Identification and Estimation of Dynamic Games when Players' Belief Are Not in Equilibrium

A Short Review of
Aguirregabiria and Magesan (2010)

January 25, 2012

Dynamics of the game

- Two players, $\{i, j\}$
- T periods
- X_{t} is the vector of state variables
- $Y_{i t}$ is player i 's choice at time t
- $\epsilon_{i t}\left(Y_{i t}\right)$ is i 's private information; it is distributed by G
- $\pi_{i}\left(Y_{i t}, Y_{j t}, X_{t}\right)$ is a real value function of i 's own action, opponent's action, and state variables; it is the deterministic part of i 's payoff
- payoff function

$$
\Pi_{i t}\left(Y_{i t}, Y_{j t}, X_{t}\right)=\pi_{i}\left(Y_{i t}, Y_{j t}, X_{t}\right)+\epsilon_{i}\left(Y_{i t}\right)
$$

State variables and transition functions

- $X_{t}=\left(W_{t}, S_{1 t}, S_{2 t}\right)$
- W_{t} are some exogenous, player independent market characteristics
- $S_{i t}$ is player i 's specific characteristics
- $f^{W}\left(W_{t+1} \mid W_{t}\right)$ is the transition function of W
- $f^{S}\left(S_{t+1} \mid Y_{i t}, S_{i t}\right)$ is the transition function of S; it does not depend on j 's action or state

Strategies, choice probabilities, and beliefs

- $\sigma_{i t}\left(X_{t}, \epsilon_{i t}\right)$ is i 's strategy at time t
- $b_{j t}^{t_{o}}\left(X_{t}, \epsilon_{j t}\right)$ is player i 's belief at period t_{o} about the strategy of player j at time t
- $P_{i t}\left(X_{t}\right)=\operatorname{Pr}\left(\sigma_{i t}\left(X_{t}, \epsilon_{i t}\right)=1 \mid X_{t}\right)$ is i 's choice probability
- $B_{j t}\left(X_{t}\right)=\operatorname{Pr}\left(b_{j t}\left(X_{t}, \epsilon_{i t}\right)=1 \mid X_{t}\right)$ is i 's belief of player j 's behavior at time t

Model assumptions

MOD1: Players' strategies depend on state variables
MOD2: Players maximize expected payoffs
MOD3: A player's belief of his own action is consistent with his expectation of his actual actions.
'equil': Players' beliefs about other players' actions are unbiased expectations of the actual actions of other players. That is,

$$
B_{j t}\left(X_{t}\right)=P_{j t}\left(X_{t}\right)
$$

MOD4: If $T<\infty, B_{j t}^{\left(t_{o}\right)}=B_{j t}$; if $T<\infty, B_{j t}^{\left(t_{o}\right)}=B_{j}$

i 's belief of j 's behavior is a TxT matrix

Table 1
Sequence of Beliefs $B_{j t}^{\left(t_{0}\right)}$

Period when	Period of the opponents' behavior (t)					
beliefs are formed $\left(t_{0}\right)$	$t=1$	$t=2$	$t=3$	\ldots	$t=T-1$	$t=T$
$t_{0}=1$	$B_{j 1}^{(1)}$	$B_{j 2}^{(1)}$	$B_{j 3}^{(1)}$	\ldots	$B_{j, T-1}^{(1)}$	$B_{j T}^{(1)}$
$t_{0}=2$	-	$B_{j 2}^{(2)}$	$B_{j 3}^{(2)}$	\ldots	$B_{j, T-1}^{(2)}$	$B_{j T}^{(2)}$
$t_{0}=3$	-	-	$B_{j 3}^{(3)}$	\ldots	$B_{j, T-1}^{(3)}$	$B_{j T}^{(3)}$
\vdots						
$t_{0}=T-1$	-	-	-	\ldots	$B_{j, T-1}^{(T-1)}$	$B_{j T}^{(T-1)}$
$t_{0}=T$	-	-	-	\ldots	-	$B_{j T}^{(T)}$

Best response (1)

- Given a belief B_{j}, player i best responds by maximizing her expected utility payoff
- The key optimization criterion is the Bellman equation

$$
V_{i t}^{B}\left(X_{t}, \epsilon_{i t}\right)=\max _{Y_{i t}}\left(Y_{i t} \pi_{i}^{B}\left(X_{t}-\epsilon_{i t}\right)+\beta \int V_{i}^{B}\left(X_{t+1}, \epsilon_{i t+1}\right) f^{B} d G\right)
$$

where:

$$
\begin{aligned}
& \pi_{i}^{B}\left(X_{t}\right)=B_{j t}\left(X_{t}\right) \pi_{i}\left(1, X_{t}\right)+\left(1-B_{j t}\left(X_{t}\right)\right) \pi_{i}\left(0, X_{t}\right) \\
&\left.f_{i}^{B}\left(X_{t+1}\right) \mid Y_{i t}, X_{t}\right)= f_{i}\left(X_{i t+1} \mid Y_{i t}, X_{i t}\right) * \\
& {\left[B_{j t}\left(X_{t}\right) f_{j}\left(X_{j t+1} \mid 1, X_{j t}\right)+\right.} \\
&\left.\left(1-B_{j t}\left(X_{t}\right)\right) f_{j}\left(X_{j t+1} \mid 0, X_{j t}\right)\right]
\end{aligned}
$$

Best response (2)

- The best response function can be represented by the threshold function

$$
\left\{Y_{i t}=1\right\} \Leftrightarrow\left\{\epsilon_{i t}(0)-\epsilon_{i t}(1) \leq v_{i t}^{B}\left(1, X_{t}\right)-v_{i t}^{B}\left(0, X_{t}\right)\right\}
$$

where:

$$
v_{i t}^{B}=\pi_{i t}^{B}\left(Y_{i t}, X_{t}\right)+\beta \int_{X^{\prime}, \epsilon^{\prime}} V_{i}\left(X^{\prime}, \epsilon^{\prime}\right) f_{i}^{B}\left(X^{\prime} \mid Y_{i t}, X_{t}\right) d G\left(\epsilon^{\prime}\right)
$$

- Denote Λ as the best response function using the explicit distribution function (G) of ϵ, i.e.

$$
\operatorname{Pr}\left(Y_{i t}=1 \mid X_{t}\right)=\Lambda\left(v_{i t}^{B}\left(1, X_{t}\right)-v_{i t}^{B}\left(0, X_{t}\right)\right)
$$

Data

- There are M markets. The econometrician observes

$$
\left\{Y_{i m t}, Y_{j m t}, X_{m t}\right\}_{t=1}^{T}
$$

for every market m.

- We are going to suppress m for our discussion of how to estimate the model.

Identification assumptions

ID1: $X_{m t}=X_{t}, B_{j m t}(X)=B_{j t}(X)$
ID2: Normalization of the payoff function $\pi(\cdot)$
ID3: There are two values of player i 's opponent's state, S_{j}^{L} and S_{j}^{H}, at which player i 's beliefs are in equilibrium; that is,

$$
\begin{aligned}
B_{j t}\left(W_{t}, S_{i}, S_{j}^{L}\right) & =P_{j t}\left(W_{t}, S_{i}, S_{j}^{L}\right) \\
B_{j t}\left(W_{t}, S_{i}, S_{j}^{H}\right) & =P_{j t}\left(W_{t}, S_{i}, S_{j}^{H}\right)
\end{aligned}
$$

Estimation with the assumption 'equil'

Suppose $T=\infty$,

1. Observe the data $\left(Y_{i t}, Y_{j t}, X_{t}\right)$; do not observe $\epsilon_{i t}$
2. Assume that G (hence Λ) and β are known
3. Estimate $\left(\widehat{f_{t}^{S}}, \widehat{f_{t}^{S}}, \widehat{P_{i t}}, \widehat{P_{j t}}\right)$ non-parametrically
4. Inverts Λ to obtain $\tilde{v}_{i t}$
5. Solve the Bellman equation to obtain \tilde{V} and $\tilde{\pi}$

$$
\begin{aligned}
V_{i t}^{B}\left(X_{t}, \epsilon_{i t}\right) & =\max _{Y_{i t}}\left\{v_{i t}^{B}\left(Y_{i t}, X_{t}\right)+\epsilon_{i t}\left(Y_{i t}\right)\right\} \\
v_{i t}^{B}\left(Y_{i t}, X_{t}\right) & =\pi_{i t}^{B}\left(Y_{i t}, X_{t}\right)+\beta \int V_{i t+1}^{B}\left(X_{t+1}, \epsilon_{i t+1}\right) f_{i t}^{B} d G
\end{aligned}
$$

note:

$$
\begin{aligned}
B_{i t}\left(X_{t}\right) & =\Lambda\left(v_{i t}^{B}\left(1, X_{t}\right)-v_{i t}^{B}\left(0, X_{t}\right)\right) \\
B & =P
\end{aligned}
$$

Estimation using backward induction

Same as the last slide, but suppose $T<\infty$

- Define player i 's continuation payoff at time $t-1$

$$
d_{i t-1}=\beta \sum_{X^{\prime}} \bar{V}_{i t}^{B}\left(X^{\prime}\right) f_{t-1}\left(X^{\prime} \mid Y_{i}, Y j, X\right)
$$

- Let $\tilde{d}_{i T}=0$
- Solve for $\widetilde{\pi}_{i T-1}$ and $\widetilde{\bar{V}}_{i T-1}^{B}$
- Calculate $\tilde{d}_{i T-1}$
- Repeat

Identification assumptions without the assumption 'equil'

- Instead of the assumption 'equil', we assume MOD4 and ID3, which states that there are two values of opponent's state variable, S_{j}^{L} and S_{j}^{H}, at which player i 's beliefs are in equilibrium.
- Proposition 2 states that these are sufficient conditions to non-parametrically estimate player i 's belief function and payoff function.

Estimation without the assumption 'equil'

1. Let $\tilde{d}_{i T}=0$
2. Calculate $\hat{B}_{j t}$ by formula (30) in the paper
3. Calculate $\hat{\bar{V}}_{i T}^{B}$ by formula (31)
4. Calculate $\tilde{d}_{i T-1}$ of the previous period
5. Repeat

Testing unbiased beliefs (1)

Under the assumptions MOD1, MOD2, MOD3, MOD4, ID1, and ID2, we can test the null of unbiased belief, i.e. player i 's belief of j 's behavior is consistent with the j 's actual behavior at time $t, B_{j t}\left(X_{t}\right)=P_{j t}\left(X_{t}\right)$.

- Define

$$
q_{i t}(X)=\Lambda^{-1}\left(P_{i t}(X)\right)
$$

- Pick $X^{a}, X^{b}, X^{c}, X^{d}$ s.t. each value has the same value in the component of $\left(S_{i}, W\right)$, but different values of S_{j}.

Testing unbiased beliefs (2)

- Define

$$
\delta=\left\{\frac{q_{i t}\left(X_{a}\right)-q_{i t}\left(X_{b}\right)}{q_{i t}\left(X_{c}\right)-q_{i t}\left(X_{d}\right)}-\frac{P_{j t}\left(X_{a}\right)-P_{j t}\left(X_{b}\right)}{P_{j t}\left(X_{c}\right)-P_{j t}\left(X_{d}\right)}\right\}
$$

- Further define

$$
D=\sum_{h=1}^{H}\left(\frac{\bar{\delta}_{i}^{h}}{s e(\bar{\delta})}\right)^{2}
$$

where $\bar{\delta}$ is the sample mean, then D is asymptotically distributed as Chi-square with H degrees of freedom. H is the number of all possible combinations of four different values of S_{j} with $S_{j}^{a} \neq S_{j}^{b}$ and $S_{j}^{d} \neq S_{j}^{d}$.

Empirically testing the null of unbiased belief

Table 8
Estimated Bias in BK Beliefs
Difference Between $B_{M D}$ and $P_{M D}$

	Stores of BK			
	$\mathbf{0}$		$\mathbf{1}$	
Stores of MD				
$\mathbf{1}$	$\mathbf{- 0 . 1 7}$	$\mathbf{(0 . 0 4)}$	-0.10	(0.06)
$\mathbf{2}$	-0.08	(0.07)	-0.06	(0.10)

Empirically testing the null of unbiased belief

Estimated Bias in MD Beliefs

Difference Between $B_{B K}$ and $P_{B K}$

	Stores of MD			
		$\mathbf{1}$		
Stores of BK				
$\mathbf{1}$	-0.03	(0.05)	0.02	(0.04)
$\mathbf{2}$	0.03	(0.10)	0.04	(0.12)

