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1. Introduction

The spread of mobile phones across the developing world has been dramatic. Between 2000
and 2011, the number of mobile phone subscriptions in developing economies increased by
4.25 billion—from 250 million to 4.5 billion (ITU, 2011b). Improvements in communication,
through mobile phones as well as associated services such as mobile money and mobile
internet, have the potential to knit even remote villages into the global economy. Although
these goods can generate large efficiency gains (Jensen, 2007; Aker, 2010; Jack and Suri,
2011), their allocations are likely to be inefficient due to network effects. Individuals are
unlikely to internalize all the benefits their adoption generates, so adoption is likely to be
suboptimal unless the firms operating the network use sophisticated pricing mechanisms.1

In competitive markets, any single firm will likewise internalize only a small share of the
benefits it generates. But if a market is so concentrated that these benefits are internalized
by a small number of firms, the ability of these firms to exert market power raises standard
welfare concerns.

Firms and governments use many different policies to guide the provision and adoption
of network goods. While theoretical work provides some intuition about network effects
(Rohlfs, 1974; Katz and Shapiro, 1986; Farrell and Saloner, 1985), there is little empirical
work to guide policy choices.2 Network effects are difficult to measure: one individual may
adopt after a contact adopts because the contact provides network benefits, or because con-
nected individuals share similar traits or are exposed to similar environments. It has also
been prohibitively costly to gather data on the adoption and usage decisions of everyone on
a network. As a result, there remain open questions about how to design policies that better
capture the spillover benefits associated with network effects, as well as policies that over-
come suboptimal provision arising from high concentrations in industries providing network
goods.

In this paper, I overcome previous limitations using a new empirical approach and 5.3
billion transaction records from Rwanda’s dominant mobile phone operator, which held
over 88% of the market.3 I measure the adoption and usage decisions of over one million
consumers, and estimate a structural model of demand for mobile phones. Based on calls,
I construct the 125 million links that define Rwanda’s graph of remote communication at

1An individual’s adoption benefits immediate contacts because it makes it possible for them to interact
using the good. Adoption also makes these contacts more likely to adopt, and thus benefits the contacts
of contacts. These benefits ripple through the entire network of potential users, and are unlikely to be
internalized by the initial adopter.
2Some examples of empirical work on network goods are Saloner and Shepard (1995), Goolsbee and Klenow
(2002), and Tucker (2008).
3During this period, the Rwandan market was more concentrated than others, which is empirically convenient
in that it is possible to measure nearly the entire network but could lead to concerns about generalizability.
This concentration appears to be a result of regulatory policy rather than other features of the Rwandan
setting. During this period, the Rwandan regulator restricted entry to two firms; it has since allocated more
licenses and the dominant operator’s market share has declined to 54% (RURA, 2013).
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the time, and estimate how communication over each link changes in response to price and
coverage.4 I then use this structural model to simulate the effects of an adoption subsidy
and a government coverage obligation.

My empirical approach has three parts:
First, acknowledging that the utility of owning a mobile phone is derived from its usage,

I model the utility of using a phone. I assume that the contacts that a subscriber would
like to call are the contacts he eventually calls. I infer the utility of communicating with
each contact from the calls placed, as a function of coverage and prices. An individual’s
value of being on the network at a given time is derived from the value of communicating
with his contacts who are on the network at that time.5 I overcome the traditional problem
in estimating network effects in the presence of correlated traits or shocks by inferring the
value of the network not merely from the presence of links with contacts, but from the costly
calls placed across those links. These calls represent the actual source of value provided by
the network. In the communication graph I derive, links represent actual flows of utility, not
just rough proxies whose correlation with adoption is likely to pick up correlated attributes
or shocks.6

Second, I model the decision to adopt a mobile phone. In choosing when to adopt,
consumers weigh the increasing utility of communicating with the contacts on the network
against the declining cost of purchasing a handset. Given this tradeoff, the date a consumer
adopts reveals a second estimate of the value of the network: a consumer will adopt when the
value from joining the network most exceeds the cost of a handset. To identify this second
estimate, I use plausibly exogenous variation affecting the utility of usage and adoption. I
use variation in contacts’ adoption arising from a targeted government adoption subsidy, as
well as variation in coverage induced by Rwanda’s hilly topography, in a manner similar to
Yanagizawa (2012).7 The value of the network revealed by adoption is consistent with the
value revealed by calling.

Third, to evaluate the impact of policies, I use a simulation method that allows each
individual to react directly to a policy change, and to each other’s responses, capturing the
full effect as it ripples through the network and across physical space.

4Using an algorithm analogous to triangulation, I infer each subscriber’s desired calling locations from the
locations of the cell towers used once coverage has expanded, and compute the coverage available at these
locations back in time. I exploit the fact that over the period of interest coverage expands dramatically—
from 60% to 95% of the country’s land area. My location estimates are based mostly on cell towers used
when coverage is near-complete. They thus reveal the set of desired locations conditional on near-complete
coverage, assuming these locations are stable over time.
5Most empirical studies of network goods use coarse measures of the value of joining the network; exceptions
that use individuals’ local network are Tucker (2008) and Birke and Swann (2010).
6Conveniently, calls are billed on the margin, by the second, so the duration spoken along a link reveals a
lower bound on the caller’s willingness to pay to communicate with the recipient.
7This second estimation strategy is similar to Tucker (2008), which identifies network effects for a video
messaging system using a shock to its value from another use.
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I use this approach to answer two sets of policy questions, by simulating how adoption
would have proceeded if conditions were less favorable. Because individuals tend not to
internalize adoption spillovers, it is common for firms or governments to subsidize adoption
of network goods. I analyze a rural adoption subsidy program implemented by the Rwandan
government in 2008. I first use phone data to determine how subsidized handsets were
ultimately used, and then use the simulation method to determine how the policy affected
the entire network. I find that a substantial fraction of the subsidy’s impact arises from its
impact on nonrecipients—in particular, contacts of recipients account for more than 62% of
the effect on revenue. Although the bounds are wide, the subsidy improved welfare, in a
low case by $191,108 (0.06%), and in a high case by $5.6 million (2%).8

I also analyze the welfare implications of providing coverage to rural areas and the de-
gree to which a network operator is able to internalize the value created. If a monopolist
operator’s ability to price discriminate is limited by technology or regulation, it can be opti-
mal for a government to require the provision of coverage to areas that would otherwise be
unprofitable. I find that in Rwanda, a government coverage obligation led to the building
of a handful of rural towers that were unprofitable for the firm but welfare improving for
the country. The impact was small, shifting bounds on welfare upward by at least $179,381
(0.06%). The impact was also extremely dispersed: over 65% of the gain in consumer surplus
accrued to individuals living outside the areas receiving coverage; some of these individuals
called in to the covered areas and others were affected indirectly. Because of this dispersion,
it would have been difficult for local communities to raise the funds to build the towers
themselves.

That mobile phones have spread rapidly across varied environments suggests that failures
by consumers and firms to internalize network effects in this case have not prevented wide-
spread adoption. Yet because adoption is widespread—worldwide telecom spending was
$4.7 trillion in 2012—even small inefficiencies can have large welfare consequences (TIA,
2012). Also, it is difficult to gather data about the many useful network goods that have
not diffused successfully. Analysis of mobile phone networks can guide the design of policies
to achieve more efficient adoption of these goods.

Although the method I present uses network structure revealed by adoption and usage, it
can also be applied to goods that have yet to be adopted. An analyst can gather data about
the adoption of a good from a context where exogenous factors have induced adoption to be
high, simulate the effects of policies, and use the conclusions to inform policy in a context
with lower adoption. As an example of this strategy, I exploit the fact that Rwandan
government regulations resulted in most of the country receiving cellular coverage to predict
the effects of expanding coverage as a function of population density. An analyst can also

8Due to the cost of computing an equilibrium with interdependent demand, I report impacts as changes in
the bounds of outcomes rather than bounds on the changes. I discuss this further in Section 7.
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gather data about a good that has already diffused on a network of interest, and then
simulate the adoption of a good that has yet to diffuse. As an example of this strategy, I
outline how the adoption of mobile phones can inform policy for mobile internet service.

This paper connects with several literatures:
Between $800-900 billion is spent annually on infrastructure in developing countries (Bhat-

tacharya et al., 2012). Mobile phone networks represent a case where governments success-
fully leveraged private investment to provide infrastructure. But in order to guide investment
towards socially optimal ends, governments need to know the structure of both private in-
centives and welfare. The analysis in this paper reveals the structure of both of these objects
for an important component of infrastructure. In this manner, this paper connects to work
analyzing how best to provide infrastructure (Kremer et al., 2011; Olken, 2007).

The diffusion of technologies is essential for the productivity of developing economies.
While many studies have explored aggregate trends in adoption or individual adoption for a
sample of users, this study models how nearly an entire network of users adopts a technology
with rich data on how the technology is ultimately used.9

The paper connects to a literature analyzing the rapid spread of information and com-
munication technologies (ICTs) across developing countries (Aker and Mbiti, 2010). While
many studies analyze the impacts of ICTs (Aker, 2010; Jensen, 2007), this paper analyzes
the interplay between demand and service provision. In this regard it connects to Batzilis
et al. (2010), which finds that the expansion of mobile phone coverage in Malawi is correlated
with demand and cost variables.

A growing literature analyzes the impact of social networks on economic behavior (see
Jackson, 2009). My paper is conceptually related to Banerjee et al. (2012), which estimates
and simulates the diffusion of microfinance over a network following an injection of informa-
tion. While the authors primarily model the transmission of information about a good over
a social network, I model the adoption and subsequent usage of a good whose benefits are
derived from the network itself.

This paper also contributes to an emerging literature that uses passively collected trans-
action records to analyze developing economies. This “big data” from developing countries
overcomes some limitations of traditional sources of data (e.g., Zwane et al., 2011), and can
also answer broader economic questions that could not be answered with equivalent data
from a developed country. In developed economies, economic agents generally face many
alternatives, leading to first order selection issues, since any given data source represents
only a small slice of an agent’s economic activities.10 Within a developing economy, a single

9See, for example: Griliches (1957); Foster and Rosenzweig (1995); Conley and Udry (2010); Comin and
Hobijn (2010).
10For example, the full remote communication behavior of a consumer in the U.S. may be spread over mail,
home e-mail, work e-mail, a work phone, a personal mobile phone, fax, chat, Skype, Facebook, and other
more specialized channels. Even complete data from any one of these channels will be heavily selected and
difficult to interpret.
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data source can be comprehensive: in Rwanda during the period of interest, records from a
single mobile phone operator represent the vast majority of remote communication.

The rollout of mobile telephony across sub-Saharan Africa has been astoundingly success-
ful, leading to both historical and forward-looking questions. For example, some services
based on mobile phone platforms have seen great success (such as the M-PESA mobile money
system in Kenya; see Jack and Suri, 2011), but success has not been easily replicated. We
are still learning what makes network goods successful. This paper looks backwards, to
better understand the provision of mobile phones, and forward, to guide the provision of
new network goods.

The paper proceeds as follows. The next section describes the expansion of mobile phone
networks worldwide and in Rwanda. Section 3 describes the data I use. Section 4 presents
stylized facts about mobile phone usage in Rwanda. Section 5 introduces a model of phone
adoption and subsequent usage. Section 6 describes the procedure I use to estimate the
parameters of this model and the country’s communication graph. Section 7 describes
how the estimated model and communication graph can be used to simulate the effects of
counterfactual policies. This simulation method is then used in two applications: Section
8 analyzes the effect of an adoption subsidy, and Section 9 analyzes operator incentives to
provide service in rural areas. Section 10 concludes.

2. Context

The expansion of mobile phone networks across the developing world has had several
common features. Initial networks were built in cities and served elites. While fixed line
networks were often operated by monopolists, regulators began to liberalize mobile markets,
and competition began to develop: by 2009, 67% of countries had three or more operators
(GSMA, 2009). Handset prices were initially expensive, but gradually began to fall with
reductions in component costs and economies of scale. The worldwide average selling price
of a handset declined by more than 50% between 2002 and 2006 alone (Frost, 2009). This
decline made phones accessible to poorer consumers, and operators adapted to this broader
base of potential subscribers by expanding coverage beyond urban centers. From 2000 to
2008, the percentage of Africans covered by a mobile signal increased from 25% to 59% (ITU,
2009). Operators also reduced prices: across developing countries, mobile communication
prices dropped by 22% between 2008 and 2010 (ITU, 2011a).11 The empirical strategy
presented in this paper will disentangle the impact of these factors for the spread of mobile
phones in Rwanda, and simulate the spread under alternate scenarios.

Rwanda during 2005-2009 provides in many ways an ideal setting to understand the spread
of mobile phones in developing countries. Because the Rwandan regulator restricted entry,

11Based on a basket of 30 outgoing calls at peak, off-peak, and weekend rates, a combination of on-network
and off-network calls, and 100 SMS.
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the market during this period was extremely concentrated: the mobile operator whose data
I use held above 88% of the market, so its records reveal nearly the entirety of the country’s
remote communication. While most available mobile phone data is from extremely short
panels, the data on which this project is based is long enough to capture both adoption and
use decisions for a substantial fraction of the population. There are few alternatives to the
mobile phone for remote communication: the fixed line network is small (with penetration
below 0.4%), and mail service is insignificant.12 There was significant variation in prices and
provision of service.

Rwanda. Rwanda is a small, landlocked country in East Africa. It is predominantly ru-
ral; most households live off of subsistence farming. The country’s experience with mobile
phones is similar to that of other sub-Saharan African countries, apart from three main dif-
ferences. First, Rwanda is less developed than the African average and most of its neighbors:
per capita consumption in 2005 was $265, while the World Bank reported a sub-Saharan
African average of $545 (WDI, 2013). Second, it has two opposing features that affect the
profitability of building a mobile phone network: it is very hilly, which interferes with signal
propagation, but it also has a high population density, which allows each tower to cover
more potential subscribers. Third, the Rwandan market was slow to develop competition,
due to fewer licenses being allocated by the regulator and initial snags in the performance
of the second licensee. During the period of limited competition, prices were relatively high
and penetration was relatively low.

Network Rollout. In combination with other reconstruction efforts after the 1994 Geno-
cide and Civil War, the new Rwandan government attempted to spur the development of a
mobile phone network. An exclusive license was given to a multinational operator, which
started operations in the capital, Kigali, in 1998. Service quickly spread from Kigali to
other urban centers, but in the early years the network remained accessible to only the elite.
Coverage was sparse in rural areas, handsets were expensive (and not subsidized as with
U.S. plans), and although most accounts were prepaid, network access fees were high.

In this context many programs were developed to expand access to the poor. To address
the high cost of handsets, the operator in 2004 introduced payphones that ran on the mo-
bile phone network and provided financing to entrepreneurs to become payphone operators
(Tuvugane). To provide access in areas with poor coverage, between 2006 and 2007 the
operator and the Grameen Foundation collaborated to outfit standard mobile phones with
high powered antennas to be operated as payphones by rural shopkeepers (Village Phone or
Tel’imbere; see Futch and McIntosh, 2009). A 2008 government program distributed heavily
subsidized handsets to rural areas; this program is analyzed in detail in Section 8.

12The average mail volume per person was 0.2 pieces per year in Rwanda, relative to 2.4 pieces in Kenya and
538.8 pieces in the US (Sources: National Institute of Statistics Report 2008, Communications Commission
of Kenya, U.S. Postal Service 2011, U.S. Census).
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Two changes in the market influenced further rollout:
Global handset prices began to decline. In 2005, the cheapest mainstream handset in

Rwanda cost roughly $70, or three and a half months of the mean person’s consumption; by
2009 handsets were available for $20, then less than one month’s consumption. This decline
made mobile phones accessible to broad segments of the population.

Regulatory changes induced in a change in market structure. In 2003, the government
announced it would provide a license to a second operator, which entered the market in 2005.
This second operator was not very successful; after a fraud scandal and three significant
changes in ownership, the company reached a maximum of 20% of market share for a brief
period in 2010; in 2011 its license was revoked for failure to meet obligations, and the
business was liquidated. In combination with providing a second license, the government
attached minimum coverage obligations to the first operator’s license. The combination of
regulation and the competitive threat added to the incumbent operator’s incentive to look
beyond the urban elite.13

The dominant operator adapted, changing pricing structures to accommodate lower in-
come users and expanding into rural areas. At the beginning of 2005, holding an account on
the dominant operator in Rwanda entailed paying a monthly access fee of roughly $2, paying
a minimum of $0.27 per call14, and topping up a minimum of $4.53 when credit ran low.15

By the middle of 2008, essentially all nonmarginal charges had been removed, talk time was
billed by the second (so that the shortest call cost less than $0.01), and the minimum top
up amount was reduced to $0.90. These adaptations were accompanied by an expansion
of coverage, shown in Figure 1. From 2005 to 2009, the number of cell towers tripled, and
the fraction of the country’s land area with coverage increased from 60% to 95%. Reduced
prices and improved coverage induced rural and poor households to adopt. Although 85%
of Rwandan households live in rural areas, in 2005 only 23% of households with mobile
phones were rural; by 2010, 75% were. In 2005 households with mobile phones had a mean
consumption per capita of 3.5 times the average; by 2010 the mean consumption of phone
owning households was 1.5 times the average. Table 1 shows the baseline characteristics of
the Rwandan population and these changing demographics of phone owners. Figure 2 shows
the trend of mobile and fixed line telephone subscriptions in Rwanda. Figure 3 shows the
changes in prices, coverage, and network adoption.

13A third operator entered the market at the end of 2009 and has been quite successful, taking a third of
the market by 2012.
14Cost of the first minute under the per minute peak rate. “Per minute” calls were billed by the first minute
and then each half minute thereafter.
15Prepaid balances must be refilled or ’topped up’ when are depleted in order to continue making calls.
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3. Data

This project uses several data sources:
Call detail records: As a side effect of providing service, mobile phone operators record

data about each transaction, called Call Detail Records (CDRs). This project uses anony-
mous call records from the dominant Rwandan operator, which held above 88% of the
market. This data includes nearly every call, SMS, and top up made over 4.5 years by the
operator’s mobile phone subscribers, numbering approximately 300,000 in January 2005 and
growing to 1.5 million in May 2009.16 There are 5.3 billion total transactions during this
time period. For each transaction, the data reports:17

• Two anonymous identifiers for sender and receiver, corresponding to the phone num-
ber and handset
• Handset models
• Date and time stamp
• Duration (for voice calls)
• Cell towers used at the start and end of the transaction
• The incurred charge (for transactions before August 2008)

Cell tower locations: The cell tower identifiers can be linked to geographical coordinates
provided by the operator. The records of some tower identifiers are missing from this data.
I infer the location of missing towers based on call handoffs with known towers using a
procedure I have developed, described in Appendix C.
Individual locations: I infer each subscriber’s set of geographical locations using a

version of Isaacman et al. (2011)’s ‘important places’ algorithm that I have modified to
improve performance in rural areas. The procedure is detailed in Appendix D.
Coverage maps: I create raw coverage maps by computing the region visible by the set

of towers live in each month, using a method suggested by the operator’s network engineer.
Elevation maps are derived from satellite imagery recorded by NASA’s Shuttle Radar Topog-
raphy Mission and processed by the Consortium for Spatial Information (Jarvis et al., 2008;
Farr et al., 2007). I also compute smoothed coverage maps which represent the coverage
available within a short walk of a given location, which are used to compute the quality of
coverage available to an individual. I also compute two instruments for coverage, incidental
coverage from the placement of the electric grid and the slope of the surface. For details,
see Appendix A.

16There are 2,092,477 accounts ever referenced in the data, but many do not appear to represent active
accounts. For the analysis, I omit the 528,737 accounts that have made fewer than 10 outgoing calls, and
38,679 further accounts for which the time spanned between the first and last observed transaction is less
than 90 days (some of these are short term visitors to the country). This results in a sample of 1.5m accounts.
17Two months of data are missing from the call records: May 2005 and February 2009; and one month is
missing from the billing records: October 2006.
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Handset prices: I create a monthly handset price series for 160 models in Rwanda using
data from three sources: historical versions of the operator’s website, operator sales records,
and sales records from an independent phone store in Kigali. I compile these prices into a
monthly handset price index phandsett , weighting each model by the quantity activated on
the network. I account for the introduction of new handsets by filling in missing prices with
prices from a handset of comparable quality. For details, see Appendix E.3.
Operator billing policies: Details on the operator’s historical billing policies are ob-

tained from several sources, including archived versions of the operator’s web site, reports
from the government regulator, and news articles. The resulting billing model was checked
against billing records and adjusted until it fit.
Household surveys: I use several nationally representative household surveys to provide

background information: DHS and government surveys (EICV) from 2005 and 2010, and
Research ICT Africa’s 2007 survey about technology usage (Stork and Stork, 2008).

4. Patterns of mobile phone use

The use of mobile phones in developing societies has adapted to a few key features:
incomes are low, other communication methods are costly, and handsets represent a large
investment.

Subscribers use the network creatively to relay information at low cost. Calls are ex-
tremely short: 58% of accounts have never placed a call longer than five minutes, and the
mean length is 37.5 seconds. Missed calls are used to communicate simple information.
Despite a popular perception that the poor use phones only for business, calls are primarily
social: 92% of subscribers report that the main purpose of the last 10 calls was social, and
90% report that most calls are to family and friends, according to a representative household
survey (Stork and Stork 2008). Most calls cover a short distance: roughly 70% of calls are
between towers closer than 5 km.

The average usage profile is described in Table 2.
The primary unit of observation is an account, which corresponds to a phone number.

Although accounts are prepaid and not explicitly linked to individuals, in the Rwandan
context it is natural to think of an account as an individual: there is one major operator
and there is a disincentive to switch phone numbers.18 In the rest of the paper I will refer
to accounts as individuals or nodes.

Calls reveal a social network. A call from one individual to another reveals a desire to
communicate. Taken together, observed calls trace out the links of a latent social network

18There was little reason to change accounts: there was one majority operator, opening an account cost
roughly $1, and the asymmetry in billing increased the hassle of changing your phone number. Prepaid
accounts are not explicitly closed; if unused, they become inactive and are reactivated when credit is next
added. There are an average of 1.03 accounts per user (Gillwald and Stork, 2008).
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for remote communication, which I refer to as the communication graph.19 Given that
most calls are social calls to family and friends, I model communication as arising from
the desire to keep in touch with a fixed set of contacts.20 I assume that I observe the full
communication subgraph for the individuals who subscribe by May 2009: that the contacts
I observe an individual call represent all of the contacts they would like to call among those
who subscribe by this date.21

The prepaid billing structure is empirically convenient in that the calling party always
pays on the margin for a call,22 so that the calling decision reflects willingness to pay for
communication with a given contact. Due to the asymmetry in billing, the direction of the
call is important: in the absence of a side contract, a call from i to j reveals that i is willing
to pay at least the cost of the call, but does not reveal how much j would be willing to pay.
I take the communication graph to be a fixed, directed network. I will present results under
different assumptions of the value of incoming calls.

Dependence between links. A typical demand model would suggest links are substitutable:
when my friend Jacques buys a phone, I may call him more and my brother less. An
information sharing model would suggest complementarities: Jacques and my brother may
share additional information, and as a result I may call both more.

One simple test of dependence is whether the volume of calls across a link changes as more
of the sender’s and receiver’s contacts join the network. To test this, I estimate a simple
gravity model, regressing each link’s monthly call volume on the sender’s and receiver’s
number of subscribing contacts, controlling for price changes and coverage, and including
fixed effects for each link. If links were substitutable, as new contacts join the network

19This graph may not correspond with the social network that would be revealed through survey methods
used in the literature: a husband and wife may communicate intensely face to face and have no need to call
each other. Any network used in empirical work is a projection; this project analyzes demand for calling,
for which the call graph is exactly the projection of interest. Since the decision to communicate over the
phone depends on whether it is possible to communicate in person, the measured call graph is conditioned
on individuals’ geographic locations. If there were internal migration, these locations would change over
time, making it difficult to interpret the measured graph. Permanent internal migration is low in Rwanda
over this time period (Blumenstock, 2012).
20Adopting a phone may transform an individual’s social network - they may keep in touch with friends
or family living further away, for example. I uncover the communication graph after any transformation
associated with adoption: the graph conditional on phone ownership. The inference in this paper remains
valid as long as any such transformation coincides with adoption and would be predicted by the individuals.
21One of the benefits of owning a phone is the option value of being able to place calls, which is valued even
if the option is not realized. An extreme example would be a phone purchased solely for emergency use,
which provides expected utility even though it may never be used. Since the utility computed in this model
relies on realized calls, it necessarily underweights option value for unrealized calls. It would be possible to
include utility from nodes that are on the network but for which no calls have been realized, but this would
require a careful decision about which nodes provide option value and which do not. I do not model this.
This omission is less problematic than in other settings for two reasons. First, the data is a relatively long
panel (I use 4.5 years of data), so there is time for many information shocks to be realized. Second, like
many developing countries, Rwanda has little in the way of formal emergency response. Emergency calls are
much more likely to be directed to close contacts, for whom I’d likely observe realized calls.
22Most calls are billed by the second after February 2006, and by the first minute and each subsequent half
minute before.
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a subscriber would reduce calls to existing contacts, resulting in a negative coefficient on
number of contacts. Complementarity would result in a positive coefficient. As shown in
the first two rows of Table 3, results are consistent with dependence between links being
small, and on net complementary. The change in call volume along a given link associated
with 10 other contacts joining the network is the same as that associated with decreasing
the calling price by $0.005 per minute. For comparison, the median number of contacts is
61, and the final peak calling rate is $0.23 per minute.23

Low substitutability is reasonable in this setting: penetration is still low, so a substantial
fraction of expansion represents new households adopting phones rather than households
with phones purchasing additional phones. Also, subscribers spend little time on the phone
(the median usage is 25 minutes per month), so phone use is unlikely to crowd out other ac-
tivities. Links would likely be more substitutable in a mature network, or with relationships
that are more transactional rather than social. To simplify the model, I assume the utility
obtained from a contact is independent of the state of other contacts on the network. I will
model the underlying desire to communicate along each link as arising from a stationary
distribution.

Adoption. Joining the network entails opening an account and investing in a handset. It
is easy and cheap to open a mobile phone account. A prepaid account can be opened with
any of the operator’s agents, which are present in even small towns, by buying a Subscriber
Identity Module (SIM card) for roughly $1. In order to use the account, the SIM card
must be placed into a handset. Any transactions placed using the handset are billed to the
account associated with the SIM card that is currently inserted, and the handset will receive
transactions sent to the associated account.

Handsets are expensive, representing 3.5 months of the average person’s consumption in
2005. In many Western countries, operators subsidize handsets for consumers and either
lock the devices to be used solely on their network, or lock users into a postpaid account
contract. In the Rwandan context and many other African contexts, it would be costly to
manage postpaid contracts at scale; instead, almost all accounts are prepaid and handsets
were offered at retail prices. Most handsets are mainstream, imported models, and the
handset market is competitive; I treat handset prices as exogenous and do not model the
handset market.

The data covers a period of continual declines in handset and calling prices, and con-
tinual improvements in coverage and network size, as shown in Figure 3. Individuals plan
ahead when considering adoption: when asked in 2007, 88.9% of individuals without phones
planned to purchase a phone in the future. I model adoption as a dynamic decision, where
individuals incorporate expectations of future improvements into the adoption decision.

23Complementarity and substitutability could coexist in different parts of the network, in which case this
test and my estimates would identify an average of the two effects.
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Simplifications. I make a number of simplifications for tractability and due to data lim-
itations. During this period, there were two operators licensed in Rwanda. My partner
operator always had the vast majority of the market, with over 88% of subscriptions during
the first 4 years of data; I ignore the other operator.

I focus on voice calls and do not explicitly model the utility from nonvoice transactions
such as SMS and missed calls. To the extent these transactions are important, my call
utility estimates serve as a proxy for total communication utility. Though important in
other contexts, in Rwanda text messaging or SMS represents less than 13% of revenue and
16% of transactions.24 From the data it is not possible to match the sender and receiver of
a given SMS; for this reason I do not explicitly model SMS. SMS was quite costly ($0.10 per
message) and prices did not change. Only calls that are answered incur a charge; subscribers
exploit this feature of billing, communicating simple information by leaving missed calls
(‘beeps’ or ‘flashes’, see Donner 2007). Because it is difficult to distinguish between missed
calls that provide utility (communicating information) and those that provide disutility (due
to network problems or inability to connect), I do not explicitly model missed calls. Since
I have no information about foreign subscribers, I also do not model the small fraction of
international calls.

Given the high cost of handsets, sharing phones is common: 55% of phone owners report
they allow others to use their handset regularly (Stork and Stork, 2008). That subscribers
are willing to spend significant sums of money to buy a personal handset suggests that the
hassle cost of borrowing is high; thus, although borrowing is common, the actual volume of
calls due to borrowing is likely to be low. Modeling phone sharing would require making
assumptions about the set of borrowers for each handset, the allocation of utility between
owner and borrower, and the hassle cost of borrowing a phone to place a call. Since it would
be difficult to defend these assumptions, I omit the possibility of handset sharing.

An individual may learn about the benefits of using a phone from observing the usage of
those around him; I do not model this. For more discussion about these simplifications, see
Appendix F.

5. Model

In this section I describe a model of handset adoption. The utility of owning a phone is
derived from making calls, so I begin with a model of usage. The model of usage will also
account for changes in the environment that improved the utility of communicating across
a given link, specifically the expansion of coverage and reduction of calling prices.

Let G be the communication graph (social network). Each individual i has a fixed set of
contacts Gi ⊂ G, where a directed link ij ∈ G indicates that i has a potential desire to call
j over the mobile phone network. Let St be the subset of nodes subscribing in month t.

24Revenue statistic based on the period of data where charges are reported, which covers 2005-August 2008.
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Calling Decision. At each period t, individual i can call any contact j that currently
subscribes, j ∈ Gi ∩ St, to receive utility uijt. Each month, i draws a communication
shock εijt representing a desire to call contact j. The shock is drawn from a link-specific
distribution, εijt

iid∼ Fij that will be specified later.25 Given the shock, i chooses a total
duration d ≥ 0 for that month, solving:

uijt = max
d≥0

vij(d, εijt)− cijtd

where v(d, ε) represents the benefit of making calls of a total duration of d and cijt

represents the per-second cost.
I model the benefit of making calls as:

vij(d, ε) = d− 1

ε

[
dγ

γ
+ αd

]
where the first term represents a linear benefit and the second introduces decreasing

marginal returns. γ > 1 controls how quickly marginal returns decline. α is a cost-dependent
censoring parameter that controls the intercept of marginal utility, and thus affects the
fraction of months for which no call is placed.26

The cost includes the per second price as well as a hassle cost of obtaining coverage:

cijt = βcallpt + h(φit, φjt)

where βcall represents call price sensitivity, and h(φit, φjt) represents the hassle cost given
the caller and receiver’s level of coverage. An individual’s coverage φit ∈ [0, 1] is derived
from the fraction of the area surrounding his most used locations receiving cellular coverage
in month t.27 I parameterize the hassle cost linearly:28

h(φit, φjt) = βcoverage.fromφit + βcoverage.toφjt + βcoverage.interactionφitφjt

25I model communication shocks as independent across network links and time. It is clear that in the
true data generating process these shocks will be correlated over links and time. However, I am primarily
concerned with the durations of calls and not their timing; this distribution ends up being collapsed into its
expectation for the adoption decision.
26There is little in the data to differentiate between the distribution of shocks and the precise shape of the
utility function. My strategy is to impose restrictions from theory and intuition on the utility function, and
then select a distribution that matches the data well. I specify 10 properties that a reasonable functional
form of utility from telephone calls should satisfy (see Appendix G), which leads to the selected form.
27Using an algorithm analogous to triangulation, I identify the set of most used locations for each individual.
Around each location, I compute the fraction of area receiving coverage using a two-dimensional Gaussian
kernel with radius 2.25 km. I then compute a weighted average of this fraction over the individual’s locations,
weighting each location by the number of days calls were placed from that location. For more details see
Appendices A and D.
28Rwanda is geographically small enough that, even at the beginning of the data, the signal from urban
towers extends into even remote areas, but it is also hilly, so that the resulting coverage is quite spotty.
When coverage is poor it is often possible to walk to a nearby hilltop to make a call; this hassle cost is
reduced as coverage improves.
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Given this functional form, calling prices, and coverage of both sender and receiver affect
both the frequency and duration of calls. In month t, i calls j if his desire to communicate
is strong enough:

εijt > εijt :=
α

1− βcallpt − h(φit, φjt)

and the length of the call increases with the desire to communicate:

d(ε, pt, φit, φjt) = [ε (1− βcallpt − h(φit, φjt))− α]
1

γ−1

If the desire to communicate is not strong enough, i will not place a call (dijt = 0).
Then, the expected utility i receives from being able to call j in time period t is given by:

Euijt(pt,φt) =

ˆ ∞

εijt

[
d(ε, pt,φt) ·

(
1− βcallpt − h(φit, φjt)−

α

ε

)
− 1

ε

d(ε, pt,φt)
γ

γ

]
dFij(ε)

where to simplify I write φt to represent the vector of coverage for all individuals.

Adoption Decision. Each month i is on the network, he receives expected utility from
each contact who is also on the network:

uit =
∑

j∈Gi∩St

Euijt(pt,φt) + w · Eujit(pt,φt) + ηi

where uijt represents calls from i to j (which i pays for), ujit represents calls from j

to i (which j pays for), and w ∈ {0, 1} specifies whether recipients value incoming calls.29

ηi represents an idiosyncratic benefit from being on the network that is observed by the
individual but not to the econometrician, with Eηi = 0. Each month that i is not on the
network he receives utility zero.

Individual i chooses when to adopt by weighing the discounted stream of these benefits
against the price of a handset, which is represented by the price index phandsett .30 Then, i
considers the utility of adopting at time τ to be:

U τi =
∞∑
t=τ

δtEuit(pt,φt)− δτβhandsetphandsetτ

where βhandset is the price sensitivity parameter for purchasing a handset, which may
differ from the sensitivity for marginal calling prices in the presence of credit constraints or

29I assume individuals have no private information about forthcoming call shocks, and measure the utility
of being on the network as an expected utility rather than realized utility. I could compute realized utilities
uijt for months where both i and j are subscribers, but not for counterfactual periods, which are needed for
estimation.
30The price index uses the prices of 160 models in Rwanda, weighted by sales, accounting for quality changes.
See Appendix E.3 for details.
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if individuals obtain value from nonvoice transactions.31 The adoption decision represents an
optimal stopping problem, which requires assumptions on expectations that will be described
in the following section. There are likely multiple equilibria in the adoption decisions of the
network; my estimation procedure uses necessary conditions for equilibrium and will be
valid in the presence of multiple equilibria. The next section describes how I estimate the
parameters of this model.

6. Estimation

Individuals choose when to adopt a mobile phone, and if they adopt, how to use the
phone. In the usage decision, I use data on phone calls to estimate the country’s latent
communication graph and how usage responds to prices and coverage. I estimate respon-
siveness to prices and coverage using time series variation in both quantities. I resolve both
an endogeneity problem and a selection problem using an analogue of fixed effects at the
link level, and estimate parameters using maximum likelihood.

In the adoption decision, individuals weigh the price of a handset against the discounted
stream of calling benefits it provides. Calling benefits are computed from the model of
usage. I identify individuals’ responsiveness to handset prices using plausibly exogenous
variation affecting the utility of usage: I use variation in coverage induced by Rwanda’s hilly
topography as well as variation in contacts’ adoption arising from a targeted government
adoption subsidy. I assume that individuals’ expectations of future utility deviates from
perfect foresight only by a mean zero error, which allows me to estimate the adoption
decision using a simple moment inequality approach.

Identification. In the product use decision, the operator changes prices and quality (cov-
erage) in response to demand. Here, the most significant change in demand is the changing
composition of marginal consumers: over time, less talkative and more price sensitive indi-
viduals adopt, leading the operator to steadily reduce prices and improve coverage. Since all
of this variation is in the time series, a naive estimate would find elasticities with signs in the
wrong direction: average durations decrease over time despite improvements in coverage and
reductions in price. In many settings this selection problem would naturally be addressed
by using characteristics such as income or occupation to get at the underlying differences
between individuals. Since I do not observe a standard set of individual characteristics,
and—more fundamentally—individual characteristics would be too aggregated to be useful
since I am model at the level of links, I address this problem in a manner analogous to
using fixed effects.32 I estimate the parameters of call shock distribution for each link (using

31I assume that once purchased, a handset lasts forever; depreciation would be picked up in βhandset.
32A primary purpose of the call utility model is to compare the utility of different links within an individual.
We might know that i is a rich, 45 year old male banker in the capital and j is a 40 year old female school
teacher living in a different city, but their calling behavior and resulting utility would depend greatly on not
just characteristics of i and j, but characteristics of the relationship ij: whether they are siblings, colleagues,
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link-specific means and node-specific variances), so that the response of durations to prices
and coverage is estimated using within-link variation.33

In the adoption decision, I estimate how adoption responds to handset prices relative to
the utility of communicating with contacts. I use variation in the time of adoption induced
by plausibly exogenous shifters of the utility of being on the network. I exploit variation
in the cost of providing coverage to different areas due to Rwanda’s hilly geography, in a
manner analogous to Yanagizawa (2012), as well as in the contacts on the network induced
by a government adoption subsidy program.

Hills block the propagation of cellular signal. Because Rwanda’s topography is extremely
hilly, the coverage provided by a given cell tower is highly irregular, leading to scattered
patches of coverage. These scattered patches can be seen in the coverage maps shown
in Figure 1. The interaction of topography and existing infrastructure creates large cost
differentials in providing coverage to adjacent areas that are otherwise similar. For example,
imagine two villages on either side of a hill far from the electric grid. Since it is much
cheaper to operate towers connected to the grid, the village on the side of the hill that
faces the electric grid is likely to receive coverage earlier. Although a village very close to
the grid is likely to differ in unobservable ways from a village further from the grid, this
effect is likely to attenuate quickly with distance from the grid, while cell towers have a
range of up to 35 km. Thus, I create an instrument for the coverage provided in remote
areas using incidental coverage based on the location of the electric grid: the coverage that
would result from building towers along the full network of power lines. These areas of the
country had a higher ex-ante probability of receiving coverage because of the interaction of
their geographic features with the existing electric grid. Since factors associated with close
proximity to the electric grid could violate the exclusion restriction (these areas tend to be
more urban), I use only variation in this instrument for individuals who were at least 5 km
from the electric grid.34 I also use a more general instrument based on topography: the
slope of the landscape. I use both variation in an individual’s coverage instrument as well
as variation in the coverage instrument of their contacts.

I also exploit variation induced by an adoption subsidy program. In the first four months of
2008, the Rwandan government distributed 53,352 heavily subsidized handsets in rural areas,
then roughly 8% of the stock of handsets in the country. By inducing handset recipients to

in a lending relationship, or in a romantic relationship. Even within those categories, huge variances in the
natures and intensities of relationships would filter through to duration and utility estimates.
33There is also an issue with selection based on changes: it is likely that different individuals have different
responsiveness to coverage. Those that are highly sensitive will wait until there is sufficient coverage in
their area. But I observe calling changes only for people who had already subscribed. This would tend to
bias estimates of coverage responsiveness downward. This could be addressed by estimating the response to
coverage in the adoption decision. I have not done this because it adds substantial complexity.
34The precise exclusion restriction is that individuals in locations further than 5 km from the electric grid
that would receive coverage had a line of towers been built along the whole of the electric grid do not in
unobservable ways value the network more than those who would not. The instrument leads to scattered
patches of coverage throughout the country; see Appendix B for maps and more details.



18

adopt earlier, the program increased the utility that their contacts would obtain from joining
the network. I exploit variation in the fraction of an individual’s contacts who receive
subsidies, assuming that the contacts of recipients do not obtain unobservably different
utility from being on the network. I analyze this program in more detail in Section 8 and
find that recipients themselves do not appear substantially different from nonrecipients.

I discuss these instruments more in Appendix B and present the evidence on the exclusion
restriction.

The main cost of adoption is the price of a handset. The set of available handsets is
driven by the global market; Rwanda is a small market, handsets are mainstream, imported
models, and local price trends are consistent with global trends. In contrast to markets
like the U.S., handsets are sold at retail price, so there is less scope for adjusting prices.
Nonmarginal fees associated with using the network did change over this time, but these
were small relative to the price of a handset.35

Estimation Procedure
Calling Decision. I specify a distribution for call shocks εijt. To account for the large
fraction of months on a given link without a call, I use a mixture of a lognormal distribution,
lnN(µij , σ

2
i ), and a mass point at negative infinity with probability 1−qi, which corresponds

to not calling regardless of the cost.36 The parameter qi thus controls the amount of censoring
independent of cost. (The utility function parameter α controls the amount of censoring
that depends on cost.)

The calling decision has 9 types of parameters. I allow the means of the shock distribution
to vary at the link level (µij), I allow the standard deviation of the shock distribution and
cost-independent censoring parameter to vary at the individual level (qi, σi), and I assume
that the shape and sensitivity parameters are common to all links (γ, α, βcall, βcoverage.from,
βcoverage.to, βcoverage.interaction). I estimate these parameters using maximum likelihood.

In each period t, for each pair of contacts i and j, I observe a duration dijt ≥ 0. The model
maps each duration d to an underlying call shock ε, conditional on prices and coverage:37

ε (d |pt, φit, φjt ) =
dγ−1 + α

1− βcallpt − h(φit, φjt)

35Before June 2007, subscribers needed to add roughly $4.53 (2500 RwF) in credit per month to keep their
account open. The lifting of this policy led to a large increase in account openings. Actually opening an
account entails purchasing a SIM card, which cost roughly $1 (500 RwF) itself plus the cost of an initial
top up. The initial top up amount changed over time but the cost of the SIM remained relatively constant.
Available top up amounts also changed during this period, which I do not model.
36On average, there is a call across a given link only 12% of months. If I used only a common continuous
distribution, most of the mass of the distribution would be to the left of the censoring point, and distribution
parameters would be estimated primarily off of this censoring point.
37pt represents the per-second price of a call. Prior to February 2006, calls were billed by the first minute and
each subsequent half minute; after, subscribers could opt in to per second billing. Modeling the per-minute
charges would add significant complexity, so instead I impose an equivalent per second price based on an a
basket of calls for all accounts before the introduction of per second billing. I assume the average call is 30
seconds.
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There will be a month without a call (dijt = 0) if the call shock was not high enough to
place a call. i will choose duration zero for the set of epsilons mapping just below duration
1, so that a month without a call has likelihood:38

Fij [ε (1 |pt, φit, φjt )]

If the call shock is large enough, i will place a call; the higher ε, the longer the call
duration. The likelihood of an observed call of duration dijt from i to j in month t is:

Fij [ε (d+ 1 |pt, φit, φjt )]− Fij [ε (d |pt, φit, φjt )]

I estimate the 6 common parameters and as well as the 127.6 million distribution param-
eters defining the communication graph. To make estimation tractable, I perform two steps.
First, I jointly estimate common and distribution parameters for a random subset of 1,500
nodes and their full set of 92,386 links (representing a total of 2.5 million link-month ob-
servations). Then, I impose the common parameters estimated in the first step to estimate
the remaining distribution parameters for the full sample of 1,525,061 nodes and their 124.6
million links (representing a total of 4 billion link-month observations. The median number
of observations per node is 637 and per link is 45, leading to a median of 41 observations
per parameter39). The individual likelihoods are separable conditional on the common pa-
rameters, so this latter step is computationally much less demanding than performing a full
joint estimation.

These parameter estimates allow me to compute the expected duration along the rela-
tionship ij conditional on calling prices and coverage:

Edij(pt,φt) =

ˆ ∞
εijt

d(ε, pt,φt) · dFij(ε)

as well as expected utility:

Euijt(pt,φt) =

ˆ ∞
εijt

[
d(ε, pt,φt) ·

(
1− βcallpt − h(φit, φjt)−

α

ε

)
− 1

ε

d(ε, pt,φt)
γ

γ

]
dFij(ε)

38Note that chosen durations can only be integers, so there is a range of epsilons that map to the same
observed duration d; since utility is concave, the duration will be rounded down.
39Note that the number of parameters grows with the number of links, so for asymptotics I take the number
of observations to grow in the time dimension. For individuals who adopt late in the data, I have few
observations of usage. This lower tail of links could lead to an incidental parameter problem and affect the
consistency of estimates: the 25th percentile of observations per parameter is 21 and the 1st percentile is 6.
One way to get around this problem is to estimate the communication graph only for the smaller subgraph
that subscribed by a certain date, so there is sufficient data—say, individuals that subscribed by 2008—and
then simulate counterfactuals of adoption only up to that point. This approach would work well to simulate
counterfactual policies affecting early adoption, but the counterfactuals I run in this paper primarily impact
adoption in the later parts of the data. See Table 4 for the quantiles of the observations per link, node, and
observation.
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where d(ε, pt,φt) = [ε (1− βcallpt − h(φit, φjt))− α]
1

γ−1 .
I compute these expectations for all relationships ij, using the common time path of

calling prices, and the paths of coverage specific to caller i and receiver j. The integrals are
evaluated using Monte Carlo draws.40 The utility of owning a handset in a given period,
uit, is derived from these relationships.41

Adoption Decision. In choosing when to adopt, individuals weigh the price of handsets
against the discounted stream of benefits from being on the network. These benefits will
continue after the data ends, since a purchased handset will last beyond the end of the data.
Because the network continues to grow, these benefits are nonstationary. I estimate the
adoption decision using moment inequalities, which allow me to difference out these future
utility streams.

For the following exposition, I assume that individuals have perfect foresight and make
adoption decisions independently; I will then loosen these assumptions. Then i forecasts
utility correctly and will adopt at the time τi = arg maxτ U

τ
i . If time were modeled as

continuous, the optimum would be obtained from the first order condition ∂Uτi
∂τ

∣∣∣
τi

= 0. I

compute the discrete time analogue using differences.
I observe each individual’s month of adoption, τi, and consider the utility he would have

received had he adopted a different month. At time τi, i faced the decision of buying a
handset and obtaining utility U τii , or postponing adoption by K months for utility U τi+Ki .
Since he adopted at τi, revealed preference implies U τii ≥ U τi+Ki . The utility of being on
the network during the following K months must have exceeded the value of the drop in
handset prices:42

K−1∑
k=0

δkuiτi+k(pτi+k,φτi+k) ≥ β
handset(phandsetτi − δKphandsetτi+K )

Similarly, i could have purchased a handset K months earlier. At time τi−K, i chose to
postpone adoption to obtain expected utility U τii instead of buying a handset and getting
utility U τi−Ki . This implies U τii ≥ U τi−Ki . Because i chose to postpone adoption by K

40Note that both integrals are nonlinear functions of estimated parameters, so uncertainty in parameter
estimates could bias the estimates of these expectations. One way to account for this error is to integrate
also over the estimated sampling distribution; I am working on calculations with this correction.
41In the adoption decision, I assume that individuals forecasts of these usage utilities are correct on average.
For a graph of the quantiles of these utilities including all policy changes, see Appendix H.
42Under perfect foresight, i correctly forecasts the first K months of utility and his expectation of the
continuation flow does not change between τi and τi +K. Both options provide the same continuation flow
of utility after τi +K, so they differ only in the utility provided in the first K months.
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months at τi −K, the utility from the K months prior to purchase must have been worth
less than the drop in handset prices:

K∑
k=1

δK−kuiτi−k(pτi−k,φτi−k) ≤ β
handset(phandsetτi−K − δKphandsetτi )

In the exposition I assumed that individuals made independent adoption decisions, but
individuals may actually coordinate adoption: for example, a husband and wife may buy
phones at the same time. If two individuals tightly coordinate adoption to purchase a
handset in the same period, the bounds I derive are simply wider than the bounds that
would be obtained if the coordination pattern were accounted for.43

These results follow if individuals have perfect foresight over the future path of prices, their
own and their contacts’ coverage, and their contacts’ adoption dates. In reality, individuals
are likely to have uncertainty about future paths of utility. The model is robust to a
particular deviation from perfect foresight: if individuals hold beliefs over future paths of
utility that differ from the true expectation by an error that is mean zero across individuals,
this forecast error will be absorbed into ηi.

I form these two relations into moment inequalities (Chernozhukov et al., 2007; Pakes,
2010) to estimate the sensitivity to handset prices βhandset:

E

Zmi
K−1∑
k=0

δk

 ∑
j∈Gi∩Sτ+k

Euijτ+k + w · Eujiτ+k

− βhandset(phτ − δKphτ+K) +
1− δK

1− δ ηi

 ≥ 0

E

Zmi
 K∑
k=1

δK−k

 ∑
j∈Gi∩Sτ−k

Euijτ−k + w · Eujiτ−k

− βhandset(phτ−K − δKphτ ) +
1− δK

1− δ ηi

 ≤ 0

for a set of instruments Z. I include Z0i = 1, based on the restriction E [ηi] = 0. I also
include instruments Zmi that shift the cost of providing service (including geographic slope,
and incidental coverage from the presence of electric lines of both the individual and the
average of his contacts) and the benefit of joining (the fraction of contacts who received
subsidized handsets in the government’s 2008 subsidy program). The assumption required
for these instruments is that they impact the adoption decision but are orthogonal to the
unobserved benefit of being on the network ηi: E [ηi|Zi] = 0. I run suggestive tests and find
that these instruments have low correlation with observables that could suggest different
unobserved benefits of being on the network, including the structure of an individual’s

43The bounds I estimate hold fixed j’s decision in computing i’s utility from adopting at different times.
Consider if i and j coordinate to always adopt in the same month. If i adopts earlier, j will adopt earlier,
and the true utility of adopting earlier is greater than I estimate. The true inequality will then imply the
inequality I measure: I estimate a looser bound. If i adopts later, j will adopt later, but the utility starting
when they adopt will continue to be the same as if they did not coordinate.
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communication network and the quality of handset model purchased (see Appendix B). I
include the instruments, squared terms, and interactions.44

To balance precision with smoothing, I select K = 2 months. A lower K results in tighter
bounds, while a higher K would better smooth any time-varying shocks that could cause
an individual to shift their adoption date, like an income shock. Given this choice of K, I
estimate βhandset using changes in utility and prices during the two months prior to and two
months following adoption. In the two months leading up to adoption, the median consumer
gains 3 contacts and the price of a handset declines by $0.90. The median consumer has 37
contacts when they adopt. In the two month following adoption, the median gains 3 more
contacts and the price of a handset declines by $0.94.45

During months extra fees were charged, I incorporate the fee schedule.46 I fix the discount
factor δ = 0.9916 ∼ (0.9)1/12. For computation details see Appendix J.

Results. Parameter estimates are reported in Table 4.
The estimate for the cost-dependent censoring parameter α is above zero, suggesting that

the cost of placing a call affects the extensive margin of whether to call in a given month.
The coverage sensitivity estimates suggest that the most important term in the hassle

cost is the interaction of sender and receiver’s coverage (βcoverage.interaction), followed by the
receiver’s coverage (βcoverage.to). This is consistent with it being more of a hassle to place
a call to an area with poor coverage (one must attempt many times in order to reach the
receiver) than from an area with poor coverage (one must simply walk to an area with good
coverage), and for it being a large hassle to call when both parties have poor coverage.

The model provides two separate ways of measuring the value of joining the network,
the first based on the decision to call a contact and incur a marginal cost per second, and
the second based on the decision incur the price of a handset at the time of adoption. The

44While in theory βhandset could be set identified, given computational constraints in the simulation, I would
be unable to bound equilibria given a set estimate. Including these instruments allows me to recover a point
estimate.
45I identify 41,225 individuals who received subsidized handsets from the government. Because the time-
limited subsidy made it extremely desirable for these individuals to adopt when they did, if I were to include
subsidy recipients in estimating βhandset, I would obtain extremely wide bounds. Instead, I estimate βhandset

on all individuals who did not receive a subsidy and who subscribed after the first 2 months of the data. This
relies on the assumption that the parameter βhandset is the same for subsidy recipients and nonrecipients.
As I show in Section 8, subsidy recipients appear similar to nonrecipients in terms of phone usage and social
network attributes.
46Before April 2005 there was a monthly fee. Before June 2007, subscribers had to top up their balance
with a minimum of $4.53 every 30 days to keep their account active. If the subscriber incurred charges
less than this amount, the leftover balance would accumulate. This would be a binding restriction for most
subscribers, as most spend less than this amount. I model the hassle of having to accumulate balance in
this way as an extra fee of half the extra top up amount, based on the average duration talked with the
contacts on the network during that month, billed at the average basket of rates (50% peak, 46% off-peak
and 4% discount). Ideally, I’d use the optimal durations computed for that month; this is a simplification
for computational reasons. I do not explicitly model another common way to respond to the restriction,
which is to cycle in and out of account activity. The hassle cost I model here accounts for this cycling in a
simplified way.
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estimates resulting from these two methods can be compared at the point of adoption. In
the adoption decision, I find that if the median consumer had adopted two months earlier
he would have paid $0.90 more for a handset, suggesting the expected benefit of being on
the network those two months prior to adoption was less than $0.90 (or about half a day’s
consumption, given an average nominal daily consumption of $1.67 for individuals in phone
owning households in 2010). Had he adopted two months later than he did, he could have
saved $0.94 on purchasing a handset, suggesting the expected benefit of the two months
following adoption was more than $0.94. Based on the estimates of the call utility model, I
find that if the median consumer had adopted two months earlier, he would have obtained an
additional $0.64 in expected call utility; had he delayed adoption by two months, he would
have given up $0.87 in expected call utility. (These estimates assume that recipients do not
value incoming calls (w = 0); if recipients value incoming calls as much as outgoing calls
(w = 1), the call utility roughly double counts the surplus from calls. I proceed assuming
w = 0.47) That the call model appears to slightly underweight utility could arise from the
omission of SMS and missed calls; as a rough check, if I inflate the call utility estimates by
the ratio of revenue from both SMS and calls to revenue from just calls (SMS represents
roughly 13% of revenue), they fit within the bounds suggested by the adoption decision:
$0.73 < $0.90 and $1.00 > $0.94.

From these two decisions I estimate one parameter for price sensitivity for calls (βcall =

0.20) and one parameter for the price sensitivity in the adoption decision (βhandset). While in
theory handset price sensitivity could be set identified, I obtain a point estimate, βhandset =

0.14. The estimate is lower than the estimate from the calling decision, consistent with the
reduced form comparison of tradeoffs around the adoption date, and with the interpretation
of the utility captured by the call model representing a proxy for the utility from all com-
munication across a link. The parameter βhandset scales up the utility of usage uniformly to
account for the value of the transactions I have not explicitly modeled: SMS, missed calls,
and foreign calls.48

The parameters of the communication graph are shown in the second panel of Table 4.
Although I estimate many parameters (127.6 million), the number of observations is large
(4 billion). Most parameters are estimated off of a sufficient number of observations for
standard errors to be reasonable in size.49

I interpret the parameters of the call model by presenting comparative statics in Table 5.
I set the shock variance σi and cost-independent censoring parameter qi to their medians,

47When incoming calls are valued the same as outgoing calls (w = 1), I find the expected call utility of the
two months prior to adoption is $1.68 and two months following is $2.24.
48This scaling relies on the assumption that the utility from nonvoice communication represents the same
fraction of total utility on each link. The correlation between a link’s call duration and call attempts is 0.58
and the correlation between a node’s total duration and total SMS is 0.53 (I cannot compute the correlation
for SMS at a link level because I cannot pair sender and receiver).
49For a short discussion of the incidental parameter problem, see footnote 39.
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and show expected outcomes for the range of quantiles of shock means µij . The top panel
shows expected durations, costs, and utility when both parties have full coverage and prices
are the lowest observed in the data. Since coverage is perfect, there is no hassle cost. It is
informative to interpret a few metrics under these conditions for the median link (the center
column). Calls across the median link are infrequent: the probability of making in a given
month is 0.22. Durations are short: conditional on making a call, the expected duration for
that month is 43.2 seconds. The expected monthly cost of communicating across the median
link is $0.04, which corresponds to 0.08% of the average monthly per capita consumption in
a phone owning household in 2010, and the link provides an expected utility of $0.07. Since
the median individual has 61 links, the total durations and utilities for each individual will
represent the sum from many links.

The middle panel of Table 5 shows the impact of reducing both parties’ coverage to half:
optimal durations and probability of calling decrease, hassle costs increase, and utility is
reduced. The bottom panel instead shows the impact of increasing price to the highest
observed in the data, but maintaining full coverage: durations and probability of calling
both reduce, but due to an increase in price rather than in hassle cost.

Model Fit. The call model has two goals: to uncover from observed durations and costs
the underlying conditional distributions, and to translate these durations and costs into
utilities. Since the data cannot directly distinguish between the shape of the utility function
and the distribution of shocks, I have narrowed the choice of utility function using theoretical
restrictions and then selected a distribution of shocks that matches the data well.

One test of this separation is the fit of the calling distribution. The fit of the duration
distribution is shown in Figure 4. The fit is helped by the large number of parameters
estimated, but the choice of functional form is still important, as is evident from the predicted
distribution’s slight systematic deviations from the data.

7. Simulation of Network Good Adoption

In this section I outline a simulation method to compute a new network equilibrium based
on changes to the environment. Since I observe only individuals who were subscribers be-
tween January 2005 and May 2009, I consider the impact of counterfactuals on this subset.50

Simulation Method. There is some initial set of adopters S0 whose decisions are unaf-
fected by the change in the environment. Other individuals decide on an adoption month
τi ∈

[
1, ..., T̄

]
. For simplicity in exposition, I assume that each adoption decision is made

independently, without coordination; I discuss robustness to coordination later. Because

50For simulation results to be exact, the strict assumption is that the counterfactual utility that would be
provided to nodes adopting after May 2009 in the observed data never exceeds that provided in the actual
data. If it does, the results will underestimate adoption.
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counterfactuals may induce individuals to delay adoption, I set the end date for the simu-
lation three years beyond the limits of the calling data, using aggregate adoption statistics
to scale utility to account for expansion in the network after my data ends.51

I define an equilibrium as a function of a vector of types η = [ηi], where an individual’s
type represents their idiosyncratic benefit of being on the network.

An equilibrium Γ(η) is defined by adoption times τ = [τi]i∈S satisfying:

(1) Fixed initial adopters: the adoption date for an initial adopter i ∈ S0 is τi = 0

(2) Individual rationality: the adoption date of each other individual i ∈ S\S0 is optimal
given type ηi and others’ adoption dates:

τi = arg max
t
U ti (ηi, τ−i)

To identify an equilibrium given η, I use an iterated best response algorithm:

(1) Propose a candidate adoption path τ 0

(2) Allow each individual to optimize their decision, holding fixed the adoption path of
others:

τ1
i = arg max

t
δtU ti (ηi, τ

0
−i)

(3) Iterate, using the path from the previous step τ k to form the next:

τk+1
i = arg max

t
δtU ti (ηi, τ

k
−i)

(4) Stop when the equilibrium converges: τk+1
i = τki for all i52

The equilibrium identified depends on the candidate adoption path τ 0 as well as the
vector of types η.

For baseline simulations, I set the candidate adoption path to the observed adoption path
so that at the first step of the algorithm individuals expect the observed equilibrium. By
doing this I am likely to recover the equilibrium closest to the observed path.53 The observed
path is also my best guess of individuals’ expectations for adoption for counterfactuals that

51See Appendix I for more details. I did not extrapolate future utility in this way when estimating the
adoption decision because estimates would be sensitive to the extrapolation assumptions; for simulation,
these assumptions affect only individuals who end up changing their adoption month to lie outside of the
period I have data. (For individuals receiving adoption subsidies the extrapolation also affects their lower
bound estimates.)
52With the aim of speeding convergence, in practice at each step k I use the path defined by τkj for individuals
j that have reoptimized in this step and τk−1

j for individuals who have not yet reoptimized in this step,
in the same manner as the Gauss-Seidel method. The algorithm sometimes reaches a cycle rather than an
equilibrium. These cycles tend to be quite small, involving only a handful of nodes. If the algorithm reaches
a cycle, I break the cycle and note the number of nodes involved.
53For counterfactual simulations, to speed up computation I set the candidate adoption path to the corre-
sponding baseline equilibrium adoption path.
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do not greatly shift adoption. I do not attempt to recover all possible equilibria,54 but since
there is uncertainty in η will recover a set of equilibria.

Ideally, I would compute a sample of the equilibria arising from many draws from a dis-
tribution of η, but doing so is computationally prohibitive because demand is interlinked.
In other settings, each ηi could be sampled independently; however, because adoption de-
cisions are interlinked, i’s particular draw of ηi can potentially affect the decisions of the
entire network. I could sample the over one million ηi’s jointly and compute the resulting
equilibria, but it would be computationally prohibitive to sample a sufficient number of
these draws.55 Instead, I back out bounds for each individual’s realized type based on the
adoption inequalities and the estimate of βhandset. I find ηi ≤ ηi ≤ η̄i, where:56

η = − 1− δ
1− δK

K−1∑
k=0

δkE

 ∑
j∈Gi∩Sτi+k

uijτi+k + w · Eujiτ+k

− βhandset(phτ − δKphτ+K)


η̄i = − 1− δ

1− δK

 K∑
k=1

δK−kE

 ∑
j∈Gi∩Sτi−k

uijτi−k + w · Eujiτ−k

− βhandset(phτ−K − δKphτ )


Because each individual’s type is backed out as a set rather than a point, the set of

types {η|ηi ≤ ηi ≤ η̄i} may trace out a set of equilibria rather than a single equilibrium. I
derive bounds for this set of equilibria by exploiting its lattice structure. First, note that
there is a monotonic relationship between ηi and i’s optimal adoption date τi: a higher
type ηi weakly decreases i’s optimal adoption date. Second, note that the underlying game
has strategic complements: a decrease in i’s adoption date τi weakly decreases j’s optimal
adoption date.57 Thus the equilibrium Γ(η), where each individual’s ηi is set to its lower
bound, represents the lower bound of the identified set of equilibria, and the corresponding
equilibrium Γ(η̄), where each individual’s ηi is set to its upper bound, represents the upper
bound. These filter through to provide bounds on the adoption date for each individual,
[τ i, τ̄i] within the identified set of equilibria. I compute a third equilibrium Γ

(
ηi+η̄i

2

)
, which

54Because the game is supermodular it is possible to recover bounds on the set of equilibria by starting the
algorithm with the lowest candidate adoption path (all individuals delay adoption until the end of the data)
and the highest candidate adoption path (all individuals adopt in the initial period).
55Given 12 hours to compute one equilibrium, it would take one instance one year to compute the equilibria
resulting from roughly 730 values of η. Multiple instances could be run simultaneously, but each requires
roughly 115 GB of memory. This form of sampling would eventually be feasible given sufficient access to
a powerful enough computing cluster; in a future version of this paper I hope to describe various empirical
approaches to fit various computational resources.
56I back out these bounds differently for subsidy recipients; see Appendix I for details. Also note that the
error structure cannot rationalize all adoption decisions: there are some observed decisions (roughly 20%) for
which the inequalities of ηi cross. In these cases, I assume ηi is the mean of the two bounds. A second error
could be added to rationalize these decisions, but this would have to be a random effect from a distribution.
This would make simulation intractable: since adoption decisions are interlinked, individual i’s draw affects
the adoption decisions of the rest of the network.
57This follows from the lattice structure of τ and because Uτi(ηi, τ−i) has increasing differences in τi and
τj / is supermodular in τ ; see Topkis (1978) and Milgrom and Shannon (1994).
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is my best guess of the equilibrium that would be observed, by setting ηi =
ηi+η̄i

2 , the mean
of the low and high bounds for each individual.58

The state space is large: there are T̄ |S\S0| or on the order of 891,000,000 possible states,
but the algorithm identifies an equilibrium in about 12 hours.59

Revenue and Utility. For each equilibrium I compute the net present value of revenue
and utility, as of January 2005. The revenue from equilibrium Γ is computed by summing
the price times the expected duration across each link:

RΓ =
∑
i∈S

∑
t≥τi

δtpt ·
∑

j∈Gi∩St

Edijt(pt, φit, φjt)

Total utility from calls is computed analogously:

UΓ
calls =

∑
i∈S

∑
t≥τi

δt
∑

j∈Gi∩St

Euijt(pt, φit, φjt) + w · Eujit(pt, φjt, φit)

where this utility is net of calling and coverage costs incurred.

In order to realize this utility, an individual had to purchase a handset. I assume handsets
are provided by a competitive market at marginal cost. The handsets that subscribers
purchase would last beyond the end of the data, so I calculate the cost of using the handset
during the data by assuming each individual purchases a handset at their adoption time τi
and then sells it back at the end of the data at the prevailing price. This yields the following
cost of handset ownership:

CΓ
handsets =

∑
i∈S

[
δτiphiτi − δ

T̄ dataphiT̄ data

]
Then, the total net utility in money is given by:

UΓ
net =

1

βhandset
UΓ
calls − CΓ

handsets

where I convert the utility from calling into dollars using the handset price sensitivity
βhandset, which will measure the total communication utility. In welfare calculations I omit
the idiosyncratic benefit term ηi that enters the individual’s adoption decision, because this
term may pick up a forecast error that does not represent the utility individuals receive. I
also omit any potential profits earned in the handset market.

58I handle the simulation of adoption subsidy recipients slightly differently from nonrecipients due to the
sharp discontinuity in cost generated by the subsidy; see Appendix I for more detail.
59Several factors contribute to the algorithm’s performance. The benefits to individual i of joining the
network at any point in time are bounded, by i’s minimal set of contacts Gi∩S0 and maximal set Gi. There
are thick regions of indifference: changes in the network only affect i if they affect i’s direct neighbors.
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Because there is a monotonic relationship between adoption date and both utility and
revenue, the lower and upper bound equilibria represent upper and lower bounds on revenue
and the utility from calls:

RΓ(η) ≤ R ≤ RΓ(η̄)

U
Γ(η)
calls ≤ Ucalls ≤ U

Γ(η̄)
calls

Because the net utility function omits idiosyncratic benefits, it does not match the utility
each individual maximizes, and there may be an equilibrium between Γ(η) and Γ(η̄) that
has a net utility lying outside the bounds of UΓ(η)

net and UΓ(η̄)
net .

Baseline Simulation Results. I run the simulation on the same environment as the data
to get a sense of the model’s fit. As shown in Figure 5, the simulation matches the general
trend of the data. While adoption in the data grows more continuously, the adoption path
generated by the model has more discrete jumps, resulting from individuals settling on
adoption dates at price changes. These jumps would be softened if either there was some
uncertainty about the future, if subscribers faced different handset prices, or if subscribers
had heterogenous price sensitivities. Under mean shocks the correlation between observed
adoption month and simulated adoption month is 0.87, and the mean deviation is 2.82
months. In the simulated equilibrium, I estimate the net present value of revenue to lie
between $215m and $235m (an average of $10-11 per subscriber per month, or 3-7% of
household consumption60). This is comparable with statistics from the operator’s annual
reports: the operator reports that the average revenue per user per month declined from $19
in 2005 to $7 in 2009, as calling prices were reduced and less talkative subscribers joined;61

these numbers suggest a total discounted revenue for the period of $302m. This total revenue
will include revenue from SMS, international calls, and special plans (including corporate
lines and mobile payphones), so should be larger than the model’s estimate.

I estimate the total net present value of utility from calls Ucalls to be between $75-91m
(an average of $3-4 per subscriber per month, or 1.0-2.4% of household consumption), net of
calling and hassle costs. I estimate the cost of handset ownership to be between $21-26m (an
average of $1 per subscriber per month, or 0.3-0.6% of household consumption), resulting in
net utility Unet between $54-65m (an average of $2-3 per subscriber per month, or 0.6-1.8%
of household consumption).

Measuring Policy Impacts. For applications of this method in following sections, I am
interested not simply in the levels of revenue and utility, but how revenue and utility change
in response to a change in the environment. The most natural measure of impact would

60The large spread arises because the distribution of subscriber income changes over time as poorer house-
holds subscribe. The average nominal monthly consumption in households with mobile phones was $472.59
in 2005 and $249.71 in 2010. The average subscribing household in 2010 had 1.52 mobile phones. (See Table
1.)
61The operator reports an ARPU of $19 in 2005, $17 in 2006, $12 in 2007, $11 in 2008, and $7 in 2009.
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be bounds on the change in revenue and utility; however, this measure is computationally
prohibitive for the same reasons it is difficult to compute equilibria for a sample of types
η—adoption decisions are interlinked. Even given the η′is restricted to lie within the realized
bounds, the set of potential type vectors is large: [η0, η̄0] × [η1, η̄1] × · · · × [ηN , η̄N ], and it
would be computationally prohibitive to sample a sufficient number of draws.

Instead, I measure policy impacts by reporting changes in the bounds on revenue and
consumer surplus. It is important to note that these do not necessarily represent bounds
on the potential changes. In particular, the change in the upper bound equilibrium may be
less than the change in the lower bound equilibrium. When a policy change causes the lower
and upper bounds to shift by similar amounts, I may report one number to describe the
approximate shift. When the lower and upper bounds shift by different amounts, I report
both, and either note which bound has shifted or describe one as a high case and one as a
low case.

Robustness.

Coordinated adoption. As described in the estimation section, if two individuals tightly co-
ordinate adoption the estimated bounds I obtain are simply wider than would be obtained if
the coordination pattern were accounted for. The simulation method will faithfully represent
coordinated decisions present in the data; for counterfactuals it will discover coordinated
changes if the coordinated outcome could be obtained by successive individually rational
deviations.

Handset sharing. In the presence of handset sharing, this model would attribute the surplus
utility from shared calls to the account owner. It would differ in two respects from a
model that incorporated handset sharing: there are no sharing costs, and the call shock
distributions are assumed to be independent.62 It would be possible to make the model
more flexible, but since I do not observe sharing patterns this would require assumptions on
the set of individuals who obtain utility, how utility is divided between them, and the costs
of sharing.

Utility from incoming calls. The results I present here assume that the surplus from a call
accrues to the caller (w = 0); as a robustness check I also compute results under the
assumption that both caller and receiver obtain the same surplus (w = 1). These results
are similar to the baseline results; see Appendix K for details.

62I have assumed call shocks are independently and identically distributed, but if a link represents shared use
of the phone, the distribution of calls on that link would change if the person sharing the phone purchased
a handset.
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Homophily: correlated traits or shocks. In many social network analyses, it is difficult to
disentangle the effects from peers across social network links from nonpeer effects that are
correlated among network neighbors. A translation of this concern into this setting would be
that correlated shocks or attributes among neighbors might bias estimation of the network
effect. I get around this problem by exploiting the fact that I observe the actual behavior
of interest across links: the communication I observe represents the utility derived from the
network.63

8. Application: Targeting Adoption Subsidies

Adopting a network good benefits not only one’s contacts: by influencing their adoption,
it also benefits others further away in the network. As a result, the adoption of network
goods is likely to be inefficient: there may be nodes that would provide net social benefit
who do not internalize enough private benefit to adopt.

One can imagine two scales for overcoming these inefficiencies:
An individual node is aware of his local network structure, and may find it privately

optimal to subsidize a neighboring node that otherwise would not adopt (say, buying a
grandmother a mobile phone). Detailed knowledge of the local network structure makes it
possible to overcome local inefficiencies. However, if an inefficiency is dispersed beyond a
handful of nodes it would be difficult for a region of the graph to coordinate to overcome it.

Firms and governments have objective functions that cover the graph more expansively,
and may find it optimal to implement large scale subsidization or price discrimination pro-
grams that result in improved efficiency (Katz and Shapiro, 1994). These programs are
common: for example, Facebook currently subsidizes data usage in developing countries to
boost adoption (BBC, 2010). However, global actors are constrained by information. While
selecting an optimal policy would require perfect knowledge of the flows of benefits, they
have only a rough image of the network structure and thus generally rely on intuition or
simple theories to navigate what is a complex web of interconnected benefits.

In this section I demonstrate a method allowing global actors to use empirically measured
network structure to evaluate—and eventually improve—targeting of adoption subsidies.
I first evaluate a historical example, an adoption subsidy program implemented by the
Rwandan government in 2008. I then describe how the method can be used to encourage
the adoption of future network goods.

63Correlated traits or shocks could affect either the call model or the adoption model. If connected individuals
call similar amounts in the cross section, the parameters of the call shock distributions I estimate would
faithfully represent these correlations. If connected individuals call in response to correlated shocks in time,
the estimates will average these out over time. Because I use plausibly exogenous variation affecting the
timing of adoption to identify the handset price sensitivity parameter βhandset, correlated traits or shocks
that affect adoption would not bias this estimate and instead be absorbed into the idiosyncratic benefit ηi.
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2008 Adoption Subsidy Program. The Rwanda Utilities Regulatory Authority collects
2% of all operator revenues into a Universal Access Fund, to be used for initiatives to
accelerate the use of Information and Communication Technologies. One of the initiatives
implemented using revenue from this fund was a targeted adoption subsidy program in 2008.
The government purchased 53,352 handsets (amounting to roughly 8% of the country’s stock
of handsets at the time) and distributed them to individuals through local governments at
a reduced price.

Fifteen of 30 districts participated in the program. Generally, individuals came to the
district office to voice interest in the program, and the local government allocated handsets
to interested parties. Each district handled its own distribution and thus the allocation
methods differed by district.

The handsets were all the same model, the Motorola C113, which was chosen because it
was low cost and had a long battery life. This particular model was otherwise rare in the
country at the time, so I am able to identify beneficiaries based on receiving this model of
handset during the dates of distribution.

The full price of the handsets was $28. Beneficiaries were to pay a fraction of this price
through monthly repayments of $1.81, but few of these payments were made. I assume that
each recipient made an average of 5 payments, so that the program represented a discount
of $18.94.

I evaluate the effects of this subsidy program on network adoption. I begin with descriptive
evidence about the allocation and use of the subsidized handsets.

Allocation of Subsidized Handsets. The characteristics of the districts that were allo-
cated handsets are shown in Table 6. Handsets were generally allocated to rural districts
with low baseline mobile phone adoption. Allocations varied significantly: half of the dis-
tricts were allocated no handsets; those allocated handsets received enough for between 1%
and 15% of households.

As a first step, I analyze the impact of the program using national household survey data
collected by the government in 2005 and 2010. I aggregate to the district level. A regression
of the change in number of households owning phones on the number of handsets allocated
provides correlational evidence of the impact of the program.64 For a good with no network
or learning effects, I would expect one good allocated to result in weakly less than one
good owned in a follow up survey, where the decline is due to depreciation, exchange across
borders, and the fact that some decisions are inframarginal. If it spurs network effects, the
allocation of one good would cause others to adopt, and could result in more than one good
owned in a follow up survey.

64The earlier survey does not ask about the number of handsets owned within a household, so I only look
at the fraction of households owning at least one handset. If the subsidized handsets were distributed to
households with existing handsets, this would underestimate the association.
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Results are presented in Table 7. Allocating handsets to an additional percentage point of
households in a district in 2008 is associated with an increase of adoption between 2.00 and
3.39 percentage points between 2005 and 2010. Districts allocated handsets had lower initial
levels of adoption, and there is evidence that adoption grew more slowly in areas with lower
initial adoption: controlling for the 2005 number of households with phones, or restricting
to districts that received some handsets from the program tends to raise estimates.

These results are suggestive of a moderate impact on broader network adoption, but
are descriptive, not causal. Allocations were not random and may have been targeted
towards districts that otherwise would have differential adoption trends. Another issue is
that network effects need not remain constrained within a district; spillovers across district
borders would bias estimates downward. In the next subsection I analyze usage data, which
suggests that this is the case: although all of the handsets were allocated to rural areas,
many of the handsets were used in urban centers.

Use of Subsidized Handsets. We can learn more about the impact of the program by
analyzing subsequent usage data from phone records.

Subsidized handsets are identifiable in the phone data. Figure 6 shows the number of
activations of the particular model of handset distributed under the subsidy: it was not a
common model, and the subsidy program represents a large spike. Most studies of distribu-
tion programs will observe the initial recipient, but in the phone data I observe the ultimate
recipient of the handset.65

I consider an account as subsidized if it was activated during the first four months of
2008 and its mode handset was the subsidized model. There are 41,225 such accounts.
That I observe fewer handsets than were allocated per government records could arise from
subsidized handsets being activated later than April 2008,66 allocated to the competing
operator, or not being used at all.

Handsets appear to be used either where allocated or in urban areas. Figure 7 shows
where handsets were allocated based on government records, and where these handsets were
subsequently activated according to phone network records. There is a clear association
between allocation district and location of activation, but also many handsets were activated
in urban areas (the major clusters of activations in regions with no handsets allocated
represent urban areas). This latter point is noteworthy, because no handsets were allocated
to these areas.

To understand further, Figure 8 shows the inferred locations of all accounts, and of ac-
counts affiliated with subsidized handsets. The spatial distribution of subsidized accounts
is very similar to that of initial activations, suggesting that these are also the locations

65If there was an exchange I do not observe the associated transfer. In any exchange, I assume that the
subsidy amount is passed through to the ultimate recipient.
66I consider handsets as subsidized only if activated during this period because during later months it is
difficult to tell if activations are part of the subsidy program.
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where handsets were ultimately used. These results suggest that the program’s effects are
not confined to beneficiary districts, so that the reduced form approach taken in the earlier
section may not yield a valid estimate of its impacts.

Recipients use handsets in a similar manner as nonrecipients who subscribed around the
same time. One potential concern with a subsidy program is that goods may be allocated to
consumers who do not value them. While I cannot conclude much about the initial recipient,
the ultimate recipients of subsidized handsets use their phones less than individuals who
subscribed earlier, but on par with individuals who purchased phones around the same
time, in terms of calls, durations, and total number of contacts (see Table 8).

Recipients’ network structure is similar to others who subscribed around the same time.
An optimal subsidy program to overcome dispersed network externalities would target indi-
viduals who provide benefits to others who have yet to subscribe, who would not subscribe
in absence of the target’s adoption.67 For mobile phones, the most direct benefit results from
phone calls, which can be measured based on usage. I compute one metric of these benefits:
the eventual duration spoken with contacts that have yet to subscribe. I also compute the
clustering coefficient (the fraction of a node’s neighbors who are themselves connected). By
all these metrics, recipients’ network structure looks similar to others who subscribed around
the same time.

The results are suggestive of a program that increased the supply of handsets, with
handsets ultimately being used by relatively typical users. However, the ultimate impact on
network adoption depends on the interaction of the recipients’ adoption decision with the
structure of the network of benefit flows. This is difficult to analyze in reduced form. In the
next section, I use the simulation method to evaluate the impact of the program.

Simulated Impact of Adoption Subsidy. I simulate how equilibrium adoption would
change if the subsidy were not provided, using three assumptions:

• Subsidy recipients represent the full set of eligible individuals. Given the decentral-
ized nature of the implemented subsidy program, it is difficult to determine the
entire set of individuals who were eligible. Since the subsidy was very attractive, I
assume that all eligible individuals took up the subsidy and that it was valid only
in the month they adopted.
• Recipients did not delay adoption in order to receive a subsidy. This would hold if
the subsidy were unanticipated, or if recipients anticipated the subsidy but expected
it to be less generous that it was.
• Recipients preferred taking the subsidy at the point of adoption to purchasing any
time in the following 4 years.

For more details on these last two assumptions, see Appendix I.

67Of course, in a dynamic setting, individuals will anticipate others’ adoption, so an anticipated subsidy
could impact adoption prior to the subsidy.
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Under these assumptions I can compute the effect of the subsidy. Results are shown
in Table 9. I compute the baseline simulation (“with subsidy” in the table), as well as
two simulations where the subsidy has been removed. The first captures only the immediate
effect of removing the subsidy: I allow each recipient to reoptimize their decision individually,
without allowing those changes to ripple through the network (“no subsidy, only proximal
effect of removal”).68 The second is the equilibrium that results after all nodes have adjusted
their decisions (“no subsidy, proximal and ripple effects”). The first column shows the results
for all nodes; subsequent columns show results for different parts of the network: the subsidy
recipients, the contacts of recipients, and nodes that are not connected to recipients.

The bounds I obtain are wide because it is difficult to know when a subsidy recipient would
have adopted in absence of the subsidy. The upper bound presents an optimistic scenario:
targeted individuals would have delayed adoption by an average of only 2.05 months in the
absence of the subsidy. The lower bound presents a more pessimistic scenario: targeted
individuals would have delayed adoption by an average of 2.12 years. These bounds could
be made tighter by either gathering more information or making more assumptions about
the price sensitivity of subsidy recipients.

As described in Section 7, I measure the impact of the subsidy by reporting changes
in the bounds on revenue and consumer surplus, rather than bounds of the changes. In
this application the lower bound equilibrium shifts more than the upper bound equilibrium
because the targeted individuals change their decision more in the pessimistic scenario.

I find:
The subsidy improved welfare. The net present cost of the subsidy was $569,741,

but it shifted the bounds on welfare upward by $5,628,126 (lower equilibrium) and $760,849
(upper equilibrium), resulting in an increase in the bounds on net welfare of $5,058,385
(lower equilibrium) and $191,108 (upper equilibrium).69

It may have been profitable for the operator to finance the subsidy itself. If in
absence of the subsidy, the targeted individuals would have substantially delayed adoption,
it would have been profitable for the firm to subsidize their adoption itself. If the firm had
financed the subsidy, the bounds on its profits should shift upward by $2,110,828 in the
lower equilibrium, but downward by $442,372 in the upper equilibrium.
Most of the effect is a proximal effect of the subsidy. Ripple effects account for

33% (lower equilibrium) and 27% (upper equilibrium) of the effect on revenue and 30%
(lower) and 5% (upper) of the effect on consumer surplus.

68It would be more natural to simulate the direct impact of providing rather than removing the subsidy,
but this is difficult for technical reasons due to the way ηi is backed out for subsidized nodes. See Appendix
I for a discussion.
69These results consider the portion of the subsidy allocated only to the 41,225 individuals I can clearly
identify as recipients. The subsidy for the other 12,127 handsets would have represented an additional net
present cost of $159,130. In the most extreme case where this value was destroyed through misallocation,
this cost would be subtracted from the welfare gains.
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The subsidy provides substantial benefits to the contacts of recipients:

• A significant fraction of calling benefits accrued to contacts of subsidized
nodes. Recipients’ utility increased by $1,254,189 (lower) or $557,459 (upper), from
the combination of increased calling and the direct value of the discount. Contacts
of recipients received utility only from increased calling, but obtained 53% of all
benefits in the lower equilibrium and 11% in the upper equilibrium.
• More than 62% of the increase in revenue comes from contacts of recipi-
ents.

Most spillovers accrue to the contacts of subsidy recipients, which is sensible given that
they receive a direct benefit from being able to call the subsidy recipient.

In Appendix K as a robustness check I analyze the program under the assumption that the
surplus from calls is evenly split between caller and receiver (w = 1); results are qualitatively
similar but a bit smaller: the bounds on welfare increase by $1,135,650 (lower bound) and
$9,599 (upper bound).

Overall, the impact of the subsidy on network adoption is consistent with what might have
been expected from the reduced form evidence: it induces targeted individuals to subscribe
earlier, and has a moderate impact on those further away in the network.

That a substantial fraction of the effect of the subsidy spills over to contacts of the
recipients suggests that subsidies for network goods should be thought of not as targeting
individuals, but rather as targeting neighborhoods of the graph. In the next section I
outline how the simulation method can be used to improve the targeting of subsidies for
future network goods by exploiting network structure.

Improving Mobile Internet Adoption. While failures to internalize network effects have
not prevented widespread adoption of mobile phones, they may prevent widespread adoption
of affiliated services such as mobile money and mobile internet.

If a government or operator knew how the benefits from adoption of these goods would be
distributed across the network, it could target localized inefficiencies and improve welfare.
But while a policymaker would most like to know the benefits to adoption in ‘dark’ regions of
the network that have yet to adopt, benefits are revealed only for regions that have adopted.

I propose a method to predict benefits in regions of the network that have yet to adopt
a new good, using network structure revealed by a good that has already diffused. Here I
outline how mobile phone use can inform mobile internet policy.

Mobile phones are likely to be the most convenient modality to deliver internet service
in Africa.70 This suggests that the model of adoption developed in this paper could be

70In many poor countries, traditional computers are rare, apart from in centralized institutions such as
schools, offices and internet cafes. In Rwanda, only 2% of households own a working computer; and only
0.7% own a computer with an internet connection, while 19% of individuals aged 15 and over own a mobile
phone capable of browsing the internet. Mobile phones are a primary channel for accessing the internet:
of individuals using the internet in last 12 months, 71% have used it from a mobile phone, compared with
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extended to internet access. Since future mobile internet adopters are likely to be current
mobile phone subscribers, features of their calling network will be revealed by mobile phone
use. A large component of internet use is social—e-mail, forums, or social networking
between subscribers—suggesting that social network measures derived from mobile phone
usage may be predictive of the utility derived from internet access.71

In Appendix L, I provide a brief outline of a procedure to predict the benefits for mobile
internet usage. I first outline a model of mobile internet adoption. I then describe how to
estimate a mapping between network properties observed in call data and mobile internet
usage, using either surveys or the combined internet and calling behavior of early adopters.
This mapping can then be used to predict mobile internet usage for regions of the network
that have yet to adopt. The simulation method developed in this paper can be used on this
predicted benefit network to evaluate policies to encourage adoption.

9. Application: The Provision of Service to Rural Areas

Due to difficulties internalizing network effects, network good industries tend to be highly
concentrated. This tendency towards concentration is strengthened when a good relies
on high fixed costs or scarce resources, such as electromagnetic spectrum in the case of
mobile phones. Because concentration would likely lead to inefficient provision in absence
of regulation, network good industries are often regulated.

For communication services, a key question for regulators is whether—and if so, how—to
ensure service to poor and remote communities. This is still an active question for basic
voice services: while currently 90% of the world’s population has mobile phone coverage
and expansion is expected to continue, it is expected that 2-5% of the world’s population
will not be profitable to serve by the private sector (GSMA, 2006). It is also important for
newer services that use the mobile network such as mobile internet: only 45% of the world’s
population has mobile broadband coverage (3G) (ITU, 2011b). A wide variety of policy
instruments are currently in use to encourage rural service provision, from tax-and-transfer
schemes like those used to support rural telephony in the U.S., to service obligations, to
universal service funds that collect a fraction of operator revenues to spend on government-
led projects (GSMA, 2013).

Whether and how to ensure service to remote areas depends crucially on both the shape
of private benefits that would accrue to a network operator, and the social benefits to

52% at work, 50% at an internet cafe, and 31% at a place of education. Mobile phones are cheaper than
traditional computers and can be powered by batteries, which is especially important in a context where
few households have electricity. (RIA, 2012)
71Uses of the web can broadly be divided into accessing content and interacting with other subscribers
through social services such as e-mail, social networking, and forums. The latter social uses are important:
Facebook is the most popular website in Rwanda (Alexa, 2013), and among Rwandans aged 15 and over
who use the internet, 88% have signed up for a social network and 97% have an email address.
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consumers. Both are difficult to measure due to spillovers induced by geographical intercon-
nectedness and network effects.

In this section, I use the simulation method developed in this paper to determine the
full effects of an expansion in rural service in Rwanda induced by the introduction of an
expanded coverage requirement. I then demonstrate how results from this model can be
used to predict impacts in other areas that have yet to receive coverage, by perturbing them
to match aggregates such as population density.

Background. Rural areas in this context are less lucrative due to lower demand (incomes
and population densities are lower) and higher costs (infrastructure is lower quality72). I
focus on the case that service is provided by a monopolist operator, which is the case in 11%
of countries (GSMA, 2009), but the logic follows similarly for provision under oligopoly.
Under certain conditions it is socially optimal to mandate that a regulated monopolist
provide service to remote areas. Assume there is a monopolist operator who currently
serves an urban market. It has the option of expanding into a rural area that is more price
sensitive, at an expansion cost F . This decision is illustrated in Figure 9. If the operator
is allowed to set separate prices, it can treat the rural market independently, and weigh the
profits resulting from a profit-maximizing price against the expansion cost, as shown in panel
(a) of Figure 9. However, many regulators forbid operators from pricing in a discriminatory
manner. If instead the operator is required to offer a uniform price, its decision to expand
will also be affected by the urban market. It will weigh the additional revenue from the rural
market against the loss in revenue from setting a lower price in the urban market, as shown
in panel (b) of Figure 9, and is less likely to find expansion profitable. Even in cases where
pricing is not restricted by regulation, a monopolist will not internalize all of the surplus it
generates. Thus for some demand curves and expansion costs, it would be socially optimal
to mandate the provision of service.

Building a tower costs approximately $130,000. The Rwandan regulator estimates the
total annualized cost of owning and operating a tower as $51,000 per year, plus $29,584
for towers that are far from the electric grid and must be powered by generators.73 Rural
towers also tend to generate less revenue; mean monthly revenue from an urban tower is
nearly twice that of an rural tower.

In the absence of regulation, an operator would build out towers to the point where any
set of marginal towers would not be profitable. Coverage regulation can induce an operator

72Building a remote tower may require building an access road, and if it is far from the electric grid, operating
a diesel generator.
73As part of developing infrastructure sharing guidelines in 2011, the Rwandan Utilities Regulatory Agency
analyzed the costs associated with tower construction and operation after requesting financial data from
operators (RURA, 2011). I use their figures of total cost of ownership to operate a tower, which sum operating
expenses, annualized depreciation, and a 15% cost of capital. Calculated depreciation assumes lifespans of
15 years for towers, 8 years for electric grid access, and 4 years for generators. Per the recommendation of
the operator’s engineer, I assume a tower height of 35m.



38

to build beyond this point. The impact of the regulation depends on the net cost to the
operator to build these marginal towers and the resulting benefit to consumers.

Impact of Rural Expansion in Rwanda. In Rwanda, the regulator required a rollout
plan culminating in near-complete coverage. Although license obligations are spelled out
in the legal code (Rwanda, 2008), they are likely to have been anticipated by the operator
and formed in the course of ongoing discussions, so I do not attempt to evaluate the direct
impact of specific obligations.

Ideally, I would compare the revenue and consumer surplus generated under the actual
rollout to that generated by the rollout that maximizes profits in absence of regulation. It is
computationally infeasible to determine this profit maximizing rollout,74 but it is straightfor-
ward to simulate a suggestive counterfactual: a counterfactual where the operator trims back
rollout, and does not build marginal, low revenue towers. I compute the effect on revenue
and welfare of building and operating the 10 rural towers earning the lowest monthly revenue
that were constructed between 2005 and January 2009.75 These towers represented 3% of
total towers, and their building and operation represented a net present cost of $467,186
in 2005. The distribution of monthly revenue by tower is shown in Figure 10; the omitted
towers are highlighted.76 Two of these low revenue towers cover border crossing points, for
which there was an explicit coverage requirement.

While historical revenues provide a rough gauge of the revenue generated by a tower, they
do not capture the causal impact on revenue: they omit substitution between towers and the
effect of coverage on adoption. I determine the causal impact using my simulation method.

I compute the progression of coverage omitting these 10 rural towers: Figure 11 shows the
regions that lose coverage in this counterfactual rollout. I then compute each individual’s
time series of coverage and the resulting link utilities and durations. I then simulate the new
equilibrium given this counterfactual progression of coverage, and allowing each individual
to reoptimize their adoption decision until an equilibrium is reached. Table 10 presents the
results for adoption months, revenue, and consumer surplus. As described in Section 7, for
computational reasons I measure the impact of rural expansion by reporting changes in the

74Computing an equilibrium under an alternate tower rollout plan requires estimating the resulting coverage
maps for each month, computing each individual’s new coverage at each month (1.5m×53 values), computing
the resulting utility on each link for each month (125m × 53 values), and simulating equilibrium adoption.
This process takes roughly one week for one alternate rollout plan.
75Note that based on the data I have I cannot compute revenues and consumer surplus beyond May 2009.
The full impact of tower construction on the path revenues could be more positive if demand is dynamic,
or there is a first mover advantage in building out towers in advance of the third operator license being
allocated. The full effect on profits could be more negative if demand does not increase in the affected areas
and the unprofitable towers continue to lose money in the future. I can only compute the difference in revenue
between constructing the rural towers according to the original rollout plan and delaying construction until
after the data ends.
76A few towers with low revenue were built before 2005. Since adoption at that point had already internalized
the presence of these towers, I leave these towers be.
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bounds on revenue and consumer surplus, rather than bounds of the changes. I sometimes
find that the lower equilibrium shifts more than the upper equilibrium.

The change in coverage has an immediate effect on calls: lower coverage increases the
hassle cost of placing a call, reducing durations and the utility from calling. Consumers who
obtain less utility from calling may also change their adoption decision, which can cause even
consumers who were not directly affected by the change in coverage to change their adoption
decisions. In the rows of Table 7, I present the baseline simulation with the expansion, and
two counterfactual simulations, one showing only the immediate impact on calling, and one
incorporating the full impact.

The first column of Table 10 presents results for all nodes and the following two columns
break down the effect, on individuals whose coverage was substantially affected and on those
whose coverage was minimally affected.77 As would be expected, the expansion affects the
adoption of nodes whose coverage was substantially affected more than those minimally
affected, moving the former’s adoption forward by an average of 0.16 months in the lower
equilibrium and 0.07 months in the higher equilibrium, and the latter’s adoption forward
by 0.02 months in either equilibrium. However, because there are so many more minimally
affected nodes, the bulk of the total effect in all dimensions accrues to individuals whose
coverage was only minimally affected.

I find:
Rural expansion improved welfare. Building the 10 lowest revenue towers shifts

bounds on welfare upward by $243,032 (lower equilibrium) and $179,381 (upper equilibrium).
Private benefits were too dispersed for rollout in the absence of intervention:

• The rollout was unprofitable for the operator. Building the towers shifted
bounds on the operator’s profits downward by $96,659 (lower equilibrium) and
$140,443 (upper equilibrium). In many cases in economics, competition brings provi-
sion closer to the social optimum, but due to network effects the effect of competition
on rollout would be ambiguous. In a more competitive setting, each operator would
own less of the network and may internalize less of the benefits of an expansion,
both because the interconnection fees that can be charged for calls connecting be-
tween networks are generally regulated to be near cost, and because a fraction of the
benefits would ripple into the competitor’s network. The benefits generated by the
expansion were quite dispersed, suggesting they would likely ripple across networks:
over 76% of the increase in revenue generated by the building of the new towers
comes from individuals whose personal coverage was not substantially affected.
• The benefits were too low and dispersed for consumers to finance tower
construction themselves. A nationwide consumer group would not realize enough

77I define an individual as affected if their coverage changes by more than 0.5 percentage points in the
counterfactual, as of January 2009.
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benefits to finance the tower construction themselves: it would reduce bounds on
overall consumer surplus by $127,496 and $147,362. A related question is whether
citizens would be willing to raise local taxes to finance local infrastructure improve-
ments. However, over 65% of the consumer surplus from tower construction accrues
to individuals whose personal coverage was not substantially affected. If the most
affected citizens banded together to raise money for the towers, they would incur a
huge utility loss: bounds on their consumer surplus would have declined by $349,460
and $358,767; this despite generating substantial benefits both for consumers in other
locations (increasing their bounds on consumer surplus by $221,965 and $211,406)
as well as the operator (increasing bounds on profit by $370,527 and $326,743).

If I inflate the revenue estimates to account for revenue from SMS,78 I find that the
expansion still reduced bounds on profits, but less—by $42,542 and $92,722—and the rollout
was more socially beneficial, increasing bounds on welfare by $297,148 and $227,103.

In Appendix K, as a robustness check I analyze the expansion under the assumption
that the surplus from calls is evenly split between caller and receiver (w = 1). I find that
the expansion still reduced bounds on profits, by $65,417 (lower equilibrium) and $140,948
(upper equilibrium), and the rollout was socially beneficial, increasing bounds on welfare by
slightly less: $216,918 (lower equilibrium) and $94,364 (upper equilibrium).

These results suggest that the benefits from constructing a mobile phone network are
highly dispersed, over different actors as well as across space. I find that in this case, a
Rwandan government obligation to provide service to rural areas induced the building of
marginal towers that increased bounds on consumer surplus by 0.6% (lower equilibrium) and
0.5% (upper equilibrium). Overall, the impact of the regulation is small and the broader
network rollout appears to be driven largely by private incentives. This is consistent with
the worldwide expansion of mobile phone networks across diverse settings, as well as Batzilis
et al. (2010), which finds that in the presence of coverage obligations, market factors are
predictive of the rollout of the mobile phone network in Malawi.

Impact by Population Density. Population density is an important factor in the prof-
itability of providing mobile phone coverage: areas with lower density are more costly to
serve because more towers are needed to cover the same number of consumers. Rwanda’s
population density is high at 416 people per square kilometer: it is denser than Rhode Is-
land, Belgium, or Israel. The demand traced out in rural regions of Rwanda can provide
insight about the demand in uncovered regions in other countries. In this section I compute
the profitability of providing coverage as a function of population density.

I compute a simple perturbation of the results by scaling the country’s population density.
Intuitively, the exercise is to keep Rwanda’s geographic size fixed, but scale the population.

78SMS represented 13% of revenue.
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When the population is scaled down, a given tower will cost the same and cover the same
geographical area, but serve fewer potential subscribers. Instead of scaling down the number
of people discretely, I simply scale down the revenues and consumer surplus, holding fixed
the operating costs.

From the previous section I obtain the net present cost C of building and operating the
10 lowest revenue rural towers and the revenue RΓ and consumer surplus UΓ

net in equilibrium
Γ. If the population density were scaled by a factor λ, the predicted impact on revenue and
consumer surplus would be:

∆R̃Γ = λ∆RΓ − C

∆ŨΓ
net = λ∆UΓ

net

where ∆XΓ is the impact of the tower construction on X in equilibrium Γ.79

For high population densities, with λ > 1.43, it is both socially and privately optimal
in both bounds to expand the network, so an intervention to encourage coverage would
be inframarginal. For low population densities, with λ < 0.66, it is both unprofitable
and welfare reducing to expand the network in both bounds, so that a coverage obligation
would reduce welfare. However, there is a range 0.72 < λ < 1.26 where expanding the
network would be socially optimal but not be profitable, in both bounds.80 In this range, an
intervention to provide coverage would improve welfare. (This range corresponds to scaling
the Rwandan average population density to lie between 301 and 525 people per square
kilometer.81)

Results suggest that the coverage obligation led to unprofitable but welfare improving
tower construction in Rwanda, because the operator was unable to capture a sufficient
amount of the value it generated. An operator that was able to price in a more sophisti-
cated manner (for example, by charging location-specific prices) may be able to internalize
sufficient value. If there are restrictions on pricing, it may be optimal for governments to
encourage service in populated but marginal areas that otherwise would not receive service.

The provision of infrastructure by a private firm is subject to the constraint that the firm
still finds it profitable to provide service. Regulators thus face a constraint on the obligations
they can impose in service of social welfare. The type of analysis presented in this paper
can guide these choices.

79As an approximation, I scale R and Unet linearly with population density. The actual relationship would
be more complex: the quantities are a function of the number and weights of the links in the network,
not just the number of nodes. It is not obvious how the number of links would grow with the number of
nodes (if each node spent a fixed budget on calling it could grow linearly, but if each node increases calling
proportionally with the number other nodes, it could grow as the square, for example).
80Values of λ not covered by these three cases have different effects on the lower and upper bound equilibria.
81This range does not represent a rule of thumb for other contexts, as it is specific to the geography around
these 10 particular towers and represents the average density of the country, not the affected area.
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The model estimated in Rwanda can also be extended to more richly model incentives
to provide service in other settings. For example, the locations of individuals can be redis-
tributed to match aggregate population densities, the links between regions and cities can
be predicted using a gravity model, and coverage can be adjusted based on geography.

10. Conclusion

This paper introduces a new method for estimating and simulating the adoption of net-
work goods. I overcome measurement issues that have limited empirical work on network
goods using rich new data on the adoption and usage of nearly an entire network of mobile
phone users.

I turn this method towards two applications. It can be optimal to subsidize adoption
when individuals do not internalize the benefits their adoption provides to the rest of the
network. I find that a rural adoption subsidy program costing $569,741 improved net welfare
in a low case by $191,108, or 0.06%, and in a high case by $5.6 million, or 2%. I find that
a large fraction of its impact accrues to nonrecipients: in particular, contacts of recipients
account for more than 62% of the effect on revenue. These spillovers suggest that adoption
subsidies for network goods should be thought of not as targeting individual nodes, but as
targeting neighborhoods of the graph. Future work can use network structure revealed by
mobile phone use to better target adoption subsidies for other goods such as mobile internet.

I also analyze the expansion of the mobile phone network into rural areas. I find that
while most of the expansion of the network appears to be driven by private incentives, an
obligation to provide coverage in rural areas led to the building of a handful of otherwise
unprofitable towers that improved welfare, shifting bounds upward by at least $179,381, or
0.06%. Future work can guide the design of other regulations for network goods.

This paper shows an inward application of the tremendous stock of data generated by
mobile phone networks, to understand the economics of mobile phones themselves. There
are more questions to answer in this direction, which can answer longstanding academic
questions about network goods and information technologies, as well as form a compelling
business case for potential data sharing partners.

However, an outward line of research has the potential for broader social impact. Infor-
mation technologies can act as social sensors, illuminating human behavior that was once
unobservable or unquantifiable. These data sets are not just stocks but flows, which open
the possibility of performing analyses that guide policymaking in real time, or which under-
lie new products and services, such as credit scores derived from behavioral signatures in
mobile phone usage.

Services that are provided by formal institutions in developed countries, such as insurance
and public goods, are often provided in developing countries informally by social networks
(Chandrasekhar et al., 2013). The study of these networks can improve our understanding of
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the process of development. Mobile phone data provides an inexpensive, objective, and rich
way to measure social networks, and thus can uncover new insights about how social networks
mediate these basic services. As examples of this line of work, Blumenstock et al. (2011)
exploits rich measurement on the mobile phone network to determine whether transfers
made in response to a natural disaster are part of a reciprocal risk sharing arrangement. In
separate, ongoing work, I am investigating how learning propagates over social networks,
noting that as an individual learns to use a mobile phone, rich data is recorded on each
transaction. I exploit this fact to analyze how a new, discounted mobile phone plan spread
through the social network, tracing how individuals learn from their own billing experience
and the experiences of their contacts. Future work can layer rich measurement with targeted
experiments to answer a broader set of questions.

Privacy remains an ongoing concern with the use of large, passively collected data sets,
and is especially important to consider in developing societies that may not have as many
safeguards for individuals. Usage traces such as the data in this paper are now being
collected passively in many sectors of the economy by private entities, and are already being
used for internal purposes. The gathering and analysis of this big data holds risks that are
currently quite uncertain (e.g., Narayanan and Shmatikov, 2008; de Montjoye et al., 2013),
but tremendous potential for improving the wellbeing of societies. Vigorous public research
in both directions is needed, so that societies can mitigate the risks, and absorb the benefits.
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Appendix A. Measurement

This paper reports most prices in United States Dollars, but the prices charged to con-
sumers are in Rwandan Francs (RwF). The exchange rate was relatively stable over the
period of data (1.2005-5.2009), ranging between 543 and 570 RwF to the dollar.82 I use the
mean exchange rate of 552 RwF to the dollar.

From the data outlined in Section 3, I measure the following:
Account openings and closings. I infer an account as opened the date that the first

transaction is made from it. Account are not explicitly closed; prepaid accounts that are not
topped up regularly are disabled by the operator but can be used again when next topped
up. Some accounts cycle through periods of being disabled but many are used again later;
for this reason I ignore the possibility of account closure.
Communication graph (social network). Let the set of nodes S be the set of active

accounts subscribing before 31 May 2009.83 I define a directed graph over these nodes: there
is a link from i to j if i has called j at least twice. Since the caller pays for a call, keeping track
of the directionality is important. This realized network necessarily represents a subgraph of
the country’s full communication graph in two respects. First, it does not represent all nodes:
consumers who subscribe after 31 May 2009, and consumers who subscribed to the minority
operator are not included. For this reason I narrow the analysis to consider the behavior of
the subset of individuals subscribing before this time. Second, within this subset of nodes,
the realized edges are a subset of the edges of the underlying graph. Different edges would
have been observed given different stochastic draws. This problem is partially mitigated by
the length of the panel (up to 4.5 years).
Individual location. I observe the cell towers used to transmit each call, which is the

only information I observe about each individual’s location. To identify a location for each
individual, I have modified Isaacman et al. (2011)’s ‘important places’ algorithm to improve
performance in rural areas. The algorithm generates a set of important locations for each
individual, Li = {((xil, yil), dil)}l, where (xil, yil) represents the geographical coordinates of
i’s lth location, and dil represents the number of days that the user made transactions from
that location. The identified locations have a slight bias towards the location of existing
cell towers. This would be problematic for individual coverage estimation (it would tend to
locate individuals in higher coverage areas than they actually are) but is mitigated by the
fact that most of the transactions occur in the later years of the data when there is near
universal coverage.
Raw coverage. I predict the coverage of mobile phone service at each location and time

using tower locations and a elevation map.

82Average of selling and buying price, National Bank of Rwanda.
83I define an account as active if it made at least 10 outgoing calls, and the span of time between the first
and last observed transaction is at least 90 days.
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Tower coordinates (latitude and longitude) for most towers were provided by the operator.
For towers whose locations are missing from these records, I infer the location using a
procedure detailed in Appendix C. I infer the date each tower becomes operational by the
date the first transaction that flows through it; I assume that once built, towers are never
taken offline. Elevation data is from NASA Shuttle Radar Topographic Mission (SRTM)
data, at 90m resolution; I use the version of the data from Jarvis et al. (2008), which has
been processed to fill in data gaps.

If I had more information on the towers (specific equipment, tilt, antenna design), it
would be possible to precisely predict coverage with commercial packages (the same as used
by operators for coverage planning). As an approximation I predict coverage based on
uninterrupted visibility, using the viewshed tool in ArcGIS. Based on the recommendations
of the operator’s network planner, I assume the antenna on each tower is located 35m above
the ground, all antennas are omnidirectional, and that the signal has a maximum range
of 15km.84 I threshold the resulting image so that it indicates whether each location has
coverage from at least one tower. This provides a raw coverage map for each month, which
is my best estimate of the network availability at each location.
Individual coverage. The raw coverage maps indicate the coverage available at a given

set of coordinates (x, y) during month t. However, phones are mobile, which has two impli-
cations: first, given that an individual is in a given location, there is a radius within which
they are likely to make a call. In order to account for this, I compute a smoothed cover-
age map, so that φt(x, y) represents an average of the raw coverage available near (x, y),
with the average weighted by a two-dimensional Gaussian kernel with standard deviation
25 pixels, or roughly 2.25km. Second, an individual may make calls from several locations,
such as a village and the capital. To account for this, I compute an average of the cover-
age at each individual’s important locations weighted by the days spent at each location:
φit =

∑
l φt(xil,yil)·dil∑

l dil
.

Appendix B. Instruments

Here I describe the construction of the three instruments used to identify sensitivity to
handset prices in the adoption decision, and present evidence on validity.
Slope instrument. I compute the slope of land for each coordinate (x, y) using ArcGIS,

which is correlated with coverage but likely to satisfy the exclusion restriction.
Incidental coverage instrument. Towers are powered by electric lines or with genera-

tors. It is much cheaper to operate towers on the electric grid, and as a result the proximity
to an electric grid is an important determinant of tower placement. However, while proxim-
ity to the grid directly affects the location of the towers themselves, given Rwanda’s hilliness
it is not the best measure of the resulting coverage. Instead I compute an incidental coverage

84Although the maximum technical range of a GSM tower is 35km, the range in practical use is smaller.
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map: the coverage that would result from building towers along the full network of power
lines.85 These areas of the country had a higher ex-ante probability of receiving coverage
because of the interaction between their geographic features and the existing electric grid.
One obvious concern is that areas closer to power lines will have higher incidental coverage,
and these areas may differ for other reasons that violate the exclusion restriction (for one,
households are more likely to have electricity). For this reason, I use variation in incidental
coverage only for locations further than 5km from the grid. For locations within 5km of
the grid, I set the instrument’s value to the mean value of incidental coverage outside the
buffer region. The resulting instrument picks up incidental coverage based on geographical
idiosyncrasies, such as whether they are on a hillside facing towards or away from a power
line, for households further than 5km from the electric grid. See FIgure B.1 for a visual of
the construction of the instrument.
Fraction of contacts receiving subsidized handsets. As detailed in Section 8, the

Rwandan government allocated subsidized handsets to rural areas in the first few months
of 2008. I consider an account as subsidized if it was activated during the first four months
of 2008 and its mode handset was the subsidized model, which was otherwise rare in the
country at the time. There are 41,225 such accounts. Then, for every individual, I compute
the fraction of contacts that received subsidized handsets. Imagine two individuals who
have yet to subscribe, who do not themselves receive a subsidy. The subsidy represents a
shock that induces a fraction of their contacts to join. The one that has a higher fraction
of contacts affected by the subsidy will receive a larger shock to the utility of being on the
network. For individuals that had subscribed before the subsidy, the effect is ambiguous,
because a higher fraction of contacts who are subsidized also implies a higher fraction of
contacts who wait to join the network. For this reason I use variation in this instrument
only for individuals subscribing after the beginning of the subsidy period in January 2008.

Tests. In order for the instruments to be valid, they must induce variation in the utility
at adoption but be uncorrelated with the unobserved idiosyncratic benefit of being on the
network (ηi—the exclusion restriction). Note that I observe a lot—every individual use of the
phone. The idiosyncratic benefit would pick up differences in individuals’ average valuations
for calling, differences in the utility of owning a handset independent of the calling decision
(such as SMS), or forecast errors in joining the network.

The two coverage instruments are correlated with coverage: my measure of slope is neg-
atively correlated with coverage (-0.19 in 2005 and -0.13 in 2009), and incidental coverage
is positively correlated with coverage, especially later in the data when more of the rural

85I use a GIS layer of the electric grid as of 2008 provided by Rwanda’s Energy, Water and Sanitation
Authority.
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Figure B.1. Incidental Coverage from Electric Grid
(a) Locations of electric grid and towers, January 2009
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(b) Areas that would receive coverage if towers were
built along full extent of electric grid

(c) Incidental coverage instrument, with 5km buffer
around electric grid removed
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network has been rolled out (0.08 in 2005 and 0.49 in 2009). The fraction of contacts subsi-
dized is positively correlated with the total number of contacts subscribing over the months
of the subsidy (0.14).

In Table B.1, I present correlations that measure mechanisms that I assume are excluded.
Since I do not have standard characteristics for subscribers, I derive metrics from transac-
tion data to describe channels that should be excluded. The first three columns represent
correlations for the three instruments. As a comparison test, I include two more columns
representing correlations with coverage at the beginning and end of the data; coverage itself
is likely to fail the exclusion restriction because the operator is more likely to build towers
in locations where individuals receive more idiosyncratic benefit from the network.

First, I consider measures of network structure. Individuals with different network struc-
ture may receive different benefits of being on the network: a trader with many dispersed
contacts may receive a different utility than a mother in a rural area communicating with a
few, well-connected family members. I present results for the number of contacts (degree) as
well as for the clustering coefficient (the fraction of a node’s neighbors who are themselves
connected), both measured using the final network revealed through the end of the data,
by which point coverage had expanded. I find that both measures are most correlated with
coverage in January 2009 (0.11 and -0.15): individuals with higher coverage tend to have
larger, more dispersed networks. The correlations with the instruments are much lower -
the largest magnitudes come from slopes’ correlation with contacts (-0.04) and clustering
coefficient (0.04).

Last, I consider the quality of handset used, which is likely correlated with the unobserved
benefit of adoption. In the model in the paper, for simplicity I do not consider differences in
handset models, but for the majority of subscribers (960,854 out of 1,503,369) I know both
the model of handset used and the price series specific to that model. As shown in Appendix
E.2, although price differences between models could be quite large, their functionality was
quite similar: most differences were in unobservable quality. To compare handset quality, I
measure the price of each subscriber’s chosen handset model as of the same date, January
2009. As shown in the last two columns, there is a correlation between coverage and this
measure of handset quality (0.12 in 2005 and 0.10 in 2009): individuals who have higher
coverage also have higher quality handsets. The correlation between this measure and the
instruments is smaller: it is quite small for the coverage instruments (-0.03 for slope and 0.02
for incidental coverage); it is larger for the fraction of contacts subsidized (-0.07): individuals
who have many contacts receiving subsidized handsets tend to have slightly lower quality
handsets.
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Table B.1. Correlations with Excluded Mechanisms by Instrument

Instruments Comparison Test

Correlation Slope Incidental
Coverage

Fraction
contacts
subsi-
dized

Coverage
January
2005

Coverage
January
2009

Number of contacts
(Degree)

-0.04 -0.02 -0.01 0.03 0.11

Clustering coefficient 0.04 0.01 0.02 -0.11 -0.15

Price of handset model
purchased, as of
January 2009

-0.03 0.02 -0.07 0.12 0.10

N∗ 1,503,369 280,533 452,211 1,503,369 1,503,369
Sample All Primary

location
≥ 5 km
from

electric
grid

Subscribing
after

January
2008

All All

All correlations have a p-value of 0.00. *: I can match the specific handset model a node is affiliated with
to a price for 960,854 nodes. Correlations with handset price are computed on this subset.

Appendix C. Estimating Missing Cell Tower Locations

I have location data for most high-volume cell towers; however, for some towers the
location information is missing. Here I describe a new procedure to estimate the locations
of missing towers based on call handoffs with known towers.

There is a set of cellular towers whose coordinates are known, K, and a set whose coordi-
nates are unknown and to be estimated, U . There is also usage data from the mobile phone
operator that references all towers. Specifically, let us consider using anonymized call detail
records (CDRs) that list the tower used at the beginning and end of a transaction for both
the sending and receiving phone.

One way to infer the locations of the missing towers is to take advantage of calls that
were handed off from one tower to another during a call. This can happen if a person
moves during a call, or if a tower is overloaded. If many calls of short duration are handed
off from tower X to tower Y, this suggests that X and Y are near each other. Thus, one
straightforward way to infer the missing tower locations is to perform a weighted sum of the
coordinates of known towers, where weights are derived from the volume of call handoffs.
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More formally, the procedure has two steps. The first step predicts the coordinates of an
unknown tower xu = (xlongu , xlatu ) by computing a weighted average of the coordinates of the
set of known towers K, with weights wku of the relationship between k and u:

x̂ =
∑
k∈K

wkuxk

I use a simple metric based on the number of handoffs between towers k and u86:

wku =
NHandoffs
ku∑

j∈K N
Handoffs
ju

However, while these predicted tower locations can lie anywhere, towers are generally built
on ridges, to provide better coverage. The second step of the procedure adjusts the predicted
location to lie on the nearest ridgeline. Since Rwanda is very hilly, this adjustment tends to
be quite small (the mean adjustment is 0.59km, and the maximum is 2.15km); however, the
adjustment can have a significant effect on predicted coverage since coverage is sensitive to
the elevation of the tower.

To gauge the precision of tower estimates, I estimate the locations of known towers using
leave-one-out sampling. Results are summarized by tower density in Figure C.1. The method
performs best in areas of high tower density. The cluster of points to the right represents
towers located in the capital.

The mean error in predicted location is 10.3km, with a standard deviation of 15.8km.
The cluster of towers with high densities represents towers in the capital city. The method
lacks a force that pushes predicted locations away from other towers; it might be possible
to address this with a correction factor.

This problem is a special case of a more general inference problem on a network. We have
a set of nodes K ∪ U . There is a property of interest xi, which is known for nodes k ∈ K
but not for u ∈ U . Nodes are connected by edges which are weighted by some distance
metric, wij . I predict x̂u by exploiting homophily on the network: nodes that are close as
represented by wij are also close in xi.

Appendix D. Inferring Subscriber Locations

The call data reports the location of the cell tower used at the start and end of each call.
From the sequence of cell towers used, it is possible to infer an individual’s location.

Before describing the algorithm used, it is relevant to discuss how a transaction is routed
to a tower over a GSM network. At any point during a transaction, a mobile phone handset
sends packets of information to one cellular tower, using electromagnetic waves. This tower

86Other metrics could certainly be used, such as the distribution of lengths of calls that were handed off
(when the duration of a call is short, it is less likely that a call was handed off due to travel). In a first pass
I found that this information was less useful than the raw number of handoffs, presumably because even
short calls can be handed off at long distances (up to 35 km for GSM networks).
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Figure C.1. Prediction Error
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routes these packets to the rest of the network using either fiber optic cables or a different
electromagnetic frequency; the packet is sent to a tower near the receiver and ultimately
delivered to the receiver’s handset.

Handsets tend to transmit information to the closest unobstructed tower, so that the
tower used represents the closest approximation to the individual’s location at that point
in time. Calls can bounce between towers due to call traffic, variation in the weather, if a
tower is down, or if the handset is in motion. The maximum technical range of a GSM tower
is 35 km, but in areas of higher tower density the range is reduced to lower interference.

There is a literature on inferring a subscriber’s location based on usage traces (González
et al., 2008; Isaacman et al., 2010, 2011; Blumenstock et al., 2011). Most of this literature
is based in the developed country context, and much is from urban settings. This paper’s
setting has several unique features relative to this body of work:

• Most work on location inference analyses mature networks using short panels with a fixed
set of towers, but in this setting the tower network was rapidly expanding. In 2005, rural
coverage was sparse; by 2009 essentially the entire country was covered. Since the measure
of location is based on towers used, measures of location at early points in the data tend to
be more biased towards the locations of towers, which tend to be in urban areas. By the end
of the data period there is enough density in rural areas to identify rural users’ locations.
• Usage is sparse. Rich location data is available for the small group of users who make many

transactions; however, many users make very few transactions.
• Behavioral trends. It is common for users to make transactions immediately following a

top up. Since users are observed only when transactions are made, this would tend to bias
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location measures towards locations where they top up (market centers or urban areas).
This would result in a valid measure of location where the user would like to make calls
from conditional on the locations of agents, which is the location measure I am interested
in for coverage. It is not clear how accurate it would be as a measure of a user’s location of
residence.

These make it clear that it is important to differentiate between location of residence (for
matching to household surveys) and locations where phone service is desired (for estimation
and simulation).

I implement a modified version of the ‘important places’ algorithm as detailed by Isaacman
et al. (2011), which for each user identifies one or more important places where they spend
time. The algorithm appears to work quite well: the paper reports validation results from
the United States showing that the identified places were within 3 miles of reported places
for 88% of a small validation sample of users, with a median error of 0.9 miles.

I have modified the algorithm to improve its performance in rural areas.
To find the important places for individual i, the algorithm proceeds as follows:

(1) The towers that i has ever used, Xi, are sorted by the number of days i used that tower,
nix

(2) The most used tower forms the start of a new cluster, located at that tower’s location.
(3) If the next most used tower falls within a distance threshold of the cluster, it is added to

that cluster, and the cluster’s location moves to its new centroid (weighted by the days each
tower is used). If the tower does not fall within the threshold, it forms a new cluster. The
original paper uses a fixed threshold of 1 mile, with which they obtain good results in an
urban setting. To allow for good performance in urban and rural areas (high and low tower
densities), I compute an adaptive threshold specific to each tower related to the density
of towers nearby. In considering the distance from tower x to a cluster, I use a threshold
equal to the distance from x to the 9th most distant tower as of May 2009. This adaptive
threshold allows the algorithm to smoothly incorporate a large radius of spatial information
in rural areas and a narrow radius in urban areas.

(4) The previous step is repeated for each tower: if the nearest cluster is within this tower’s
threshold, the tower is assigned to that cluster and that cluster’s centroid is updated; if the
nearest cluster is further away, the tower is assigned to a new cluster.

(5) After all towers have been placed in clusters, each cluster is ranked by the combined days
that the individual made calls from that cluster (counting each day only once if transactions
were made on multiple towers within that same cluster).

This algorithm has advantages for this setting: it uses the full panel of data, which improves
precision when transactions are sparse, and works well with an expanding network: estimates
simply become more precise as tower density increases. One weakness is that it does not
account for migration: if an individual moved to a far away place, it would be counted as a
new cluster; but if an individual moved to a location close by, it would result in one cluster
accounting for both locations.
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The determination of clusters could be disturbed if there were measurement error in the
tower locations (e.g., a tower placed with error may end up bridging two clusters that should
be separate). For this reason, in determining a subscriber’s location I ignore the use of towers
for which I have only a predicted location.

Appendix E. Data Appendix

E.1. Handset models. The call data reports a type allocation code (TAC) for each handset
that was used, which can be mapped to the make and model. The GSM Association has an
official registry matching type allocation codes to handset models, but access is restricted. I
instead use an independent registry (Mulliner, 2013) to match handsets in the data to their
model names. Using this database I am able to match all but 44 359 of the 1 377 836 total
handsets used in the call data.

I match model names to characteristics and price series obtained from several sources,
detailed in the following two sections.

E.2. Handset characteristics. Handset characteristics are gathered from two indepen-
dent web sites, phonearena.com and gsmarena.com. For each handset I am able to obtain
characteristics that are important for this setting, including battery life, the presence of an
FM radio, flashlight, display quality (number of colors), and camera (number of megapixels).

E.3. Handset prices. In order to estimate the handset purchase equation, I compile a
dataset of each handset model and how its price has changed over time.

Handsets can be purchased through the operator directly or through third parties. Over
the period covered in the phone data, 1 333 477 handsets were activated, and 134 834 were
listed in operator sales records, suggesting the operator sold approximately 10% of handsets.

I assemble one price series for each handset, making the assumption that at any point
in time the price of a particular handset is uniform across the country. This is not wholly
unreasonable, as the handsets all are imported through a small number of distributors.

The project uses three sources of historical handset prices: retail prices posted on the
operator’s website from 2004-2012, the operator’s internal sales database from 2005-2012,
and historical records from an independent shop in Kigali covering sales between 2005-2009.

Some of the operator’s prices bounce around over time. Since I am interested in the
nationwide price available to handset purchasers and not the specific prices offered by the
operator, I assume that price decreases are not reversed: I take the cumulative minimum
price as a measure of the price level of each handset. This would be invalid if observed price
decreases represented temporary sales, or if there were factors that drove prices up (such as
any spillovers from the post-election violence in Kenya of 2007-2008).
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E.3.1. Integrating price series. I first assemble a panel of prices by handset model. If the
operator’s price is available for a given model-month, I use that. I fill in any missing data
points with prices from the independent shop. This sometimes leaves observation gaps within
a given model.

Once a model has been introduced, I assume its price declines predictably. I fill interior
gaps (after the first observed price) with the price from the nearest observed month. I fill
trailing gaps (after the last month I observe a price) with predicted declines from a regression
describing how within-model prices decline over time. Specifically, I estimate the relation
pht = αh + βt + εht, with a fixed effect for each model and a general time trend. I find an
average price decline of $0.54 per month.

Many handsets were introduced during this time period. For these models I construct
alternatives for the periods before that model was introduced. Although the most popu-
lar handset models are similar in observed characteristics, there is substantial variation in
contemporaneous prices, suggesting differences in unobserved quality. The model could be
enriched to allow for handset model choice, which would allow subscribers to choose a differ-
ent handset in a prior period. For simplicity I omit handset model choice. Instead, when the
selected handset was not available in prior periods, I use the price from alternative handsets
of similar quality. I fill leading gaps (before that handset model was available for sale) by
using the price series of the adjacent model of higher quality. I select the handset h′ that
was next most costly to h in the first time t when both were available (and thus presumably
of higher quality). I fill in missing prices in this manner starting backwards from the end of
the data towards the beginning.

E.3.2. Assembling a price index. The prior step generates a price series pht for 160 handset
models, where missing values before the introduction are imputed using the prices of the
handset of nearest higher quality. From these series I assemble a single price index, weighting
by the total quantity of each handset model activated in the data, Qh:

phandsett =

∑
hQh · pht∑
hQh

Figure E.1 shows the resulting price index.
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Figure E.1. Handset Price Index
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Appendix F. Simplifications

SMS and missed calls. I do not explicitly model utility from SMS and missed calls. If
different relationships use different modes of communication, this omission will underweight
the importance of SMS and missed-call relationships in the adoption decision. The data
suggests that the different modes pick up slightly different relationships: the correlation
between a node’s total calls and total SMS is 0.5387, and the correlation between calls and
call attempts within a link is 0.58.

The omission of nonvoice communication could also affect the estimation of parameters
based on changes; for example, if subscribers substitute between missed calls and calls as
the price or coverage changes. The price for sending an SMS is constant and relatively high
throughout the period ($0.10, the same as a call of 24 seconds under the lowest peak price),
and there appears to be little substitution between communication modes as calling prices
change. There may be substitution between SMS and calls as coverage improves.

Handset sharing. Given the high cost of handsets, sharing is common. 55% of phone owners
report they allow others to use their handset regularly. There are two types of sharing:
handset sharing and account sharing:

An individual may open an account but use it with others’ handsets, by inserting their
SIM card. This allows them their own phone number and balance, but it is difficult to
receive calls. This practice is rare: fewer than 1% of individuals in 2007 owned SIMs
without handsets (Stork and Stork, 2008), and within the phone data on average there are
actually 3% more handsets than accounts active in a given month.

It is more common that a person borrows another’s handset and account.88 These bor-
rowing patterns cannot be observed in the data, and are difficult to ask about in surveys,
so I omit the possibility of account borrowing. This is less of an omission than it may seem:
borrowing is a hassle: it is difficult to receive calls, and making a call incurs a charge on the
borrowed account. That subscribers are willing to spend significant sums of money to buy a
personal handset suggests that borrowing is a poor substitute. Thus, although borrowing is
common, the actual volume of calls due to borrowing is likely to be low. In the presence of
borrowing, my model would allocate the surplus from borrowed calls accrues to the handset
owner. The main impact of borrowing is on the outside option: I denote the utility of not
having a handset as zero, but when phones can be borrowed, calls with high enough value
can still be placed. This would have two effects. First, access to a borrowed handset is likely
to be erratic, which would add additional fluctuations to the utility of the outside option.
If the intervals chosen for the revealed preference estimation are long enough, they smooth

87There are a small number of users who use SMS heavily; to prevent these users from skewing the statistic,
I compute the correlation omitting the top 1% of SMS users.
88This pattern would include the use of payphones that run on the mobile network.
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out these idiosyncratic fluctuations. Second, waiting to purchase a handset would be more
attractive; so simulated adoption dates would be biased forwards in time.

Other omissions. I omit the cost of charging a phone (the four most popular handsets have
more than two weeks of battery life on standby). Accounts must be topped up with a
minimum denomination of credit (the minimum was $0.90 by the middle of the data); I
treat these charges as continuous rather than lumpy.

Appendix G. Functional Form of Calling Utility

The form of calling utility matters for two reasons: it determines the utility of being
on the network and thus the adoption decision, and it determines call durations, and thus
operator revenue. Given a call shock εijt, I seek a function describing the utility i obtains
from calling j, of the form:

uij(d, εijt) = v(d, εijt)− cd

where d is the number of seconds called and c represents a per second cost. The function
should satisfy the following properties derived from theory and intuition:

(1) Price enters linearly, so that the duration choice is separable across contacts.
(2) No utility from no call: zero duration yields zero utility: v(0, ε) = 0

(3) Diminishing returns to duration: v(d, ε) is concave in d
(4) If a call is placed, it provides some utility: the optimal duration yields nonnegative

utility: v(d∗, ε) ≥ 0 where d∗ solves ∂v
∂d(d∗, ε) = c or is zero.

(5) Even if calls were free, you wouldn’t talk forever: there is bounded demand under
zero price: ∂v

∂d(d̄, ε) = 0 for some d̄.
(6) If the price is high enough, you wouldn’t want to talk: given a particular ε, there is

a cost c̄ for which d∗ is zero:(
∂v

∂d

)−1

(c̄, ε) = 0

(7) Changing the price of a call affects the extensive decision to call: this requires that
marginal utility be finite at zero:

∂v

∂d
(0, ε) <∞

(8) Changing the marginal price of a call affects longer calls more than short calls:
∂2d∗

∂c∂ε < 0

(9) The amount of information maps to duration: given an observed duration d̄, there is
a one to one mapping to underlying parameter ε, ε(d̄), which has an analytic solution
that is efficient to compute.
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Figure G.1. Marginal Benefits and Costs of Calling Based on Shock
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(10) Relationships with higher information flows provide more utility: the optimized util-
ity is increasing in the optimal duration:

∂

∂d
v(d̄, ε(d̄)) > 0

In this paper I use the following specification:

vij(d, ε) = d− 1

ε

[
dγ

γ
+ αd

]

which satisfies the above properties.89 This functional form results in a marginal benefit
of calling as depicted in Figure G.1.

89Two additional desirable property would be the following:
1. Higher information flows provide diminishing marginal utility: this would imply that the optimized
utility is concave in the optimal duration: ∂

2

∂d2
v(d̄, ε(d̄)) < 0. However, it is surprisingly difficult to find

a functional form that satisfies this property in addition to the others. Since ε(d) is increasing in d, the
concentrated function v(d, ε(d)) is more convex in d than v; in order for it to still be concave, the marginal
utilities corresponding to different ε’s either need to cross for some value of d or bend away from the origin
at low ε’s and towards the origin at high ε’s. The former implies that for a given level of prices, there is
a maximum duration regardless of the shock ε (which is problematic). One candidate that does the latter
is a power-error function v(d, ε) = −(d + e)ε + αd + eε; however the resulting mapping ε(d) uses Lambert
functions (the solution to the equation x lnx = y), which do not have an analytic solution, which causes
issues in estimation.
2. Some information is important enough you will share it regardless of the cost: this would imply for any
cost c there is a ε for which d∗ > 0. When costs are linear, this property requires ε to shift the intercept
of marginal utility upwards without bound. However, with the current specification, this increases the
convexity of the concentrated v function, which is undesirable. In this specification there exists a cost c̄ such
that d∗ = 0 for all ε.
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Appendix H. Estimation Notes

I split the estimation procedure into two steps, first estimating all parameters jointly for a
subset of nodes and then each individual’s parameters conditional on the estimated common
parameters.

The first step itself is broken down into two substeps. The inner loop, Step Bi, chooses
link-specific parameters Θi to maximize the likelihood of the calls from i, conditional on uni-
fied parameters Γ: Θ̂i(Γ) = arg maxΘi lnLi(Γ,Θi). The outer loop, Step A, chooses unified
parameters to maximize the entire likelihood, concentrating out the optimal link-specific
parameters: Γ̂ = arg maxΓ

∑
i∈S lnL(Γ, Θ̂i(Γ)). The Bi steps can be computed in parallel

on small portions of the likelihood, which greatly improves computational performance. Due
to some initial problems fitting extremely long calls, I estimated this dropping the 1% of
links with calls longer than 30 minutes.

There is an issue with this approach relating to edge cases of coverage. The form of
utility function implies that there is a cutoff level of cost (hassle cost of coverage and prices)
above which no calls will be placed, regardless of the shock (I discuss this implication
further in Appendix G). A random subset is unlikely to include the envelope of observations
representing the highest cost instances under potential coefficient estimates. If common
parameters are estimated off of such a subset, when applied to a set of links with a higher
cost instance they could imply that an observed duration has zero likelihood (since the cost
lies above the estimated cutoff). This would not be a problem if the full estimation could
be done jointly. To correct for this, I constrain the estimation of the subproblem so that it
is consistent with a nonzero probability of calling at the envelope of high cost instances.

Counterfactual utility. In estimating adoption, I compute the utility that an individual
would have received in a given period had they owned a phone, holding fixed others adoption
decisions. In Figure H.1 I graph the quantiles of this quantity, uit, over time given the
observed adoption sequence.

I make several observations:
In the first 4 months (January - April 2005), the operator charged a monthly fee of

$2.26 which was higher than the utility most eventual subscribers would have gotten from
the network at that point, so most quantiles of utility are negative. After April 2005, the
operator switched to a minimum top up requirement, requiring that each subscriber had to
top up their balance with a minimum of $4.53 every 30 days to keep their account active.
Most eventual subscribers use their phones less than this minimum, and this policy appears
to have been a substantial barrier to adoption. I assume this requirement incurred a utility
cost of half of the extra amount that a consumer would have had to top up. This minimum
requirement was active until June 2007. The graph shows that during this period, some
eventual subscribers used the network enough to make their utility of being on the network
positive, while others would still obtain negative utility from keeping a phone active.
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Figure H.1. Quantiles of Monthly Utility uit for Eventual Subscribers
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In February 2006, effective calling prices were reduced through the introduction of per
second billing, leading to a jump in utility especially for those who would have made more
calls. In June 2007, the minimum top up requirement was lifted; after this point essentially
all charges were on the margin, so that all utilities are weakly positive. In February 2008, the
operator reduced calling prices. Other, continuous changes in utility are driven by changes
in coverage and by contacts joining the network.

In selecting an adoption date, consumers weigh the future stream of utility from joining
the network against the current price of a handset. Figure E.1 shows the handset price
index.

Appendix I. Simulation Notes

Extrapolation after End of Data. The calling data ends at T̄ data = 53 but I set T̄ = 89,
three years beyond, corresponding to the last month I have handset price data. For t ≤ T̄ data,
I use the formulation of expected utility as described by the model. For t > T̄ data , there is
not enough data to completely populate this model, so I use aggregate data on the expansion
of the network. I assume the utility is a multiple of the utility from the last period, where
the factor γt is derived from the increase in adoption from regulator statistics.

uit = γt · uiT̄ data for all t > T̄ data

This assumption is needed because the full network of calls after T̄ data is not observed;
it implies that the increase in benefits accrues in the same proportion to each node in the
network. I focus on how benefits improve due to increased adoption. I fit a sigmoid function
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to the total number of mobile subscribers as measured by the regulator, assuming a satu-
ration point of 70%, resulting in predicted subscribers at month t of

∣∣∣Ŝt∣∣∣ = 0.7·11,000,000
1+e−0.052(t−72.8) .

I then compute γt =
|Ŝt|
|ŜT̄ data |

, the proportional increase in subscribers over the number of

subscribers in the last period with full data. This factor overstates the increase in benefits
in two ways: at high levels of penetration the marginal benefit of an additional subscriber
is likely declining, and the additional subscriptions measured by the regulator double count
individuals who hold accounts with multiple operators, which becomes an issue after the
third operator joins and the market becomes more competitive. It understates the increase
in benefits in that it does not account for price declines associated with increasing competi-
tion (coverage remained relatively stable after T̄ data). Overall, I believe the understatement
and overstatement roughly net out. I assume that γt becomes stable in year 2025.

Handling subsidized nodes. Because the government adoption subsidy was time limited,
recipients faced a large discontinuity in the cost of joining the network, requiring special care.

I back out recipients’ idiosyncratic benefits ηi using two assumptions:
Recipients did not delay adoption in order to receive a subsidy. This would hold if either

the subsidy was unanticipated, or if recipients anticipated the subsidy but expected it to be
less generous than it was, which is reasonable given that recipients made fewer payments
than originally intended. I back out the upper bound of the idiosyncratic benefit η̄i assuming
that two months prior to the subsidy, the recipient would still have waited to adopt even if
the subsidy were not available. That is, I compute the upper bound for subsidy recipients
using the standard price series not including the subsidy. Note that this assumes that the
subsidy was not substantial enough to greatly shift expectations about future adoption.

Recipients preferred taking the subsidy at the point of adoption to purchasing any time
in the following 4 years. Because the subsidy was time limited and very attractive, it
causes a large discontinuity in the utility of adopting for recipients. For nonrecipients I
compare the chosen date against local deviations of two months to back out bounds on the
idiosyncratic benefit ηi. For nonrecipients these local deviations are near optimal, but for
recipients local deviations may be far from the optimal: the next most optimal adoption
date may be far later. Thus, for subsidized nodes I use global comparisons after adoption
to back out ηi. Because the optimality of the chosen date should hold across the entire
estimated set of baseline equilibria, this requires an extra step. To compute the lower
bound of idiosyncratic benefits for subsidy recipients, I first simulate the baseline equilibrium
holding recipients’ adoption dates fixed. I then back out the benefits that would be consistent
with adopting during the period of the subsidy over adopting in any following period, in all
baseline equilibria:

ηi = max
Γ

max
1≤K≤T̄−τi

− 1− δ
1− δK

K−1∑
k=0

δkE

 ∑
j∈Gi∩Sτi+k

uijτi+k + w · Eujiτi+k

− βhandset(phτi − 18.94

552
− δKphτi+K)


I then use these lower bounds for the final simulations, in which subsidized nodes reopti-

mize their adoption dates.
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Note that the resulting ηi for subsidized nodes represents a knife edge case. When com-
puting the lower bound equilibrium, a small perturbation that causes one recipient to choose
an alternative adoption date over the subsidized date would trickle through the network and
cause many of the other recipients to give up the subsidy. In theory, the lower bound ηi

could be instead backed out based on the assumption that recipients would prefer taking
the subsidy even if no other recipients did, but that would require solving a computation-
ally intensive fixed point (since obtaining the equilibrium when the subsidy is not taken up
requires an estimate for ηi). Instead, I address this with two restrictions:

• I hold the adoption dates of 30 subsidy recipients for which the bounds cross (ηi > η̄i) fixed,
since resolving these bounds would tip the equilibrium.
• When computing counterfactuals that do not relate to the subsidy, I hold fixed the adoption

dates of the 41,225 subsidy recipients. If I instead allowed them to adjust their adoption,
in the lower bound equilibrium many would choose not to take the subsidy, and I would
conflate the effect of the subsidy and the alternate counterfactual.

Both of these restrict adjustment and thus will attenuate the estimated effect of a policy
change.

Appendix J. Computation

The raw transaction records on which this project is based represent approximately 2
terabytes of data when compressed, which is too large to read into memory. To process them,
I read in transactions line by line using scripts written in Python. Each script aggregates
portions of the data into a data structure in memory for a specific question, and then writes
that data structure to disk for further analysis. Most of the analysis uses these intermediate
data structures generated from the raw data.

Most of the computational steps are fairly straightforward and can be run in parallel, with
two exceptions. Some care is needed to parallelize the estimation of the unified parameters
in the calling decision; this is detailed in Section 6 and Appendix H. The simulation method
also requires special care due to the fact that decisions are interlinked and the objects that
must be stored in memory are substantial (altogether, the entire process requires about 115
GB of memory).90 While in principle the simulation method is parallelizable, obtaining a
substantial boost in performance over a serial algorithm would require more access to a
cluster than typical scheduling constraints allow.

Computation is performed on two systems: a dedicated server supported by the Center for
Complex Network Research at Northeastern University, and the Odyssey2 cluster supported
by the FAS Science Division Research Computing Group at Harvard University. Both sys-
tems have enough RAM to keep relevant data structures in memory without the need to

90Among other objects, it requires storing the links of the graph as well as the time series of utility for each
link. The latter is required because I model utility as arising from links with different latent intensities (so
one row is needed for each link) and whose calling depends on the changing coverage of both sender and
receiver (so each link’s utility has a different time path).
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swap to disk (512 GB, and 256 GB per node). Most analysis is written in Python. I use
the numpy and scipy packages for scientific computation, and the multiprocessing package
to parallelize computation. Reduced form results for regressions with over 1 million obser-
vations are computed with incremental least squares using the pyrerp package written by
Nathaniel Smith. I use a variety of optimizers: NLOPT and KNITRO, as well as optimizers
built in to scipy. Where it significantly improves speed, innermost loops are written in C++,
using the Boost library for scientific calculations; this code is inlined using the instant pack-
age. Some final analysis is coded in R, and graphs are produced using the ggplot2 package.
ArcMap is used for GIS analysis; some further processing was done using Python and the
Geospatial Data Abstraction Library.

Appendix K. Robustness

Below I present simulation results under the assumption that incoming calls are valued
the same as outgoing calls (w = 1). Based on the comparison with the adoption decision,
this assumption appears to roughly double count the surplus utility from calls; however,
this double counting is accounted for in the estimation of the adoption decision. In the
adoption decision I estimate the ratio of estimated usage utility to handset price at the
point of adoption; the coefficient βhandset scales up to absorb the overstated call utility: I find
βhandset = 0.3640, 2.6 times the estimate when w = 0. Since I use this estimate to convert
between calling utils and money, it roughly undoes the double counting. (If alternately we
were concerned that βhandset was affected by expectations or liquidity constraints, and that
the price sensitivity derived from calling βcall represented a better estimate of dollar value
of a util of communication, we could multiply the utility estimates by the ratio βhandset

βcall
,

which is 1.80 when w = 1 or 0.68 when w = 0. Doing so would assign zero value to nonvoice
communication.) As a result, the effect of including utility from incoming calls is roughly
to reallocate the surplus from calls evenly between sender and receiver. The choice of w
primarily affects links with asymmetric communication.

In the following tables I present results when incoming calls are valued the same as out-
going calls. Table K.1 shows the results of rural adoption subsidy when w = 1 (the analogue
of Table 9). Results are qualitatively similar but impacts are smaller: the program cost
$569,741, increased bounds on consumer surplus by $909,519 (lower bound) and $542,585
(upper bound), and revenue by $795,872 (lower) and $36,755 (upper). On net, it increased
bounds on welfare by $1,135,650 (lower) and $9,599 (upper). Table K.2 shows the results of
rural expansion when w = 1 (the analogue of Table 10). The cost of building and operat-
ing the towers was $467,186. It increased bounds on consumer surplus by $282,335 (lower)
and $235,312 (upper), and revenue by $401,769 (lower) and $326,238 (upper). On net, it
increased bounds on welfare by $216,918 (lower) and $94,364 (upper).
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[131.73,145.85]

[82.23,89.11]

T
otalIm

pact
of

Subsidy
m
illion

$
0.80,0.04

0.34,0.03
0.42,0.01

0.03,0.00
...

proxim
aleffect

of
rem

oval
m
illion

$
0.51,0.04

0.31,0.03
0.20,0.01

0.00,0.00
...

additionalripple
effect

m
illion

$
0.29,0.01

0.03,0.00
0.22,0.01

0.03,0.00

C
on

su
m
er

S
u
rp
lu
s
(total)

Sim
ulation

...
w
ith

subsidy
m
illion

$
[40.74,48.04]

[1.48,1.60]
[28.81,33.91]

[10.44,12.53]
...

no
subsidy,only

proxim
aleffect

of
rem

oval
m
illion

$
[40.03,47.50]

[0.91,1.07]
[28.67,33.90]

[10.44,12.53]
...

no
subsidy,proxim

aland
ripple

effects
m
illion

$
[39.83,47.50]

[0.89,1.07]
[28.52,33.90]

[10.42,12.53]

T
otalIm

pact
of

Subsidy
m
illion

$
0.91,0.54

0.59,0.54
0.30,0.01

0.02,0.00
...

proxim
aleffect

of
rem

oval
m
illion

$
0.72,0.54

0.57,0.54
0.15,0.01

0.00,0.00
...

additionalripple
effect

m
illion

$
0.19,0.00

0.02,0.00
0.15,0.00

0.02,0.00

R
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Appendix L. Predicting the Benefits of Mobile Internet Adoption

I model the adoption of mobile internet analogously to that of adopting a mobile phone
for voice services. In this context, most potential adopters of mobile internet will be current
mobile phone subscribers. Let S̃t represent the set of subscribers to internet service at time
t.

For an existing mobile phone subscriber, adopting mobile internet entails upgrading to
a smartphone with internet capability. Similar to voice use, there is no fee or contract
associated with opening a data plan; data usage is charged on the margin, per kilobyte or
fraction thereof.91 I model this decision in analogue to the initial adoption decision: the
utility to i of upgrading at time τ is given by:

Ũ τi =
∞∑
t=τ

δt−τ ũit − βhandseti (ph̃iτ − p
hi
iτ )

where ũ represents the additional benefit of owning a smartphone over a feature phone, ph̃iτ
represents the price of the smartphone, and phiiτ represents the trade-in value of the feature
phone that i currently owns.

While the utility derived from being on the voice network is derived almost entirely from
the utility of communicating with contacts, I assume that the utility from internet access
has two components: a fixed benefit w̃i of being able to access monolithic web pages (such
as YouTube, newspapers, etc.), and a network benefit derived from enriched communication
with one’s social contacts (representing e-mail, discussion forums, and social networking):

ũit = w̃it +
∑

j∈Gi∩S̃t

ũijt

For current internet subscribers it would be possible to estimate the internet usage utilities
w̃i and ũijt analogously to how call utilities were estimated in this paper. However, our
interest here is to predict how nonsubscribers would use the internet.

In order to proceed, note two things. First, future mobile internet users are likely to
be current mobile phone users, so their call data is available. Second, call data represents
a rich projection of human behavior on a network; indicators derived from this data are
likely to be predictive of mobile internet use. The total call volume between i and j itself is
likely predictive of internet interaction between i and j, but there are a host of finer grained
indicators on the edge ij that can more finely capture the form of relationship: the physical
distance between the contacts, the contacts they have in common, the balance of who pays
for calls, and whether the direction of calling is mediated by missed calls. Phone data can

91There are discounts for purchasing bundles of megabytes or days of unlimited use.
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populate a set of individual characteristics Xi and link characteristics Xij . I then seek to
predict utility derived from mobile internet usage as a function of these characteristics:

ũijt =f
(
Xi, Xj , Xij , p̃t, φ̃it

)
and w̃it = g

(
Xi, p̃t, φ̃it

)
where p̃t is the price of data usage, and φ̃it is the data coverage available to i.
The relations f and g can be estimated in one of two ways. For a technology that has

been partially adopted, it can be estimated using actual usage data for the subset of nodes
that currently subscribe, and predicted for nonsubscribers. This assumes that f and g

are the same between these two groups. It is also possible to collect survey evidence that
illuminates these quantities, for example, asking respondents to describe how valuable it
would be to communicate with different contacts using the internet, as well as how they
currently communicate with those contacts. This approach can be used on nonsubscribers
directly and thus does not require the assumption that the equations are stable; however, it
may be difficult for nonsubscribers to predict how they would use services that are unfamiliar.

These estimated relations make it possible to predict the latent utility derived from mobile
internet usage for each individual w̃it and link ũijt. The resulting predicted benefit network
can be itself analyzed to explore the shape of the network and identify clusters of nodes
to subsidize. A fuller analysis can be performed by using the simulation method outlined
in this paper. Doing so requires an estimate of consumer expectations of future adoption.
Expectations can be gathered for a sample from a survey instrument (asking respondents to
predict when, if ever, each of their contacts would adopt mobile internet) and then predicted
for the entire population. Populating the model with this information then makes it possible
to run full counterfactual targeting simulations. Any key nodes that are identified can be
targeted by an operator for discounts or marketing messages.



Table 1. Household Characteristics (Nationally Representative)

All Households
Households with
Mobile Phones

2005 2010 2005 2010

Fraction of households 1.00 1.00 0.05 0.40

Consumption per capita (real) $264.81 $288.06 $925.14 $429.77
Monthly spending on airtime - $2.65 - $5.75

Rural 0.85 0.86 0.23 0.75
Has electricity 0.05 0.10 0.62 0.22
Has piped water 0.02 0.05 0.38 0.11

Owns mobile phone 0.05 0.40 1.00 1.00
Owns fixed line phone 0.008 0.003 0.14 0.007
Owns radio 0.46 0.63 0.93 0.84
Owns television 0.02 0.05 0.41 0.12
Owns computer - 0.02 - 0.04

Number of mobile phones - 0.68 - 1.52
Household members 5.0 4.50 6.13 4.91

Sources: Consumption and last two rows: EICV 2005-2006 (N=6,900), 2010-2011
(N=7,354), National Institute of Statistics Rwanda. Remainder of rows: DHS 2005
(N=10,272) and 2010 (N=12,540). Nationally representative sampling weights applied.
Consumption per capita deflated to January 2006 prices; the deflator in 2010 was 1.42.
A dash indicates that that question was not asked in that survey round.

Table 2. Monthly Usage (1.2005-7.2008)

Monthly Usage Charge per Transaction
Median Mean S.D. Median

Calls 9.4 56.5 114.7 $0.10
Missed calls 40.8 187.0 381.6 $0.00
SMS 1.0 10.2 91.8 $0.09
Balance inquiries 5.3 40.3 65.0 $0.00
Balance recharge 0.5 3.6 7.1 $0.83
Calling charges $1.93 $4.34 $9.33

Calling charges exclude SMS, international calls, and service fees.

1



Table 3. Determinants of Calling

Duration - seconds per month, outgoing

Contacts.Live.From 0.07026 0.05822
(0.001383) (0.00166)

Contacts.Live.To 0.05568 0.02247
(0.001427) (0.001713)

Price USD/minute -142.4 -138.0 -138.9 -137.4
(event study) (2.611) (2.612) (2.612) (2.613)

Coverage.From 28.38 20.08 27.49 21.14
(1.113) (1.125) (1.113) (1.128)

Coverage.To 47.68 45.95 41.08 43.58
(1.125) (1.126) (1.138) (1.14)

Dummy: price regime 2 0.1827 -0.6579 -0.473 -0.7784
(0.1155) (0.1167) (0.1168) (0.1171)

Dummy: price regime 3 1.724 -1.895 -1.051 -2.395
(0.1616) (0.1766) (0.1765) (0.1806)

Link fixed effects × × × ×
Month fixed effects × × × ×

Nobservations 15,616,407 15,616,407 15,616,407 15,616,407
Nlinks 564,672 564,672 564,672 564,672
R2 0.0019 0.0021 0.0020 0.0021

Estimates computed using incremental least squares, on a 1% sample of nodes and all
their links. The price coefficient is estimated based on an event study around the two
price changes, in February 2006 and February 2008, using a one month window before
and after. Dummies are included for the other months within each price regime, and
month fixed effects are included to control for base monthly differences. The top 1%
degree nodes have been omitted; their inclusion attenuates the contact coefficients.
Standard errors reported in parentheses. R2’s omit contributions of fixed effects.



Table 4. Parameter Estimates

Calling Decision
Unified Parameters Standard Error
γ 0.0006
α 0.3292
βcall 0.0001
βcoverage.from 0.0051
βcoverage.to 0.0053
βcoverage.interaction 0.0079

Communication Graph
Quantile: 0.01 0.25 0.50 0.75 0.99

Links µij 1.60 3.52 4.40 5.14 7.32
(124.6m)

SE(µij) 0.12 0.30 0.39 0.51 1.64

N per link 6 19 45 52 53

Quantile: 0.01 0.25 0.50 0.75 0.99
Nodes σi 0.13 0.49 0.67 0.95 2.01
(1.5m)

SE(σi) 0.01 0.02 0.04 0.06 0.28

qi 0.06 0.21 0.44 0.82 1.00

SE(qi) 0.00 0.01 0.02 0.04 0.39

N per node 13 227 637 2,464 27,725

Overall N per parameter 6 21 41 46 51

Nobservations 4 billion

Adoption Decision
Adoptions Parameter Estimate
(1m) βhandset 0.1379

Usage decision parameters are estimated in a two step maximum likelihood procedure.
In the first step, shape parameters are estimated jointly with node and link parameters
for a random subset of 1,500 nodes and their 92,386 associated links, representing a total
of 2,467,574 link-month observations. In the second step, shape parameters are held
fixed while node and link parameters are estimated for the full sample. The second table
reports the quantiles of estimates, quantiles of standard errors, and quantiles of
observations per node and link. Since each node has two parameters plus one parameter
per link, the number of observations per parameter will be lower. Standard errors
reported in this table assume that there is no covariance between unified parameters and
communication graph parameters, for computational reasons. The number of adoptions
is lower than the number of nodes because some initial adopters joined the network
before the start of the data.
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Table 6. Allocation of Subsidized Handsets by District

District Mean Difference
Household properties Participating Nonparticipating p-value

Rural 0.94 0.73 0.04

Consumption per capita $204 $334 0.03

Handsets allocated Total 3556.8 0 0.00
Per Household 0.05 0.00 0.00

Own mobile phone 2005 0.04 0.12 0.07
2010 0.40 0.47 0.17
Difference 0.36 0.36 0.76

N 15 15

Sources: Handset allocations: Banque Rwandaise de Développement; other columns:
EICV 2 and 3 surveys, National Institute of Statistics, 2005-2006, 2010-2011.

Table 7. Subsidy Allocation and Change in Phone Ownership

Increase in Fraction of
Households Owning Phones, 2005-2010

Fraction allocated handsets in 2008 2.00 2.17 3.39 3.39
(1.08) (1.12) (1.53) (0.898)

Fraction owning phones in 2005 0.0645 0.0368
(0.115) (0.884)

Intercept 0.35 0.343 0.316 0.315
(0.015) (0.0197) (0.0265) (0.0451)

Districts included: All All Participating Participating
R2 0.10 0.11 0.30 0.30
N 30 30 15 15

Estimates computed using ordinary least squares; robust standard errors in parentheses.



Table 8. Usage by Subsidy Recipients

Accounts Accounts Subsidy
Recipients

All Adopting
1-5.2008

Adopting
1-5.2008

Number 1,503,369 309,379 41,225

Rural Mean 0.44 0.54 0.76
SD 0.50 0.50 0.43

Calls Mean 40.0 37.5 37.7
per month Median 24.1 26.1 28.7

SD 59.0 48.9 34.0

Duration Mean 27.6 18.1 16.4
minutes per month Fraction to

accounts

subscribing

after 1.2008

24% 33% 35%

SD 92.2 47.1 23.0

Number of Contacts Mean 105.8 57.5 62.2
(Degree) SD 159.9 73.4 42.8

Clustering Coefficient Mean 0.068 0.081 0.082
SD 0.066 0.070 0.057

Rural is defined as an account’s mode tower being located in a rural area



T
a
bl

e
9.

Im
pa

ct
of

A
do

pt
io
n
Su

bs
id
y
P
ro
gr
am

A
ll
no

de
s

N
od

es
by

ne
tw

or
k
di
st
an

ce
to

su
bs
id
iz
ed

no
de

0
1

≥
2

N
um

be
r

1,
50

3,
36

9
41

,2
25

72
8,
34

7
73

3,
79

7

A
d
op

ti
on

T
im

e
(m

ea
n)

Si
m
ul
at
io
n

...
w
it
h
su
bs
id
y

m
on

th
[2
7.
08

,2
2.
58

]
[3
7.
38

,3
7.
38

]
[2
6.
24

,2
2.
05
]

[2
7.
34

,2
2.
28

]
...

no
su
bs
id
y,

on
ly

pr
ox
im

al
eff

ec
t
of

re
m
ov
al

m
on

th
[2
7.
69

,2
2.
63
]

[5
9.
46

,3
9.
39

]
[2
6.
24

,2
2.
05

]
[2
7.
34

,2
2.
28
]

...
no

su
bs
id
y,

pr
ox
im

al
an

d
ri
pp

le
eff

ec
ts

m
on

th
[2
7.
96

,2
2.
64

]
[6
2.
77

,3
9.
43

]
[2
6.
58

,2
2.
06

]
[2
7.
38

,2
2.
28

]

T
ot
al

Im
pa

ct
of

Su
bs
id
y

m
on

th
-0
.8
9,

-0
.0
6

-2
5.
39

,-
2.
05

-0
.3
4,

-0
.0
1

-0
.0
5,

-0
.0
0

...
pr
ox
im

al
eff

ec
t
of

re
m
ov
al

m
on

th
-0
.6
1,

-0
.0
6

-2
2.
08

,-
2.
01

0.
00

,0
.0
0

0.
00

,0
.0
0

...
ad

di
ti
on

al
ri
pp

le
eff

ec
t

m
on

th
-0
.2
8,

-0
.0
1

-3
.3
1,

-0
.0
4

-0
.3
4,

-0
.0
1

-0
.0
5,

-0
.0
0

R
ev

en
u
e
(t
ot
al
)

Si
m
ul
at
io
n

...
w
it
h
su
bs
id
y

m
ill
io
n
$

[2
14

.8
2,

23
5.
27

]
[1
.0
9,

1.
19

]
[1
31

.6
7,

14
5.
16
]

[8
2.
06

,8
8.
92

]
...

no
su
bs
id
y,

on
ly

pr
ox
im

al
eff

ec
t
of

re
m
ov
al

m
ill
io
n
$

[2
13

.0
2,

23
5.
18
]

[0
.2
9,

1.
15

]
[1
30
.6
9,

14
5.
11

]
[8
2.
04

,8
8.
92
]

...
no

su
bs
id
y,

pr
ox
im

al
an

d
ri
pp

le
eff

ec
ts

m
ill
io
n
$

[2
12

.1
3,

23
5.
15

]
[0
.2
3,

1.
15
]

[1
29

.9
7,

14
5.
08

]
[8
1.
94

,8
8.
92

]

T
ot
al

Im
pa

ct
of

Su
bs
id
y

m
ill
io
n
$

2.
68

,0
.1
3

0.
86
,0

.0
4

1.
70

,0
.0
8

0.
13

,0
.0
1

...
pr
ox
im

al
eff

ec
t
of

re
m
ov
al

m
ill
io
n
$

1.
80

,0
.0
9

0.
80

,0
.0
4

0.
98

,0
.0
5

0.
02

,0
.0
0

...
ad

di
ti
on

al
ri
pp

le
eff

ec
t

m
ill
io
n
$

0.
88

,0
.0
3

0.
06

,0
.0
0

0.
72

,0
.0
3

0.
10
,0

.0
0

C
on

su
m

er
S
u
rp

lu
s
(t
ot
al
)

Si
m
ul
at
io
n

...
w
it
h
su
bs
id
y

m
ill
io
n
$

[5
3.
79

,6
4.
79

]
[1
.6
0,

1.
74

]
[3
7.
38

,4
4.
52

]
[1
4.
81

,1
8.
53

]
...

no
su
bs
id
y,

on
ly

pr
ox
im

al
eff

ec
t
of

re
m
ov
al

m
ill
io
n
$

[5
1.
74

,6
4.
19

]
[0
.4
2,

1.
19

]
[3
6.
52

,4
4.
47

]
[1
4.
79

,1
8.
53

]
...

no
su
bs
id
y,

pr
ox
im

al
an

d
ri
pp

le
eff

ec
ts

m
ill
io
n
$

[5
0.
84

,6
4.
16

]
[0
.3
4,

1.
18

]
[3
5.
82

,4
4.
45

]
[1
4.
68

,1
8.
53

]

T
ot
al

Im
pa

ct
of

Su
bs
id
y

m
ill
io
n
$

2.
95

,0
.6
3

1.
25
,0

.5
6

1.
57

,0
.0
7

0.
13

,0
.0
1

...
pr
ox
im

al
eff

ec
t
of

re
m
ov
al

m
ill
io
n
$

2.
05
,0

.6
0

1.
17

,0
.5
6

0.
86

,0
.0
5

0.
02

,0
.0
0

...
ad

di
ti
on

al
ri
pp

le
eff

ec
t

m
ill
io
n
$

0.
89

,0
.0
3

0.
08

,0
.0
0

0.
71

,0
.0
2

0.
11
,0

.0
0

R
es
ul
ts

in
ea
ch

ce
ll
re
po

rt
ed

fo
r
th
e
lo
w
er

bo
un

d
an

d
up

pe
r
bo

un
d
es
ti
m
at
e
of

th
e
eq
ui
lib

ri
um

.
Im

pa
ct
s
re
pr
es
en
t
th
e
di
ffe

re
nc
e
in

th
es
e

bo
un

ds
.
I
ho

ld
fix

ed
th
e
ad

op
ti
on

de
ci
si
on

of
30

su
bs
id
iz
ed

no
de

s
th
at

ha
ve

cr
os
se
d
bo

un
ds

fo
r
η
i
(f
or

de
ta
ils

se
e
A
pp

en
di
x
I)
.U

ti
lit
y
an

d
re
ve
nu

e
re
po

rt
ed

in
20
05

U
.S
.D

ol
la
rs
,d

is
co
un

te
d
at

a
ra
te

of
0.
9
an

nu
al
ly
.
C
on

su
m
er

su
rp
lu
s
in
cl
ud

es
th
e
su
rp
lu
s
ut
ili
ty

ea
ch

in
di
vi
du

al
re
ce
iv
es

fr
om

th
e
ca
ll
m
od

el
th
ro
ug

h
M
ay

20
09
,m

in
us

th
e
co
st

of
ho

ld
in
g
a
ha

nd
se
t
fr
om

th
e
ti
m
e
of

ad
op

ti
on

un
ti
lM

ay
20
09
.



T
a
bl

e
10

.
Im

pa
ct

of
R
ur
al

Se
rv
ic
e
E
xp

an
si
on

A
ll
no

de
s

N
od

es
by

ch
an

ge
in

co
ve
ra
ge

>
0.
5%

pt
co
ve
ra
ge

ch
an

ge
≤

0.
5%

pt
co
ve
ra
ge

ch
an

ge
N
um

be
r

1,
50

3,
36

9
16

0,
15

4
1,
34

3,
21

5

A
d
op

ti
on

T
im

e
(m

ea
n)

Si
m
ul
at
io
n

...
w
it
h
ex
pa

ns
io
n

m
on

th
[2
7.
08

,2
2.
58

]
[3
2.
18

,2
6.
80

]
[2
6.
47

,2
2.
08

]
...

no
ex
pa

ns
io
n,

on
ly

im
m
ed
ia
te

eff
ec
t
on

ca
lls

m
on

th
[2
7.
08

,2
2.
58

]
[3
2.
18

,2
6.
80

]
[2
6.
47

,2
2.
08

]
...

no
ex
pa

ns
io
n,

fu
ll
im

pa
ct

in
cl
ud

in
g
ad

op
ti
on

m
on

th
[2
7.
11

,2
2.
60

]
[3
2.
33

,2
6.
87

]
[2
6.
49

,2
2.
09

]

T
ot
al

Im
pa

ct
of

E
xp

an
si
on

m
on

th
-0
.0
3,

-0
.0
2

-0
.1
6,

-0
.0
7

-0
.0
2,

-0
.0
2

R
ev

en
u
e
(t
ot
al
)

Si
m
ul
at
io
n

...
w
it
h
ex
pa

ns
io
n

m
ill
io
n
$

[2
14

.8
2,

23
5.
27

]
[9
.6
2,

11
.2
5]

[2
05

.2
0,

22
4.
02

]
...

no
ex
pa

ns
io
n,

on
ly

im
m
ed
ia
te

eff
ec
t
on

ca
lls

m
ill
io
n
$

[2
14

.6
5,

23
5.
12

]
[9
.5
8,

11
.2
0]

[2
05

.0
7,

22
3.
92

]
...

no
ex
pa

ns
io
n,

fu
ll
im

pa
ct

in
cl
ud

in
g
ad

op
ti
on

m
ill
io
n
$

[2
14

.4
4,

23
4.
94

]
[9
.5
3,

11
.1
7]

[2
04

.9
1,

22
3.
77

]

T
ot
al

Im
pa

ct
of

E
xp

an
si
on

m
ill
io
n
$

0.
37

,0
.3
3

0.
09

,0
.0
8

0.
28

,0
.2
5

...
im

m
ed

ia
te

eff
ec
t
on

ca
lls

m
ill
io
n
$

0.
17

,0
.1
5

0.
04

,0
.0
4

0.
13

,0
.1
1

...
ad

de
d
eff

ec
t
th
ro
ug

h
ad

op
ti
on

m
ill
io
n
$

0.
20

,0
.1
8

0.
05
,0

.0
3

0.
16

,0
.1
4

C
on

su
m

er
S
u
rp

lu
s
(t
ot
al
)

Si
m
ul
at
io
n

...
w
it
h
ex
pa

ns
io
n

m
ill
io
n
$

[5
3.
79

,6
4.
79

]
[3
.2
7,

4.
15

]
[5
0.
52

,6
0.
64

]
...

no
ex
pa

ns
io
n,

on
ly

im
m
ed
ia
te

eff
ec
t
on

ca
lls

m
ill
io
n
$

[5
3.
60

,6
4.
58

]
[3
.2
0,

4.
06

]
[5
0.
40

,6
0.
52

]
...

no
ex
pa

ns
io
n,

fu
ll
im

pa
ct

in
cl
ud

in
g
ad

op
ti
on

m
ill
io
n
$

[5
3.
45

,6
4.
47

]
[3
.1
6,

4.
04

]
[5
0.
30

,6
0.
43

]

T
ot
al

Im
pa

ct
of

E
xp

an
si
on

m
ill
io
n
$

0.
34

,0
.3
2

0.
12

,0
.1
1

0.
22

,0
.2
1

...
im

m
ed

ia
te

eff
ec
t
on

ca
lls

m
ill
io
n
$

0.
19

,0
.2
1

0.
07

,0
.0
8

0.
12

,0
.1
3

...
ad

de
d
eff

ec
t
th
ro
ug

h
ad

op
ti
on

m
ill
io
n
$

0.
15

,0
.1
1

0.
04
,0

.0
3

0.
10

,0
.0
8

R
es
ul
ts

in
ea
ch

ce
ll
re
po

rt
ed

fo
r
th
e
lo
w
er

bo
un

d
an

d
up

pe
r
bo

un
d
es
ti
m
at
e
of

th
e
eq
ui
lib

ri
um

.
Im

pa
ct
s
re
pr
es
en
t
th
e
di
ffe

re
nc
e
in

th
es
e

bo
un

ds
.
I
ho

ld
fix

ed
th
e
ad

op
ti
on

of
th
e
41
,2
25

su
bs
id
iz
ed

no
de

s
(f
or

de
ta
ils

se
e
A
pp

en
di
x
I)
.U

ti
lit
y
an

d
re
ve
nu

e
re
po

rt
ed

in
20
05

U
.S
.D

ol
la
rs
,

di
sc
ou

nt
ed

at
a
ra
te

of
0.
9
an

nu
al
ly
.
C
on

su
m
er

su
rp
lu
s
in
cl
ud

es
th
e
su
rp
lu
s
ut
ili
ty

ea
ch

in
di
vi
du

al
re
ce
iv
es

fr
om

th
e
ca
ll
m
od

el
th
ro
ug

h
M
ay

20
09
,m

in
us

th
e
co
st

of
ho

ld
in
g
a
ha

nd
se
t
fr
om

th
e
ti
m
e
of

ad
op

ti
on

un
ti
lM

ay
20
09
.
C
ov
er
ag
e
ch
an

ge
is

ca
lc
ul
at
ed

ba
se
d
on

co
ve
ra
ge

in
Ja

nu
ar
y
20
09
.



Figure 1. Coverage

Kigali

2005

Kigali

2009

Locations with coverage are shaded. Cities are denoted by points sized by population.

Figure 2. Telephone Subscriptions in Rwanda
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Figure 3. Variation in Data
Handset Prices (top 5 retail models)
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Quantile graphs graph the 10th through 90th percentile of the given quantity over time
for all individuals who eventually subscribe, irrespective of whether that individual had
subscribed by that time. Contacts graph omits 90% quantile.



Figure 4. Call Model Fit
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Figure 5. Simulation Fit
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Figure 6. Activations of Subsidized Handset Model
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Figure 7. 2008 Handset Subsidy Program
Activation Locations by Handset
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Figure 8. Usage Locations by Account
(a) All accounts

(b) Accounts affiliated with a subsidized handset



Figure 9. Incentives for Rural Expansion
(a) Operator allowed to set separate prices
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(b) Operator required to charge uniform prices
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These panels show a simplified version of a monopolist operator’s price setting problem,
abstracting away from the specifics of pricing under capacity constraints and network
effects. Assume there is a monopolist operator who currently serves an urban market,
and has the option of expanding into a rural area at an expansion cost F. If the operator
is allowed to set separate prices, it can treat the rural market independently, and weigh
the profits resulting from an optimal price against the expansion cost, as shown in panel
(a). If instead the operator is required to offer a uniform price, its decision to expand
will also be affected by the urban market, as shown in panel (b).



Figure 10. Distribution of Tower Revenue
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Includes revenue from domestic voice calls originating at that tower, billed by the
average basket of prepaid rates, averaged over all months the tower was operational. For
the counterfactual, I drop the 10 lowest revenue rural towers built during the data.
There were other low revenue towers built before the start of the data; since the initial
adopters in the data would have internalized the coverage provided by these towers in
their adoption decision, I do not drop these towers.



Figure 11. Areas Losing Coverage in Counterfactual
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Cities are denoted by circles, dropped towers are denoted by triangles, and locations that
received coverage in the data in 2009 but not in the counterfactual are shaded.
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