(
|Ξ|−1) .

Proof. The argument follows Lemma 1 of Hall and Horowitz (1996) and Lemma 2 of Supplementary Appendix I of
Hahn and Newey (2004).

Step 1: By Chebyshev’s inequality

P
(∣∣∣|Ξ|−1∑

s∈Ξ
Xsr

∣∣∣ > η
)
≤
C · E ‖X1r‖p+δ

(
|Ξ|p/2 mdp + |Ξ|p αr2,∞ (m)

δ
p+δ

)
ηp |Ξ|p ,

for 1 ≤ m ≤ C(p) |Ξ| where the second inequality follows from Lemma B.9, which we can write under Assumption
6.63 We can bound the right hand side by η−pC · E ‖X1r‖p+δmdp |Ξ|−p/2 + η−pC · E ‖X1r‖p+δ αr2,∞ (m)

δ
p+δ and for

m = |Ξ|γ for some γ with 0 < γ ≤ 1, using the bound supr αr∞,1 (m) ≤ Cam on the mixing coefficient,

max
r
|Ξ|k P

(∣∣∣|Ξ|−1∑
s∈Ξ

Xsr

∣∣∣ > η
)
≤ η−pC ·max

r
E ‖X1r‖p+δ

(
|Ξ|γpd+k−p/2 + |Ξ|k a

δ
p+δ |Ξ|

γ
)
.

63We write the proof for supr α
r
∞,2 (m) ≤ Cam, though the extension to supr α

r
∞,2 (m) = o

(
m−d

)
is straightforward and will merely

result in more stringent requirements on r, k, γ, d. For Assumption 6(ii) we have

max
r
|Λ|k P

(∣∣∣ 1
|Ξ|
∑

s∈Ξ
Xsr

∣∣∣ > η

)
= O

(
|Ξ|dγp+k−p/2 + |Ξ|k−γd−γε

)
for αr1,∞ (m) = O

(
m−d−ε

)
= o
(
m−d

)
. Then the requirement is k < (p/2 + γpd) ∨ (d+ ε).
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We have shown that for Assumption 6, maxr |Ξ|k P
(∣∣∣ 1
|Ξ|
∑

s∈Ξ
Xsr

∣∣∣ > η
)

= O
(
|Ξ|γpd+k−p/2

)
= o (1) if γpd+k < p/2

which is the first result.
Step 2: By a union bound |Ξ|P

(
maxr

∣∣∣ 1
|Ξ|
∑

s∈Ξ Xsr

∣∣∣ > η
)
≤ |Ξ|R · maxr P

(∣∣∣ 1
|Ξ|
∑

s∈Ξ Xsr

∣∣∣ > η
)
. If R =

O
(
|Ξ|h

)
, it follows that |Ξ|P

(
maxr

∣∣∣ 1
|Ξ|
∑

s∈Ξ
Xsr

∣∣∣ > η
)
≤ O

(
|Ξ|h+1) o (|Ξ|−k). Since h+1 ≤ k, O

(
|Ξ|h+1) o (|Ξ|−k) =

o (1), P
(

maxr
∣∣∣ 1
|Ξ|
∑

s∈Ξ
Xsr

∣∣∣ > η
)

= o
(
|Ξ|−1) which proves the result. �

Lemma B.9. Let
{
Xi : ti ∈ Λ ⊂ Zd

}
be a mean zero stationary random field satisfying Assumption 6 and {Xij :

ij ∈ Ξ} covariates. Then for any positive integer r and for 1 ≤ m < C (k) · |Ξ|, we have E
[(∑

ij∈Ξ
Xij

)k]
≤

C (r) E ‖X1‖k+δ
(
|Ξ|k/2 mkd + |Ξ|k α2,∞(m)

δ
k+δ

)
.

Proof. The proof builds on Lahiri (1992), with two differences: the first is an extension to mixing random fields,64

and the second is that we are interested over moments of random variables on Ξ as opposed to Λ. The Lahiri (1992)
style of argument proceeds in four parts; we include the entire argument for completeness though the key differences
are in the last two steps. First, we can control the first k/2 terms via a standard result. This will enable us to bound
this part of the sum by a |Ξ|k/2 rate. Second, for the remaining terms, we will divide the space into a set of all pieces
with a well separated point τ on the lattice whose random variable Xτ has power 1 and is at least of distance m from
any other point in the collection, and into its complement. Third, we will control this set using the mixing coefficient
and fourth, by a counting argument we create an upper bound on the number of points in the complement. It is
useful to note that for ij ∈ Ξ, for 1 ∈ Λ, E ‖Xij‖k . E ‖X1‖k by the assumption and stationarity. Moreover, we
defined the pseudo-metric dΞ(ij, kl) := dΛ(i, k) ∧ dΛ(i, l) ∧ dΛ(j, k) ∧ dΛ(j, l) where dΛ(x, y) := ‖x− y‖1.

Step 1: For k = 2h, we can expand the term into a polynomial,(∑
s∈Ξ

Xs

)k
=

∑k

j=1

∑
α1,...,αj

c (α1, ..., αj)
∑

s1,...,sj

∏j

t=1
Xαt
st

where t = 1, ..., j is an arbitrary index of a j-tuple (s1, ..., sj) ⊂ Ξ and c(·) are coefficients. We can control the first
k/2-tuples by a standard argument, e.g., Bhattacharya and Rao (1986), making use of E ‖Xij‖k . E ‖X1‖k,∣∣∣∑k/2

j=1

∑
α1,...,αj

c (α1, ..., αj)
∑

s1,...,sj
E
[∏j

t=1
Xαt
st

]∣∣∣ ≤ C (k) |Ξ|k/2 E ‖X1‖k .

In what follows it suffices to show for fixed j > k/2 and (α1, ..., αj),∣∣∣∑
s1,...,sj

E
[∏j

t=1
Xαt
st

]∣∣∣ ≤ C (k) E ‖X1‖k+δ
(
|Ξ|k/2 mkd + |Ξ|k α2,∞ (m)

δ
k+δ

)
.

Step 2: Next, we create a set that counts the sites sτ where Xsτ has power ατ = 1 and sτ is sufficiently far from
the other st in the j-tuple. Let u := j − k/2. We put A := {t : αt = 1} as the set of all points that have coefficient
1. Then let β0 = |A| . This is a set that counts the number of indices that show up exactly one time. We want to
show that this set is non-empty. Note that 1 ≤ u ≤ k/2. Also, since k =

∑j

t=1 αt ≥ β0 + 2 (j − β0), this means
2u ≤ β0 ≤ k and therefore (j − k/2) ≤ β0 ≤ k/2.

Then we partition the set of all j-tuples into Bm and Bcm, with In Lahiri’s notation,
∑

2
≡
∑

s1,...,sj
=:
∑

3
+
∑

4
. To

define the sets, put

Bm := {(s1, ..., sj) : inf
l 6=t

dΞ (sl, st) = dΛ(isl , kst) ∧ dΛ(jsl , kst) ∧ dΛ(isl , lst) ∧ dΛ(isl , lst) > m for some t ∈ A}.

Now
∑

3
sums over the terms in Bm and

∑
4
over the terms in Bcm.

Step 3: We want to control Bm. Fix τ ∈ A. Then decompose
∏j

t=1
Xαt
st = XaXb, with Xb = Xsτ and

Xa =
∏

t6=τ
Xαt
st . Then Xa is a random field with respect to σ

(
Xs1 , ..., X̂sτ , ..., Xsj

)
, where we use notation to

indicate the omission of a term,
(
a, b̂, c

)
:= (a, c), and Xb with respect to σ (Xsτ ). These are of size j − 1 and 1,

64Hahn and Kuersteiner (2004) extend the Lahiri argument to the time series setting.
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respectively. By definition the distance between these two sets is at least m, so by applying Lin et al. (1996) and
using the fact that E[XijXkl] ≤ ‖Xij‖Lp(P) · ‖Xkl‖Lq(P) α

1−q−1−p−1

2,2 (dΞ(ij, kl)), we have∣∣E [∏j

t=1
Xαt
st

]∣∣ ≤ |E [XaXb]| ≤ C · ‖Xa‖Lp(P) · ‖Xb‖Lq(P) α
1−q−1−p−1

2(j−1),2 (m) .

Taking p = k + δ and 1
q

= k−1
k+δ , using stationarity and repeatedly applying the Holder inequality,∣∣E [∏j

t=1
Xαt
st

]∣∣ ≤ C · ‖Xa‖Lk+δ(P) · ‖Xb‖L(k−1)/(k+δ)(P) α
δ/(k+δ)
2(j−1),2 (m) ≤ C · E ‖X1‖k+δ α

δ/(k+δ)
2(j−1),2 (m) .

Since αj,1 (m) ≤ αj+1,1 (m),
∣∣∣E [∑

Bm

∏j

t=1
Xαt
st

]∣∣∣ ≤ C · E ‖X1‖k+δ |Ξ|k α2,∞ (m)
δ
k+δ .

Step 4: Finally, we control Bcm. To get a (coarse) upper bound, first notice the maximum number of powers of 1
that can be placed is 2u65. Construct a set Γ ⊂ {1, ..., j}, |Γ| = 2u which will include all powers of one and perhaps
some residual copies of terms with higher power. Then we will simply count

B̄cm :=
{

(s1, ..., sj) : inf
l6=t

dΞ(st, sl) = dΛ(isl , kst) ∧ dΛ(jsl , kst) ∧ dΛ(isl , lst) ∧ dΛ(isl , lst) ≤ m ∀t ∈ Γ
}
.

It will help us to define the partners of st as ε(t) ∈ arg infl dΞ(st, sl). Then define P(Γ) as the set of partners of
t ∈ Γ and put v = |Γ ∪ P(Γ)|. This is the number of distinct elements of Ξ with power one or power greater than
one whose copies form the residual members of Γ and their partners. By definition 2u ≤ v ≤ 4u∧ j since v ≥ |Γ| and
v ≤ 2 |Γ| if each had a distinct partner.

We define an m-unbroken set as a collection of points in Γ∪P(Γ) for which each member is within an m-distance
under pseudo-metric dΞ. Put q as the number of m-unbroken sets. First, observe that there are less than |Ξ|q initial
sites to place a seed for each of the unbroken sets.66 Next, we have to place each of the v − q terms. For a given ij
there are less than 2(2m + 1)d elements of Ξ within an m-distance since dΛ(k, i) ∧ dΛ(l, i) ∧ dΛ(k, j) ∧ dΛ(l, j) ≤ m.
An upper bound is O

(
m(v−q)d). Finally, we can arbitrarily place the remaining j − v elements yielding |Ξ|j−v. This

gives us
∣∣B̄cm∣∣ . |Ξ|q+j−vm(v−q)d. The same counting exercise as in Lahiri (1992) gives us j+q−v ≤ h and v−q ≤ k

which yields |Ξ|q+j−vm(v−q)d ≤ |Ξ|hmkd. This concludes the proof. �

B.4. Groups Model. The proof of Proposition 4.2 is a corollary to the following lemma. We need to replicate the arguments
from section B.2 replacing Lemma B.1 by Lemma B.10. The model satisfies Assumption (2) below by Chatterjee et al. (2010).

Lemma B.10. Assume (1) for all θr ∈ Θr, ζr(θ̄r, u) are q×knq matrix (or vector) valued functions, supu∈U supr ‖ζr(θr, u)‖ ≤

Br with plimEnR[Bir] < ∞, (2) for each r, supi≤kn
∥∥∥θ̂ir − θ0ir

∥∥∥ ≤ C(L)
√

logn
n

with probability at least 1 − cn−2,

where L, c depend only on Θr ⊂ Rkn and ψ, (3) Θr ⊂ [a, b]kn for all r, and (4) R = O(nγ) with γ < 1. Then

sup
u∈U

R1/2
∥∥∥ERζr(θ̄r, u)(Iq ⊗ (θ̂r − θ0r))

∥∥∥
2
.

√
R · logn

n

with probability approaching one. Specifically the probability is at least
(
1− cn−2)Rn .

Proof of Lemma B.10. Step 1: This follows from ‖·‖2 ≤ ‖·‖1 and

sup
u∈U

R
1/2
∥∥ERζr(θ̄r, u)(Iq ⊗ (θ̂r − θ0r))

∥∥
1
≤ sup

u∈U
R

1/2ER
[∥∥ζr(θ̄r, u)

∥∥
1

∥∥(Iq ⊗ (θ̂r − θ0r))
∥∥
∞

]
≤ sup

u∈U
R

1/2ER
[∥∥ζr(θ̄r, u)

∥∥
1

∥∥θ̂r − θ0r∥∥
∞

]
≤ sup

u∈U
ER
∥∥ζr(θ̄r, u)

∥∥
1
·
√
R sup
r≤R

∥∥θ̂r − θ0r∥∥
∞
.

We have that supu∈U 1√
q

∥∥ζr(θ̄r, u)
∥∥

1
≤ supu∈U

∥∥ζr(θ̄r, u)
∥∥

2
≤ Br and therefore

sup
u∈U

R
1/2
∥∥ERζr(θ̄r, u)(Iq ⊗ (θ̂r − θ0r))

∥∥
1
.
√
R sup
r≤R

∥∥θ̂r − θ0r∥∥
∞

+ oP(1)

65Let x be the maximal number. Then k = x+ 2 (j − x) . Solving this yields the result.
66We leave ourselves open to certain double-counting; the bound is coarse.
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by assumption on the envelope functions. It suffices to control supr≤R
∥∥∥θ̂r − θ0r

∥∥∥
∞
.

Step 2: Observe that supr≤R
∥∥∥θ̂r − θ0r

∥∥∥
∞
≤ C(L)

√
logn
n

with probability at least (1− cn−2)Rn , since the bound

holds for each of the R (independent) terms with probability at least 1− cn−2. This approaches one for γ < 1. �

B.5. DeJong and Woutersen (2011) Model.

Proof of Proposition 4.3. We check that the conditions of Lemma 4.1 hold. First, by example 2 of Hahn and
Kuersteiner (2004), using Theorem 2 of De Jong and Woutersen (2010) the model satisfies Conditions 1-7 of Hahn
and Kuersteiner (2004). Notice Xs,r = [As,r, As−1,r, ..., As−k,r, zsr] satisfies condition 3 of Hahn and Kuersteiner (2004).
It is straightforward to verify conditions 1-5 of Lemma 4.1 hold. Condition 1 follows from Theorem 3 of De Jong
and Woutersen (2010) and checking that the probit model is twice continuously differentiable in θ. By an argument
identical to Lemma B.7, condition 2 holds. The advantage here is that we can directly apply Lemma 1 of Hahn and
Kuersteiner (2004) instead of Lemma B.9, since we essentially are dealing with time-series type data. Since

q(zsr, As−1
r ; θ0r) = As log Φ(

∑
θ0r,kAs−k,r + θ′0r,l+1zsr) + (1−As) log(1− Φ(

∑
θ0r,kAs−k,r + θ′0r,l+1zsr)),

we have
v(zsr, As−1

r ; θ0r) = As
φ(
∑

θ0r,kAs−k,r + θ′0r,l+1zsr)

Φ(
∑

θ0r,kAs−k,r + θ′0r,l+1zsr)
− (1− As)

φ(
∑

θ0r,kAs−k,r + θ′0r,l+1zsr)

1− Φ(
∑

θ0r,kAs−k,r + θ′0r,l+1zsr)

which is bounded in order by 1 +
∣∣∑ θ0r,kAs−k,r + θ′0r,l+1zsr

∣∣ using Feller’s inequality. Thus the envelope depends
on Xsr only, which satisfies the mixing condition 3 of Hahn and Kuersteiner (2004). By compactness of Θr and the
moment assumption on z, we can apply the argument of Lemma B.6, with |Ξ| =

(
n
2

)
and v(Xsr, As−1

r ; θr) as above
to show condition 3 holds. Conditions 4 and 5, which are a Lipschitz condition on the Hessian and a pointwise LLN
(uniform across R) on the Hessian hold because for a probit model all finite order of derivatives of log Φ(·) exist and
are continuous, on a compact parameter space they satisfy the Lipschitz condition and are uniformly bounded. �

Appendix C. Overview of Estimation Algorithm and Standard Errors

We present a non-technical overview of the standard errors and estimation procedures used. A theoretical discus-
sion of standard error estimation is beyond the scope of this paper. Here, we discuss standard errors and finite-sample
simulation bias. A lengthier formal, technical discussion and simulations results are available from the authors upon
request. Several approaches can be used for inference: heteroskedasticity-robust, clustered, block bootstrapped,
first-stage bootstrapped, and importance sampled standard errors. Network-level inference can be performed us-
ing heteroskedasticity-robust standard errors under cross-network independence, even in the presence of sampling.
Individual-level inference under sampling requires attention to within-network, cross-individual autocorrelation ex-
acerbated by the reconstructed regressor’s mismeasurement, what we call the reconstruction error. When an edge is
missing in the computation of one individual’s network statistic, that edge is also missing for all other individuals’ net-
work statistic computation. Clustered standard errors and their nonparametric block bootstrap analog both account
for heteroskedasticity and within-graph autocorrelation. Additionally, a parametric bootstrap which simulates the
autocorrelation from the reconstruction error can estimate the contribution of the sampling-induced autocorrelation
to the reconstruction estimator’s variance. The parametric structure of this bootstrap should allow these standard
errors to be estimated on a smaller collection of networks than necessary for clustered standard errors.

While the graphical reconstruction estimator is formally a “two-step” estimator, super-consistency allows the
researcher to ignore the first-stage estimation uncertainty. That said, first-stage uncertainty can be understood using
a first-stage parametric bootstrap and importance sampling. The first-stage parametric bootstrap estimates the
distribution of the first-stage parameters and encompasses the following effects: sample from the observed collection
of networks with replacement, estimate each network’s first-stage parameters using the observed data, simulate a
new collection of observed graphs using the first-stage estimates, and estimate the first-stage parameters using the
simulated graphs. Repeat this process to obtain the bootstrapped variance of the first stage estimators to determine
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whether super-consistency is justified. Importance sampling can reduce the computational burden of bootstrapping
the first-stage estimates by using the first-stage model’s likelihood to rebalance a collection of reconstructed network
statistics and greatly reduces the cost of accounting for any first-stage variability.

With or without first-stage superconsistency, the reconstruction estimator still uses a finite number of simulations,
leaving another error term which we call the simulation error. A regularization to estimate and subtract out the
variance in the regressors due to this noise can be employed.

Appendix D. Discussion of Analytical Corrections with Regularization

D.1. A Regularized Estimator. We show a simple example where our analytical correction is consistent and does
not require us to assume σ2

v → 0. In section 3, for degree and graph clustering, we have shown that β̃ = Φβ̂ P−→
β0

σ2
〈x〉

σ2
〈x〉+Φ−2σ2

v
where Φ is a deterministic function of sampling rate ψ. We now show we can construct estimates σ̂2

〈x〉

and σ̂2
v and therefore develop a consistent analytical correction β?. We present a simple example to illustrate the

argument. Our example is average degree and for simplicity assume the researcher samples every edge independently
with probability ψ. It is easy to see E

[
d(Ḡ)|G

]
= ψd(G), where Ḡ is the sampled graph. Putting v = d(Ḡ)−ψd(G),

we can analytically compute var (v|G) = 2
n
ψ (1− ψ) d(G).

Lemma D.1. var (v|G) = 2n−1ψ (1− ψ) d(G).

Proof. Let T =
(
n
2

)
and e index edges going from e = 1, ...,

(
n
2

)
= T . Notice average degree is d(G) = 2

n

∑
e
Ae.

Then the v = 2
n

∑
e
χeAe − ψ 2

n

∑
e
Ae. Notice

E
[

2
n

∑
e
χeAe

]2
= E

[
4n−2

{∑
e
χeAe + 2

∑
e<e′

χeχe′AeAe′
}]

= 4n−2
{
ψ
∑

e
Ae + ψ

22
∑

e<e′
AeAe′

}
= 2ψn−1

d(G) + 4n−2
ψ

22
∑

e<e′
AeAe′ .

Meanwhile, average degree squared is
(

2
n

∑
e
Ae
)2 = 4n−2

{∑
Ae + 2

∑
e<e′

AeAe′
}
, which is useful since (E [v|G])2 =(

ψ 2
n

∑
e
Ae
)2 = ψ2d(G)2. Therefore,

E
[
v

2|G
]

= 2ψn−1
d(G) + ψ

2
{

4n−22
∑

e<e′
AeAe′

}
= 2n−1

ψ (1− ψ) d(G) + ψ
2
d(G)2

.

It follows that var (v|G) = 2n−1ψ (1− ψ) d(G) + ψ2d(G)2 − ψ2d(G)2 = 2n−1ψ (1− ψ) d(G). �

With the analytical formula for the variance of v, we can compute β?. Let X := ψ · (d(G1), ..., d(GR))′ denote the
scaled vector of true (unobserved) average degrees, Z := (d(Ḡ1), ..., d(ḠR)) the observed vector of sampled degrees,
and V := (v1, ..., vR) = Z − X. Then it is clear that β∗ := (Z′Z − V ′V )−1

Z′y is consistent for β0. By estimating

Σv := plimV ′V/R, we have β? :=
(
Z′Z −RΣ̂v

)−1
Z′y

P−→ β0. Under mild regularity conditions on the growth of
average degree, we may therefore estimate β?. Estimation can be improved by performing a bootstrap bias correction.

D.2. Numerical Evidence. Table 8 displays simulation results for network level regression of average degree with

simulated outcomes, precisely of the form presented in Table 1. We choose ψ to make the expected edge count

comparable to that of the induced subgraph. The results confirm the fact that the naive estimator exhibits significant

biases, the analytical correction vastly reduces the biases but may still retain some residual bias which can further

be mitigated by applying regularization.
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