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1 Introduction

The principle of revealed preference (Samuelson, 1938) is a cornerstone in the empirical analysis of

decision models, either static or dynamic, single-agent problems or games. Under the principle of

revealed preference, agents maximize expected payo s and their actions reveal information on the

structure of payo functions. This simple but powerful concept has allowed econometricians to use

data on agents�’ decisions to identify important structural parameters for which there is very limited

information from other sources. Examples of parameters and functions that have been estimated

using the principle of revealed preference are agents�’ degree of risk aversion, intertemporal rates

of substitution, market entry costs, adjustment costs and switching costs, consumer willingness to

pay, preference for a political party, or the benets of a merger. In the context of empirical games,

where players�’ expected payo s depend on beliefs about behavior of other players, most applications

have combined the principle of revealed preference with the assumption that players�’ beliefs are

in equilibrium. The assumption of equilibrium beliefs is very useful in the estimation of games.

Equilibrium restrictions have identication power even in models with multiple equilibria (Tamer,

2003, and Aradillas-Lopez and Tamer, 2008). Imposing these restrictions contributes to improve

asymptotic and nite sample properties of estimators. Furthermore, models where agents�’ beliefs

are endogenously determined in equilibrium are attractive for the evaluation of counterfactual policy

experiments because they take into account how the new policy can a ect agents�’ behavior also

through an endogenous change in agents�’ beliefs.

Despite these attractive implications of the assumption of equilibrium beliefs, there are empirical

applications of games where the assumption is not realistic and it is of interest to relax it.1 For

instance, competition in oligopoly industries is often characterized by strategic uncertainty (Besanko

et al., 2010). Firm managers are very secretive about their own strategies and face signicant

uncertainty about the strategies of their competitors. In fact, it is often the case that rms have

incentives to misrepresent their own strategies.2 In this context, it can be di cult for rms to

construct unbiased beliefs about the behavior of competitors. Another example of applications

where the assumption of equilibrium beliefs seems unrealistic is in the evaluation of the e ect of a

policy change in a strategic environment. Suppose that to evaluate the policy change we estimate

an empirical game using data before and after the new policy. It seems reasonable to think that it

will take time for players (e.g., rms) to learn about the new strategies of other players after the

policy change. For a while rms�’ beliefs will be out of equilibrium, and imposing the restriction

of equilibrium beliefs may bias our estimates of the e ects of the new policy. Another example

comes from the structural estimation of games using data from laboratory experiments. It is well
1See also Morris and Song (2002) for examples of models with strategic uncertainty and the related experimental

evidence.
2For example, a rm would want its rival to believe that it is planning an expansion in a particular location to

deter the rival from entering into the location, when in fact there is no such plan.
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established in the experimental economics literature on games that there is signicant heterogeneity

in players�’ elicited beliefs, and that this heterogeneity is often one of the most important factors in

explaining heterogeneity in observed behavior in laboratory experiments.3 Imposing the assumption

of equilibrium beliefs in these applications does not seem reasonable. However, interestingly, recent

empirical papers also show that there is a signicant mismatch between stated or elicited beliefs and

the beliefs inferred from players�’ actions (see Costa-Gomes and Weizsäcker, 2008, and Rutström

and Wilcox, 2009). The results in our paper can be applied to estimate beliefs and payo s, using

either observational or laboratory data, when the researcher does not have data on stated or elicited

beliefs makes minimum assumptions on belief and payo functions.4

In this paper we study nonparametric identication, estimation, and inference in dynamic dis-

crete games of incomplete information when we assume that players are rational, in the sense

that each player maximizes expected payo given some beliefs, but we relax the assumption that

these beliefs are in equilibrium, and impose minimum restrictions on them. In the general class

of econometric models that we consider, players�’ beliefs are probability distributions over the set

of other players�’ actions. These distributions are nonparametrically specied and they are treated

as incidental parameters that, together with the structural parameters of the game, determine the

stochastic process followed by players�’ actions. Our framework includes as particular case games

with multiple equilibria where every player has beliefs that correspond to an equilibrium but their

beliefs are not �’synchronized�’, i.e., some players believe that the game is in an equilibrium, say A,

and other players think that the game is in a di erent equilibrium, say B. We illustrate this case

in our numerical experiments in section 5.

When players beliefs are not in equilibrium they are di erent from the actual distribution of

players�’ actions in the population. Therefore, without other restrictions, beliefs cannot be identied

and estimated by simply using a nonparametric estimator of the distribution of players�’ actions.

First, we show that a exclusion restriction, that is typically used to identify payo s in empirical

games, provides testable nonparametric restrictions of the null hypothesis of equilibrium beliefs.

Second, we show that, together with the exclusion restriction, a large-support condition on one of the

explanatory variables is su cient for point-identication. While the type of exclusion restriction

that we need is quite plausible in dynamic games of oligopoly competition, the large support

condition is not satised in many applications. However, we show that this condition can be

replaced with a more general restriction that we call no strategic uncertainty at two �’extreme�’

points. We also present identication results from a semiparametric model where the biased in

players�’ beliefs is parameterized using a exible functional form. Third, we propose a simple

two-step estimation method of structural parameters and beliefs, and a sequential extension of

3See Camerer (2003) and recent papers by Costa-Gomes and Weizsäcker (2008), and Palfrey and Wang (2009).
4Data on stated or elicited beliefs of rm managers is very rare and typically of low quality.
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this method that provides estimators with better statistical properties. We also present several

procedures for testing the null hypothesis of equilibrium beliefs. Finally, we illustrate our model

and methods using both Monte Carlo experiments and an empirical application of a dynamic game

of store location by retail chains.

This paper builds on the recent literature on estimation of dynamic games of incomplete infor-

mation (see Aguirregabiria and Mira, 2007, Bajari, Benkard and Levin, 2007, Pakes, Ostrovsky and

Berry, 2007, and Pesendorfer and Schmidt-Dengler, 2008). All the papers in this literature assume

that the data come from a Markov Perfect Equilibrium. We relax that assumption. Our paper

also builds and extends the work of Aradillas-Lopez and Tamer (2008) who study the identication

power of the assumption of equilibrium beliefs in simple static games. We extend their work in

several ways. First, we study dynamic games, including static games as a particular case. The

implications of dropping the assumption of equilibrium beliefs, and the associated identication

issues, are very di erent between static and dynamic games. As we show in this paper, the char-

acterization and derivation of bounds on choice probabilities is signicantly more complicated in

dynamic than in static games, and some results in Aradillas-Lopez and Tamer cannot be extended

to dynamic games. Therefore, we follow a di erent approach to the one considered by Aradillas-

Lopez and Tamer. Second, they concentrate on identication while we also propose and implement

new tests and estimators. And third, they deal with models with a parametric specication of the

payo function while we consider nonparametric payo s.

Our approach also di ers from Aradillas-Tamer in one key aspect. In relaxing the assumption

of Nash equilibrium, they consider a very specic departure from equilibrium beliefs. They assume

that players are level-k rational with respect to their beliefs about their opponents�’ behavior, a

concept which derives from the notion of rationalizability (Bernheim, 1984, and Pearce, 1984). Their

approach is especially useful in the context of static games with binary or ordered decision variables,

as, under the condition that players�’ payo s are monotone in the decision of their opponents,

it yields a sequence of closed form bounds on players�’ beliefs that grow tighter as the level of

rationality gets larger. Unfortunately, in the case of dynamic games, the assumptions of Aradillas-

Lopez and Tamer do not yield a representation of bounds on players�’ beliefs that is practical to

implement, even for simple dynamic games. We describe this issue at the end of section 2. As

such we do not use a bound-approach and level-k rationalizability. Instead, we concentrate on

level-1 rationalizability and study conditions and methods for nonparametric point identication

and estimation of preferences and beliefs.

To illustrate our model and methods, we consider an empirical application of a dynamic game

of store location between McDonalds and Burger King. Most empirical studies on bounded ratio-

nality have concentrated on individual behavior, and there is very little empirical work on bounded
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rationality of rms.5 The estimation of reduced form models using panel data of McDonalds�’ and

Burger King�’s store location decisions show that the probability that these rms open a new store

in a local market does not respond to the number of stores of the competing rm, or even responds

positively (Toivanen and Waterson, 2005). This evidence is robust to controlling for unobserved

market heterogeneity, and it cannot be explained by a standard static model of store location. We

propose and estimate a structural dynamic game of entry in local markets that incorporates three

alternative explanations for this puzzle: positive spillover e ects; rms�’ forward looking behavior;

and biased beliefs about the behavior of the competitor.

The rest of the paper includes the following sections. Section 2 presents the model and basic

assumptions. In section 3, we present our identication results. Section 4 describes estimation

methods and testing procedures. Section 5 presents our Monte Carlo experiments. The empirical

application is described in section 6. We summarize and conclude in section 7.

2 Model

2.1 Basic framework

This section presents a dynamic game of incomplete information where two players make binary

choices over periods.6 The time horizon can be either nite or innite. We use the indexes

{1 2} and {1 2} to represent a player and his opponent, respectively. Time is discrete and

indexed by {1 2 }. Every period , players choose simultaneously and non-cooperatively

between alternatives 0 and 1. Let {0 1} represent the choice of player at period . Each

player makes this decision to maximize his expected and discounted payo , (
P

=0 + ),

where (0 1) is the discount factor, and is his payo at period . The one-period payo

function has the following structure:

= ( X ) + ( ) (1)

represents the current action of the other player; X is a vector of state variables which are

common knowledge for both players; ( (0) (1)) is a pair of private information variables

for rm at period ; and ( ) is a real valued function.

The vector of common knowledge state variables X has three di erent components: X =

( ). W is a vector of common state variables that evolves exogenously according to

a Markov process with transition probability function ( +1| ). For each player, S is
5An exception is the recent paper by Goldfarb and Xiao (2011) that studies entry decisions in the US local

telephone industry and nds signicant heterogeneity in rms�’ beliefs about other rms�’ strategic behavior.
6The results in the paper can be generalized to models with more than two players or/and choice alternatives. A

key result in our paper is the characterization of rational beliefs in section 3, that is used in the identication results
and in the estimation methods in sections 4 and 5. It is possible to extend that representation to multinomial choice
models and games with more than two players.
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a vector that contains player-specic state variables. Some of the variables in are endogenous

(i.e., their evolution over time depends on players�’ actions), but the vector may also contain player-

specic exogenous state variables. The vector S ( ) evolves over time according to the

transition probability function (S +1| X ). The private information shocks (0) and (1)

are independent of X and independently distributed over time, players, and actions. Without loss

of generality, these private information shocks have zero mean. The distribution function of is

that is absolutely continuous and strictly increasing with respect to the Lebesgue measure on

R2. When the game has innite horizon ( = ), we assume that all the primitive functions,

, , , and , are constant over time such that the dynamic game has a stationary Markov

structure.

EXAMPLE: Dynamic game of market entry and exit. Consider two rms competing in a market.

Each rm sells a di erentiated product. Every period, rms decide whether or not to be active in

the market. Then, incumbent rms compete in prices. Let {0 1} represent the decision of rm

to be active in the market at period . The prot of rm at period has the structure of equation

(1), = ( X ) + ( ). We now describe the specic form of the payo function

and the state variables X and . The prot of an inactive rm ( = 0) is = (0), i.e., the

average prot of an inactive rm, (0 X ), is normalized to zero. The prot of an active rm

( = 1) is (1 X ) + (1) where:

(1 X ) =
¡
(1 ) +

¢
0 1 exp{ } 1{ = 0} (2)

The term
¡
(1 ) +

¢
represents the variable prot of rm . represents market

size (e.g., market population) and it is an exogenous state variable. and are parameters

that represent the per capita variable prot of rm when the rm is a monopolist and when

it is a duopolist, respectively. The term 0 + 1 exp{ } is the xed cost of rm , where

0 and 1 are parameters, and is an endogenous state variable that represents the number of

consecutive periods that the rm has been actively operating in the market, i.e., a rm�’s experience.

= 0 means that the rm was not active at 1, and = 0 means that the rm entered

the market at period 1 and has remained active every period until 1. The transition rule

of rm experience is deterministic, +1 = ( + ). If 1 0, xed costs decline with rm�’s

experience in the market, e.g., passive learning (by being active in the market) or other forms of

learning. The term 1{ = 0} represents sunk entry costs, where 1{ } is the binary indicator

and is a parameter. The vector of state variables in this model is X = ( ). ¥

Most previous literature on estimation of dynamic discrete games assumes that the data comes

from a Markov Perfect Equilibrium (MPE). This equilibrium concept incorporates four main as-

sumptions.
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ASSUMPTION MOD-1 (Payo relevant state variables): Players�’ strategy functions depend only

on payo relevant state variables: X and . Similarly, a player�’s belief about the strategy of other

player is a function only of the payo relevant state variables of the other player.

ASSUMPTION MOD-2 (Maximization of expected payo s): Players are forward looking and max-

imize expected intertemporal payo s.

ASSUMPTION MOD-3 (Unbiased beliefs on own future behavior): A player�’s beliefs about his own

actions in the future are unbiased expectations of his actual actions in the future.

ASSUMPTION �’EQUIL�’ (Unbiased or equilibrium beliefs on other players�’ behavior): Strategy

functions are common knowledge, and players�’ have rational expectations on the current and fu-

ture behavior of other players. That is, players�’ beliefs about other players�’ actions are unbiased

expectations of the actual actions of other players.

First, let us examine the implications of imposing only Assumption MOD-1. The payo -relevant

information set of player is {X }. The space of X is X W×S2. At period , players observe

X and choose their respective actions. Let (X ) be a strategy function for player at period

. This is a function from the support of (X ) into the binary set {0 1}, i.e., : X×R {0 1}.

Given any strategy function , we can dene a choice probability function (X ) that represents

the probability of = 1 conditional on X given that player follows strategy . That is,

(X )

Z
1 { (X ) = 1} ( ) (3)

It is convenient to represent players�’ behavior using these Conditional Choice Probability (CCP)

functions. When the variables in X have a discrete support, we can represent the CCP function

( ) using a nite dimension vector P { (X ) : X X}. Throughout the paper we use

either the function ( ) or the vector P to represent the actual behavior of player at period .

Without imposing Assumption �’Equil�’ (�’Equilibrium Beliefs�’), a player�’s beliefs about the behav-

ior of other players do not necessarily represent the actual behavior of the other players. Therefore,

we need functions other than ( ) and ( ) to represent players �’ beliefs about the strategy of

player . Let ( 0) (X ) be player �’s belief at period 0 about the strategy function of player

at period . In principle, this function may vary with 0 due to players�’ learning and forgetting, or

to other factors that make players to change their beliefs over time. Let ( 0)(X ) be the choice

probability associated with ( 0) (X ), i.e., ( 0)(X )

Z
1{ ( 0) (X ) = 1} ( ). When

X is a discrete and nite space, we can represent function ( 0)( ) using a nite-dimensional vec-

tor B( 0) { (X ) : X X}. Using this notation, Assumption �’Equil�’ can be represented as
( 0)(X ) = (X ) for every 0, 0, and X X .
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Table 1
Sequence of Beliefs ( 0)

Period when Period of the opponents�’ behavior ( )

beliefs are formed ( 0) = 1 = 2 = 3 ... = 1 =

0= 1
(1)
1

(1)
2

(1)
3 ... (1)

1
(1)

0= 2 - (2)
2

(2)
3 ... (2)

1
(2)

0= 3 - - (3)
3 ... (3)

1
(3)

...
...

...
...

...
...

...

0= 1 - - - ... ( 1)
1

( 1)

0= - - - ... - ( )

The following assumption replaces the assumption of �’Equilibrium Beliefs�’ and summarized our

minimum conditions on players�’ beliefs.

ASSUMPTION MOD-4: If the dynamic game has nite horizon (T ), then players�’ beliefs

functions ( 0) may vary over the time period of the opponent�’s behavior, t, but they are not

�’revised�’ over the time period 0, i.e.,
( 0) = for any period 0. If the dynamic game has

innite horizon (T = ), then players�’ beliefs functions ( 0) may be revised over the time period

0, but they do not vary over time period of the opponent�’s behavior, t, because the decision problem

is stationary, i.e., ( 0) =
( 0) for any period .

Assumption MOD-4 imposes restrictions on the time pattern of beliefs. Using table 1, we can

describe this assumption by saying that beliefs are constant either across columns and across rows.

For nite horizon dynamic games, we assume that beliefs are constant across rows. This implies

that each player considers that the opponent can change his behavior over time, but beliefs for the

opponent�’s behavior at a given period are constant over the entire game and they are not revised

as time goes by. Therefore, for nite horizon games we do not allow for any form of learning. For

innite horizon games, we assume that players�’ know that the game is stationary and their beliefs

satisfy this stationarity condition. However, players can revise their beliefs over time.

For the rest of the paper, we maintain Assumptions MOD-1 to MOD-4 but we do not impose

the restriction of �’Equilibrium Beliefs�’. We assume that players are �’rational�’, in the sense that

they maximize expected and discounted payo given their beliefs on other players�’ behavior. Our

approach is agnostic about the formation of players�’ beliefs.
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For the sake of simplicity in the presentation of out results, the main text of the paper deals

with nite horizon games, but we show in the Appendix that all our results apply to innite horizon

dynamic games. To illustrate both cases, we consider a nite horizon game in the Monte Carlo

experiments in section 5, and an innite horizon game in the empirical application in section 6.

2.2 Best response mappings

We say that a strategy function ( ) (and the associated CCP function ) is rational if for

every possible value of (X ) X × R the action (X ) maximizes player �’s expected and

discounted value given his beliefs on the opponent�’s strategy. Given his beliefs, player �’s best

response at period is the optimal solution of a single-agent dynamic programming (DP) problem.

This DP problem can be described in terms of: (i) a discount factor, ; (ii) a sequence of expected

one-period payo functions, { B( X ) + ( ) : = 1 2 }, where

B( X ) = (1 (X )) ( 0 X ) + (X ) ( 1 X ); (4)

and (iii) a sequence of transition probability functions { B(X +1| X ) : = 1 2 }, where

B(X +1| X ) = ( +1| )

£
(1 (X )) (S +1| 0 X ) + (X ) (S +1| 1 X )

¤ (5)

Let B(X ) be the value function for player �’s DP problem given his beliefs. By Bellman�’s

principle, the sequence of value functions { B : = 1 2 } can be obtained recursively using

backwards induction in the following Bellman equation:

B(X ) = max
{0 1}

©
B( X ) + ( )

ª
(6)

where B( X ) is the conditional choice value function

B( X ) B( X ) +

Z
B
+1(X +1 +1) ( +1)

B(X +1| X ) (7)

The best response function of player at period given beliefs B is the optimal decision rule of

this DP problem. This best response function can be represented using the following threshold

condition:

{ = 1} i
©

(0) (1) B(1 X ) B(0 X )
ª

(8)

The best response probability function (BRPF ) is a probabilistic representation of the best

response function. More precisely, it is the best response function integrated over the distribution

of . In this model, the BRPF is:

Pr( = 1|X ) =

Z
1
©

(0) (1) B(1 X ) B(0 X )
ª

( )

= ( B(1 X ) B(0 X ))
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where is the CDF of (0) (1). Therefore, under Assumptions MOD-1 to MOD-3 the actual

behavior of player , represented by the CCP function ( ), satises the following condition:

(X ) =
¡
B(1 X ) B(0 X )

¢
(9)

This equation summarizes all the restrictions that Assumptions MOD-1 to MOD-3 impose on

players�’ choice probabilities. The right hand side of equation (9) is the best response function of a

rational player. We use (B ) to represent the vector-value function { ( B(1 X) B(0 X)) :

X X}.

The concept of Markov Perfect Equilibrium (MPE) is completed with assumption �’Equil�’ (�’Equi-

librium Beliefs�’). Under this assumption, players�’ beliefs are in equilibrium, i.e., (X ) = (X )

for every pair period and every state X . A MPE can be described as a sequence of CCP vectors,

{P P : = 1 2 } such that for every player and time period , we have that

P = (P ) (10)

For the sake of notational simplicity, and with some abuse of notation, we omit in some expres-

sions the vector of state variables X as an argument of payo or belief functions.

2.3 Aradillas-Lopez and Tamer�’s approach in dynamic games

The purpose of this section is twofold. First, we want to describe the relationship between our paper

and Aradillas-Lopez and Tamer (2008). Second, we explain in some detail why their approach, while

useful for identication and estimation of static games, has very limited applicability to dynamic

games.

The static game of incomplete information in Aradillas-Tamer can be seen as specic case of

our framework. To see this, consider the nal period of the game in our model. At this last

period the decision problem facing the players is equivalent to that of a static game. At period

there is no future and the di erence between the conditional choice value functions is simply the

di erence between the conditional choice current prots, B (1) B (0), that is equal to (1 )

[ (1 0) (0 0)] + [ (1 1) (0 1)]. Therefore, the BRPF is:

= ((1 ) [ (1 0) (0 0)] + [ (1 1) (0 1)]) (11)

Aradillas and Tamer assume that players�’ payo s are submodular in players�’ decisions ( , ), i.e.,

for every value of the state variables X,

[ (1 0) (0 0)] [ (1 1) (0 1)] (12)

Under this assumption, and in the context of a parametrically specied model, they derive infor-

mative bounds around players�’ conditional choice probabilities when players are level-k rational,
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and show that the bounds become tighter as increases. For instance, without further restrictions

on beliefs (i.e., rationality of level 1), the threshold function (and thus player �’s conditional choice

probability) takes its largest possible value when beliefs are = 0, and it takes its smallest

possible value when beliefs are = 1. This result yields informative bounds on the period

choice probabilities of player :

( (1 0) (0 0)) ( (1 1) (0 1)) (13)

These bounds on conditional choice probabilities can be used to set identify the structural para-

meters in players�’ preferences.

In their setup, the monotonicity of players�’ payo s in the decisions of other players implies

monotonicity of players�’ best response probability functions (BRPF) in the beliefs about other

players actions. This type of monotonicity is very convenient in their approach, not only from the

perspective of identication, but also because it yields a very simple approach to calculate upper

and lower bounds on conditional choice probabilities. However, this property does not extend to

dynamic games, even the simpler ones. We now illustrate this issue.

Consider the dynamic game at some period smaller than . To obtain bounds on players�’

choice probabilities analogous to the ones obtained at the last period, we need to nd, for every value

of the state variables X, the smallest and largest feasible values of the best response ( B(1 X)

B(0 X)). That is, we need to minimize (and maximize) this best response with respect to beliefs

{ , +1, , }. Without making further assumptions, this best response function is not

monotonic in beliefs at every possible state. In fact, this monotonicity is only achieved under very

strong conditions not only on the payo function but also on the transition probability of the state

variables and on belief functions themselves.

Therefore, in a dynamic game, to nd the largest and smallest value of a best response (and

ultimately the bounds on choice probabilities) at periods , one needs to explicitly solve a non-

trivial optimization problem. In fact, the maximization (minimization) of the BRPF with respect

to beliefs is a extremely complex task. The main reason is that the best response probability

evaluated at a value of the state variables depends on beliefs at every period in the future and

at every possible value of the state variables in the future. Therefore, to nd bounds on best

responses we must solve an optimization problem with a dimension equal to the number of values

in the space of state variables times the number of future periods. This is because, in general,

the maximization (minimization) of a best response with respect to beliefs does not have a time-

recursive structure except under very special assumptions (see Aguirregabiria, 2008). For instance,

though (X ) = 0 maximizes the best response at the last period , in general the maximization

of a best response at period 1 is not achieved setting (X ) = 0 for any value of X . More

generally, the beliefs from period to that optimize best responses at are not equal to the
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beliefs from period to that optimize best responses at 1. So at each point in time we need

to re-optimize with respect to beliefs about strategies at every period in the future. That is, while

the optimization of expected and discounted payo s has the well-known time-recursive structure,

the maximization (minimization) of the BRPFs does not.

In summary, the extension of Aradillas-Lopez and Tamer�’s bounds approach to dynamic games

su ers of substantial computational problems. Here we propose an alternative approach.

3 Identication

3.1 Conditions on Data Generating Process

Suppose that the researcher has panel data with realizations of the game over multiple locations and

time periods. Using the terminology in empirical applications of games in Industrial Organization,

we employ the term local market to refer to a location. We use the letter to index local markets.

The researcher observes a random sample of local markets with information on {

} for every player {1 2} and every period {1 2 }. Note that represents

the number of periods in the data, while is the time horizon of the dynamic game. If the game

has a nite horizon ( ), then we assume that the dataset includes all the periods in the game

such that = . For an innite horizon game, obviously we have that = . We

assume that is small and the number of local markets, , is large and for the identication

results in this section we assume that is innite. Since the main text deals with the nite horizon

game, we use for the rest of the paper to represent both the horizon of the game and the number

of periods in the data. We deal with the innite horizon game in the Appendix.

In our basic framework, we assume that the only unobservable variables for the researcher

are the private information shocks { } which are assumed to be independently and identically

distributed across markets and over time. However, in section 3.5 we extend this basic framework

to incorporate time-invariant, local market-specic unobservables for the econometrician which are

common knowledge to players.

We want to use this sample to estimate the model structural �’parameters�’ or functions: i.e.,

payo s { }; transition probabilities { }; distribution of unobservables ; and beliefs

{ }. For primitives other than players�’ beliefs, we make some assumptions that are standard in

previous research on identication of static games and of dynamic structural models with rational

or equilibrium beliefs.7 We assume that the distribution of the unobservables, , is known to the

researcher up to a scale parameter. We study identication of the payo functions up to scale,

but for notational convenience we omit the scale parameter.8 Following the standard approach

7See Bajari and Hong (2005), or Bajari et al (2010), among others.
8Based on results in Matzkin (1992 and 1994), Aguirregabiria (2010) provides conditions for the nonparametric

identication of the distribution of the unobservables in single-agent dynamic structural models. Those conditions
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in dynamic decision models, we assume that the discount factors, , is known to the researcher.

Finally, note that the transition probability functions and are nonparametrically identied.9

Therefore, we concentrate on the identication of the payo functions and belief function

and assume that { } are known.

Let 0 (X) be the true conditional probability function Pr( = 1|X = X) that represents

the actual behavior of player in market at period . Let 0 (X) be the probability function

with player �’s �’true�’ beliefs in market at period . And let 0 { 0 : = 1 2; = 1 2 } be

the true payo functions in the population. Assumption ID-1 summarizes our conditions on the

Data Generating Process.

ASSUMPTION ID-1. (A) For every player , 0 is the best response of player given his beliefs
0 and the payo functions 0. (B) Players have the same beliefs in markets with the same

observable characteristics X, i.e., for every market with X = X, (X) = (X).

Assumption ID-1 (A) establishes that players are rational in the sense that their actual behavior

is the best response given their beliefs. Assumption ID-1 (B) establishes that a player should have

the same beliefs in two markets with the same state variables and at the same period of time. This

assumption is common in the literature of estimation of games under the restriction of equilibrium

beliefs (e.g., Bajari, Benkard, and Levin, 2007, or Bajari et al, 2010). Note that beliefs can vary

across markets according to the state variables in X . Note that this assumption allows players

having di erent belief functions in di erent markets as long as these markets have di erent values

of time-invariant observable exogenous characteristics. That is, we can distinguish in our sample

di erent �“market types�” according to some time-invariant observable characteristics. If the number

of market types is small (more precisely, if it does not increase with ), then we can allow players�’

beliefs to be completely di erent in each market type. It is also important to note that when we

incorporate time-invariant unobserved market heterogeneity in our model, in section 3.5., we can

allow for di erent belief functions for each market type, where now market types can be dened in

terms of unobservables.

In dynamic games where beliefs are in equilibrium, Assumption ID-1 e ectively allows the re-

searcher to identify player beliefs. Under this assumption, conditional choice probabilities are iden-

tied, and if beliefs are in equilibrium, these beliefs are equal to the conditional choice probabilities.

When beliefs are not in equilibrium we can not identify beliefs in this way. However, assumption

ID-1 still implies that CCPs are identied from the data. This assumption implies that for any

player , any period , and any value ofX X , we have that 0 (X) = 0(X) = ( |X = X),

and this conditional expectation can be estimated consistently using data on { ,X }. This in

can be applied to identify the distribution of the unobservables in our model.
9Note that ( 0| X) = Pr( +1 =

0| = X = X) and (W
0
|W) = Pr(W +1 =W

0|W =W).
We can estimate consistently these conditional distributions using, for intance, kernel methods.
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turn, as we will show, is important for the identication of beliefs themselves.

3.2 Identication with equilibrium beliefs

For notational simplicity, we omit the market subindex for the rest of this section. The model

restrictions are summarized in the best response conditions 0(X) = ( B0(1 X) B0(0 X)).

Given these conditions, we want to identify payo s 0 and beliefs 0. It is simple to verify that,

without further restriction, the order condition for identication is not satised. Suppose that the

state space X is nite, and |X | represents its dimension or number of elements in the set. For each

player and period , the model imposes |X | restrictions but it has 5|X | parameters or unknowns,

i.e., 4|X | unknowns in the payo function ( X ), and |X | unknowns in the beliefs function

(X ).

It is important to note that the order condition of identication does not hold even if we assume

that beliefs are in equilibrium and make the standard "normalization" assumption in the payo

function (i.e., (0 X ) = 0 for every ( X )). These assumptions imply 3|X | additional

restrictions, which are not enough to identify the payo function. We need to impose at least

|X | additional restrictions to obtain identication. Therefore, even if we are willing to assume

equilibrium beliefs, we still have to impose restrictions on the payo function in order to get

identication.

In this paper, we show that some nonparametric restrictions commonly used to get identication

of payo s under the assumption of equilibrium beliefs, provide over-identifying restrictions that can

be used to test the hypothesis of equilibrium beliefs and to relax this assumption.

Assumptions ID-2 and ID-2�’ present two alternative sets of nonparametric restrictions on the

payo function that have been commonly used for identication in games with equilibrium beliefs.10

ASSUMPTION ID-2 (�’Normalization�’ and Exclusion Restrictions):11 The one-period payo func-

tion : (i) is �’normalized�’ to zero for = 0, i.e., (0 X ) = 0 for any value of ( X );

and (ii) it does not depend on the stock variable of the other player, .

( ) =
�˜ ( ) if = 1

0 if = 0
(14)

where �˜ is a real-valued function.

ASSUMPTION ID-2�’ (Additivity): The one-period payo function is:

( X ) = ([ + ] [ + ] ) ( ) (15)

10See Aguirregabiria and Mira (2002), Pesendorfer and Schmidt-Dengler (2003), Bajari and Hong (2005), Bajari,
Hong, and Ryan (2010), and Bajari et al. (2011), among others.
11 It is relevant to point out that, in contrast to static decision problems, this normalization is not innocuous in

dynamic decision models and it has implications for the predictions of some counterfactual experiments such as those
that involve an hypothetical change in the transition probabilities of the state variables. See Aguirregabiria (2010)
for an study of this issue in the context of single-agent dynamic decision models.
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where and are real-valued functions with the �’normalization�’ conditions (0 ) = 0,

and (min ) = 0, where min is the minimum possible value of the argument [ + ]

[ + ].

Either the exclusion restriction in assumption ID-2 or the additivity condition in ID-2�’ are

common in empirical applications of dynamic games. For instance, in the dynamic game of market

entry and exit of our Example in section 2, assumption ID-2 implies that the prot of a non active

rm is zero, and it depends on the own experience but not on the experience of the competitor.

An example of a model that satises assumption ID-2�’ is a dynamic game of quality competition

and Bertrand price competition between di erentiated product rms (e.g., Pakes and McGuire,

1994) where a rm�’s revenue depends on the di erence between the own quality and the quality

of the competitor, and production costs depend on the own quality but not on the quality of

the competitor. We have also a similar structure in dynamic games of Cournot competition with

capacity constraints (e.g., Besanko and Doraszelski, 2004), or in the dynamic game of retail store

competition that we present and estimate in section 5.

The restrictions in assumptions ID-2 or ID-2�’ are su cient to identify the payo function in a

dynamic game where beliefs are assumed in equilibrium and the support of the vector of state vari-

ables contains at least three points, |S| 3. To see this, remember that the number of unknowns

in the model is 5|X |. Under the assumption of equilibrium beliefs, the number of restrictions is

2|X |, i.e., |X | restrictions from the best response conditions, = ( ), and |X | additional

restrictions from the assumption of equilibrium beliefs, = . Therefore, identication re-

quires 3|X | restrictions on the payo function. Let us check the number of restrictions imposed

by assumption ID-2. The �’normalization�’ condition (i) imposes the following 2|X | restrictions:

(0 X) = 0 for any value of ( X). And the �’exclusion restriction�’ in condition (ii) implies

the 2|W| |S| (|S| 1) restrictions: (1 ) = (1 0 ) for any ( )

and any 6= . In total, assumption ID-2 imposes 2|X |+ 2|W| |S| (|S| 1) restrictions on the

payo function. The order condition is satised if the number of restrictions is greater or equal

than 3|X |, and it is simple to verify that this condition is satised if |S| 2. Now, let us check

for identication under assumption ID-2�’. Under this assumption the number of unknowns in the

payo function is 2|W| |S| from the �‘revenue�‘ function , and |W| |S| from the cost function .

Since the unrestricted payo function ( X) has 4|X | unknowns, this assumption imposes

4|X | 3|W| |S| restrictions on the payo function. It is simple verify that |S| 3 implies that the

number of restrictions is greater than 3|X | and the order condition is satised.

However, assumptions ID-2 or ID-2�’ are not enough for the identication of our model where

beliefs may be biased. Before we introduce additional restrictions that provide identication of

payo s and beliefs in our model, we want to show that without further restrictions we can test the

null hypothesis of equilibrium beliefs.
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For the sake of notational simplicity, we omit the superindex 0 that indicates the "true" value

of functions in the population under study.

3.3 Test of unbiased beliefs

PROPOSITION 1: Suppose that: (i) the transition probability of the endogenous state variables,

and , is such that ( +1| ) = ( +1| ); and (ii) a player�’s expected

payo s at any period 0 are unbiased. Then, under assumptions ID-1 and ID-2(A) (or under

assumptions ID-1 and ID-2(B)) the null hypothesis of unbiased beliefs at period is testable.

Proof: In the Appendix.

The test of unbiased beliefs implied by Proposition 1 is the following. Let X , X , X , and X

be four di erent values of the vectorX such that they have exactly the same value of the component

( ), but they can have di erent values for the element , say , , ,and . Under the

conditions of Proposition 1, we have that the following equation should hold:

(X ) (X )

(X ) (X )
=

(X ) (X )

(X ) (X )
(16)

where (X) 1( (X)). Given that the distribution function is invertible and it is known

(up to scale) to the researcher, the function ( ) is identied everywhere in the support of X.

Therefore, the left-hand-side of equation (A.2.2) is identied. This expression shows that under

the conditions of Proposition 1 there is a function of beliefs that is identied, without having to

impose the assumption of equilibrium beliefs. The right-hand-side of equation (A.2.2) is a function

of beliefs only, not of preferences, and it is identied.

This result provides a nonparametric test for the null hypothesis of equilibrium beliefs. Dene

the function:

(X X X X )

½
(X ) (X )

(X ) (X )

¾ ½
(X ) (X )

(X ) (X )

¾
(17)

It is clear that we can nonparametrically identify . If beliefs are in equilibrium, should be

equal to zero. In section 4, we describe a test of the null hypothesis of unbiased beliefs based on

this result.

3.4 Identication of payo and belief functions

We now present a restriction on beliefs that, together with assumptions ID-1 and ID-2 (or ID-2�’),

is su cient to separately identify payo s and beliefs in the model.

ASSUMPTION ID-3 (No strategic uncertainty at two �’extreme�’ points): There are two values in

the support of the distribution of , say and , such that: (i) conditional on either of these

values the probability distribution of ( ) has positive probability on its whole support; and (ii)
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for every value of ( ) beliefs are in equilibrium, i.e., ( ) = ( ), and

( ) = ( ).

The intuition behind this assumption is simple. For some values of the opponent�’s stock vari-

able (e.g., very large or very small values) strategic uncertainty disappears and beliefs about the

opponent�’s choice probabilities become unbiased. For instance, this might be just because for these

values of the stock variable the opponent�’s choice becomes certain, i.e., his choice probability gets

arbitrarily close to zero or one. But the conditions for the absence of strategic uncertainty in

assumption ID-3 are more general.

The following Proposition summarizes our main identication result.

PROPOSITION 2: Under assumptions ID-1, ID-2, and ID-3 the payo functions { for any

} and the beliefs functions { for any } are nonparametrically identied.

Proof. In the Appendix.

Our proof of Proposition 2 is constructive and it provides closed-form expressions of the unknown

parameters (payo s and beliefs) in terms of the identied CCP functions. For the description of

these formulas, it is useful to introduce the concepts of integrated value function and continuation

value function.12 The integrated value function is dened as ¯B(X )

Z
B(X ) ( ).

The continuation value function provides the expected and discounted value of future payo s given

future beliefs, current state, and current choices of both players. It is dened as ( X )
P
X +1

¯B
+1(X +1) (X +1| X ). The integrated Bellman equation implies the following

recursive relationship between integrated and continuation value functions:

¯B(X ) =

Z
max
{0 1}

©
B( X ) + ( )

ª
( ) (18)

where B( X ) = (1 (X )) [ ( 0 X ) + ( 0 X )] + (X ) [ ( 1 X ) + ( 1 X )].

If { (0) (1)} have an independent double exponential distribution, this integrated Bellman

equation becomes:
¯B(X ) = B(0 X ) ln (1 (X )) (19)

and (X ) = exp{ B(1 X ) B(0 X )} [1 + exp{ B(1 X ) B(0 X )}].

Proposition 2 shows that we can identify payo and belief functions using the following recursive

procedure. We omit the the vector of state variables X as an argument, and use superindexes

and to indicate functions evaluated at X ( ) and X ( ), respectively.

To identify payo and beliefs functions at every period , we start at the last period = and

12Appendix [A.1] provides more details on these two functions. See also Rust (1994).
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apply the following recursive formulas, in this order: (i) the payo function,

e (1) e (0) =

h
(1 ) e (0) e (1)

i h
(1 ) e (0) + e (1)

i

e (0) = e (0)
h

+ e (1) e (0)
i

e (1) = + e (0)
h

+ e (1) e (0)
i

(20)

where e ( X) (1 X) (0 X); (ii) the beliefs function,

=
e (0) e (0)

e (1) e (0) + e (1) e (0)
; (21)

(iii) integrated value function,
¯B = B(0) + ln (1 )

= [(1 ) (0 0) + (0 1)] ln (1 ) ;
(22)

and (iv) previous period continuation value function, 1( X)
P
X0 ¯B(X0) 1(X

0| X).

To initilize the backwards induction procedure at period , we take into account that the continu-

ation values at the last period are zero, i.e., = 0.

**** SOME DISCUSSION / INTUITION OF THESE FORMULAS ****

3.5 Extensions

PROPOSITION 3 (Innite horizon dynamic game): If the game has innite horizon and all the

functions (payo , transition probability, and beliefs) are constant over time, then under assumptions

ID-1, ID-2, and ID-3 the payo function and the beliefs function are nonparametrically

identied.

Proof. In the Appendix.

PROPOSITION 4 (Finite mixture, time-invariant, unobserved heterogeneity).

4 Estimation and Inference

We begin this section by presenting a simple nonparametric test of the null hypothesis of equilibrium

beliefs. Sections 4.2 and 4.3 deal with estimation. Our proof of identication above suggests

a method for the estimation of the just-identied nonparametric model. Section 4.2 provides a

detailed description of that estimation method. In most empirical applications, the specication of

the payo function involves parametric restrictions. Therefore, we extend the estimation method to

deal with parametric models. Finally, for parametric models, we describe how the two-step method

can be extended recursively to generate a sequence of estimators with better statistical properties.
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4.1 Test of Equilibrium Beliefs

In principle, we could use a standard Lagrange Multiplier (LM) or Score test of the null hypothesis

of equilibrium beliefs. That test is based on the constrained maximum likelihood estimation (MLE)

of structural parameters and beliefs. Let be the vector of structural parameters in the payo

function. Dene the log-likelihood function:

( P)
X

=1

X

=1

2X

=1

log ( P(X ))+(1 ) log(1 ( P(X ))) (23)

The constrained MLE is dened as a vector (�ˆ �ˆP ) such that:

(�ˆ �ˆP ) = argmax
( P)

( P)

subject to: P = ( P( ))
(24)

We want to test the null hypothesis P = ( P( )), that consists of 2|X | constrains on ( P). The

standard LM statistic for testing this null hypothesis is:

=
(�ˆ �ˆP )

( P)0

"
2 (�ˆ �ˆP )

( P) ( P)0

# 1
(�ˆ �ˆP )

( P)
(25)

Under the null hypothesis, this statistic is asymptotically distributed as a chi-square with 2|X |

degrees of freedom.

This LM test has at least two important limitations. A rst limitation is its implementation.

Maximum likelihood estimation of dynamic games is computationally very demanding both because

the high dimension of the state space and because of the existence of multiple equilibria. Second,

this is a general specication test. The null hypothesis is not only that beliefs are in equilibrium

but also that the parametric specication of preferences and the distribution of unobservables is

correct. We would like to have a procedure that specically tests for the equilibrium beliefs and

not for other specication assumptions of the model.

The test that we propose is the following. Let X , X , X , and X be four di erent values

of the vector X that have the same value of the component ( ) and di erent values for the

element , say , , ,and , such that 6= and 6= . Dene the function 0:

(X X X X )

½
(X ) (X )

(X ) (X )

¾ ½
(X ) (X )

(X ) (X )

¾
(26)

As shown in section 3, under Assumptions 1-4, if player has rational beliefs then (X X X

X ) = 0 for every value of (X X X X ). Therefore, testing (X X X X ) = 0 implies

testing the null hypothesis of rational beliefs (and Assumptions 1 to 4).

Let be the number of all possible combinations of four di erent values of with 6=

and 6= . We index these values by . Let �˜X( ) be the quadruplet when the values of and
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are the ones in observation ( ): i.e., �˜X( ) = (X( ) X
( )

X
( )

X
( )
) = ([

( )
],

[
( )

] [
( )

] [
( )

]). Under the hypothesis of equilibrium beliefs,

we have that ( (�˜X
( )
)) = 0 for every , where the expectation ( ) is taken over the distribution

of ( ). This is exactly the null hypothesis that we test:

0 :
³ ³

�˜X
( )
´´
= 0 for every quadruple (27)

Let �ˆ ( ) be the estimator of ( ) that we obtain when we replace and by nonparametric

estimates of these CCP functions. Dene the statistic
( )
as the sample mean of �ˆ

³
�˜X
( )
´
, i.e.,

( )
= ( ) 1

P
=1

P
=1
�ˆ
³
�˜X
( )
´
. Then, dene the statistic:

�ˆ =
P

=1

Ã
( )

(
( )
)

!2
(28)

where (
( )
) is the standard error of

( )
, that we can obtain using nonparametric bootstrap.

Under the null hypothesis, �ˆ is asymptotically distributed as a Chi-square with degrees of

freedom.

4.2 Estimation with nonparametric payo function

For notational simplicity, unless it is strictly necessary, I omit the vector of state variables X as an

argument in functions.

Step 1: Nonparametric estimation of CCPs, b , for every player, time period, and state X, and (if
needed) of the transition probabilities and . We also construct b = 1( b ).

Step 2: Recursive estimation of preferences and beliefs. We start at the last period , where the

continuation function is zero, and apply recursively the following formulas to estimate payo and

beliefs functions t every period : (i) the payo function,

b =

b (1 b )
be (0) b be (1)

¸
b (1 b )

be (0) + b be (1)
¸

b b

be (0) = b be (0) b +
be (1) be (0)

¸

be (1) = b + be (0)

(29)

(ii) the beliefs function,

b =
b be (0)

be (0)
be (1) be (0) +

be (1) be (0)
; (30)
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(iii) integrated value function,

bB =
h
(1 b ) bB(0 0) + b bB(0 1)

i
ln
³
1 b

´
; (31)

and (iv) previous period continuation value function, bB 1( X)
P
X0
bB(X0) b 1(X

0| X).

This estimator is consistent and asymptotically normal. The derivation of the asymptotic

variance is cumbersome. In our empirical application we use the bootstrap method to obtain

standard errors and condence intervals for the estimates.

4.3 Estimation with parametric payo function

In most applications, we assume a parametric specication of the payo function. A very common

class of parametric specications is the linear in parameters model:

e ( X ) = ( X ) (32)

where ( X ) is a 1 × vector of known functions, and is a × 1 vector of unknown

structural parameters in player �’s payo function. Let be { : = 1 2}. For instance, in the

dynamic game of market entry and exit in the Example of section 2, the prot function in equation

(2) can be written as ( ) = ( ) , where the vector of parameters is

( , , 0 , 1 , )0 and

( ) = { (1 ), , 1, exp{ }, 1{ = 0} } (33)

Given this specication, the model implies the following relationship:

(X) = B(X) (34)

where B(X) (1 (X)) (0 X) + (X) (1 X), and is the true vector of parameters

in the population.

To estimate we propose a simple three steps method. The rst two-steps are the same as for

the nonparametric model.

Step 3: Given the estimates from step 2, we can apply a pseudo maximum likelihood method in

the spirit of Aguirregabiria and Mira (2002, 2007) to estimate the structural parameters 0. Dene

the pseudo likelihood function:

( B P)
X

=1

X

=1

2X

=1

log
³
�˜B P + �˜B P

´
+(1 ) log

³
1

³
�˜B P + �˜B P

´´

�˜B P is the sum of expected and discounted stream of { 0( 0 X 0) : 0 = , +1, , } given that

player behaves according to the choice probabilities 0( ) in P, and player behaves according
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to the probabilities 0( ) in B. Similarly, �˜B P is the sum of expected and discounted stream of

{ ( 0(X 0)) : 0 = , + 1, , }, and for the logit model ( 0(X 0)) = ln 0(X 0) where

is Euler�’s constant. From steps 1 and 2, we have consistent estimates of CCPs, �ˆP0, and beliefs,
�ˆB0. Then, a consistent pseudo maximum likelihood estimator of is dened as the value �ˆ

(1)

that maximizes ( �ˆB0 �ˆP
0
). Note that the sample criterion function ( �ˆB0 �ˆP

0
) is just the log

likelihood function of a standard logit model with the restriction that the parameter of variable

�˜B P is equal to 1. The estimator is root-M consistent and asymptotically normal.

In fact, steps 1 to 3 can be applied recursively to improve the statistical properties of our esti-

mators. Given the parametric estimator of the payo function in step 3, �ˆ(1)( X ) = ( X )

�ˆ(1), that is more precise than the original nonparametric estimator, we can obtain a more precise

estimator of players�’ CCPs. The new estimator of CCPs is based on the best response condition

(X) =
³
�˜B P(X) 0 + �˜B P(X)

´
and it is equal to:

�ˆ(1)(X) =

µ
�˜
�ˆB0 �ˆP

0

(X) �ˆ
(1)
+ �˜

�ˆB0 �ˆP
0

(X)

¶
(35)

where �ˆB0 and �ˆP0 represent the initial nonparametric estimators of beliefs and CCPs, respectively,

and �ˆ
1
is the pseudo maximum likelihood estimator of the parameters in the payo function. And

given this new estimator of CCPs we can also obtain a new estimator of beliefs. The new estimator

is:

b(1) =
b(1) be

(1)
(0)

be
(1)

(0)

be
(1)
(1) be

(1)
(0)

¸
+

be
(1)

(1)
be
(1)

(0)

¸ ; (36)

where �ˆ(1), �ˆ(1), be
(1)
, and be

(1)

, are the new estimates of CCPs, payo s and continuation values.

Given �ˆB(1) and �ˆP(1) we can apply step 3 again to obtain a new vector of estimates of the structural

parameters, b
(2)
. We can apply this procedure recursively to update CCPs, beliefs, and structural

parameters and to obtain a sequence of estimators {�ˆ
( ) �ˆB( ) �ˆP( ) : 1}.

4.4 Estimation with semiparametric beliefs

So far we have considered a fully nonparametric specication of players beliefs. In some applications,

the researcher may be willing to consider a more restrictive class of players�’ beliefs as long as it is

exible enough and it includes equilibrium beliefs as a specic case. Here we present that type of

specication and describe the estimation of this model.

We assume that player �’s beliefs about the behavior of player has the following form:

(X) =

X

X0 X

(X0)

µ
X0 X

(X)

¶

X

X0 X

µ
X0 X

(X)

¶ (37)
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where ( ) is a Kernel function (e.g., the density of the standard normal), and (X) 0 is a

bandwidth function. The main idea behind this specication is that the potential biases in players�’

beliefs come from the aggregation across di erent states. This specication includes equilibrium

beliefs as a particular case. When (X) = 0 for any value of X, we have that (X) = (X)

at every state X. Otherwise, when (X) 0, we have that (X) 6= (X) and players�’ beliefs

are biased. The bandwidth is a measure of how noisy or biased a player�’s beliefs are.

If the bandwidth function ( ) is nonparametrically specied, then the previous specication

of beliefs is fully nonparametric. We impose some restrictions on this bandwidth function. The

main idea behind our assumptions is that the bias in the belief (X) increases with the variance

of the binary variable conditional on X , i.e., with (X)(1 (X)). This variance goes to

zero as (X) goes to zero or goes to one, and it is concave with respect to (X). We consider

the following three-parameters function:

(X) = 0 (X)
1

(1 (X))
2

(38)

where 0 0, 1 [0 1], and 2 [0 1], are unknown parameters for the researcher.

5 Monte Carlo Experiments

6 Empirical Application

We illustrate our model and methods with an application of a dynamic game of store location.

There has been recently a signicant interest in the estimation of game theoretic models of market

entry and store location by retail rms. Most studies have assumed static games: see Mazzeo

(2002), Seim (2006), Jia (2008), Nishida (2008), and Zhu and Singh (2009), among others. Holmes

(2010) estimates a single-agent dynamic model of store location by Wal-Mart. Beresteanu and

Ellickson (2005), Walrath (2008), and Suzuki (2010) propose and estimate dynamic games of store

location.

We study store location of McDonalds (MD) and Burger King (BK) using data for the United

Kingdom during the period 1991-1995. We divide the UK in local markets (districts) and study

these companies�’ decision of how many stores, if any, to operate in each local market. The prots

of a store in a market depends on local demand and cost conditions and on the degree of compe-

tition from other rms�’ stores and from stores of the same chain. There are sunk costs associated

with opening a new store, and therefore this decision has implications for future prots. Firms

are forward-looking and maximize the value of expected and discounted prots. Each rm has

uncertainty about future demand and cost conditions in local markets. Firms also have uncertainty

about the current and future behavior of the competitor. In this context, the standard assumption
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is that rms have rational expectations about other rms�’ strategies, and that these strategies

constitute a Markov Perfect Equilibrium. Here we relax this assumption. The main question that

we want to analyze in this empirical application is whether the beliefs of each of these companies

about the store location strategy of the competitor are consistent with the actual behavior of the

competitor.

6.1 Data and descriptive evidence

The dataset was collected by Otto Toivanen and Michael Waterson, who have used it in their paper

Toivanen and Waterson (2005).13 Our working sample is a ve year panel that tracks 422 local

authority districts (local markets), including the information on the stock and ow of MD and

BK stores into each district. It also contains socio-economic variables at the district level such

as population, density, age distribution, average rent, income per capita, local retail taxes, and

distance to the UK headquarters of each of the rms. The local authority district is the smallest

unit of local government in the UK, and generally consists of a city or a town sometimes with a

surrounding rural area. There are almost 500 local authority districts in Great Britain. Our working

sample of 422 districts does not include those that belong to Greater London.14 The median district

in our sample has an area of 300 square kilometers and a population of 95,000 people.15 Table 2

presents descriptive statistics for socio-economic and geographic characteristics of our sample of

local authority districts.

13We want to thank Otto Toivanen and Michael Waterson for generously sharing their data with us.
14The reason we exclude from our sample the districts in Greater London is that they do not satisfy the standard

criteria of isolated geographic markets.
15As a denition of geographic market for the fast food retail industry, the district is perhaps a bit wide. However, an

advantage of using district as denition of local market is that most of the markets in our sample are geographically
isolated. Most districts contain a single urban area. And, in contrast to North America where many fast food
restaurants are in transit locations, in UK these restaurants are mainly located in the centers of urban areas.
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Table 2
Descriptive Statistics on Local Markets (Year 1991)
422 local authority districts (excluding Greater London districts)

Variable Median Std. Dev. Pctile 5% Pctile 95%

Area (thousand square km) 0.30 0.73 0.03 1.67

Population (thousands) 94.85 93.04 37.10 280.50

Children: Age 5-14 (%) 12.43 1.00 10.74 14.07

Young: 15-29 (%) 21.24 2.46 17.80 25.17

Pensioners: 65-74 (%) 9.01 1.50 6.89 11.82

GDP per capita (thousand £) 92.00 12.14 74.40 112.70

Claimants of UB / Population ratio (%) 2.75 1.27 1.24 5.11

Avg. Weekly Rent per dwelling (£) 25.31 10.61 19.11 35.07

Council tax (thousand £) 0.24 0.05 0.11 0.31

Number of BK stores 0.00 0.62 0.00 1.00

Number of MD stores 1.00 1.16 0.00 3.00

Table 3 presents descriptive statistics on the evolution of the number of stores for the two rms.

Toivanen and Waterson present a detailed discussion of why the retail chain fast food hamburger

industry in the UK during this period can be assumed as a duopoly of BK and MD. In 1990, MD

had more than three times the number of stores of BK, and it was active in more than twice the

number of local markets than BK. Conditional on being active in a local market, MD had also

signicantly more stores per market than BK. These di erences between MD and BK have not

declined signicantly over the period 1991-1995. While BK has entered in more new local markets

than MD (69 new markets for BK and 48 new markets for MD), MD has opened more stores (143

new stores for BK and 166 new stores for MD).
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Table 3
Evolution of the Number of Stores

422 local authority districts (excluding Greater London districts)

Burger King
1990 1991 1992 1993 1994 1995

#Markets with Stores 71 98 104 118 131 150

Change in #Markets with Stores - 17 6 14 13 19

# of Stores 79 115 128 153 181 222

Change in # of Stores - 36 13 25 28 41

Mean #Stores per Market 1.11 1.17 1.23 1.30 1.38 1.48
(Conditional on #Stores 0)

McDonalds
1990 1991 1992 1993 1994 1995

#Markets with Stores 206 213 220 237 248 254

Change in #Markets with Stores 7 7 17 11 6

# of Stores 281 316 344 382 421 447

Change in # of Stores 35 28 38 39 26

Mean #Stores per Market 1.36 1.49 1.56 1.61 1.70 1.76
(Conditional on #Stores 0)

Table 4 presents the annual transition probabilities of market structure in local markets as

described by the number of stores of the two rms. According to this transition matrix, opening a

new store is an irreversible decision, i.e., no store closings are observed during this sample period. In

Britain during our sample period, the fast food hamburger industry was still young and expanding,

as shown by the large proportion of observations/local markets without stores (41 6%). Although

there is signicant persistence in every state, the less persistent market structures are those where

BK is the leader. For instance, if the state is " = 1 & = 0", there is a 20% probability that

the next year MD opens at least one store in the market. Similarly, when the state is " = 2 &

= 1", the chances that MD opens one more store the next year are 31%.
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Table 4
Transition Probability Matrix for Market Structure

Annual Transitions. Market structure: BK=x & MD=y, where x and y are number of stores

%
Market Structure at t+1

BK=0 BK=0 BK=0 BK=1 BK=1 BK=1 BK 2 BK 2 BK 2
MD=0 MD=1 MD 2 MD=0 MD=1 MD 2 MD=0 MD=1 MD 2

BK=0 &MD=0 95.1 3.6 0.2 1.0 - - - 0.1 -

BK=0 &MD=1 - 87.2 4.2 - 7.4 1.0 - - 1.4

BK=0 &MD 2 - - 82.7 - - 15.8 - - 1.4

BK=1 &MD=0 - - - 76.0 18.0 2.0 4.0 - -

BK=1 &MD=1 - - - - 87.1 8.1 - 3.3 1.4

BK=1 &MD 2 - - - - - 86.5 - - 13.5

BK 2 &MD=0 - - - - - - 84.6 15.4 -

BK 2 &MD=1 - - - - - - - 69.0 31.0

BK 2 &MD 2 - - - - - - - - 100.0

Frequency 41.6 23.3 6.6 2.2 10.9 8.8 0.6 1.4 4.5

Table 5 presents estimates of reduced form Probit models for the decision to open a new store.

We obtain separate estimates for MD and BK. Our main interest is in the estimation of the e ect

of the previous year�’s number of stores (own stores and competitor�’s stores) on the probability

of opening a new store. We include as control variables population, GDP per capita, population

density, proportion of population 5-14, proportion population 15-29, average rent, and proportion of

claimants of unemployment benets. To control for unobserved local market heterogeneity we also

present two xed e ects estimations, one with county xed e ects and other with local district xed

e ects. We only report estimates of the marginal e ects associated with the dummy variables that

represent previous year number of stores. The main empirical result from table 5 is that, regardless

of the set of control variables that we use, the own number of stores has a strong negative e ect on

the probability of opening a new store but the e ect of the competitor�’s number of stores is either
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negligible or even positive. This nding is very robust to di erent specications of the reduced

form model and it is analogous to the result from the reduced form specications in Toivanen and

Waterson�’s paper. Controlling for unobserved heterogeneity using xed e ects reveals that the

estimation without xed e ects su ers from a signicant upward bias in the marginal e ect of the

number of own stores. However, the estimated marginal e ect of the number of competitor�’s stores

barely changes. The estimates show also a certain asymmetry between the two rms: the absence

of response to the competitor�’s number of stores is more clear for BK than for MD. In particular,

when BK has three stores in the market there is a signicant reduction in MD�’s probability of

opening a new store. That negative e ect does not appear in the reduced form probit for BK.

This empirical evidence cannot be explained by a standard static model of store location by

rms that sell substitute products. Here we explore three, non-mutually exclusive, explanations:

(a) spillover e ects; (b) forward looking behavior (dynamic game); and (c) biased beliefs about the

behavior of the competitor.

(a) Spillover e ects. The competitor�’s number of stores may have a positive spillover e ect on the

prot of a rm. There are several possible sources of this spillover e ect. For example one rm

may infer from another�’s decision to open a store in a particular market that market conditions

are favorable (informational spillovers). Alternatively, one rm may benet from another rm�’s

entry through cost reductions, or from product expansion through advertising. Since we do not

have price and quantity data at the level of local markets, we do not try to identify the source

of the spillover e ect. We include this e ect in our specication of demand such that the natural

interpretation in the context of our model is a product expansion coming from the advertising e ect

of retail stores. However, this should be interpreted as a shortcut or �’reduced form�’ specication of

di erent possible spillover e ects.
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Table 5
Reduced Form Probits for the Decision to Open a Store

Estimated Marginal E ects1 ( ( ) when dummy goes from 0 to 1)
Burger King McDonalds

Explanatory Variable No FE County FE District FE No FE County FE District FE
Own number

of stores at t-1
Dummy: Own #stores = 1 -0.021 -0.036 -0.885 -0.035 -0.045 -0.550

(0.005) (0.007) (0.063) (0.010) (0.012) (0.056)
Dummy: Own #stores = 2 -0.023 -0.030 -0.210 -0.047 -0.060 -0.757

(0.004) (0.005) (0.085) (0.006) (0.008) (0.041)
Dummy: Own #stores 3 -0.019 -0.027 -0.056 -0.043 -0.053 -0.816

(0.005) (0.005) (0.036) (0.006) (0.008) (0.038)

Competitor�’s number
of stores at t-1

Dummy: Comp.�’s #stores = 1 0.032 0.037 -0.025 0.020 0.032 0.052
(0.011) (0.014) (0.055) (0.013) (0.018) (0.073)

Dummy: Comp.�’s #stores = 2 0.045 0.052 -0.017 0.041 0.076 -0.007
(0.023) (0.029) (0.031) (0.029) (0.046) (0.093)

Dummy: Comp.�’s #stores 3 0.089 0.101 0.011 -0.041 -0.050 -0.104
(0.048) (0.059) (0.084) (0.007) (0.009) (0.020)

Pred. Prob. Y=1 at mean X 0.024 0.027 0.014 0.045 0.054 0.085

Time dummies YES YES YES YES YES YES
Control variables2 YES YES YES YES YES YES

County Fixed E ects NO YES NO NO YES NO
District Fixed E ects NO NO YES NO NO YES

Number of Observations3 2110 1715 535 2110 1855 640
Number of Local Districts3 422 343 107 422 371 128

log likelihood -371.89 -340.26 -110.54 -467.46 -449.02 -198.50
Pseudo R-square 0.229 0.252 0.624 0.159 0.161 0.441

Note 1: Estimated Marginal E ects are evaluated at the mean value of the rest of the explanatory variables.

Note 2: Every estimation includes as control variables log of population, log of GDP per capita, log of population density,

proportion population 5-14, proportion population 15-29, average rent, and proportion of claimants of unemployment benets.

Note 3: Fixed e ects estimations do not include districts for which the dependent variable does not have enough time variation.

(b) Forward looking behavior. Opening a store is a partly irreversible decision that involves a

signicant sunk costs. Therefore, it is reasonable to consider that rms are forward looking when

they make this decision. Moreover, dynamic strategic e ects may help explain the apparent lack

of competitive e ects when we look at these decisions from the point of view of a static model of
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entry. Suppose that rms anticipate, with some uncertainty, the total number of hamburger stores

that a local market can sustain in the long-run given the size and the socioeconomic characteristics

of the market. For simplicity, suppose that this number of "available slots" does not depend on

the ownership of the stores because the products sold by the two rms are very close substitutes.

In this context, rms play a �’racing�’ game to ll as many �’slots�’ as possible with their own stores.

Diseconomies of scale and scope may generate a negative e ect of the own number of stores on the

decision of opening new stores. However, in this model, during most of the period of expansion

the number of slots of the competitor has zero e ect on the decision of opening a new store. Only

when the market is lled or close to being lled do the competitor�’s stores have a signicant e ect

on entry decisions.

(c) Biased beliefs. As mentioned in the Introduction, competition in actual oligopoly industries is

often characterized by strategic uncertainty. Firms face signicant uncertainty about the strategies

of their competitors. In the context of our application, it may be the case that MD�’s or/and

BK�’s beliefs overestimate the negative e ect of the competitor�’s stores on the competitor�’s entry

decisions. For instance, if MD has one store in a local market, BK may believe that the probability

that MD opens a second store is close to zero. These over-optimistic beliefs about the competitor�’s

behavior may generate an apparent lack of response of BK�’s entry decisions to the number of MD�’s

stores.

6.2 Model

Consider two retail chains competing in a local market. Each rm sells a di erentiated product

using its stores. Let {0 1 } be the number of stores of rm at period . We abstract

from store location within a local market and assume that every store of the same rm has the

same demand. Let be the quantity sold by all the stores of rm . The demand for all the stores

of rm is:

=

(1 + ) if = 0

µ

+

¶
(1 + [ + ] [ ]) if 0

(39)

where: is a measure of market size and it is exogenous; is the �’quality�’ of product at period

;16 is the �’price�’ of product at period ; and 1 is a parameter that captures the net e ect

of the quality of rm on the demand of rm . This net e ect is positive ( 0) if the spillover

e ect from an increase in the quality of the competitor is larger than the competitive e ect, and it

is negative ( 0) otherwise. When there is not any positive spillover e ect we have that = 1.

In that case, if the two rms have the same qualities and prices, they share the market size in

16This �’quality�’ is just the willingness to pay for the product of the average consumer in the market.
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proportion to their number of stores. A rm with better quality or/and lower price can get a larger

proportion of the market. Production costs are linear in the quantity produced, i.e., = ,

where is rm �’s constant marginal cost. The variable prot of rm is = ( ) . Given

market size and qualities at period , rms compete in prices ala Bertrand to maximize current

variable prot.

If rm is a monopolist in the market (i.e., = 0), then the prot-maximizing price is

= + 1 + and the variable prot is = ([1 + ] 2)2. If both rms are active

in the market (i.e., 0 and 0), then the Bertrand equilibrium price is17 = + 1 +

[ + ] (1 3)( + ), where [ + ] [ + ] and , and the

equilibrium variable prot is = ( + ) 1 (1 + [ + ] (1 3)( + ))2.

The visibility of a retail rm in a local market increases with its number of stores. We assume

that a rm�’s quality increases with the number of stores that the rm has in the market. There

are at least two ways in which the number of stores in the market a ects the willingness to pay of

the average consumer. First, an increase in the number of stores implies a reduction in consumer

transportation cost to visit a store of the chain. Second, stores are like �’advertisements�’ in the

sense that they increase the awareness of local consumers about the retail chain. We assume the

following specication:

=
(0)
+

(1) (40)

where (0)
0 is a parameter that represents the �’exogenous�’ quality of rm in every local

market.18 And (1)
0 is a parameter that measures the e ect of the number of stores in the local

market on the �’quality�’ of the rm in that market.

Firm is active in the market at period if is strictly positive. In order to distinguish

decision and state variables, we use the variable to represent the number of stores at period

1, i.e., 1. Every period, the two rms know the �’stocks�’ of stores in the market,

and , and choose simultaneously the new number of stores. Firm �’s total prot function is:

= 1{ 0 and = 0}

1{ 0}
£
0 1 2

2
¤

1{ }

(41)

where 1{ } is the indicator function, and , 0 , 1 and 2 are parameters in the cost function.

0 is an entry cost that is paid the rst time that the rm opens a store in the local market.
17The rst order condition of prot maximization for rm is = , where 1 + + , and

. Similarly, the rst order condition of prot maximization for rm is = + . The di erence
between these rst two conditions implies that = (1 3)( + ) where and . Solving
this formula for into the rst order condition of rm , we get the following expression for the prot-maximizing
price: = + (1 3)( + ).
18By �’exogenous�’ quality here we mean that it is the part of quality that does not depend on the number of stores

in the market.
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0 is a lump-sum cost associated with having any positive number of stores in the market. The

function 1 + 2
2 takes into account that operating costs increase with the number of stores

in a linear or quadratic form. The variable is a private information shock in the cost of opening

a new store, and it is i.i.d. normally distributed.

Note that our model implies the exclusion restriction that, given , the prot of rm does not

depend on = 1. That is, a rm�’s current prot depends on his own and his opponents current

number of stores in the market, but given these variables it does not depend on the number of stores

of the competitors at period 1. Of course a rm�’s beliefs about the probability distribution of

depends on .

6.3 Estimation of the structural model

As described in section 5.1 above, we do not observe store closings in our sample. Furthermore,

for almost all the observations with store openings the number of new stores is one. Therefore,

we assume that { + 1} or equivalently, {0 1}. Variable

is the binary indicator of the event "rm opens a new store in market at year ". The

maximum value of in the sample is 13, and we assume that the set of possible values of is

{0 1 15}. Therefore, the state space X is {0 1 15}× {0 1 15} that has 256 grid points. .

We assume that market characteristics are constant over time. The measure of market size is

total population in the district. For some specications, we allow the cost of investment to depend

on market characteristics such as average rent, retail taxes, population density, or average income.

Therefore, each market has its own vector of players�’ CCPs. The dimension of the vectors P in

this model is equal to 108 032, i.e., 422 markets times 256 states.

Tables 6 and 7 present estimates of the structural model under the assumption that rms are

myopic, = 0, and under the assumption that rms are forward looking, = 0 95, respectively.

We report two di erent sets of point estimates: estimates using a simple two-step Pseudo Maximum

Likelihood method where the estimator of (equilibrium) players�’ beliefs in the rst step is a non-

parametric frequency estimator; and estimates using the Nested Pseudo Likelihood (NPL) method

proposed in Aguirregabiria and Mira (2007). The NPL method imposes the equilibrium restrictions

in the sample (i.e., the estimated beliefs should be equal to the estimated best response probabili-

ties), while the two-step method only satises the equilibrium restrictions asymptotically. The NPL

estimator has smaller asymptotic variance and nite sample bias than the two-step method. There

are very substantial di erences between two models, particularly in the estimates of the parameters

that capture cannibalization and competition e ects. While these e ects have the �’wrong�’ sign in

the myopic model, the signs are the expected ones in the forward looking model. All the parameter

estimates in the forward looking model have the expected signs and have reasonable magnitudes.

Therefore, it seems that forward looking behavior explains part of the puzzle in the reduced form
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estimates.

Table 6
Myopic Game of Entry for McDonalds and Burger King

Under the Assumption that Players�’ Beliefs are in Equilibrium
Data: 422 markets, 2 rms, 5 years = 4,220 observations

= 0 00 (not estimated)
Two Step Estimates NPL Estimates

Burger King McDonalds Burger King McDonalds

Variable Prots:
0 4.904 (1.070) 7.909 (2.289) 4.864 (1.081) 7.898 (2.287)

1 cannibalization 2.005 (0.869) 3.510 (0.659) 2.035 (0.831) 3.466 (0.647)

2 competition 0.014 (0.046) 0.032 (0.051) 0.016 (0.044) 0.037 (0.053)

Fixed Costs:
0 xed 0.378 (0.212) 0.806 (0.248) 0.374 (0.212) 0.808 (0.247)

1 linear 3.099 (0.436) 2.662 (0.405) 3.103 (0.436) 2.659 (0.405)

2 quadratic -0.054 (0.064) 0.085 (0.041) -0.052 (0.063) 0.087 (0.041)

Pseudo R-square 0.154 0.154

Log-Likelihood -895.5 -895.4

Distance ||P P || 0.00

# NPL iterations 1 5

32



Table 7
Dynamic Game of Entry for McDonalds and Burger King

Under the Assumption that Players�’ Beliefs are in Equilibrium
Data: 422 markets, 2 rms, 5 years = 4,220 observations

= 0 95 (not estimated)
Two Step Estimates NPL Estimates

Burger King McDonalds Burger King McDonalds

Variable Prots:
0 0.5849 (0.1077) 0.8303 (0.2968) 1.098 (0.2169) 0.9737 (0.3091)

1 cannibalization -0.2096 (0.0552) -0.0024 (0.0392) -0.0765 (0.0725) 0.2874 (0.0986)

2 competition -0.0110 (0.0029) 0.0008 (0.0027) -0.0129 (0.0065) -0.0074 (0.0073)

Fixed Costs:
0 xed 0.0784 (0.0213) 0.0822 (0.0332) 0.0788 (0.0307) 0.0773 (0.0261)

1 linear 0.0790 (0.0420) 0.1076 (0.0400) 0.1509 (0.0282) 0.1302 (0.0185)

2 quadratic -0.0078 (0.0059) -0.0034 (0.0023) -0.0054 (0.0026) 0.0001 (0.016)

Pseudo R-square 0.323 0.146

Log-Likelihood -655.7 -893.4

Distance ||P P || 4831.26 0.00

# NPL iterations 1 31

Table 8 presents results of our test of equilibrium beliefs. We implement separate tests for MD

and BK. We impose the restrictions that beliefs for = 0 and = 3 are unbiased.
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Table 8
Estimated Bias in BK Beliefs

Di erence Between and

Stores of BK
0 1

Stores of MD
1 -0.17 (0.04) -0.10 (0.06)

2 -0.08 (0.07) -0.06 (0.10)

Estimated Bias in MD Beliefs
Di erence Between and

Stores of MD
0 1

Stores of BK
1 -0.03 (0.05) 0.02 (0.04)

2 0.03 (0.10) 0.04 (0.12)

7 Conclusion

This paper studies a class of dynamic games of incomplete information where players�’ beliefs about

the other players�’ actions may not be in equilibrium. We present new results on identication,

estimation, and inference of structural parameters and beliefs in this class of games when the

researcher does not have data on elicited beliefs. Specically, we derive su cient conditions under

which payo s and beliefs are point identied. These conditions then lead naturally to a two-step

estimator of payo s and beliefs, which we show can be extended to provide a sequence of estimators

with asymptotic variances and nite sample biases that decline monotonically. We also present a

procedure for testing the null hypothesis that beliefs are in equilibrium. We illustrate our model

and methods with an empirical application of a dynamic game of store location by McDonalds and

Burger King. Our main interest in this application is to explain a puzzling empirical regularity,

that the probability a rm opens a new store in a local market does not depend (or may even

positively depend) on the number of stores its competitor currently has open in the location. In

the context of our model we explore three alternative (but not mutually exclusive) explanations for

these: cross-rm spillovers, forward looking behavior, and out of equilibrium (i.e., biased) beliefs.

We nd empirical evidence for the hypotheses of forward looking behavior and biased beliefs.
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APPENDIX

[A.1] Integrated Value Functions and Continuation Values

The proofs of Propositions 1 and 2 apply the concepts of integrated value function and continuation

value function as well as recursive formulas to calculate these functions. The integrated value

function is dened as ¯B(X )

Z
B(X ) ( ) (see Rust, 1994). Applying this denition

to the Bellman equation, we obtained the integrated Bellman equation:

¯B(X ) =

Z
max
{0 1}

©
B( X ) + ( )

ª
( )

=

Z
max
{0 1}

©
B( X ) +

P
X0 ¯B+1(X

0) B(X0| X ) + ( )
ª

( )

(A.1.1)

For instance, if { (0) (1)} have an independent double exponential distribution, the integrated

Bellman equation becomes:

¯B(X ) = ln

Ã
P
{0 1}

exp
©
B( X )

ª
!

= B(0 X ) ln (1 (X ))

(A.1.2)

and (X ) = exp{ B(1 X ) B(0 X )} [1+exp{ B(1 X ) B(0 X )}]. If we know payo s and

beliefs, we can use this formula to obtain the integrated value function by backwards induction,

starting at the last period where ¯B(X) = B (0 X) + ln (1 (X)).

The continuation value function provides the expected and discounted value of future payo s

given future beliefs, current state, and current choices of both players. It is dened as:

B( X )
X

X +1

¯B
+1(X +1) (X +1| X ) (A.1.3)

Note that continuation values B depend on beliefs at period + 1 and later, but not on beliefs at

period . By denition, the relationship between the conditional choice value function B and the

continuation value function B is the following:

B( X ) = (1 (X ))
£

( 0 X ) + B( 0 X )
¤

+ ( )
£

( 1 X ) + B( 1 X )
¤ (A.1.4)
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[A.2] Proof of Proposition 1

For notational simplicity, we omit the time subindex . Also, we omit the vector of state variables

X as an argument in functions, unless it is needed. Dene the function (X) 1( (X)).

Given that the distribution function is invertible and it is known (up to scale) to the researcher,

the function ( ) is identied everywhere in the support of X. The condition for player �’s best

response, implies that:

= B(1) B(0)

=
©
(1 )

£
(1 0) + B(1 0)

¤
+

£
(1 1) + B(1 1)

¤ª
©
(1 )

£
(0 0) + B(0 0)

¤
+

£
(0 1) + B(0 1)

¤ª

= (1 )
h
e (0) + eB(0)

i
+

h
e (1) + eB(1)

i

(A.2.1)

where e ( X) is the function (1 X) (0 X), as dened in assumption ID-2, and
eB( X) is B(1 X) B(0 X).

Consider equation (A.2.1) evaluated at four di erent values of the vector X, say X , X , X ,

andX . These four vectors have been constructed such that they have exactly the same value of the

component ( ), but they can have di erent values for the element , say , , ,and .

Note that the exclusion restriction in assumption ID-2(A) implies that e ( X) does not depend

on variable . Furthermore, by condition (i) in Proposition 1, the continuation value eB( X)

does not depend on either. Therefore, we have that, evaluated at X , X , X , and X , function

e (0 X) + eB(0 X) takes exactly the same value. If we subtract equation (A.2.1) evaluated at X
from the same equation evaluated at X , we obtain the expression (X ) (X ) = [�˜ (1 )

�˜ (0 ) +eB(1 ) eB(0 )] [ (X ) (X )]. Similarly, if we subtract (??) evaluated

at X from the same equation evaluated at X , we get (X ) (X ) = [�˜ (1 ) �˜ (0 )

+eB(1 ) eB(0 )] [ (X ) (X )]. Finally, if 6= or 6= , we can obtain the ratio

between these two pairwise-di erence equations, and this ratio implies that:

(X ) (X )

(X ) (X )
=

(X ) (X )

(X ) (X )
(A.2.2)

This expression shows that under the conditions of Proposition 1 there is a function of beliefs

that is identied, without having to impose the assumption of equilibrium beliefs. This result

provides a nonparametric test for the null hypothesis of equilibrium beliefs. Dene the function:

(X X X X )

½
(X ) (X )

(X ) (X )

¾ ½
(X ) (X )

(X ) (X )

¾
(A.2.3)

It is clear that we can nonparametrically identify . If beliefs are in equilibrium, should be equal

to zero for any value of (X X X X ). Let �ˆ be a root-M consistent and asymptotically normal

nonparametric estimator of . The hypothesis of equilibrium beliefs implies = 0, and we can

test equilibrium beliefs using a simple LM test of the null hypothesis of = 0. ¥
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[A.3] Proof of Proposition 2

Consider equation (A.2.1) that comes from player �’s best response restriction. For the sake of

notational simplicity, we omit the time subindex and the vector of state variables X as argument

in all the functions.

= (1 )
h
e (0) + eB(0)

i
+

h
e (1) + eB(1)

i
(A.3.1)

Substituting the restrictions imposed by assumption ID-3 into this equation, we have that:

= e (0) + e (0) +
h
e (1) e (0) + e (1) e (0)

i

= e (0) + e (0) +
h
e (1) e (0) + e (1) e (0)

i (A.3.2)

where ( ), ( ), ( ), ( ), and

similar denitions apply to e (0), e (1), e (0), and e (1). Subtracting the rst equation to the
second and solving for e (1) e (0) we can get:

e (1) e (0) =

h
(1 )e (0) e (1)

i h
(1 )e (0) + e (1)

i

(A.3.3)

Given this identied function e (1) e (0) , we can replace it into (A.3.2) and solve for e (0)
to get:

e (0) = e (0)
h

+ e (1) e (0)
i

e (1) = + e (0)
h

+ e (1) e (0)
i (A.3.4)

Finally, for states with 6= and 6= where beliefs can be biased, beliefs are identied by

replacing the previous expressions for e (0) and e (1) into equation (A.3.1) and solving for :

=
e (0) eB(0)

e (1) e (0) + eB(1) eB(0)
(A.3.5)

The proof of identication is completed using a backwards induction argument. At the last

period , there is no future and the continuation values eB(0) and eB(1) are zero. Therefore, at
the last period we have the following expressions for last-period payo s in terms only of the known

CCPs:

e (1) e (0) =

e (0) =

e (1) = +

(A.3.6)
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It is clear that last period payo s are identied from last period CCPs. Similarly, zero continuation

values imply that the expression for beliefs at the last period becomes:

=
e (0)

e (1) e (0)
(A.3.7)

Given payo s and beliefs at period , we can construct the continuation values at period 1.

First, we obtain the integrated value function:

¯B = ln

Ã
P
{0 1}

exp
©

B ( )
ª
!

= ln (1 + exp {(1 ) �˜ (0) + �˜ (1)})

(A.3.8)

Given this value function, we obtain the continuation values at 1 using the denition in equation

(A.1.3). And given the continuation value functions, we apply the formulas in (A.3.4) and (A.3.5)

to obtain payo s and beliefs at 1. By using backwards induction we identify beliefs and payo

functions at every period . ¥

[A.4] Proof of Proposition 3
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