On the Testability of Identication in Some Nonparametric Models with Endogeneity

Ivan A. Canay

Andres Santos

Azeem M. Shaikh

Presented by Pan, Qi

Testing Problems

- This paper consider three distinct hypothesis testing problem of identification.
- The first one concerns testing the necessary conditions for identification, also referred to the completeness condition in mean regression (indirectly).
- The second and third testing problems concern testing identification directly, in quantile regression.

Result

• Under some conditions and assumptions, there exists no nontrivial test for these hypothesis testing problems.

Introduction

- $\{V_i\}_{i=1}^n$ is an i.i.d. sequence of random variables with distribution $P \in \mathbf{P}$
- Each of these hypothesis testing problems may be written as

$$H_0: P \in \mathbf{P}_0$$
 versus $H_1: P \in \mathbf{P}_1$

$$\mathbf{P} = \mathbf{P}_0 \cup \mathbf{P}_1$$

Main idea of this paper

- Under some conditions and assumptions different from the literatures, this paper concludes that the following result still holds.
- Any sequence of tests $\{\phi_i\}_{i=1}^n$ that controls size at level $\alpha \in (0,1)$ in the sense that

$$\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_0} E_{p^n}[\phi_n] < \alpha \tag{1}$$

also satisfies

$$\limsup_{n \to \infty} \sup_{P \in \mathbf{P}_1} [\phi_n] < \alpha \tag{2}$$

Case 1

- Let $V_i = (X_i, Z_i)$ and **P** be a set of probability measure on $\mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$
- $Y_i = g(W_i) + \varepsilon_i$ and $E[\varepsilon_i | Z_i] = 0$
- For Z_i^x a (possible empty) subvector of Z_i and $W_i = (X_i, Z_i^x) \in \mathbb{R}^{d_w}$, define,

$$\mathbf{P}_{1} = \mathbf{P} \setminus \mathbf{P}_{0} = \{ P \in \mathbf{P} : E_{p}[\theta(W_{i}) \mid Z_{i}] = 0 \text{ for } \theta \in \Theta(P) \Rightarrow \theta = 0 \text{ } P - a.s. \} (3)$$

• Here, $\Theta(P)$ is understood to be the subset of the set of all functions from $\mathbb{R}^{d_w} \to \mathbb{R}$, and $\theta(W_i) = g(W_i) - g(W_i)$

Case 2

- Let $V_i = (Y_i, X_i, Z_i)$ and **P** be a set of probability measure on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$
- For Z_i^x a (possible empty) subvector of Z_i and $W_i = (X_i, Z_i^x) \in \mathbb{R}^{d_w}$. Consider an outcome of interest Y_i and endogenous variable X_i , and an instrumental variable Z_i , and there is some $\theta \in \Theta(P)$ for which
- $Y_i = \theta(W_i) + \varepsilon_i$ and $P\{\varepsilon_i < 0 \mid Z_i\} = \tau$ w.p.1 under P (4) and
- $\mathbf{P}_0 = \mathbf{P} \setminus \mathbf{P}_1 = \{ P \in \mathbf{P} : \exists ! \theta \in \Theta(P) \text{ s.t.}(4) \text{ holds under } P \}$ (5)

Case 3

• And for case 3, we have

$$Y_i = \theta(W_i, \varepsilon_i)$$
 and $P\{\theta(W_i, \varepsilon_i) - \theta(W_i, \tau) < 0 \mid Z_i\} = \tau$ w.p.1 under P (6)

• $\mathbf{P}_0 = \mathbf{P} \setminus \mathbf{P}_1 = \{ P \in \mathbf{P} : \exists ! \theta \in \Theta(P) \text{ s.t.}(6) \text{ holds under } P \}$ (7)

A useful lemma

• Let M denote the space of Borel probability measures on a metric space. Suppose P is a subset of M and $P = P_0 \cup P_1$. If for each $P \in P_1$ there exist a sequence $\{P_k\}_{k=1}^{\infty}$ in \mathbf{P}_0 with $H(P, P_k) = o(1)$ then every sequence of test functions $\{\phi_i\}_{i=1}^n$ satisfies: $\limsup_{n\to\infty} \sup_{P\in\mathbf{P}_1} [\phi_n] \leq \limsup_{n\to\infty} \sup_{P\in\mathbf{P}_0} [\phi_n]$

H is the Hellinger distance

key point: \mathbf{P}_0 being dense in \mathbf{P}_1

A useful lemma (continuous)

- A modification of theorem in Romano(2004)
- Hellinger distance as opposed to Total Variation distance.
- Large-sample result as opposed to a finite-sample result.
- The power of the test is bounded by the asymptotic size

Assumptions

• Let $M_{X,Z}$ be the set of all the probability measures on $\mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$, and, for ν a Borel measure on $\mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$, define

$$M_{X,Z}(v) \equiv \{ P \in M_{X,Z} : P \ll v \} \tag{8}$$

- A1: ν is a positive σ -finite Borel measures on $\mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$
- A2: $\nu = \nu_X \times \nu_Z$, where ν_X and ν_Z are Borel measures on \mathbb{R}^{d_x} and \mathbb{R}^{d_z}
- A3: The measure V_X is atomless (on \mathbb{R}^{d_x})

Theorem 1

• Suppose ν satisfies assumption 1,2 and 3. Define $M_{X,Z}(\nu)$ as in (8) and let $\mathbf{P} = M_{X,Z}(\nu)$ Further define \mathbf{P}_0 and \mathbf{P}_1 as in (3) with $\Theta(P) = L^{\infty}(P)$. Then the sequence of test function $\{\phi_i\}_{i=1}^n$ satisfies $\limsup\sup_{n\to\infty}\sup_{P\in\mathbf{P}_1}E_{p^n}[\phi_n] \leq \limsup\sup_{n\to\infty}\sup_{P\in\mathbf{P}_0}[\phi_n]$

• If $L^{\infty}(P) \subseteq \Theta(P)$ or $\Theta(P) = L^{q}(P)$ this theorem still holds

Assumptions

• Let $M_{Y,X,Z}$ be the set of all the probability measures on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$, and, for ν a Borel measure on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$, define

$$M_{Y,X,Z}(v) \equiv \{ P \in M_{Y,X,Z} : P \ll v \}$$
 (9)

- A4: ν is a positive σ -finite Borel measures on $\mathbb{R} \times \mathbb{R}^{d_x} \times \mathbb{R}^{d_z}$
- A5: $V = V_Y \times V_X \times V_Z$, where V_Y , V_X and V_Z are Borel measures on \mathbb{R} , \mathbb{R}^{d_x} and \mathbb{R}^{d_z}

Theorem 2

• Suppose ν satisfies assumptions 3,4 and 5. Then define $M_{Y,X,Z}(\nu)$ as in (9) and let $\mathbf{P} = M_{Y,X,Z}(\nu)$ such that for each $P \in \mathbf{P}$ there is some $\theta \in \Theta(P) = L^{\infty}(P)$ for which (4) holds. Further define \mathbf{P}_0 and \mathbf{P}_1 in (5). Then the sequence of test functions $\{\phi_i\}_{i=1}^n$ satisfies $\limsup_{n\to\infty} \sup_{P\in\mathbf{P}_1} [\phi_n] \leq \limsup_{n\to\infty} \sup_{P\in\mathbf{P}_0} [\phi_n]$

$$\limsup_{n\to\infty} \sup_{P\in\mathbf{P}_1} E_{P^n}[\phi_n] \leq \limsup_{n\to\infty} \sup_{P\in\mathbf{P}_0} E_{P^n}[\phi_n]$$

Theorem 3

- T denotes the set of all functions $\theta : \mathbb{R}^{d_w} \times [0,1] \to \mathbb{R}$ and define $T(P) \equiv \{\theta \in T : \theta(W_i, \cdot) \text{ is strictly increasing and } \sup_{0 \le \tau \le 1} \|\theta(\cdot, \tau)\|_{L^{\infty}(P)} < \infty\}$
- Suppose ν satisfies assumptions 3,4 and 5. Then define $\mathbf{P} = M_{Y,X,Z}(\nu)$ such that for each $P \in \mathbf{P}$ there is some $\theta \in \Theta(P) = T(P)$ for which (6) holds. Further define \mathbf{P}_0 and \mathbf{P}_1 as in (7). Then the sequence of test functions $\{\phi_i\}_{i=1}^n$ satisfies

$$\limsup_{n\to\infty}\sup_{P\in\mathbf{P}_1}E_{P^n}[\phi_n]\leq \limsup_{n\to\infty}\sup_{P\in\mathbf{P}_0}E_{P^n}[\phi_n]$$

Conclusion

- Three distinct hypothesis testing about identification.
- Assumptions 1,2,3,4 and 5.
- Functional spaces is $L^{\infty}(P)$ or $L^{q}(P)$ (in case $3 \sup_{0 \le \tau \le 1} \|\theta(\cdot, \tau)\|_{L^{\infty}(P)} < \infty$ or $\sup_{0 \le \tau \le 1} \|\theta(\cdot, \tau)\|_{L^{q}(P)} < \infty$)
- Case 1: utilizes completeness condition.
- Case 2 & Case 3: utilize definitions directly.
- No nontrivial tests for these three cases.

Remarks

- Conditions are satisfied under commonly used assumptions.
- Not rule out the existence of reasonable tests under more restrictive assumptions.
- Help shape the development of nontrivial tests of the hypotheses this paper considers.