On the Testability of Identication in Some Nonparametric Models with Endogeneity

Ivan A. Canay
Andres Santos
Azeem M. Shaikh

Presented by Pan, Qi

Testing Problems

- This paper consider three distinct hypothesis testing problem of identification.
- The first one concerns testing the necessary conditions for identification, also referred to the completeness condition in mean regression (indirectly).
- The second and third testing problems concern testing identification directly, in quantile regression.

Result

- Under some conditions and assumptions, there exists no nontrivial test for these hypothesis testing problems.

Introduction

- $\left\{V_{i}\right\}_{i=1}^{n}$ is an i.i.d. sequence of random variables with distribution $P \in \mathbf{P}$
- Each of these hypothesis testing problems may be written as

$$
H_{0}: P \in \mathbf{P}_{0} \text { versus } H_{1}: P \in \mathbf{P}_{1}
$$

$$
\mathbf{P}=\mathbf{P}_{0} \cup \mathbf{P}_{1}
$$

Main idea of this paper

- Under some conditions and assumptions different from the literatures, this paper concludes that the following result still holds.
- Any sequence of tests $\left\{\phi_{i}\right\}_{i=1}^{n}$ that controls size at level $\alpha \in(0,1)$ in the sense that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right]<\alpha \tag{1}
\end{equation*}
$$

- also satisfies
$\lim \sup \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right]<\alpha$

$$
\begin{equation*}
n \rightarrow \infty \quad P \in \mathbf{P}_{1} \tag{2}
\end{equation*}
$$

Case 1

- Let $V_{i}=\left(X_{i}, Z_{i}\right)$ and \mathbf{P} be a set of probability measure on $\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{z}}$
- $Y_{i}=g\left(W_{i}\right)+\varepsilon_{i}$ and $E\left[\varepsilon_{i} \mid Z_{i}\right]=0$
- For Z_{i}^{x} a (possible empty) subvector of Z_{i} and $W_{i}=\left(X_{i}, Z_{i}^{x}\right) \in \mathbb{R}^{d_{w}}$, define,

$$
\mathbf{P}_{1}=\mathbf{P} \backslash \mathbf{P}_{0}=\left\{P \in \mathbf{P}: E_{p}\left[\theta\left(W_{i}\right) \mid Z_{i}\right]=0 \text { for } \theta \in \Theta(P) \Rightarrow \theta=0 \text { P-a.s. }\right\}(3)
$$

- Here, $\Theta(P)$ is understood to be the subset of the set of all functions from $\mathbb{R}^{d_{w}} \rightarrow \mathbb{R}$, and $\theta\left(W_{i}\right)=\tilde{g}\left(W_{i}\right)-g\left(W_{i}\right)$

Case 2

- Let $V_{i}=\left(Y_{i}, X_{i}, Z_{i}\right)$ and \mathbf{P} be a set of probability measure on $\mathbb{R} \times \mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{z}}$
- For Z_{i}^{X} a (possible empty) subvector of Z_{i} and $W_{i}=\left(X_{i}, Z_{i}^{\chi}\right) \in \mathbb{R}^{d_{w}}$. Consider an outcome of interest Y_{i} and endogenous variable X_{i}, and an instrumental variable Z_{i}, and there is some $\theta \in \Theta(P)$ for which
- $Y_{i}=\theta\left(W_{i}\right)+\varepsilon_{i}$ and $P\left\{\varepsilon_{i}<0 \mid Z_{i}\right\}=\tau$ w.p. 1 under P and
- $\mathbf{P}_{0}=\mathbf{P} \backslash \mathbf{P}_{1}=\{P \in \mathbf{P}: \exists!\theta \in \Theta(P)$ s.t. (4) holds under $P\}$ (5)

Case 3

- And for case 3, we have

$$
Y_{i}=\theta\left(W_{i}, \varepsilon_{i}\right) \text { and } P\left\{\theta\left(W_{i}, \varepsilon_{i}\right)-\theta\left(W_{i}, \tau\right)<0 \mid Z_{i}\right\}=\tau \text { w.p. } 1 \text { under } \mathrm{P} \text { (6) }
$$

- $\mathbf{P}_{0}=\mathbf{P} \backslash \mathbf{P}_{1}=\{P \in \mathbf{P}: \exists!\theta \in \Theta(P)$ s.t.(6) holds under $P\}$ (7)

A useful lemma

- Let M denote the space of Borel probability measures on a metric space. Suppose \mathbf{P} is a subset of M and $\mathbf{P}=\mathbf{P}_{0} \cup \mathbf{P}_{1}$. If for each $P \in \mathbf{P}_{1}$ there exist a sequence $\left\{P_{k}\right\}_{k=1}^{\infty}$ in \mathbf{P}_{0} with $H\left(P, P_{k}\right)=o(1)$ then every sequence of test functions $\left\{\phi_{i}\right\}_{i=1}^{n}$ satisfies:
$\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \limsup \sup _{n \rightarrow \mathbf{P}_{0}} E_{P^{n}}\left[\phi_{n}\right]$
- H is the Hellinger distance key point: \mathbf{P}_{0} being dense in \mathbf{P}_{1}

A useful lemma (continuous)

- A modification of theorem in Romano(2004)
- Hellinger distance as opposed to Total Variation distance.
- Large-sample result as opposed to a finite-sample result.
- The power of the test is bounded by the asymptotic size

Assumptions

- Let $M_{X, Z}$ be the set of all the probability measures on $\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{z}}$, and, for \boldsymbol{v} a Borel measure on $\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{z}}$, define

$$
\begin{equation*}
M_{X, Z}(v) \equiv\left\{P \in M_{X, Z}: P \ll v\right\} \tag{8}
\end{equation*}
$$

- A1: v is a positive σ-finite Borel measures on $\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{2}}$
- A2: $v=v_{X} \times v_{Z}$, where v_{X} and v_{Z} are Borel measures on $\mathbb{R}^{d_{x}}$ and $\mathbb{R}^{d_{z}}$
- A3:The measure \boldsymbol{v}_{X} is atomless (on $\mathbb{R}^{d_{x}}$)

Theorem 1

- Suppose \boldsymbol{v} satisfies assumption 1,2 and 3. Define $M_{X, Z}(v)$ as in (8) and let $\mathbf{P}=M_{X, Z}(v)$ Further define \mathbf{P}_{0} and \mathbf{P}_{1} as in (3) with $\Theta(P)=L^{\infty}(P)$. Then the sequence of test function $\left\{\phi_{i}\right\}_{i=1}^{n}$ satisfies $\limsup _{n \rightarrow \infty} \sup _{P \in \mathbb{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \limsup _{n \rightarrow \infty} \sup _{P \in \mathbb{P}_{0}} E_{P^{n}}\left[\phi_{n}\right]$
- If $L^{\infty}(P) \subseteq \Theta(P)$ or $\Theta(P)=L^{q}(P)$ this theorem still holds

Assumptions

- Let $M_{Y, X, Z}$ be the set of all the probability measures on $\mathbb{R} \times \mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{z}}$, and, for \boldsymbol{v} a Borel measure on $\mathbb{R} \times \mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{z}}$, define

$$
\begin{equation*}
M_{Y, X, Z}(v) \equiv\left\{P \in M_{Y, X, Z}: P \ll v\right\} \tag{9}
\end{equation*}
$$

- A4: v is a positive σ-finite Borel measures on $\mathbb{R} \times \mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{z}}$
- A5: $v=v_{Y} \times v_{X} \times v_{Z}$, where v_{Y}, v_{X} and v_{Z} are Borel measures on $\mathbb{R}, \mathbb{R}^{d_{x}}$ and $\mathbb{R}^{d_{z}}$

Theorem 2

- Suppose v satisfies assumptions 3,4 and 5. Then define $M_{Y, X, Z}(v)$ as in (9) and let $\mathbf{P}=M_{Y, X, Z}(v)$ such that for each $P \in \mathbf{P}$ there is some $\theta \in \Theta(P)=L^{\infty}(P)$ for which (4) holds. Further define \mathbf{P}_{0} and \mathbf{P}_{1} in (5). Then the sequence of test functions $\left\{\phi_{i}\right\}_{i=1}^{n}$ satisfies
$\limsup \sup _{P \in \mathbf{P}_{1}} E_{P^{n}}\left[\phi_{n}\right] \leq \operatorname{limsupsup} E_{P^{n}}\left[\phi_{n}\right]$

$$
\begin{array}{llll}
n \rightarrow \infty & P \in \mathbf{P}_{1} & n \rightarrow \infty & P \in \mathbf{P}_{0}
\end{array}
$$

Theorem 3

- T denotes the set of all functions $\theta: \mathbb{R}^{d_{w}} \times[0,1] \rightarrow \mathbb{R}$ and define
$T(P) \equiv\left\{\theta \in T: \theta\left(W_{i}, \cdot\right)\right.$ is strictly increasing and $\left.\sup _{0 \leq \leq \leq 1}\|\theta(\cdot, \tau)\|_{L^{\infty}(P)}<\infty\right\}$
- Suppose v satisfies assumptions 3,4 and 5. Then define $\mathbf{P}=M_{Y, X, Z}(v)$ such that for each $P \in \mathbf{P}$ there is some $\theta \in \Theta(P)=T(P)$ for which (6) holds. Further define \mathbf{P}_{0} and \mathbf{P}_{1} as in (7). Then the sequence of test functions $\left\{\phi_{i}\right\}_{i=1}^{n}$ satisfies
$\limsup \sup E_{P^{n}}\left[\phi_{n}\right] \leq \lim \sup \sup E_{P^{n}}\left[\phi_{n}\right]$

$$
n \rightarrow \infty \quad P \in \mathbf{P}_{1} \quad n \rightarrow \infty \quad P \in \mathbf{P}_{0}
$$

Conclusion

- Three distinct hypothesis testing about identification.
- Assumptions 1,2,3,4 and 5.
- Functional spaces is $L^{\infty}(P)$ or $L^{q}(P)$
(in case $3 \sup _{0 \leq \tau \leq 1}\|\theta(\cdot \tau)\|_{L^{\infty}(P)}<\infty$ or $\left.\sup _{0 \leq ז \leq 1}\|\theta(\cdot \tau)\|_{L^{q}(P)}<\infty\right)$
- Case 1: utilizes completeness condition.
- Case 2 \& Case 3: utilize definitions directly.
- No nontrivial tests for these three cases.

Remarks

- Conditions are satisfied under commonly used assumptions.
- Not rule out the existence of reasonable tests under more restrictive assumptions.
- Help shape the development of nontrivial tests of the hypotheses this paper considers.

