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Testing Problems 
 This paper consider three distinct hypothesis testing 

problem of identification. 
 

 The first one concerns testing the necessary 
conditions for identification, also referred to the 
completeness condition in mean regression 
(indirectly). 
 

 The second and third  testing problems concern 
testing identification directly, in quantile regression.  
 
 



Result 
 Under some conditions and assumptions, there 

exists no nontrivial test for these hypothesis 
testing problems. 



Introduction 
 

            is an i.i.d. sequence of random variables 
with distribution      P 

 Each of these hypothesis testing problems may be 
written as 
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Main idea of this paper 
 Under some conditions and assumptions different 

from the literatures, this paper concludes that the 
following result still holds. 

 Any sequence of tests          that controls size at 
level               in the sense that  
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 also satisfies 
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Case 1 
 Let                    and P be a set of probability 

measure on                  
                        and 
 For      a (possible empty) subvector of      and 
                                , define, 
                                                                                  (3) 
 Here,          is understood to be the subset of the set 

of all functions from                , and                  
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Case 2 
 Let                        and P be a set of probability 

measure on                  
 For      a (possible empty) subvector of      and 
                               . Consider an outcome of 

interest     and endogenous variable     , and an 
instrumental variable     , and there is some 

 for which  
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Case 3 
 And for case 3, we have  
                                                                                   (6)                                                                                  
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A useful lemma 
 Let M denote the space of Borel probability 

measures on a metric space. Suppose P  is a 
subset of M and P=          . If for each  

 there exist a sequence            in     with 
 then every sequence of test functions          

satisfies: 
 
 H is the Hellinger distance 
  key point:      being dense in  
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A useful lemma (continuous) 
 A modification of theorem in Romano(2004) 
 Hellinger distance as opposed to Total Variation 

distance. 
 Large-sample result as opposed to a finite-sample 

result.  
 The power of the test is bounded by the 

asymptotic size 



Assumptions 
 Let          be the set of all the probability 

measures on               , and, for    a Borel measure 
on               , define 

                                                                               (8) 
 A1:    is a positive    -finite Borel measures on   
 A2:                     , where      and      are Borel     

measures on      and  
 A3: The measure       is atomless (on      ) 
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Theorem 1 
 Suppose     satisfies assumption 1,2 and 3. Define  
                as in (8) and let P=              . Further 

define     and     as in (3) with                    . Then  
the sequence of test function          satisfies 
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Assumptions  Assumptions 
 Let           be the set of all the probability 

measures on                   , and, for    a Borel 
measure on                   , define 

                                                                              (9) 
 A4:    is a positive    -finite Borel measures on 
   
 A5:                            , where      ,      and      are 

Borel measures on    ,       and  
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Theorem 2 
 Suppose     satisfies assumptions 3,4 and 5. Then 

define                 as in (9) and let P = 
 such that for each           there is some 
 for which (4) holds. Further define      and      in 

(5). Then the sequence of test functions       
satisfies 
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Theorem 3 
 T denotes the set of all functions 
 and define 

 
 Suppose    satisfies assumptions 3,4 and 5. Then 

define P=                such that for each            
there is some                        for which (6) holds. 
Further define     and    as in (7). Then the 
sequence of test functions          satisfies 
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Conclusion 
 Three distinct hypothesis testing about 

identification. 
 Assumptions 1,2,3,4 and 5.  
 Functional spaces is          or    
 (in case 3                              or                             ) 
 Case 1: utilizes completeness condition. 
 Case 2 & Case 3: utilize definitions directly. 
 No nontrivial tests for these three cases. 
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Remarks   
 Conditions are satisfied under commonly used 

assumptions. 
 Not rule out the existence of  reasonable tests 

under more restrictive assumptions.   
 Help shape the development of nontrivial tests of 

the hypotheses this paper considers.  
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