Inferring Strategic Voting Kawai and Watanabe(2011)

Biancen Xie

Presented at Hanqing Advanced Institute of Economics and
Finance
xiebiancen@hotmail.com

Outline

-Introduction

- Model
- Data
- Empirical Analysis
-Results and Counterfactual Experiment
-Conclusion

Introduction

Main question solved in this paper:

- Can we identify the existence and fraction of strategic voters?

Empirical methodologies used in the past studies:

- Aggregate regression
- Self-reporting survey
- Direct measurement
- Laboratory Experiment

Introduction

Definition

- Sincere voting: voting according to preferences
- Strategic voting: voting conditioning on pivotality
- Misaligned voting: voting for a candidate other than the mostpreferred
- Pivotality: the state of having the decisive vote
the set of misaligned voters is only a subset of the set of strategic voters.

Model

Environment:

- Plural-rule election
- K candidates for one seat in one didtrict
- M municipalities in an electoral district

Voter's utility function

$$
u_{n k}=u\left(x_{n}, z_{k}\right)+\xi_{k m}+\varepsilon_{n k}
$$

- x_{n} :Voter n ' s characteristic
- $z_{k} \quad$:Candidate k 's characteristics
- $\xi_{k m}$:Candidate k 's shock on municipality m
- $\varepsilon_{n k} \quad$:Voter n 's preference shock

Model

Voter's strategies:

- Sincere: vote for candidate k IFF $u_{n k} \geq u_{n l} \forall l$
- Strategic: vote for candidate $k \operatorname{IFF} \overline{u_{n k}\left(T_{n}\right)} \geq \overline{u_{n 1}\left(T_{n}\right)} \forall l$

Expected utility from voting for candidate \boldsymbol{k} :

$$
\overline{u_{n k}}\left(T_{n}\right)=\frac{1}{2} \sum_{l \in\{1 . K\}} T_{n, k l}\left(u_{n k}-u_{n l}\right)
$$

- $T_{n, k l}$: Voter n 's belief that his vote would be pivotal: belief that candidate k and l would be tied for the first place or that k will be one vote behind.

Model

Further assumptions

- Beliefs are common across all voters in the same district (Beliefs over tie probabilities are common across the same district)
- Denote the type of voter n in municipality m by a random variable:

$$
\alpha_{n m}=\left\{\begin{array}{l}
0 \text { if voter } n \text { is sincere } \\
1 \text { if voter } n \text { is strategic }
\end{array}\right.
$$

- The probability that voter n in municipality m is a strategic voter $\left(\alpha_{m}\right)$ is drawn iid from a conditional distribution $F_{\alpha}(\cdot \mid w)$ where w reflects the closeness based on election forecasts.

Model

Aggregating vote share:

$$
\begin{aligned}
& V_{k, m}^{S I N}=\frac{\sum_{n=1}^{N_{m}}\left(1-\alpha_{n m}\right) \cdot 1\left\{u_{n k} \geq u_{n l}, \forall l\right)}{\sum_{n=1}^{N_{m}}\left(1-\alpha_{n m}\right)} \\
& V_{k, m}^{S I R}(T)=\frac{\sum_{n=1}^{N_{m}} \alpha_{n m} \cdot 1\left\{\overline{u_{n k}} \geq \overline{u_{l k}}, \forall l\right)}{\sum_{n=1}^{N_{m}} \alpha_{n m}} \\
& V_{k, m}(T)=\frac{\sum_{n=1}^{N_{m}} \alpha_{n m} \cdot V_{k, m}^{S I R}(T)}{N_{m}}+\frac{\sum_{n=1}^{N_{m}}\left(1-\alpha_{n m}\right) \cdot V_{k, m}^{S I N}(T)}{N_{m}}
\end{aligned}
$$

Data

General information

- Source: Japanese House Representatives election
- Vote share and candidate characteristics (from ATES)
- Demographic information(from Social and Demographic Statistics of Japan)
- Data selection criteria:
- 3 or 4 candidates
- No recent mergers
- Minimum of 2 municipalities

Data

	mean	st. dev.	\min	\max	\# obs
\# of municipalities per district	9.23	7.27	2	36	159
3-candidate district	8.72	7.03	2	36	144
4-candidate district	14.13	8.02	3	36	15
winner's vote share (\%)	51.72	6.83	28.98	73.62	159
3-candidate district	52.90	5.70	36.03	73.62	144
4-candidate district	40.46	6.69	28.98	55.89	15
winning margin (\%)	13.53	10.23	0.06	53.92	159
3-candidate district	14.05	10.17	0.17	53.92	144
4-candidate district	8.50	9.73	0.06	35.50	15
margin between 2nd and 3rd (\%)	28.51	9.67	0.00	43.32	159
3-candidate district	30.39	7.65	0.00	43.32	144
4-candidate district	10.45	8.51	0.57	23.32	15
pre-election forecast on closeness	2.33	0.81	1	4	159
3-candidate district	2.36	0.82	1	4	144
4-candidate district	2.07	0.59	1.5	3.5	15

Data

vote share - JCP	7.62	2.72	2.77	17.02	154
vote share - DPJ	38.56	8.80	10.78	60.10	159
vote share - LDP	49.66	8.90	23.19	73.62	159
vote share - YUS	34.95	9.10	14.50	49.58	20
ideology - JCP	1.97	0.36	1	2.75	154
ideology - DPJ	3.10	0.60	1	4.50	159
ideology - LDP	3.12	0.61	1.25	4.67	159
ideology - YUS	2.55	0.45	1.25	3.25	20

The situation might be very different in 4-candidate districts: Voters may have beliefs in three way ties rather than two-way ties. Since the prediction would be very ambiguous in a 4-candidate district, the common belief might be violated.

Empirical Analysis

Specification of the model

$$
u_{n k}=u\left(x_{n}, z_{k}, \theta^{\text {PREF }}\right)+\xi_{k m}+\varepsilon_{n k}=-\left(\theta^{I D} x_{n}-\theta^{p o s} z_{k}^{P O S}\right)^{2}+\theta^{Q L T Y} z_{k m}^{Q L T Y}+\xi_{k m}+\varepsilon_{n k}
$$

voters' ideology is assumed to be a function of demographics

- x_{n} :voter characteristics
- $z_{k m}=\left\{z_{k}^{\text {Pos }}, z_{k m}^{0 L T Y}\right\}$:Candidate characteristics
$z_{k}^{\text {pos }}$:Ideological characteristics
$z_{k m}^{\text {alr }}$:Non-ideological characteristics
- $\theta^{\text {PREF }}$:vector of preference parameters

Empirical analysis

Partial Identification of preference parameters

- Two kinds of restrictions:

Restriction (I): voters do not vote for their least-preferred candidate Restriction (II): common belief within one district.

- With two restrictions, the parameters can only be partially identified.

Partial Identification of the fraction of the strategic voters

- Vary the identified set of $\theta^{\text {PREF }}$ to trace out the identified set of the parameters that determine the extent of strategic voting
- When there is a large number of strategic voters, the actual vote share can systematically diverge from the predicted outcome.

Empirical analysis

Parameters estimated

- $\theta^{\text {PREF }} \quad$:Preference parameters
- $\left(\theta_{\alpha 1}, \theta_{\alpha 2}\right)$:Parameters that determine the distribution of strategic voters

Estimation steps

- For some district, regress the vote share data of candidate k in each municipality on the demographic data to obtain coefficients.
- Fix preference parameters, beliefs, fraction of strategic voters and municipality shocks; compute the simulated vote share.
- Regress the simulated vote share on demographic data to obtain regression coefficients.
- Vary beliefs to obtain minimum and maximum for the coefficients.
- Integrate out the fraction of strategic voters and municipality shocks
- Find out the moment inequality and apply Pakes, Porter, Ho, and Ishii(2007)

Main Results

Parameter estimates

Main Results

The fraction of strategic voters and misaligned voters

- The authors estimate the fraction of strategic voters to be [63.4\% , 84.9\%]
- The authors determine the fraction of misaligned voters to be [1.4\%, 4.2\%]

Counterfactual Experiment: Sincere voting under plurality rule

- The change in vote share is small (due to a small fraction of misaligned voter)
- Change in the number of seats is considerable (due to small winning margin)

Conclusion

- The authors find a much larger fraction of strategic voters than in the past studies.
- The authors consider including abstention in the future method.
- My suggestions:
- Drop the sample of 4-candidate districts and go through the estimation again to see if there is a big difference.
- Find more accurate indicators for individual ideologies. (i.e data from local surveys)

