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RUST, 1987 APPROACH
 Single dimensional state (mileage)
 Discretize  mileage into 90 grid pts in 5000 mile 

intervals
 Compute value function at these grid pts
 Round data to these grid pts and compute 

likelihood
In reality,
 Most problems have multidimensional state spaces 

leading to the Curse of dimensionality
 Consider a 3 dimensional state space discretized 

into 100 grid points each => 100^3 states
 Not computationally feasible
 
 



   

 

 

 

KEANE & WOLPIN, 1994

 Discretize the states using a feasible number
 Compute value function at these states
 Use interpolation/function approximation to compute the 

value function at non-grid states
 Provides Monte Carlo evidence that the approach works
 Possibly the de-facto standard to estimate DDCs in 

Marketing and Labor Economics
 
 This approach will face curse of dimensionality in the 

interpolation/approximation method
 



   

 

 

 

RUST, 1997

 Use randomization to break the curse of dimensionality
 Works for a subclass of MDPs where

� All state variables are continuous and evolve stochastically
� Actions are discrete and finite

 This subclass is the Dynamic Discrete Choice problems 
commonly seen in marketing and economics

 As we will see soon, it does not face CoD from 
interpolation/approximation algorithm

 Fairly simple and straight forward to implement 
 

 



   

 

 

 

BELLMAN OPERATOR

 Bellman Operator is a mapping Γ: B -> B given by
 
 
 
 Decision Rule
 
 
 Value function is the solution to the Bellman Equation



   

 

 

 

RANDOM BELLMAN OPERATOR

 The Random Bellman operator (RBO) is also a 
mapping given by

 
 
      where s(tilde)  are N randomly chosen states
 The value function will converge to the true value 

function as N -> ∞ at the rate of √ N
 This operator will be a contraction mapping only for 

large N
 This is because the transition function p(.|s) may 

not sum to 1 for each s
 
 



   

 

 

 

CONVERGENCE OF RBO
 Modify the transition function so it is well behaved 
 
 
 The resulting RBO will be a contraction mapping for 

all N
 
 
 This operator is self-approximating, i.e., for any 

s, the second term is an approximation to the 
expectation computed using the N randomly 
chosen states and u(s,a) is easily obtained

 



   

 

 

 

FINITE HORIZON PROBLEMS

 Solved with Backward Induction 
 Draw N random state points and keep them fixed 

for the T iterations
 In the final period T, the value function is given by
 
 
 For previous periods T-1,T-2,…0, apply the RBO
 
 



   

 

 

 

COMPLEXITY

 Upper bound on worst case complexity for finite 
horizon problems is given by

 
 
 Upper bound for infinite problems is
 
 
 
 Above holds for small ε and large β
 We can improve this further by using a Multigrid 

algorithm for infinite horizon problems



   

 

 

 

RANDOM MULTIGRID ALGORITHM
 Have an outer loop, in addition to the inner (successive 

approximations) loop, where the number of grid pts are 
varied

 Start with a small number of states N0 in outer iteration 
k=0

 Init V0 using max per period utility across all states and 
actions

 Perform a series of outer iteration k=1,2,…
� Draw Nk uniform samples, where Nk = 4 x Nk-1
� Draws are independent of draws from previous iterations
� Compute T(k) successive approximations using RBO
� Starting value function Vk in kth iteration is the value function 

Vk-1 obtained in (k-1)th iteration
 



   

 

 

 

RANDOM MULTIGRID ALGORITHM 
(CONT)
 Stopping rule for T(k)
 
 
 Stopping rule for Outer iterations
                       
                  where 
 Upper bound on worst case complexity is given by
 
 
 This is an order better than the vanilla RBO 

algorithm
 



   

 

 

 

CONCLUSION

 Possible to determine how many grid points and 
iterations are required to achieve a certain ε error

 In reality, K = 1,  ε= 0.1,  β= 0.995 by Eqn 4.9, 
                     Nk = 1.6 x 106 states
 In practice, computing PN for large N (=10,000) is very 

time consuming
 Only known application in marketing is Gordon, 2009, 

Marketing Science
 Additional reference – Rust, 1996, Handbook of 

Computational Economics, Vol 1


