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Abstract

We present a method for relating a neural measurement of value to
choice behaviour. In a previous study, precisely targeted measurements
of brain activity were made in the medial prefrontal cortex of subjects
while they considered individual consumer goods. We present here two
advances. First, we develop an empirical framework for relating this class
of measured value data to choice prediction. Second, we apply a bench-
marking tool to compare the predictive power of a measured value dataset
with established techniques. We find that our measured neural activity
cardinally encodes valuations and predicts choice behaviour, though a sig-
nificant degree of measurement error affects prediction rates. Accounting
for measurement error and combining neural data with standard observ-
ables improves predictive performance. We also note some potential nor-
mative implications of our measured value approach.
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To precise the ideas, let there be granted to the science
of pleasure what is granted to the science of energy; to
imagine an ideally perfect instrument, a psychophysical
machine, continually registering the height of pleasure
experienced by an individual, exactly according to the
verdict of consciousness, or rather diverging therefrom
according to a law of errors.

— Francis Y. Edgeworth, 1881

I. Introduction

Economics has traditionally relied on a mixture of theory and empirical mea-
surement for the development of both positive and normative goals. Empirical
techniques for measuring the value an individual places on goods and services
have thus formed a natural subject for economists since the inception of the
discipline. Since the mid-nineteenth century, for example, applied economics
has relied on indirect empirical valuation methods derived from market and
auction-pricing data (Fisher, 1892, 1927; Frisch, 1932; Hicks, 1942; Harberger,
1971).! Midway through the twentieth century, the revealed preference method
(Samuelson, 1938; Houthakker, 1950), and its stochastic analog the Random
Utility Model (RUM) (Marschak, 1960; Block and Marschak, 1960; Becker et
al., 1963; McFadden, 1974, 2005), derived the conditions under which choices
are consistent with utility maximization. This clarified what aspects of an eco-
nomic model can and can not be identified by choice data alone, and laid a
behavioural foundation for both positive and normative analysis based on indi-
rect valuation methods. And, of course, more controversial techniques including
stated preference and surveys have been explored and occasionally employed by
economists (Boulier and Goldfarb, 1998; Carson and Hanemann, 2005).

Prior to the twentieth century, it was widely held that economics would be
anchored to a hedonic object which guides choice behaviour. Some economists,
such as Edgeworth, even foresaw that direct measurement of this hedonic object
would be possible - a methodological approach we refer to as measured value
methods. However, the discipline established its powerful indirect valuation
methods while concurrently developing the “as-if” methodological viewpoint
that an economic theory should be judged on its predictive power and not on
the realism of its mechanism, per se (Friedman, 1953).2 Some modern authors
have interpreted this methodological stance as explicitly prohibiting a direct
neural measurement of value in all economic discourse (Gul and Pesendorfer,
2008). We do not share this recent interpretation. An economic model indeed
rests on its predictive performance, but in this paper we extend the positive

IFor reviews of these, and more state-of-the-art methods, see Slesnick (1998); Colander
(2007).

2The view that mechanism is not important to an economic model is a highly controversial
one (Samuelson, 1963; Simon, 1979). Putting aside these arguments, here we proceed from
Friedman’s observation that a critical aspect of an economic model is its empirical perfor-
mance.



aspect of economic methodology to a neurobiological dataset. We relate direct
cardinal measurements of value-related signals in the human brain to choice
prediction, and demonstrate how to judge the predictive power of a given neural
dataset. We also note the potential normative implications of our measurement
approach.

While it is the domain of future theoretical and empirical work to estab-
lish the usefulness of measured value methods in economic practice, this can
be accomplished only if econometric techniques for relating these measurements
to choice are first developed. We suspect, however, that these measured value
methods may offer some unique advantages that will supplement existing meth-
ods. For example, such a method could supplement the stated-preference mea-
surements economists are forced to rely on when incentive compatible mech-
anisms are unavailable, such as during contingent valuation for environmental
goods (Carson and Hanemann, 2005). More broadly, the observation that choice
behaviour is influenced by context and framing limits a simple indirect inference
of value from choice (Caplin and Dean, 2008). A direct measurement of value
offers a more structural account of how context affects valuation, as well as an
ability to measure value in the absence of a choice set. Since a growing group of
economists, psychologists and neurobiologists have already begun making (what
are widely believed to be) direct measurements of the hedonic object of maxi-
mization behaviour — a literature which we briefly survey below — our goal is to
lay out an econometric framework for such study.

This paper outlines a general formulation for relating neural value mea-
surements to choice prediction which we call the Neural Random Utility Model
(NRUM). The NRUM extends familiar aspects of the RUM framework to neural
measurements, including maximization of stochastic decision variables, and we
emphasize the relation between the neural and latent variable formulations.® A
concrete example of subjects choosing over consumer items is developed in de-
tail, demonstrating how these measurements can be made using existing brain
scanning technology. We demonstrate that neural activity in a brain region
called the medial Prefrontal Cortex (mPFC) cardinally encodes valuations and
predicts choice behaviour. However, a significant degree of measurement error
exists with current technology, adversely affecting both model inference and pre-
diction rates. Conveniently, our application of the random utility model allows
partial correction for the presence of error in neural measurements.

A means of benchmarking the predictive power of the measurements, with
regard to choice, is also applied. In our dataset, neural activity by itself yields
choice prediction results on par with a standard latent variable formulation.
Combining neural data and standard observables improves predictive perfor-
mance. To our knowledge, this is the first study establishing that a neural

3The neural basis of the random utility model has previously been conjectured (Glimcher,
2011; Fehr and Rangel, 2011). This is a natural hypothesis given that psychophysics provided
the early inspiration for RUMs (McFadden, 2001), particularly the work of Fechner (1860),
Thurstone (1927), and Luce (1959). In the economics literature, Hausman and Wise (1978)
were the first to conjecture neural activity as the source of intra-individual stochasticity in a
RUM.



measure of value can add predictive power to the toolset an economist would
normally use in a similar choice problem.

L.A. Efforts to Measure the Neurobiological Object of Maximization Behavior

For an economist, the goal driving direct measurement of a “hedonic object” in
the brain (known as “subjective value” in neuroscience) is to learn something
about choice behaviour, or perhaps about welfare. But for neurobiologists work-
ing during the past decade that goal has largely been reversed; their ambition
has been to use traditional methods for the measurement of value — or the rep-
resentation of utility — to identify the anatomical and functional characteristics
of subjective value-encoding signals in the human brain. In essence, they have
worked to accomplish the engineering necessary for “Edgeworth’s hedonometer”.

To this end, nearly all economic methods for estimating value have been used
in the neurobiological search for subjective value. Auction/willingness-to-pay-
based methods (Plassmann et al., 2007; Chib et al., 2009), revealed preference-
based methods (Platt and Glimcher, 1999; Dorris and Glimcher, 2004; Padoa-
Schioppa and Assad, 2006; Glimcher et al., 2007; Levy et al., 2011; Smith et al.,
2011), stated preference-based methods (e.g. Kringelbach et al., 2003; Hare et
al., 2010) and even market price (Plassmann et al., 2008) have all been used as
correlational probes in this search for the neural value signal. Strikingly, all of
these methods have been found within the last decade to be correlated with brain
activity measurements in two specific areas: the medial prefrontal cortex and the
ventral striatum. Two recent meta-studies (Levy and Glimcher, 2012; Bartra et
al., 2013) now unambiguously indicate that activity in these areas, particularly
in the medial prefrontal cortex, is tightly correlated with every known economic
method for estimating the values subjects place on choice objects - ranging
from consumable goods, to money lotteries, to charitable donations, to durable
goods, to social preferences, to political preferences. Activity in this brain area
appears to complement traditional measurements of the values people place on
the objects of choice.

In this paper we invert the neurobiological approach in an attempt to pre-
dict choice directly from neural measurements, taking it as a given that activity
in the medial prefrontal cortex encodes the subjective values of choice objects
under current consideration “or rather diverging therefrom according to a law
of errors”®. We acknowledge that there are other brain areas that also carry
information related to valuation and choice, and even acknowledge the possi-
bility that some yet undiscovered area may carry a higher fidelity subjective
value signal. Indeed, our goal is econometric: the tools we present are general
enough that they can and should be used with regard to other brain areas and
measurement methods whenever examining measured value data.

The model we propose to relate measured value data to choice behaviour,
the NRUM, is one of many possible measured value methods. The first such
method, drift diffusion (Fehr and Rangel, 2011), models the dynamic accu-

4(Edgeworth, 1881)



mulation of a decision signal originally proposed in the psychology literature
(Ratcliff, 1978). The choice probabilities depend on the slope of the accumula-
tion, which in turn depends on the difference in value inputs. Neural evidence
for the dynamics of this model has been uncovered both in psychophysical and
economic choice tasks (Gold and Shadlen, 2007; Basten et al., 2010; Hare et
al., 2011), as well as behavioural evidence for the role of decision dynamics and
attention (Milosavljevic et al., 2010; Krajbich et al., 2010). A tight relationship
exists between the two proposed methods: the NRUM is a reduced form of the
drift diffusion model, with the particulars of the accumulation process impact-
ing the distribution of random utility (Webb, 2013). While the more structural
drift diffusion model will prove invaluable for exploring the decision process and
restricting the NRUM, the reduced form brings a large econometric toolbox to
bear for relating measured value to choice prediction.

In an example of this functionality, here we present an analysis of medial
prefrontal cortex activity from a previously published laboratory experiment
(Levy et al., 2011) that was divided into three stages. The first two stages of
our experiment were performed inside a Magnetic Resonance Imaging (MRI)
scanner, the third in a standard behavioural laboratory. In the first stage, sub-
jects passively viewed the outcome of a series of small (consequential) lotteries
over changes to their wealth. The purpose of this stage was to identify spa-
tially discrete brain areas in each subject which encoded subjective values. In
the second stage, subjects passively viewed 20 consumer items, one at a time,
while intermittently performing an incentivized task. The purpose of this stage
was to observe the activity in the areas identified in the first stage (to measure
the subjective values) for the 20 consumer items. Immediately after the second
stage, subjects were asked to perform a third stage outside of the scanner in
which they made all possible binary choices over the set of items in an incentive
compatible fashion. This procedure allowed an examination of the relationship
between neural measurements of subjective value made in the scanner and the
likelihood of choice outside the scanner. We now lay out the formal model for
this relationship and describe our empirical strategy.

II. Neural Random Utility Model

Any measurement from which a value estimate will be derived suffers from some
degree of error, and it is the job of the econometrician to develop tools for han-
dling that error. In the physical sciences, errors were traditionally thought of
only as randomly distributed perturbations in measurement: properties of the
measurement tool rather than properties of the system actually being measured.
While there are significant measurement errors associated with contemporary
brain scanners (as we will see), we also encounter this latter form of variability,
familiar to economists, in the neurobiological instantiantion of subjective value.
First, it has been demonstrated empirically that the instantaneous perception
of the attributes of an item is stochastic even when all properties of the item
and state of the chooser are held constant (Fechner, 1860; Stevens, 1961). This



stochasticity in subjective perception has been shown to be an obligate fea-
ture at all levels of sensory (attribute) processing (see Glimcher 2011, for an
overview; Beck et al. 2012, for relation to optimality), and this necessarily leads
to stochasticity in subjective value.® Second, the activity of all brain cells shows
significant variation even under conditions in which measurement error can be
shown to be near zero (Tolhurst et al., 1983; Churchland et al., 2010, 2011).
For these reasons, the subjective value of an item is an inherently stochastic
quantity, and we model it as a random variable in the RUM framework.

A unique issue that arises in developing the econometric specification for a
neural measurement, however, is the existence of a second source of stochasticity
which also must be accounted for. To understand this issue, one must recall
that subjective value signals in the medial prefrontal cortex must affect choice
through the intermediary of the rest of the brain - a series of physical systems
which also induce stochasticity into choice. Such a view suggests that the least
restrictive econometric specification of measured value should be composed of
a stochastic valuation and a subsequent error term which is, in essence, strictly
welfare decreasing. This then, is the most general form of the specification we
develop below and then apply to a concrete example. We stress that it may,
in some cases, be possible to restrict the econometric problem to a model with
only one (or a linear combination) of these sources of error, but we present here
the more general case as a starting point.

II.A. Relation Between Subjective Value and Choice

To capture these features of the neural choice process, we adapt the standard
model for stochastic choice in economics, random utility maximization, to a
neural form that explicitly treats subjective value as an observable stochastic
object. We present the model for a binary choice situation in which we observe
repeated choices from the same subject over a set of items and note that the
extension of the model beyond binary choice is straightforward (Webb et al.,
2013). The subjective value of an item ¢ € I on binary choice trial ¢ € T
is defined to be an observable random variable v; ;. The vector of subjective
values on a choice trial is v¢, composed of the v; ; for the items in the choice set.
We assume the random vector v; is independent over trials, but not necessarily
over items.

Although we have yet to formally specify a distribution for v¢, let us define
v; as the difference between v; ; and its mean Ev; 4] for each item.

(1) Vit = v — Elvig].

The existence of a mean E[v; ] requires further clarification. One possible
interpretation of Efv; ] is a ‘core’ value, instantiated noiselessly in neural firing
rates somewhere else in the brain, which is represented with error in the neural

5To take one example, variance in the subjective value of a sweet tasting liquid can arise
from variability in the behaviourally measured sensory experience of sweetness (which arises
in turn from the stochasticity of neuronal signals) even when the objective sugar concentration
is held constant.



substrate under observation.® This is not a view compatible with the biophysical
properties of neural processes. Instead, E[v;;] must be viewed as the limiting
quantity of the sample mean of v;, (i.e. the central tendency of v;.), and our
definition of v; ; in an additive specification is for the purpose of exposition. We
emphasize that v; ; is the only observable in equation (1) and we will provide a
distributional assumption shortly.”

Once subjective values are instantiated in neural firing rates, they must be
compared and a choice executed. This additional neural process, which we
refer to as the choice mechanism, effectively transmits subjective values to the
requisite circuitry for producing behaviour. A feature of the choice mechanism is
that it is also stochastic, and the class of bounded accumulation or drift diffusion
models from psychology and neuroscience is devoted to modelling it (Ratcliff,
1978; Gold and Shadlen, 2007). Therefore, we add to our NRUM an additive
noise term 7; ; which captures stochasticity in this argmax operation. This
additive form has been demonstrated to be equivalent to the stochasticity found
in bounded accumulation models (Webb, 2013), and adds an additional degree
of stochasticity to choice behaviour. This yields the decision variable

(2) Uit = Vit + Nit-
The subject chooses ¢ vs. j on trial ¢ if

Uit > Ujt

Vit + i > Vi + Ny

If we denote this outcome y;;, = 1 (and 0 otherwise), this yields a probability
of choosing 7

P(yije = 1] vig,v56) = P(vig — vje > N5t — Nit)
(3) = P (Vijt > Tjit) s

where 03¢+ = v;; — v;+ and the notation -;; denotes the ijth item-pair differ-
ence throughout. If we were to measure subjective value in the neural substrate
which computes the argmax operation, equation (3) would be the resulting con-
ditional probability of choosing 4 given our measurement. Since the differences
in measurements of subjective value determine these probabilities, the random
utility framework is cardinal (Batley, 2008).

SWe make here the assumption, widely held in neuroscience, that the distribution of Vit
reflects a fundamentally random process and not simply a high dimensional signal of zero
stochasticity projected imperfectly into a low dimensional space. It should be noted that
some scholars believe, that in some cases, 5% or more of the variance in v; ; may be formally
non-stochastic under the appropriate analysis. For more on this issue see Rieke et al. (1997).

7Our definition of subjective value raises important issues about the stochastic specification
of preferences that have remained unresolved (Loomes, 2005). Much of this debate involves
the distribution of v;; (or equivalently v; ), and whether its variance is constant and it is
independent over i. We will assume the former, but not the latter. In addition, there is the
question of whether the central tendency of subjective value is stable or if it can be manipulated
through contextual effects; here we assume a stable mean over trials in this experiment. We
touch further on these issues in section VI..



Imposing some distributional structure on our noise terms will bring us closer
to a specification for use in our empirical setting. From this point forward, we
assume that the difference in additive noise is independent over item-pair and
trial, and distributed normally 7; ~ N'(0,021).® This yields a probability of
choosing i

(4) P(yije =1 vig,v50) = @ (vljt) ,
O
where ®() is the standard normal CDF.

Alternatively, this probability can be defined conditional on the mean of
subjective value E[v; ¢]. To demonstrate this, let us now place the distributional
assumption v; ~ N(0,9Q,) with covariance matrix Q,. Since our experiment
uses a binary choice environment, the realizations of 7;;; for different item-
pairs must occur on different trials ¢. Therefore the 7;;; are independent over
1j due to independence over trials, even for different item-pairs that share an
item.? Therefore 7;;+ ~ N(0,02) and this yields a probability of choosing 4,

P(yijt = 1| E[vid], E[vji]) = P (Elvit] — Elvji] > Vit — Vit + e — Nit)

(5) = P (E0ij] > Vjie + i)
_ o Eloia]
(©) -° ( Oo+4 ) 7

where 0545 is the standard deviation of the sum of the two neural noise terms
v, and 1. Since E[v; 4] is not observable, equations (5) and (6) should be viewed
as the limiting probabilities given a sample mean that approaches E[v;]. The
sample analog is

(7) P(yiji = 1|70:,0;) = P (Vij > Vij + i + Tjire)

(®) -° (U{:Zj-n> ’

where 045 — 054 as vi; — 0. This is the specification we will work from in
our empirical setting.

We wish to highlight that the distinction between 7, and 7; may have critical
normative implications. While 7; reflects the variation in subjective values due
to perception and their representation on a noisy neural substrate, 7; reflects

8There is little known about the appropriate distribution of 7; at this level of aggregation,
though some evidence suggests the variance may scale with the mean (Webb and Dorris, 2013;
Webb, 2013). The assumption of independence over item-pair is only made for convenience,
see footnote 9.

9The extension of the model beyond binary choice would have to account for a full co-
variance matrix for the vector composed of the ;; ¢ on each trial (similarly for the 7;; ). In
principle, a full covariance matrix should be identifiable for such a dataset (Hausman and
Wise, 1978; Train, 2009) and the results that follow would have to be argued in terms of
this full matrix. The assumption of normality for v; is again made for convenience. To our
knowledge no study has yet examined the distribution of the aggregate firing rates that make
up subjective value.



error/stochasticity in the choice mechanism. If o;; = 0, then all choice stochas-
ticity is due to variation in subjective value and choice can be defined as optimal
in the traditional economic sense because choosers then act to maximize their
realized, albeit stochastic, subjective values. However, if o7 > 0, then some
choices can be classified as errors arising in the neural implementation of the
argmax operation and the execution of the choice behaviour.'® In most decision
making contexts, people would therefore choose to minimize o if at all possible.
Thus the relative sizes of o5 and o reflect the degree to which stochasticity in
choice can be strictly viewed as welfare decreasing in any given measured value
dataset.!!

We should note that in all likelihood, v and 7 are the product of realizations
at multiple points in the human nervous system. The critical point that we
seek to capture in this reduced form, however, is that two kinds of stochasticity
can in principle arise in the neural substrate for choice: randomness that makes
preferences stochastic, and randomness that adds to choice stochasticity. While
we are unable to fully differentiate between these two sources of variance in this
specific study because we do not make independent measurements at multiple
stages along the pathways that represent subjective value, clearly this distinction
is of significant importance and will doubtless be the object of future study. It is
with this goal in mind that the model was formulated in precisely this manner.
This then forms the core of our NRUM.

II.B. Comparison with Standard Latent Variable Modelling

The NRUM decomposes the uncertainty present in the standard RUM into bio-
physically distinct sources and yields the observable variable v on which to base
choice prediction. This allows us to investigate, as a benchmark for our mea-
surement, the potential benefit of using neural data to predict choices compared
to a dataset of only standard economic observables. In particular, we focus on
specification error in the standard approach due to the modeller’s inability to
observe all the attributes (of alternatives and decision makers) that make up
subjective value (Manski, 1977). Formally, on a given trial the econometrician
only observes a partition, X; ;, of the full vector of attributes, Z; ;, which make
up subjective value for item 4.

In the standard formulation of the RUM, the partitioning of the dataset mat-
ters since the econometrician does not observe the subjective value (or rather,
the utility) of item ¢. Instead, the latent variable u;; must be indirectly speci-
fied. The components of subjective value that are observed, X;;, are related to
this latent variable as a linear combination, X; ;3, while the components of u; ;
that are unobserved are bundled in to an error term g; ;.

10We note that this specification thus allows one to handle a range of welfare-related stochas-
tic specifications which would not be possible with a single random term.

1 Evidence from perceptual neuroscience (in which there is an objectively “correct” answer)
identifies that most of the variance in choice stochasticity can be attributed to brain areas
encoding stimulus value, suggesting less than 15% of choice stochasticity can be attributed to
downstream neural circuitry which implements the choice (Michelson et al., 2013; Drugowitsch
et al., 2013).



Given our NRUM, we can decompose ¢;; into three sources. For the sake
of this argument, we follow the standard approach and assume that subjective
value is related to the arguments Z or X through the linear function V(X 4; 8) =
Xi B+ vir.'? The difference between the full specification V(Z;+; 8) and the
partitioned specification V(X +; 8), which we will refer to as specification error,
is denoted w; ;. Together with the stochasticity in subjective value and the
choice mechanism, this yields a decision variable in which €; ; = v; 4 +w; ¢ +7i
bundles together the three sources of uncertainty in our NRUM.

vig =V (Zigs, B)
vig = V(Xi, B) + wit

Vi + Mg = XigB+ v +wie + iy
Uip = XS+ Vi + Wit + Nige

As before, we can derive choice probabilities after imposing normality assump-
tions,

9) Pyije = 1| Xijp) = P (Xi B+ @ije > Dyt + i)
=P (Xij,tﬁ > 5ij,t)
X
(10) - & (Jtﬁ> 7
o¢
where the variable &;;; aggregates all of the differenced error terms and o2 =
0'(% -+ angﬁ.

An obvious implication is that the latent variable model with non-zero speci-
fication error (10) will have the worst predictive power relative to the two neural
specifications (4) and (6) since U% < o2 i < o2. The latent variable formula-
tion introduces error into the specification due to an inability of the modeller
to fully explain subjective value with observables in the dataset. Observing a
neural measure of subjective value removes this source of error, provided we can

obtain a suitable neural measurement.

ITII. The Example Experiment

Our laboratory experiment was divided into three stages.'®> The first two stages
were performed inside an MRI scanner. In the first stage, subjects passively
viewed the outcome of a series of small lotteries over changes to their wealth.

12In practice, this function must be non-linear because v is bounded above and below.
Additionally, there is evidence that V() takes the entire vector X as its argument, yielding
subjective values which depend on the composition of the choice set (Louie et al., 2011, 2013;
Webb et al., 2013). Both of these issues result in misspecification error if unaccounted for.
While the first issue can be easily dealt with in a standard RUM, the second requires careful
attention (Webb et al., 2013). Regardless, both of these issues are not encountered if observing
v directly, further bolstering our argument.

13The empirical portion of the experiment, but none of the analyses reported here unless
noted, have been previously published in the neuroscientific literature in Levy et al. (2011).
This paper also contains a complete description of the experimental methods.
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The purpose of this stage was to identify the areas of the brain which encoded the
subject’s subjective values, v;+. In the second stage, subjects passively viewed
20 consumer items while intermittently performing an incentivized task so as
to maintain subject engagement. The purpose of this stage was to repeatedly
measure the subjective values of these items. Immediately after the second
stage, subjects performed a third stage outside of the scanner in which they
made all possible binary choices over this set of items in an incentive compatible
fashion. Before leaving the subject also received a $25 show-up fee in cash.

III.A.  Localization of Subjective Value in Medial Prefrontal Cortex

The first stage of the experiment was designed to identify an area in the brain
of each subject which encodes subjective value. For brain measurements, we
employed functional MRI (fMRI) using standard techniques (as in Caplin et al.,
2010; Levy et al., 2011). These techniques indirectly measure brain activity over
a 2 second interval in each of about 250,000 3mm x 3mm x 3mm cubes (voxels)
tiling the human brain. The product of this process is thus a time-series, in 2
second increments, of activation levels in each voxel.

The measure of activation is derived from the paramagnetic properties of
the hemoglobin molecule and is known as the Blood-Oxygenation Level Depen-
dent (BOLD) signal. This measurement has been demonstrated to be strictly
monotonic in the average of the neural activity within the voxel, and most stud-
ies indicate that BOLD approximates a linear transformation of neural activity
(Logothetis et al., 1999, 2001; Kahn et al., 2011).

A serious constraint arises from the sheer number of time-series fMRI gener-
ates and the statistical challenges imposed by determining which voxels/timeseries
to study (Vul et al., 2009). We first restricted our analysis to a region of the
brain known to encode subjective value-like signals, the medial prefrontal cortex
14 We then performed an initial experiment aimed at independently ‘localiz-
ing’ subjective value encoding voxels within the mPFC, with the intention of
conducting the analysis of our main experiment upon a time-series derived by
averaging over these localized voxels.

In this initial stage of the experiment each subject was endowed with $40.
On ensuing trials a lottery with equal probability of gaining or losing $2 was
presented visually to the subject in the scanner. The outcome of the lottery
was then revealed to the subject and the result was added to or deducted from
the subject’s wealth. In total, 128 trials of this kind were presented.'® For
each mPFC voxel, the difference in average activity between winning and losing
was calculated. For each subject, voxels which showed a statistically signifi-
cant difference were identified as our region of interest for encoding subjective

14We restrict our analysis to the mPFC since this location has been related to subjective
value in previous studies by our group (Kable and Glimcher, 2007, 2010; Levy et al., 2010)
and others (see Levy and Glimcher, 2012, for a review). It can also be demonstrated that
other areas of the brain, such as the Striatum, are simultaneously, or perhaps in combination,
encoding subjective value. We wish to emphasize that we are simply attempting to derive a
measure of subjective value in the mPFC, not claim the singularity of this region.

15This task is a non-choice version of the task previously developed in Caplin et al. (2010).
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valuation.

III.B. Recording the Subjective Value of Items

Immediately following the first stage, subjects completed a second stage in the
scanner intended to measure the subjective values of 20 consumer items. Sub-
jects completed six 7-minute brain scans over the course of 45 minutes, each
consisting of 40 trials, for a total of 240 trials. In each of these trials, sub-
jects passively viewed an image of one of 20 different items, including four DVD
movies, two books, four art posters, three music CDs, two pieces of stationery,
and five monetary lotteries represented by pie charts. Each lottery offered a
50% chance of receiving a designated amount of money ($10, $15, $20, $25,
$30) and a 50% chance of receiving $0. All items were presented 12 times in
a random order to each subject. Subjects were instructed that when they saw
an item they should think about how much it was worth to them in a dollar
amount.

To keep subjects alert, on 20 randomly selected trials (one for each of the 20
items), subjects were asked whether they preferred the item they had just seen
or a randomly selected amount of money (ranging from $1 to $10). Subjects
were told that one of these question trials would be randomly realized at the
end and they would receive their selection on that trial - the item or the money.
These 20 question trials were excluded from all behavioural and neural analysis.
During the scanning stage, subjects did not know they would subsequently be
offered an opportunity to choose between these same items after the scanning
process was complete.

II1.C. Choice Task

Following the second scanning stage, subjects were asked to perform a choice
task outside of the scanner. Subjects were presented with a complete series
of binary choices between the 20 items previously presented in the scanner.
Each possible binary comparison (190 choices) was presented twice (switching
the left-right location on each repetition), in random order, for a total of 380
choices. The result of one of these choices was randomly selected for realization.

The choices of subjects were largely consistent, with 96 2% of triplets tran-
sitive and subjects switching their selection in only 94 1% of choice repetitions.
Choices were also highly idiosyncratic across subjects such that the individual
preferences of a given subject could not be predicted from preferences exhib-
ited by other subjects (mean correlation of ranking between pairs of subjects,
excluding lotteries: r = 0.1 £ 0.3).16

16We also verified that the random amounts of money used in the question trials in the
scanner did not bias subjects’ choices outside of the scanner.
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IV. Measuring the Subjective Value of Consumer Items

We now wish to establish the NRUM as an econometric toolset for measuring
subjective value in our experimental dataset. In section IV.A., we restate the
main result from Levy et al. (2011) demonstrating that the ordering of our neural
measure of subjective value correlates with choice likelihood. In section IV.B.
we apply our model of neural random utility maximization to the combined
dataset of choices and neural activity. The role measurement error plays in
the relationship between our behavioural and neural observables is examined in
section IV.C. and tested in IV.D.

In our analysis, we treat the item-pair and the two choices made in each pair
as the dimensions of our dataset, and pool item-pairs over subjects. Essentially
we are treating different subjects viewing the same item-pairs as equivalent
to the same subject viewing different item-pairs. While this method allows
each subject’s preferences, therefore subjective valuations, to be idiosyncratic,
it does contain the implicit assumption that the relationship between subjective
valuation, the BOLD measure, and the choice likelihood is the same across
subjects. We attempt to relax this assumption in section IV.E. at the expense
of a reduced sample size.

IV.A. Ordinal Measure: Rank-Ordered Distance

The first step in demonstrating that measured neural activity encodes subjec-
tive value is determining whether the ordering of the neural activity associated
with each of our 20 items can predict pairwise choices between those items.
To demonstrate this, Levy et al. (2011) averaged neural activity from the 11
measurements of each item and then ordered the items by this mean activity.
Subjects were then predicted to choose the item with the highest ranking in this
order. Across all choices, they found that in 59 & 1% of trials subjects chose
according to this ordering.

With further analysis, however, a distinct pattern was observed in the ordinal
neural ranking which suggests a random-utility-like representation. Figure I
segregates prediction accuracy according to the rank-distance in neural activity
between two items. Items with an ordinal distance of 19 represent the items
with the highest and lowest neural activity, while items with an ordinal distance
of 1 are items that are adjacent in the ranking. In choice pairs consisting of the
highest ranked item versus the lowest ranked item, the predictions were accurate
83+8% of the time. Pairs that are adjacent in the neural ranking are at chance.
These previously published observations make two points. This is the first
evidence that the magnitude of neural activity measured by fMRI, as evidenced
by the ordinal distance between two goods, can predict later choice outcomes
even though these measurements of subjective value were made in a non-choice
setting. Additionally, the observation that ordinal distance matters to prediction
accuracy suggests a degree of stochasticity in the neural representation, or its
measurement, that invites analysis by a random utility model.
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Figure I: Choice prediction results for items ordered by neural activity in mPFC,
pooled over subjects. Items with higher neural activation (within subject) are
predicted to be chosen. This is a reproduction of Figure 5 in Levy et al. (2011),
with corrected 95% confidence intervals.

IV.B. Cardinal Measure: Testing a NRUM with Behavioural and Neural
Measurements

The random utility model allows us to determine whether the difference in
subjective values influences choice likelihood, therefore whether subjective value
is a cardinal quantity. As we noted in section II.B., observing v; ; in synchrony
with the choice of our subjects and using specification (4) would yield both
the best predictive results and sharpest inference. However, the goal of this
experiment was to determine whether subjective value measured in the absence
of choice can be used to predict later choices, establishing the existence of
subjective value in the absence of choice. By design we do not observe the
realization of subjective value v;; on the trial ¢ in which the choice was made,
therefore specification (4) is inappropriate for our analysis.

Instead, we measured v; ,, in 11 scanning trials which preceded and were
independent of the 2 choice trials of interest. We use the time index m to
denote these measurement trials and assume a linear form for the relationship
between our BOLD measurement B, ,,, and subjective value.

Bi,m =a+ YVi,m + i m-

The error term g ,, ~ N (0, O’i) reflects the error present in measuring neu-
ral activity in an MRI scanner, therefore our neural measure of subjective value
B;.m has two sources of variance: the fluctuation in subjective value on our
measurement trials and measurement error. To arrive at a measure for predict-
ing choice between items ¢ and j on an independent trial ¢, we average over our
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11 measurements and then take the difference.
(11) Bi = a+70; + i
(12) Bij = v0ij + fiij-

Initially, we proceed under the assumption that there is no sampling and
measurement error, Bij = vE[¥;;,]. While this assumption is clearly not valid,
it does provide us some helpful intuition about the model which will prove useful
when we relax it in section IV.C.. Specifically, assuming an error free measure
of the mean of subjective value allows us to use specification (6). Substituting
in yields a probability of choosing i,

(6) Plyiss =11 Bliigs)) = (]”L])
(13) ~-9 <Jﬁ:ﬁ BU) .

Under this specification, the NRUM makes two predictions about the likeli-

hood our subject will choose item 4. First, as Bl-j increases the subject should
be more likely to choose item 4. Second, recall that subjects made choices over
each item-pair twice. If we segregate our item-pairs into those pairs in which
the subject chose item ¢ twice, once, or never at all as a function of Bij, the
NRUM would predict P(twice) > P(once) > P(never) for a positive difference
in measured subjective value. We can visualize this prediction in Figure II, in
which we simulated choices according to our model then fit the number of twice,
once, and never observations using an ordered probit model.

Table I presents the estimates from bringing (13) to our dataset with the
normalization o545 = 1. We also included a specification with a constant term
c predicted to be zero by the model. Since the estimate for y~! is positive, we
can observe that the relationship between the difference in neural measurement
(B;;) and the probability of choosing an item is indeed monotonic, as shown in
Figure III. However the second prediction does not fare as well. The fit of the
ordered probit model to the number of observed choices has a clear misordering
since subjects are more likely to choose an item twice, than never, than once
for positive Bij. Puzzlingly, we observe too few once choices when Bl-j is small,

too many when it is large, and far too many never choices when Bij is large
and positive (similarly for twice when it is large and negative).

1V.C. Accounting for Measurement Error

This apparent contradiction of our NRUM arises because we have assumed no
error in our BOLD measurement and the construction of our neural measure
Bl-j. We can identify at least three source of such error. First, since we are
not measuring v;; on the choice trial, the realizations of v;,, we do measure
are not the ones causally related to choice on trial ¢t. This component of our
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Figure II: Analysis of simulated choices with v~
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Constant

Coefficient , No Constant
vt 0.24
(0.10)
c

0.24
(0.10)
-0.01
(0.08)

Table I: Estimates of Probit Model (13) using difference in neural measurement
between items. Clustered standard errors are in brackets.
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Figure III: Analysis of data assuming é, = vE[0;5,]. Top Pane: The fit of
the Probit model from (13). Bottom Pane: Fit of an ordered Probit model for
the probability of observing the ith item in an 45 pair chosen twice, once, and
never.

measurement error is the sampling error present in o; and is denoted 7;. Sec-
ond, we should also allow for error in our ex-ante procedure for identifying and
constructing a single neural time-series from the 250,000 we measured. The
degree to which the mean of our identified voxels capture the neural encoding
of subjective value for consumer items depends on our ex-ante restriction to the
mPFC and the accuracy with which our first procedure identifies these voxels.
This source of variability is captured in p; ,,,. A third source of noise doubtlessly
results from the technical limitations imposed by measuring neural activation
with an MRI scanner, which is also captured in j; y,.

The effect of measurement error in non-linear models (such as Probit) is
larger than in the linear model, but generally follows the same intuition: the
data is over-dispersed along the dimension of the independent variable and the
slope parameter is biased towards zero (Yatchew and Griliches, 1985). Formally,
we can no longer work directly from specification (6) since P(y;;; =i | Byj) is
no longer equivalent to P(y;j+ = i | E[0;5+]). This means our estimate of v~ *
in section I'V.B. is biased towards zero and the severity of this bias increases in
the degree of measurement error. Since our hypothesis predicts a positive value
for v~1, the inference performed on this biased estimate is still valid, though
pursuing a less biased estimate will yield improved choice prediction.

Conveniently, bio-statistics provides some guidance on how to estimate non-
linear longitudinal models with this form of measurement error (Carroll et al.,
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2006; Wang et al., 1998). Recalling equation (11), measurement error enters
our specification as an item-specific i.i.d. error term.'” If we proceed with a
specification derived from substituting in our measured neural activation into
the sample analog (7), the conditional probability of choosing i is

(14) P(yiju =1i| Bij) =P (771(Bij — [iij) > Vij + Djig + ﬁjz’,t)
(15) =P (771(317 —e€ij) > Vjiy + ﬁjz‘,t) )

where our sources of measurement error are grouped in the variable e;;.

This probability has a form similar to a random-effects model, a standard
method for dealing with subject-level idiosyncracy which we apply here at the
level of the item-pair. The fact that subjects chose between each item-pair twice
means that e;; is constant over the two choice trials t. We can use this correlation
pattern to achieve more efficient (and less biased) estimates of 4~ and the
variance of e;; (relative to o2 7 = 1) provided we specify and integrate out a
distribution for e;;. For instance, if we assume e;; ~ N(0,02), our specification
takes the form of a random-effects Probit model with two important caveats.'®

First, B;; and e;; are not independent. This means that the random-effects
Probit estimate of v~! will also be biased towards zero, though not as severely
as a Probit with no random-effect, therefore we can only partially correct for
the bias introduced by measurement error.'® Simulation-based techniques for
an unbiased estimate exist in the bio-statistics literature (Carroll et al., 2006,
Chapter 5), but our simulations suggest that o, would need to drop by roughly
a factor of 4 for them to be applicable.

Second, the e;; are not independent over choice pairs. Since the neural
measurement takes place at the level of the individual item, when differencing
the measurement for an item-pair there is correlation in the random effect e;;
between item-pairs that share an item. For instance, e and ey3 are correlated
because they share the measurement of item 1. This common issue with paired-
data makes a random-effects estimate inefficient and will bias our standard
errors towards zero if not controlled for. Multi-way clustering techniques have
been developed to account for this pattern in the off-diagonal elements of the
error covariance matrix (Cameron et al., 2011), but can not be used to improve
the efficiency (or reduce the bias) of the estimate.

Here, we pursue a hybrid approach in which we estimate the random-effects

17This form of measurement error is referred to as “classical measurement error” since
the error is additive and independent of the unobserved quantity (Carroll et al., 2006). It

specifies that our neural measurement B; ; has a larger variance than the unobserved quantity
of interest, a natural assumption in the context of measuring neural activity with a noisy
fMRI signal.

18 A random-effect model is robust to the distributional assumption for the random-effect
(here, measurement error) provided it is not highly asymmetric (Neuhaus et al., 2011).

191n addition, the estimate of the variance of the random-effect o2 will be biased positively
(Wang et al., 1998). In our model we are assuming that the true random-effect variance is
zero (there is no unobserved item-pair-specific term beyond measurement error); therefore. a
positive variance estimate of o2 reflects this bias.
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model clustered at the level of the item-pair (to capitalize on the common mea-
surement error over choice trials within an item-pair, partially reducing the
bias and achieving more efficient estimates), then correct our standard errors
for inference using a multi-way clustering approach (to account for the non-
independence of the differenced measurement errors).

The item-pair level likelihood is then given by

I1# (n052)

t

0o L —e;;%/202

v 27TO'w

(16) Vig (yij,la yij,2|Bij> = de;j,

where F(y, z) = @ (M)y {1 ~® (M)] -y

Oo+q o+
Results from approximating this integral with Gaussian-Quadrature and es-

timating via Quasi-Maximum Likelihood are reported in Table II. We also
included a specification with constant term c predicted to be zero by the model.
After accounting for measurement error, the relationship between the difference
in neural activity and the probability of choosing the item is now larger than in
the SQpeciﬁcation which assumed no measurement error. We also note that over
0'
2+”ﬂ+n
biased) estimate of measurement error.

Figure IV shows the fitted probability of choosing item i as a function of the
difference in neural activity assuming the random-effect e;; = 0. This results in
a significant improvement in the magnitude of the relationship between neural
activity and choice probability when compared to our earlier analysis in section
IV.B. which did not account for measurement error. To establish the cardinality
of our neural measure, we also verified that the difference in neural activity
yielded improved model fit compared to a simple ordinal ranking of the BOLD
activity.

= 95% of the variance in the model can be attributed to the (positively

. Probit RE Probit
Coeflicient
No Constant , Constant | No Constant ;| Constant

1 0.24 0.24 1.16 1.16
(0.10) (0.10) (0.52) (0.51)

c -0.01 -0.06
(0.08) (0.37)

.2 22.36 22.36
72 (3.49) (3.50)

Table II: Estimates of Random-Effects Probit Model (16). Clustered standard
errors are in brackets.
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Figure IV: The probability of choosing an item depends on the difference in
neural activity between items. The fitted probabilities are generated using the
standard Probit estimate for y~!, the RE Probit estimate for y~! (assuming
the random-effect is zero), and for a standard Probit estimate of choice on the
ordinal difference in the BOLD ranking. 95% confidence interval for the fitted
probabilities are depicted by the shaded areas.
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1V.D. Implication of Measurement Error for Mis-ordered Choice Frequencies

To verify that measurement error is generating the results observed in section
IV.B. and Figure III, we introduced measurement error into the simulated data
reported in Figure Il and repeated the analysis that did not take measurement
error into account. The results are presented in Figure V. Introducing measure-
ment error in to our simulation yields theoretical results which now match our
empirical findings, predicting the observed relationship between Bij and choice
probability. This occurs because measurement error has the effect of smearing
out the observed once choices over the range of observed Bij. A choice pair in
which the distributions of subjective value are close together (small E[v;;,]),

likely resulting in a once outcome, could yield a large B;; because of measure-
ment error. Therefore the degree of measurement error has no effect on the
number of once choices observed, only on where they appear on the B;; axis.

Probability of Choosing Item

Probability
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B
Probability of Choosing ltem...
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Figure V: Analysis of simulated dataset in which neural measurements are gen-
erated with error. The analysis are those run in section IV.B. which do not
account for measurement error. Top Pane: The fit of the Probit model from
(13). Bottom Pane: Fit of an ordered Probit model for the probability of ob-
serving the ith item in an 7j pair chosen Twice, Once, and Never.

IV.E. Subject-Specific Analysis

Relaxing our assumption of pooling over subjects s would yield the relation

(17) Bs,i,’m =a-+ VsVi,m + Hs,i,m
(18) Bs,ij = ’Ys%}s,zj + ﬁs,ija
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where ~; is a subject specific relationship between our neural measurement and
subjective value. We estimated ;! through a subject—Bij interaction term
using specification (16) on the full sample, but this meant we only had 380
observations per subject to estimate this relationship.

Breaking up our sample into so few observations per subject reveals the
inefficiency of the estimation method described above. Six of the subjects yield
positive and significant estimates of 75!, while six are not significantly different
from zero (Table II1).2° Commensurate with existing data and previous fMRI
studies (Logothetis, 2003), some subjects yield a steeper mapping between the
neural measurement we use here (BOLD) and neural activity than do others.
The bulk of this difference is widely assumed to reflect a technical feature of the
interaction between the scanner and the subject: the subject-specific coefficient
describing the coupling of neural activity to the blood flow rate measured by
fMRI. In any case, our subject-specific analysis makes clear that pooling data
across subjects can impact the power of NRUMs as predictors of behaviour.

Coeff Est. |, Std. Err. | P-Val | Coeff . Est. |, Std. Err. = P-Val

c1 | 0.03 1.14 098 | ~yt | -1.17 1.07 0.27
¢ | -0.15 1.25 091 | 7' | 0.66 2.89 0.82
c3 | -0.07 1.27 095 | ~v3' | -3.25 2.36 0.17
ey | -0.34 1.17 0.77 | ~,' | 1014 | 290 0.00
cs | 0.08 1.22 095 | v | 1.39 0.57 0.02
ce | -0.07 1.22 095 | 7' | -3.23 2.50 0.20
cr | -0.14 1.30 091 | vt | 2.78 3.30 0.40
cs | 041 1.22 0.73 | 7' | 1039 |  3.53 0.00
co | -0.18 1.18 0.88 | 79 | 4.98 2.38 0.04
cio | 0.69 1.24 058 | g | 5.01 1.39 0.00
cii | 0.07 1.23 095 | ~+ | 2.61 3.18 0.41
c12 | -0.44 1.14 0.70 | ~;5 | 13.04 3.80 0.00
o2 | 20.49 3.46

Table III: Subject specific RE Probit estimates of relationship between neural
measure and choice likelihood.

V. Choice Prediction: Benchmarking Measured Preferences

The role of neural data in choice prediction has been the subject of much recent
debate (Caplin and Schotter, eds, 2008). Bernheim (2009) noted that a positive
neuroeconomic model must ultimately be equivalent to a positive behavioural

20Monte carlo simulations verified the loss in efficiency due to reducing observations. Simu-
lated choice and neural data with 'y{l = 10 and measurement error from section IV.D. leads
to ~5% of the ~y5 ! estimates less than, but not significantly different from, zero (in a total of
1000 simulations).
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model which uses only choice data. Our view has been expressed in Caplin and
Dean (2008), and Glimcher (2011), and Webb (2011). Briefly, we acknowledge
that the two approaches are equivalent, but only when the behavioural model
is correctly and completely specified. When the behavioural model is incorrect,
or is missing explanatory variables, there is no reason the neuroeconomic model
cannot outperform the behavioural model in its predictive power with regard to
choice. As we demonstrated in section II.B., the fact that our neural measure
of subjective value does not contain the specification error present in the latent
variable approach implies that a neural measure of value can outperform the
latent variable specification, all else equal.

However, the presence of measurement error, as noted in section IV.C., com-
plicates matters because our estimated random-effects specification is no longer
equivalent to the specification (6) which assumes we observe the mean of sub-
jective value. Therefore the ordering of specifications (from lowest to highest
variance) in which we observe subjective value on a choice trial (4), observe
the mean (6), and observe only standard economic observables (10), may not
hold in this dataset. If measurement error is high enough, and latent variable
specification error low enough, the degree of bias in our estimate will lead (10)
to out-predict our sample analog (8). Thus the technological frontier plays a
critical role in the practicality of a neuroeconomic model, leaving as an empirical
exercise the question of whether any given set of neural measurements outper-
form the latent variable approach with respect to choice prediction. To clarify
this point: one goal of this paper is to state the conditions under which a given
technological frontier permits a neuroeconomic model to outperform a purely
behavioural model, a point not taken up by Bernheim (2009) in his assessment
of positive neuroeconomics.

Table IV presents the choice prediction rates resulting from our neurally
measured subjective value. We arrived at these rates by using the predicted
probabilities for each item-pair (assuming the random-effect is zero) to simulate
two trials of a binomial draw. If the predicted frequency with which an item
was chosen from a pair (never, once, or twice) matched the data, the prediction
was considered a success. In such a simulation, the prediction rates arrived at
by chance depend on the distribution of never, once, or twice in the dataset.
For our entire sample, the frequency of never is 46%, once is 9%, and twice
is 45%. If each individual choice were predicted at chance, we would predict
never on i of trials, once on i, and twice on i, and we would be correct
1 X 46 + 1 x 9+ & x 45~ 27% of the time.

The first two columns employ the biased random-effect estimates (without a
constant term) from the population and subject, respectively. While prediction
rates using the population level estimates are slightly above chance, when we
allow the estimates to vary at the subject level we achieve a 43% prediction
rate.2! To account for the bias still present in our random effects estimates due
to measurement error, we also examined prediction rates under the assumption

21These are comparable to a similar study conducted by Smith et al. (2011) which explores
the scope of predicting choices within subjects, across subjects, and across items using fMRI
data.
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that 4y~1 = 10 for all subjects (the value found in our calibrations in the pre-
vious sections). Imposing this restriction improves our prediction rate for the
population to 46%, highlighting again the impact of measurement error on our
estimation. Using half the sample as a training sample to estimate and predict
the second half yielded no change in prediction rates.

BOLD Amazon™ Price A+P* P+B A+P+B*
RE vt =10 RE RE RE | RE | RE
Pop Sub , Pop Pop Sub 1 Pop Sub 1 Sub Sub : Sub
chance | 27 27 | 27 27 27 127 27 1 27 27 27
“hop [ 3L 3TC UG [ AT 46|53 53] 52 | 5T 0
subi [ 29 36 | 36 55 60 1 60 63 1 62 62 I 62
suby | 30 28 | 47 38 26 1 54 55 27 55 AT
subs | 24 49 1 29 33 35, 46 40 | 44 51 1 45
subs | 32 53 | 53 46 45 1 62 66 1 56 711 65
subs | 45 48 | 59 65 72 | 54 54 79 57,77
subs | 26 40 1 35 65 70 ; 59 61 | 71 64 1 75
suby | 28 33 | 45 44 39 1 41 29 1 65 33 1 50
subs | 30 49 | 49 A7 45 | 50 4T | 45 56, 70
suby | 35 50 1 53 41 35 | 59 62 | 47 64 1 59
subio | 33 47 | 51 48 48 145 42 1 48 52 | 54
subiy | 30 33 | 41 43 33 | 57 59 | 46 60 |, 46
subia | 32 51 1 49 42 37 1 48 47 1 38 56 1 62

Table IV: Choice prediction rates (%) resulting from 1000 simulated sam-
ples generated by our estimates. Prediction rates are calculated for both
(Pop)ulation and (Sub)ject-based estimates, and prediction rates are shown for
the (pop)ulation as a whole and for each (sub)ject. Prediction rates are also cal-
culated using both (A)mazon and (P)rice observables, (P)rice and the (B)OLD
measure, and all three predictors. *Amazon ratings were not available for the
five lotteries, so choice pairs with the lotteries were excluded for these sets of
predictions.

In an effort to compare with the standard latent variable approach we also
attempted to find more traditional value measures on which to base predic-
tions. Such an approach often seeks out attributes on which to construct the
latent variable, however the consumer items in our experiment had no obvious
attribute dimensions on which they all could be categorized (e.g. length, time,
fidelity, square footage, etc...). Instead, we found two aggregate level valuation
measures: the price of the item (a market-based method) and its ‘Amazon star’
rating (a stated-preference method).?? Both of these measurements have the
drawback of being population level variables which represent (to some degree)

22We used our purchase price of each item at the time of the experiment. The ‘Amazon
star’ rating is the aggregation of user ratings that can be found on the item’s description on
amazon.com.
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the aggregation of preference across all consumers, limiting their ability to pre-
dict individual choices. However, both of them were significant predictors. The
Amazon rating varied positively with the choices of our subjects, suggesting
some homogeneity in the preferences of New York University undergrads, while
prices varied negatively with choice.?3

For better or worse, our expensive neural measurements perform almost as
well as the publicly available population level variables (Table IV; e.g. 43%
vs. 46% vs. 52% prediction rates in the population for subject-level estimates;
or 46% vs. 47% vs. 53% using the calibrated neural estimate at the popula-
tion level). There is no escaping the fact that this measured value dataset
developed with fMRI methods available in 2011 and analyzed with our general-
purpose econometric tool, results in a neuroeconomic model which just matches
the performance of a coarse behavioural model. This observation stresses the
importance of the technological frontier to the practical use of positive neuroeco-
nomics and measured value methods. Movements of the frontier in measurement
technology, including advances in scanner resolution and signal analysis in the
two years since the Levy et al. (2011) dataset was collected (Gross et al., 2012;
Smith et al., 2012; De Martino et al., 2013), may play an important role in the
forward development of measured value methods.

Of course, if the goal is to increase choice prediction rates in this setting,
the best prediction rates (60%) arise from combining both standard and neural
observables. This emphasizes that there is additional information in the neural
measurements, likely due to the individual nature of the measured value data.
To our knowledge, this is the first study establishing that a neural value measure
can add predictive power in a choice prediction problem.

VI. Discussion of the Model and Measurement

VI.A. Implications of Measurement Error for Analysis and Fxperiment
Design

Our analysis confirms a large degree of measurement error present in the six-
year-old “3T” MRI technology used in this study. While scanner technology is
currently being developed which may reduce sources of this error, such as the
introduction of high resolution “7T” technology (De Martino et al., 2013), the
effectiveness of these measurement advances with regard to subjective value is
still an open question. As other less costly - but also less precise - neural mea-
surement methods (e.g. Electroencephalography “EEG”) are adopted, it should
be clear from our analysis that measurement error is of concern when relating
neural measurements to choice prediction. While the frontier in measurement
technology is still in flux, we have introduced a set of econometric tools for
relating all forms of neural measurements to choice prediction.

23This is somewhat surprising since one might expect subjects to be choosing high priced
goods (which they receive at no monetary cost in the experiment), but likely reflects the
popularity of the CDs in our choice set, a relatively inexpensive item.
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Our econometric technique has implications for the design of future experi-
ments which attempt to relate neural measurements to choice behaviour. While
increasing the number of measurement repetitions per item will decrease the
degree of measurement error directly, typical neural measurement experiments
(such as brain scanning) are usually time constrained, limiting potential preci-
sion in this dimension. The random utility framework, together with a random
effects specification to account for measurement error, offers another option.
Since the trial dimension (per choice pair) is used to estimate the variance of
measurement error, increasing this dimension (which usually takes place out-
side of the scanner and is less time constrained) will improve the efficiency of
all estimates, improving choice prediction. We should also note that all of the
econometric techniques used in this analysis are available in standard software
packages.

VI.B. Context and Stability

In its general form, the NRUM places no restriction on the mapping from the
sensory /economic environment to subjective value or about the stability of the
resulting subjective value distribution. However our empirical specification does
place such a restriction because we assume E|[v; ;] does not vary over trials. The
fact that we are able to predict choices while placing such a restriction is evidence
that the mapping of the sensory environment to the distribution of subjective
values, and the mapping of subjective value to choice, is in fact stable in our
choice experiment.

There is mounting evidence, however, that these mappings can be subject
to alteration through context effects mediated by choice set size, composition,
and wealth. Such a contextual mapping is essentially required for the entire
range of possible choice sets to fit within the finite activation rates of neurons
(Louie et al., 2011). In the economics literature, the implications/constraints
that perceptual and contextual manipulations place on choice data are beginning
to be explored (Koszegi and Rabin, 2006; Caplin and Martin, 2012; Bordalo et
al., 2013), notably rational inattention (Sims, 2003; Woodford, 2012). In the
neuroscience literature, the physiological process by which subjective values are
influenced by context has also begun to be described (Louie et al., 2011, 2013).
In particular, this research identifies a neural computation in which subjective
values are normalized by the size and composition of the choice set.

Since our NRUM decomposes the choice process into bio-physically defined
systems, it provides a natural framework for understanding how the objective
choice context is mapped to subjective value and then on to choice. For in-
stance, in this version of the NRUM we have assumed that the decision variable
for an item depends linearly on the subjective value of that item. This relation-
ship could be generalized through a normalization function Z(v) : é]?l_L_I” — ?R!_IH
which maps the subjective value vector of all items, v, to the decision variables,
u = Z(v)+n. Depending on how one specifies the function Z(), this formulation
could yield choice behaviour which depends on the size and composition of the
choice set (Webb et al., 2013). This demonstrates how the framework can be ex-

26



tended and/or restricted to incorporate a deeper neurobiological understanding
of how the choice environment influences behaviour.

VI.C. Distribution of Subjective Value and Normative Implications

In our version of an NRUM, we have attempted to formulate subjective value
as generally as possible so that it might encompass the two predominant views
about stochastic choice in the economic literature. One interpretation of the
random vector of subjective values v, in particular its mean, follows from the
view that choices can be described by a single “core” preference relation (util-
ity function) that is perceived or represented with independent error for each
item (Hey and Orme, 1994). The random vector v; would constitute the core
valuation (its mean) plus this error. When these perturbed core valuations are
compared, a choice in contradiction to the core valuation is possible, with the
number of such “errors” governed by the magnitude of the difference between
the core valuations. This cardinal model has been termed ‘Fechnerian’ in the
economic literature due to its roots in psychophysics.

However the general formulation of a RUM places no such restriction on the
distribution of utilities (Becker et al., 1963). A second class of models, random
preference models, posits a set of preference relations (utility functions) for
which each choice is represented by a single utility function drawn from this set
(Loomes and Sugden, 1995, 1998). This approach allows for preferences to vary
from trial to trial as new preference relations are drawn, but in a manner which
is internally consistent with the axioms underlying the utility representation:
each item in a choice is processed together and in synchrony according to a
particular realized preference function. This has important implications for
both model-testing and normative analysis. For instance, an expected utility
maximizer with stochastic preferences of this type would never violate first-order
stochastic dominance (Loomes, 2005).

The NRUM is general enough to allow for both of these views; the difference
between them arising in the covariance matrix of v;. If v;,, and v;,, are in-
dependent, we have the Fechnerian model.2* A particular non-zero covariance
structure for v; would yield a random preference model. In this study, we allow
for random preferences since we put no restriction on the covariances of v;. The
subjective values of items were measured independently, in isolation, and on dif-
ferent trials; therefore we can safely assume that v; ,, and v;,, are independent
over measurement trials m and n in our dataset.?®> We note, however, that a
NRUM renders the covariance matrix of v; empirically observable and would
allow us to differentiate between these views, at least for subjective value, with
an appropriate dataset.

24Though as mentioned in IT.A., we disagree with interpreting the mean as ‘core’ preference.
The view that a mean is encoded noiselessly in brain tissue is not a view compatible with the
biophysical properties of neural processes. We view the mean simply as the limiting quantity
of the sample mean of v; ;.

25Making such an independence assumption in an alternative dataset in which the subjective
values of both items were measured simultaneously (i.e. m = n) would preclude random
preferences.
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Even after allowing for a random preference specification for subjective value,
however, our model still has some remnants of the psychophysical approach due
to 7, the stochastic element in the biophysical choice mechanism. In contrast
with the assumption of independent 4, the noise vector n; can result in choices
which contradict the ranking of subjective values, v¢. In such a hybrid model,
the variance of 7; would determine how closely the reduced-form model resem-
bles either class, a subject of current debate (Loomes, 2005; Loomes et al.,
2012).

Regardless of the source, we observe choice behaviour that has features of
the psychophysical specification: a larger difference in subjective value makes
an item more likely to be chosen. Our own conviction, which stems from an
amalgamation of the economic and neurobiological literature, is that a model
which incorporates both classes of stochasticity will most closely approximate
the structure of human choice behaviour. We note that anchoring our model
to this conviction effectively posits a distinction between the fraction of choice
stochasticity that can be attributed to stochasticity in preference and the frac-
tion that can be attributed to errors induced by the choice mechanism. This
distinction has clear welfare implications that would necessarily be of inter-
est as more is learned about these sources of stochasticity in choice behaviour
(Bernheim, 2009).

VII. Conclusion

We have presented a method for measuring the value an individual places on
consumer goods without direct recourse to choice behaviour. The class of such
methods, which we refer to as measured value methods, are established through
the relation of direct value measurements to choice prediction. We have pro-
posed an econometric framework, the Neural Random Utility Model, for doing
just this. The NRUM is an extension of the standard econometric framework
used in applied economics to neural measurements of value. This framework
attempts to relate neural measurements to choice behaviour in as general a
form as possible, and offers the advantage of an established econometric toolkit
for analyzing this relationship. A concrete example of subjects choosing over
consumer items was developed in detail, demonstrating how neural measure-
ments can be made using existing brain scanning technology and how they are
related to choice behaviour. We found that the magnitude of the difference in
neural activity makes the higher item more likely to be chosen, implying our
measurement is cardinal, and neural activity measured in isolation can predict
choices.

Our modelling framework proposes that, in principle, choice predictions
based on a neural measure will have lower variance than those based on a
latent variable formulation. To check this, a tool for benchmarking the pre-
dictive power of the measurements, with regard to choice, was also developed.
Our current analysis suggests that the NRUM, and the measurements possible
at today’s technological frontier, are competitive with standard latent variable
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specifications, however error in our neural measurement techniques limits the
effectiveness of choice prediction. Econometric techniques available to the RUM
framework mitigate some of the impact of measurement error, improving choice
prediction results. Combining neural measurements and standard observables
further improves choice prediction. To our knowledge, this is the first study es-
tablishing that a neural value measure can add predictive power to the toolset
an economist would normally use in a similar choice problem. With that said,
we acknowledge that this improvement comes at a high implementation cost for
brain-scanning technology which currently limits the prevalence and usefulness
of neural measurements.

There are many techniques and technologies available for measuring value
in the brain, but the problem of how these measurements are related to choice
prediction in an empirical framework is shared by all of them. We have pro-
posed a method which can be used for all types of neural measurements, but
also retains a relationship with more structural models of decision-making, in-
cluding the predominant model of the dynamic processes underlying choice (e.g.
drift diffusion; Fehr and Rangel, 2011). The NRUM is a reduced form of these
dynamic models (Webb, 2013), and a deeper understanding of this process will
further restrict the NRUM and offer advances in modelling choice behaviour.

Our approach to measured value thus offers four valuable features to the
economic literature: It establishes the positive performance of one measured
value method and defines clearly the technological frontier that will be required
for future methods. It establishes that these measurements carry cardinal infor-
mation about the relative values of alternatives. It offers a general framework
for combined economic-neurobiological modelling from which both richer, more
restrictive specifications can be developed. And finally, it lays out the basic
welfare structure inherent in a neurobiological decision model.

VIII. *
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