Inferring Strategic Voting Kawai and Watanabe(2011)

Biancen Xie

Presented at Hanqing Advanced Institute of Economics and Finance xiebiancen@hotmail.com

Outline

- •Introduction
- •Model
- •Data
- •Empirical Analysis
- •Results and Counterfactual Experiment
- •Conclusion

Introduction

Main question solved in this paper:

• Can we identify the existence and fraction of strategic voters?

Empirical methodologies used in the past studies:

- Aggregate regression
- Self-reporting survey
- Direct measurement
- Laboratory Experiment

Introduction

Definition

- Sincere voting: voting according to preferences
- Strategic voting: voting conditioning on pivotality
- Misaligned voting: voting for a candidate other than the mostpreferred
- Pivotality: the state of having the decisive vote

the set of misaligned voters is only a subset of the set of strategic voters.

Environment:

- Plural-rule election
- *K* candidates for one seat in one didtrict
- *M* municipalities in an electoral district

Voter's utility function

$$u_{nk} = u(x_n, z_k) + \xi_{km} + \varepsilon_{nk}$$

- x_n :Voter *n*'s characteristic
- z_k :Candidate k 's characteristics
- ξ_{km} :Candidate k's shock on municipality m
- \mathcal{E}_{nk} :Voter *n*'s preference shock

Voter's strategies:

- Sincere: vote for candidate k IFF $u_{nk} \ge u_{nl} \forall l$
- Strategic: vote for candidate k IFF $\overline{u_{nk}(T_n)} \ge \overline{u_{nl}(T_n)} \forall l$

Expected utility from voting for candidate k:

$$\overline{u_{nk}}(T_n) = \frac{1}{2} \sum_{l \in \{1..K\}} T_{n,kl} (u_{nk} - u_{nl})$$

• $T_{n,kl}$: Voter *n* 's belief that his vote would be pivotal: belief that candidate *k* and *l* would be tied for the first place or that *k* will be one vote behind.

Further assumptions

- Beliefs are common across all voters in the same district (Beliefs over tie probabilities are common across the same district)
- Denote the type of voter *n* in municipality *m* by a random variable:

$$\alpha_{nm} = \begin{cases} 0 \text{ if voter } n \text{ is sincere} \\ \\ 1 \text{ if voter } n \text{ is strategic} \end{cases}$$

• The probability that voter *n* in municipality *m* is a strategic voter(α_m) is drawn iid from a conditional distribution $F_{\alpha}(\cdot | w)$ where *w* reflects the closeness based on election forecasts.

Aggregating vote share:

$$V_{k,m}^{SIN} = \frac{\sum_{n=1}^{N_m} (1 - \alpha_{nm}) \cdot 1\{u_{nk} \ge u_{nl}, \forall l\}}{\sum_{n=1}^{N_m} (1 - \alpha_{nm})}$$
$$V_{k,m}^{SIR}(T) = \frac{\frac{\sum_{n=1}^{N_m} \alpha_{nm} \cdot 1\{\overline{u_{nk}} \ge \overline{u_{lk}}, \forall l\}}{\sum_{n=1}^{N_m} \alpha_{nm}}}{\sum_{n=1}^{N_m} \alpha_{nm}} + \frac{\sum_{n=1}^{N_m} (1 - \alpha_{nm}) \cdot V_{k,m}^{SIN}(T)}{N_m}}$$

Data

General information

- Source: Japanese House Representatives election
- Vote share and candidate characteristics (*from ATES*)
- Demographic information(*from Social and Demographic Statistics of Japan*)
- Data selection criteria:
 - 3 or 4 candidates
 - No recent mergers
 - Minimum of 2 municipalities

Data

mean	st. dev.	min	max	# obs
9.23	7.27	2	36	159
8.72	7.03	2	36	144
14.13	8.02	3	36	15
51.72	6.83	28.98	73.62	159
52.90	5.70	36.03	73.62	144
40.46	6.69	28.98	55.89	15
13.53	10.23	0.06	53.92	159
14.05	10.17	0.17	53.92	144
8.50	9.73	0.06	35.50	15
28.51	9.67	0.00	43.32	159
30.39	7.65	0.00	43.32	144
10.45	8.51	0.57	23.32	15
2.33	0.81	1	4	159
2.36	0.82	1	4	144
2.07	0.59	1.5	3.5	15
	$\begin{array}{c} 9.23 \\ 8.72 \\ 14.13 \\ 51.72 \\ 52.90 \\ 40.46 \\ 13.53 \\ 14.05 \\ 8.50 \\ 28.51 \\ 30.39 \\ 10.45 \\ 2.33 \\ 2.36 \end{array}$	$\begin{array}{ccccc} 9.23 & 7.27 \\ 8.72 & 7.03 \\ 14.13 & 8.02 \\ 51.72 & 6.83 \\ 52.90 & 5.70 \\ 40.46 & 6.69 \\ 13.53 & 10.23 \\ 14.05 & 10.17 \\ 8.50 & 9.73 \\ 28.51 & 9.67 \\ 30.39 & 7.65 \\ 10.45 & 8.51 \\ 2.33 & 0.81 \\ 2.36 & 0.82 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Data

vote share – JCP	7.62	2.72	2.77	17.02	154
vote share – DPJ	38.56	8.80	10.78	60.10	159
vote share – LDP	49.66	8.90	23.19	73.62	159
vote share $-$ YUS	34.95	9.10	14.50	49.58	20
ideology – JCP	1.97	0.36	1	2.75	154
ideology – DPJ	3.10	0.60	1	4.50	159
ideology – LDP	3.12	0.61	1.25	4.67	159
ideology – YUS	2.55	0.45	1.25	3.25	20

The situation might be very different in 4-candidate districts:

- Voters may have beliefs in **three way ties** rather than **two-way ties**.
- Since the prediction would be very **ambiguous** in a 4-candidate district, the common belief might be violated.

Empirical Analysis

Specification of the model

 $u_{nk} = u(x_n, z_k, \theta^{PREF}) + \xi_{km} + \varepsilon_{nk} = -(\theta^{ID} x_n - \theta^{pos} z_k^{POS})^2 + \theta^{QLTY} z_{km}^{QLTY} + \xi_{km} + \varepsilon_{nk}$

voters' ideology is assumed to be a function of demographics

- *x_n* :voter characteristics
- $z_{km} = \{z_k^{POS}, z_{km}^{QLTY}\}$:Candidate characteristics
 - z_k^{POS} : Ideological characteristics
 - z_{km}^{QLTY} : Non-ideological characteristics
- θ^{PREF} :vector of preference parameters

Empirical analysis

Partial Identification of preference parameters

• Two kinds of restrictions:

Restriction (I): voters do not vote for their least-preferred candidate Restriction (II): common belief within one district.

• With two restrictions, the parameters can only be partially identified.

Partial Identification of the fraction of the strategic voters

- Vary the identified set of θ^{PREF} to trace out the identified set of the parameters that determine the extent of strategic voting
- When there is a large number of strategic voters, the actual vote share can systematically diverge from the predicted outcome.

Empirical analysis

Parameters estimated

- θ^{PREF} :Preference parameters
- $(\theta_{\alpha 1}, \theta_{\alpha 2})$: Parameters that determine the distribution of strategic voters **Estimation steps**
- For some district, regress the vote share data of candidate *k* in each municipality on the demographic data to obtain coefficients.
- Fix preference parameters, beliefs, fraction of strategic voters and municipality shocks; compute the simulated vote share.
- Regress the simulated vote share on demographic data to obtain regression coefficients.
- Vary beliefs to obtain minimum and maximum for the coefficients.
- Integrate out the fraction of strategic voters and municipality shocks
- Find out the moment inequality and apply Pakes, Porter, Ho, and Ishii(2007)

Main Results

Parameter estimates

Main Results

The fraction of strategic voters and misaligned voters

- The authors estimate the fraction of strategic voters to be [63.4%, 84.9%]
- The authors determine the fraction of misaligned voters to be [1.4%, 4.2%]

Counterfactual Experiment: Sincere voting under plurality rule

- The change in vote share is small (due to a small fraction of misaligned voter)
- Change in the number of seats is considerable (due to small winning margin)

Conclusion

- The authors find a much larger fraction of strategic voters than in the past studies.
- The authors consider including abstention in the future method.
- My suggestions:
 - Drop the sample of 4-candidate districts and go through the estimation again to see if there is a big difference.
 - Find more accurate indicators for individual ideologies. (i.e data from local surveys)