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This paper analyses a new estimator for the structural parameters of dynamic models of 
discrete choice. Based on an inversion theorem due to Hotz and Miller (1993), which establishes 
the existence of a one-to-one mapping between the conditional valuation functions for the dynamic 
problem and their associated conditional choice probabilities, we exploit simulation techniques to 
estimate models which do not possess terminal states. In this way our Conditional Choice Simula- 
tion (CCS) estimator complements the Conditional Choice Probability (CCP) estimator of Hotz 
and Miller (1993). Drawing on work in empirical process theory by Pakes and Pollard (1989), we 
establish its large sample properties, and then conduct a Monte Carlo study of Rust's (1987) 
model of bus engine replacement to compare its small sample properties with those of Maximum 
Likelihood (ML). 

1. INTRODUCTION 

Following Miller (1982, 1984) and Wolpin (1984), there have been many applications of 
maximum likelihood (ML) estimation techniques to dynamic models of discrete choice. 
(See the survey by Eckstein and Wolpin (1989).) There are several reasons for estimating 
econometric models that are explicitly derived from dynamic choice-theoretic frameworks 
over those which have less explicit connections to economic theory. The fact that estimated 
parameters can be interpreted within an economic framework automatically provides a 
common language for economists to discuss the results (within and between empirical 
studies). Similarly, an economic interpretation can be readily attached to hypothesis tests. 
Finally, predictions about economic phenomena can be made by conducting exercises in 
comparative dynamics on the economic models that support the estimation. 

Along with this growing literature, there has developed an awareness of the very high 
computational costs of undertaking ML in such models, which, in turn, has sparked 
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interest in alternative methods of estimation. One of these is to replace the assumption 
that agents optimize with specifications of behaviour that yield computationally less bur- 
densome decisions rules for estimation purposes. For example, Hotz and Miller (1986, 
1988) restrict the space of feasible decision rules to index functions that are linear in the 
state variables. Stock and Wise (1990) also attempt to simplify the calculation of decision 
rules in estimation by incorrectly passing an expectations operator through the (nonlinear) 
maximization operator. Recently, Hotz and Miller (1993) developed a new strategy for 
estimating dynamic models of discrete choices which avoids the high cost of recursively 
computing the valuation function many times, a cost associated with ML estimation, 
without compromising the rationality assumption. Their method, which we refer to as the 
conditional choice probability (CCP) estimator, is based on an alternative representation 
of the valuation function. This representation expresses the valuation function as a 
weighted sum of the possible utility streams that might occur. Therein, the weights are 
conditional probabilities of the choices prescribed by sequential optimization of future 
realizations of stochastic variables. In addition, the unobserved components of these utility 
streams are corrected for the dynamic selection which arises from optimizing behaviour, 
expressing these corrections in terms of conditional choice probabilities. Given consistent 
estimates of the conditional choice probabilities and the probabilities determining the other 
stochastic variables, relatively straightforward estimators of the structural parameters can 
be formed. 

The CCP estimation procedure can be applied to a wide range of stochastic problems 
in discrete choice. However, to illustrate it, Hotz and Miller (1993) focus on a model from 
a much more restrictive class. The defining characteristic of this class, called the terminal 
state property, is the existence of at least one action at each decision node (called a 
terminating action) which, if taken, would eliminate the differential impact of subsequent 
choices on the state variables over the remainder of the agent's horizon. Within this class, 
which includes optimal stopping problems,' the number of states for which conditional 
choice probabilities must be estimated is considerably reduced. 

In dynamic choice models which do not have the terminal state property, calculation 
of valuation functions remains problematic, even when using the alternative representation. 
To characterize the utility of a current action, the econometrician must assess the expected 
utility of subsequent choices, where the latter are assumed to be made optimally. The 
number of these future feasible actions can become large, both in terms of the number 
feasible at a point in time and the number of periods remaining in an agent's horizon. In 
essence, the decision tree associated with each current action tends to have many branches. 
This increases the complexity of implementing the CCP estimator, as the conditional choice 
probabilities must be estimated for all these nodes (or future feasible choices).' 

In this paper, we consider how to estimate models lacking this terminal state property. 
Rather than evaluating the expected utilities associated with all feasible future paths, we 
show that one need only consider those associated with a path of simulated future choices. 
These simulated paths are generated in a manner consistent with optimal decision-making 
by exploiting (estimates of) the future conditional choice probabilities and the transition 
probabilities governing outcomes. Estimating equations for the structural parameters of 
a model can be formed using the utilities associated with the simulated paths to form 
valuation functions. We call the resulting estimator the conditional choice simulation 

1. For example, structural models of optimal retirement or sterilization choice have this property. 
2. This lack of terminating actions also greatly increases the complexity of the maximum likelihood strateg- 

ies as it entails integrating over all future paths. 
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(CCS) estimator, and show that this estimator is co consistent and asymptotically normal 
for a sample of size N. 

Like the CCP estimator, the CCS estimator requires using only unrestricted estimates 
of the conditional choice and transition probabilities. But, in contrast to the CCP estima- 
tor, the new estimator proposed here does not necessarily require estimation of probabili- 
ties for all feasible future choice and transitions. Instead, it requires the estimation only 
of those choice and transition probabilities associated with the nodes of some agent's 
simulated future path. While the usefulness of simulation in estimating structural models 
of sequential decision-making has been pointed out and exploited by others,' our approach 
differs from earlier work in that it avoids both the backwards recursion computation of 
valuation functions (by exploiting the representation developed in Hotz and Miller (1993)) 
and integration over all future paths (via simulation of a single future path).4 Finally, our 
use of simulation methods in forming estimators is different from the applications 
presented in Pakes and Pollard (1989) and McFadden (1989) in that the simulated paths 
do not depend on the structural parameter estimates, a feature which facilitates estimation 
in two ways. First, new simulated paths are not generated for each different set of structural 
parameter values being evaluated in the estimation algorithm. Second, for a given sample 
the criterion function for evaluating the structural parameters is typically a smooth func- 
tion, so derivative-based optimization algorithms can be applied. 

Finally, in contrast to ML, both the CCP and CCS estimators separate the problem of 
estimating parameters which generated the data from the problem of solving the dynamic 
programming model for any given set of parameters. This means that, while the reduction 
in computer machine time is quite dramatic when either alternative to ML is used in 
estimation, substantial amounts of computer programming time may be required to solve 
for the optimal decision rules when undertaking comparative dynamic exercises. However, 
as Hotz and Miller (1993) demonstrate, this is not necessarily the case; it depends on the 
specific nature of the exercise under consideration. 

The remainder of the paper is organized as follows. The next section describes the 
class of dynamic discrete-choice models to be considered and reviews the formulation of 
valuation functions developed in Hotz and Miller (1993). In Section 3, we develop the 
CCS estimator and establish its asymptotic properties for finite-horizon models. Section 
4 extends these results to infinite-horizon Markov models. Then in Section 5, we present 
a Monte Carlo study of the small sample performance of this estimator in the renewal 
model estimated in Rust (1987). Several variations on the CCS estimator are implemented 
and compared to the maximum likelihood estimator. 

2. THE MODEL AND REPRESENTING CONDITIONAL 
VALUATION FUNCTIONS 

To maintain comparability with Hotz and Miller (1993), we restrict the analysis in this 
and the following section to finite-horizon, discrete-choice models. In each period 

3. See Pakes and Pollard (1989). Berkovec and Stern (1991) and Altug and Miller (1991). 
4. Our approach to estimation of dynamic models is quite similar to that used in Altug and Miller (1991). 

The main features distinguishing our work from Altug and Miller (1991) are that they use simulation methods 
to deal with common shocks hitting the population and assume a form of finite history dependence to reduce 
the computational burden associated with CCP estimation. This paper assumes that there are no aggregate 
shocks but does not impose the assumption of finite history dependence. These differences affect the proof 
strategies used to establish the respective results, because the criterion function which defines Altug and Miller's 
(1991) estimator is smooth in the parameters, while the criterion function for the CCS estimator is not continuous. 
Note that the parameter space includes both the structural parameters, 0,and the incidental choice and transition 
probabilities, y .  As mentioned in the text, changing the estimates of the conditional choice probabilities (which 
occurs as the sample size increases), creates jumps in the simulated paths. 
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t € T =  (1, . . . ,T } ,a typical agent chooses an action for which there are J alternatives. Let 

denote the agent's decision about action j in period t, where d,.= 1 indicates that action j 
is chosen and d,.=0 otherwise. We assume that the actions are mutually exclusive, meaning: 

for all t~ T .  Thus the agent's choice in period t can be summarized by the J- 1 dimensional 
vector, d,= ( d t l ,. . . ,dl ,J - , ) I .  

The agent conditions his choice in period t on his history, which includes his initial 
endowment of characteristics bo€4g,and the history of realizations on outcome variables 
(b l, . . . ,bl- Consequently, each history has a Markov representation, 
H,~&'=4g x aT,where the elements are (b , . . . ,b t P 1 )and the last (T- t )  elements are 
dummies to indicate the remaining (unspent) periods of the agent's life. Moreover, in 
many applications including the Monte Carlo study we undertake, the history of an agent 
can be characterized by a vector of much lower dimension than ( T -  t ) .  We assume the 
transition from H, to H I + ,is either fully determined by action d l ,  or generated from a 
known conditional probability distribution which depends upon the agent's history and 
his current choice. Accordingly, let F,(H,+I I H,) denote the probability that H,+ I occurs 
given d,.= 1 and history H, and denote by F(H,+lI H,) the J - 1 dimensional vector, 
F I ( H ~ + IHI), . . . ,FJ- I ( H ~ +  I I HI))'.I 

The agent's objective is to maximize the expected value of a sum of a period-specific 
payoffs or utilities. Let uljdenote the utility associated with choice j in period t .  Without 
loss of generality, uv can be written as the sum of a deterministic component, ujC(H,), 
which depends upon the agent's history up to period t, and a stochastic component, E,., 

which is mean independent of ujC(Hl). Let u*(H,)= (u:(H,),. . . ,u,?(H,))' and E,  = 
. . . , E , ~ ) 'denote J x 1 vectors of the deterministic and stochastic utility components, 

respectively. We assume the probability distribution function for E , ,  denoted by G(E,I HI) ,  
has a joint probability density function, dG(&,IH,). In particular applications, u*(Hl),as 
well as the F(H,+I I H,) and G ( E ,I HI) ,may depend upon a vector of parameters which are 
the object of structural es t imat i~n .~  For now, we focus on the structure of an agent's 
decision problem, introducing these parameters in the next section. 

The agent sequentially chooses {d ,} , ,Tto maximize the objective function: 

Let d: denote his optimal choice in period s (or, more accurately, the realization of an 
optimal decision rule of s ) .  We define the condition valuation function associated with 
choice j made in period t as: 

Ignoring ties, optimal decision-making implies that d$= 1 if and only if: 

k =argmax [$(HI) + E,, + (Ht)] .
jeJ  

5. The notational convention adopted here is that the realization h, occurs at the end of period t .  
6. As explained in Section 3, we shall assume that the regression function u,? (H, ) is known up to this 

parameter vector for each j € J  and a similar assumption will be made with respect to G(cIIH I ) .  
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From (2 .5) ,it is obvious that the optimal decision rule depends on the differences in 
expected lifetime utility associated with the various choices, not their absolute levels. Define 
v(H, ) as the J - 1 dimensional vector of differences in the conditional valuation functions 
of agent n at time t. That is: 

The representation of v(H, )  is based on a 1 to 1 mapping between v(H1) and the J - 1 
dimensional vector of conditional choice probabilities p(H,) = ( P I ( H I ) ,. . .,pJ- l(H,))' 
defined by their components: 

pk(Hl)=Pr { k=argrnax [ujC(HI)+ E,. + Q ( H , ) ]I H I )  (2.7)
j s J  

for each k ~ { l ,. . . ,J - 1 ) .  Intuitively, pk(Ht) is the probability of taking action k condi-
tional on the initial conditions and past outcomes. 

The key result we exploit from Hotz and Miller (1993)is that v(H1) can be represented 
as a function of future conditional choice probabilities. To see this, note that p(H,) can 
always be expressed as a mapping from v(Ht )and H I ,where the latter dependence on HI 
arises because dG(&,I HI)  varies with H I .Proposition 1 in the Hotz and Miller paper proves 
that there exists an inverse to this mapping, here denoted by q(p(Ht) ,  HI),  where p ( . )  
belongs to the J - 1 dimensional simplex. That is: 

A feature evident from the first equality in (2.8) is that, given the value of the conditional 
choice probability vector p(H,),  the dependence of v(H, )  on HI only arises through 
G ( E , JHI)  and u*(H,), the components of the model characterizing the structure of the 
agent's decision problem. This feature turns out to play a key role in the estimation 
strategy of Hotz and Miller as well as in the one developed below. 

The alternative representation of agent's conditional valuation functions also follows 
from Proposition 1 in Hotz and Miller (1993). Consider the expected utility an agent 
obtains in period t conditional on HI and on behaving optimally, which is given by: 

The proposition in Hotz and Miller implies that the conditional expectation of the transi- 
tory component to current utility can be expressed as the following function of 
qt(pt(H,), HI) : 

where Gk(eI HI)=% ( ( E  1 HI)8&kand 
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(Note that the function in (2.10) accounts for the selectivity of expected transitory utility 
components that arises in choices among actions.) Consequently, the agent's expected 
utility in period t can be expressed as: 

It follows that the conditional valuation function, Q(H,), can be expressed as the 
following function of future choice probabilities and HI: 

where the expectation on the right-hand side of (2.13) is taken over future histories, H, 
for s~ { t+ 1, . . . ,T).7 In general, all of the time-varying expressions in summation in (2.13) 
must be determined in order to characterize the conditional valuation of action j in period 
t .  Hotz and Miller (1993) show that for models in which the terminal state property 
(described in Section 1) holds, the formulation of (2.13) can be simplified. In particular, 
the conditional valuation asociated with a terminating action, action J,  say, takes the 
following form : 

and the valuations associated with all other actions j, j~(1, . . . ,J- I), can be expressed 
as : 

The essential feature induced by the terminal state property is that (2.14) and (2.15) do 
not depend upon future choices beyond period t + 1;  consequently, one needs only deter- 
mine the choice probabilities associated with period t + 1, a fact which greatly reduces 
the computational burden of calculating the conditional valuation functions. 

Many models, however, do not possess terminal states. Consider, for example, the 
job-matching model in Miller (1984) in the case where there are just two jobs. Suppose 
the value of a match is revealed through experience on the job and a person maximizes 
his expected sum of discounted utility, or its monetary equivalent, by sequentially choosing 
between jobs. In Miller's setup, utj is assumed to be a normally distributed random variable 
with mean Q'y,. and standard deviation P'6,, where QE(O, 1) is some discount factor. In 
this case, u,. represents the (discounted) utility that an agent receives in period t from 
working in job j ~ { l ,  2). His beliefs about the job are characterized by (ytj, 6,.), which 
are updated over time according to Bayes' formula: 

7, In independent work, Manski (1993) develops a class of discrete-choice models, nested in the framework 
laid out by Hotz and Miller (1993), and applicable to situations where the utility an agent would have received 
from actions not chosen does not depend on unobservables. In particular, Manski avoids the censoring problem 
that optimizing behaviour typically induces when unobservables are present, by not including the R,(p(H,), H,) 
terms in (2.12), and, thus, in (2.13). 
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where 0/2 is the variance of the noise about the unknown job-specific match quality. In 
this setting, the vector (y,, ,y12, 6,, ,  St2) is a sufficient statistic for H,, u$ reduces to Plyv 
and is a normally distributed random variable with mean 0 and variance 
~"(8;+u/2). It follows that v(H, )=q(p(H,), H,) is the real-valued function: 

and the dynamic selection correction term is : 

where 6; (u: + O; + 6;6;), +(. ) is the standard normal density function, and @-I(. ) is 
the inverse of the standard normal cumulative distribution function, evaluated at any 
p ~ ( 0 ,  1). In  this model, the potential for changing jobs declines over time but it never 
disappears entirely. Therefore, neither of the jobs represents a terminal state. 

A second example of a dynamic, discrete-choice model which does not possess the 
terminal state property is the model of welfare and labour force participation in Sanders 
(1993). In this model, a woman chooses whether to work in the labour force and whether 
to accept benefits from a public welfare programme in periods t~ { l ,2 ,  . . . ,T). Let D,, = 
1 if the woman works in the labour force in period t and DtI =0 otherwise; also, let DI2 = 
1 if she accepts welfare benefits (valued at W) and Df2=0, otherwise. That is, in terms of 
the notation used in our general framework, a woman's period t choice vector, 
d, =(d,,, . . . ,dt4)', where : 

If the woman participates in the work force, she increases her current and future income 
prospects (the latter through a "learning-by-doing" human capital production process), 
but her current income is taxed at a (proportional) rate z if she accepts welfare. We denote 
the woman's net wage earnings in period t, by D,I(1-zD,2)[ ~ [ r ~ byS Df-S,I], where y, 
measures the return to current earnings from working s periods ago. It follows that the 
vector dtP2,. . . ,do) is a sufficient statistic for H,. In our simplified version of 
Sanders' model, the woman's per period utility for each of alternative choices is: 

where a ,  denotes the amount by which working lowers current utility (due to the loss of 
leisure time), a 2  is the amount by it is lowered if she accepts welfare benefits (due to the 
effects of stigma) and represents a choice-specific unobservable utility component which 
is assumed to be independently distributed over choices and time periods according to a 
Type I Extreme Value distribution with location parameter of 0. The woman's optimization 
problem is to maximize the expected value of the sum of future period payoffs of the form 
in (2.20) by sequentially choosing d, over her T-period lifetime. Given the distribution of 
the E,~)s, it follows that: 
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for j e  { I ,  2,3}, where J = 4  and y is Euler's constant ( ~ 0 . 5 7 7 ) .  Because of the recurring 
option of working in the labour force and the human capital accumulation process in this 
model, there are no terminal states. Sanders estimates this model using the CCS estimator 
developed below. 

These two examples, plus Rust's (1987) renewal model considered in Section 5, rep- 
resent models in the literature which lack the terminal state property Hotz and Miller 
(1993) exploited in their empirical study of contraceptive choices over the life cycle. This 
paper shows how their inversion theorem can be exploited in models which lack terminal 
states. 

3. THE CCS ESTIMATOR 

We now define the conditional choice simulation (CCS) estimator of the structural param- 
eters associated with models of the class described in the previous section and characterize 
its asymptotic properties. Consider a cross-section of N agents (of different ages) drawn 
from a population in (calendar) period t whose behaviour is characterized by such a 
model. Adding an additional subscript to denote observations in the'sample, let H,,, d,,, 
and b,,, respectively, denote the history, choice, and realized outcome for the n-th agent 
in the sample in period t. Let A,, denote the age of the n-th agent of period t and assume 
that all agents have a finite life of length T.We also introduce a Q x 1 vector of parameters, 
denoted by 0 ~ 0 ,  which characterizes agents' preferences and which are the object of 
estimation. 

The set of assumptions used to establish the large sample properties of the CCS 
estimator is as follows: 

Assumption 1. Boand B are finite sets with K and L elements, respectively. Since 
there are KL"' feasible histories leading up to period s, summing over s e  (1, . . . , T), it 
follows that M= K ( L ~ -  l)/(L- 1). Accordingly, let yo =(PA, FA)', a M(JK- 1) x 1 vector, 
denote the true values of the conditional choice and transition probabilities associated 
with the feasible histories. 

Assumption 2. The probability distribution function for E,, may depend on 00, where 
G(E,, I H,,, 00) =WE,, IHn,). Similarly, u*(H,, ,001 =u*(H,,) and U(p(Hnt), H,,, yo, 00) = 
U(p(Hnl), Hnt). Both dG(&,,I HI ,  0) and u*(H1, 0) are differentiable in 0. 

Assumption 3. The Q x  1 vector, 00, belongs to the interior of a closed compact 
set 0 .  

Assumption 4. The population lives in a stationary environment. Consequently, the 
distribution functions generating H,, and E,, are invariant over calendar times 
te{ l ,  2, . . .}. 

Assumption 5. The data consists of the finite sequence {H,, ,d,,}~=, sampled indepen- 
dently over the population (random sample).* 

8. Although the estimator is defined for a single cross-section (that is, one decision per agent coupled with 
his outcome history), it also applies to a panel (subject to the assumptions listed in the text). Since there are no 
aggregate shocks or unobserved state variables than carry over more than one period, all unobserved heterogen- 
eity is specific to each person-calendar time pair, (n, t). Consequently, a panel of N people over T' time periods 
is no more than a T' sequence of cross-sections, and, thus, has the same finite distributional properties as would 
a single cross-section sample of size N'T'. As such, the observational unit in a panel data set is the coordinate 
pair (n, t) and not the n-th agent. 
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The finiteness restriction on the state variables in Assumption 1 is used to apply results 
from Pakes and Pollard (1989) on the asymptotic properties of estimators using simulation 
methods to our context. Assumption 2 allows for the dependence of the probability distri- 
butions and the per period payoffs on 80 and, along with Assumption 3, provides regularity 
conditions on the functions and parameter space needed to establish consistency and 
asymptotic properties. Taken together, Assumptions 4 and 5 rule out the existence of 
unobserved state variables and decisions, the possibility of common or aggregate variation 
over (calendar) time, the existence of cohort differences across agents, and the possibility 
of serially correlated unobservables. These assumptions enable us to (synthetically) form 
cohorts from cross-sectional data on agents of different ages which we then use to form 
estimates of future choice and transition probabilities. 

To estimate go, we proceed in two stages. The first stage recursively simulates the 
future paths associated with taking each available action k~ J ,  using consistent estimates 
of the conditional choice probabilities in Poand transition probabilities in Fobased on 
the relative frequencies of choices and outcome transitions observed in the data. We then 
form the expected discounted utilities associated with these simulated paths, as functions 
of 8, in order to estimate the conditional valuation functions of the actions taken in period 
t .  In the second stage, we estimate by minimizing a function of the orthogonality 
conditions associated with condition (2.9), substituting the simulated values for v,, . 

Consider the first stage. For each agent n, we simulate future paths associated 
with having chosen each of the actions j e J  in period t .  Suppose dnIk= 1. Given this 
choice, we first generate b,, by partitioning the unit interval into L segments of length 
F~(~)((H,,,bo)) I nt),I= 1, . . . ,L, where F~(~'((H,,, b(l)) I H,,) is an estimate of 
Fk((Hnt, b"') I H,,), the probability of realizing b'", given choice k and history, H,,. 
To estimate these transition probabilities, one can use cell estimators of the following 
form : 

and where 1 {.} denotes the indicator function which equals 1 if the statement inside the 
parenthesis is true and 0 otherwise. Then the hypothetical outcome associated with choos- 
ing action k in period t, b;FN)~&?,is found by drawing a random variate, q;F1', from the 
(0, 1) uniform distribution and defining bLFN) according to: 

Conditional on history H,$+")=(HnI, bLFN)), we next simulate the choice in period t+ 1 
(when the n-th agent would be age An, + 1). To do so, we make use of estimates of the 
conditional choice probabilities, p(~Ar;?]). Again, consider using a cell estimator defined 
as follows: 
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Partitioning the unit interval into Jsegments of lengthPjN)(H;,$,")), j=(1, . . . ,J- 11, the 
hypothetical choice, d,$,"], is simulated by drawing a second random variable, qi:;?l, from 
the (0, 1) uniform distribution and setting 

Given d,$,"), a t +  1 outcome, b::;?], is generated by taking another random draw, q::;y1, 
from the (0 , l )  uniform distribution, using cell estimates for 
F~(~)((H,,,b"))1 H,,), 1= {I ,  . . . ,L) associated with that choice, and calculating 
(3.2). Then the hypothetical choice vector d,$,"j is simulated for period t+2. Continu- 
ing in this manner, we successively simulate outcomes and choices for each period 
through t+T-A,,, using the two sequences of (random variates, 

'k 1 ){q!$l), . . . ,qn,i+T-A,,- I )  and {q!i:;?l, . . . , q!i:;TT- A,,,). This process generates the 
sequence of histories, {H:,?,"), . . . ,H~,$,"&-~~,-~),associated with choosing k in period t. 
The above strategy for simulating such histories is repeated for each of the remaining 
possible actions j ~ { l , .  . . ,J- 1) which might be taken by the n-th agent in period t. 

From these sequences we assign values to the lifetime utility differential between each 
action k ~ { l ,  . . . ,J- 1) and the base action J ,  for any value of %E@ from the simulated 
H:,:~' histories. Writing ry'N' for the cell estimates of the conditional choice and transition 
probabilities obtained from'(3.1) and (3.3), we now define vk(xn, v(N),9), the simulated 
lifetime differential associated with taking action k versus J in period t, as: 

where X,EX denotes a vector associated with person n at date t, whose components are 
his age A,,, his history at t, H,, (as recorded in the data), and the individual 

(k, 1 )specific realizations of the random variables { . . . ,n , , + T A , l )  and 
'k 2) (k 2){qn,i+l,.. . , qn,;+T-A,,) that determine future hypothetical choices and outcomes 

for each action k~ I, . . . ,J he might have taken in period t.9 In this equation, 
U(~'~'(H::~'), 8) denotes the (simulated) expected utility person n would receive 
in period s by choosing action i ~ { l ,  . . . ,J )  if he had accumulated history, H::~', and 
the choice probabilities associated with that history were p'N)(~,!d.N'). 

Define for each EN, the (J -  1) x 1 vector of these differentials as: 

While the J- 1 utility differentials vk(xn, VI(N', 9) vary with 9, the future paths, as deter- 
mined by the simulated outcomes and choices, only vary as the sample changes. As we 
mentioned in the Introduction, this implies the simulated paths are computed only once 
for a given sample and are not simultaneously determined with the CCS estimator for %,, . 

9. It is convenient to define x, as a vector of the same length for all observations. To do so, let .r,,be 
represented as a [1+ M +  J2TI-dimensional vector equal to (A,,, kl, . . . . qbJ)r, where: (i) h, is a vector of 
length M,  the number of possible realizations of H, in which that element indexing the realization H,,, being 
equal to 1 and all the other elements set equal to 0 and (ii) q,,k is a vector of length 2T, whose first elements 

(k.1) I},  the next A,,, elements are equal to 0, the next (T- A,,,)elements(T- A,,) elements are {q$.", . . . , q,,.,+r - A  .,. 
are {qi!;?l, . .. , fljf;?)T-A,r-l},and the remaining A,, elements are set equal to 0. 
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Having simulated the differences in conditional valuation functions for the sample, 
we turn to the estimation of 80, the second stage of our estimation strategy. Let z,, denote 
an R x 1 vector of instruments and define the following (vector) function: 

where H'" denotes the history associated with the choice p'", i =  1,.  . . ,M. The com- 
ponenents of z,, must be (or converge to) random variables which are orthogonal to the 
difference between q(p(", H,,, 8) and v(x,, yr, 8); for example, the elements of H,, meet 
such a requirement. For purposes of identification, we make one further assumption, 
namely : 

Assumption 6. e0is the unique solution to E[f(x,, yo ,  8)] =0. 

The CCS estimator, denoted o ' ~ ) ,  minimizes a quadratic function in the sample analogues 
of (3.7) evaluated at I,u'~'. On average, this estimator sets the simulated utility paths close 
to the corresponding functions, q(piN)(~n,) ,  H,,, 8), given in (2.9), where the latter are 
evaluated at estimates of p , ( ~ , , ) . ' ~  More formally, let WN denote a (J- 1)R-dimensional 
square weighting matrix which converges to a constant matrix, W. Then 8 ' N ) ~ ~  
minimizes: 

Establishing the consistency and asymptotic distribution of o ' ~ )is complicated by 
the use of simulators for estimating the conditional valuation functions and the fact that 
these simulators are based on estimated values of yo .  The complication arises because, as 
N increases, changes in I+Y'~' 8), to change in cause the simulated differentials, v(x,, I,u(~', 
discontinuous ways. To deal with these jumps, we exploit the results on the asymptotic 
properties of simulation estimators in Pakes and Pollard (1989). The proofs are found in 
the Appendix, where we use the estimators of Foand Po given in (3.1) and (3.3), respec- 
tively, to estimate these incidental parameters. More precisely, the Appendix proves the 
following proposition for the CCS estimator: 

Proposition 1. 8'N) converges in probability to Oo and N 1'2(6(N)-Oo) converges in 
distribution to a normal random variable with mean 0 and covariance matrix 

where f ,SEf(x, ,yo, 8), TI I is the R(J- 1) x Q matrix, 

rI2is the R(J- 1 )  x M(JK- 1) matrix, 

and 0 is the M(JK- 1) dimensional covariance matrix of w ' ~ 'which is deJined in the 
Appendix. 

10. The form of this estimator represents a generalization of the Berkson-Theil estimator for estimating 
a logistic regression model with discrete regressors. 
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As can be seen in (3.9), there are two components to the covariance matrix of o ' ~ ' .  
The first component, ( r ; ,  w r,,)-IF; WfE(fn fA) W r ,  , ( r l  W r ,  , ) - I ,  arises from simulat- 
ing the conditional valuation function rather evaluating all of the possible future choice 
probabilities which are feasible given H .  The second component, 
( r i l  ~ ~ , , ) - ' r ~ ~ R ~ ~ ~ ( r ~ ~  w r l 1 ) - ' ,  is due to sampling error, which is transmitted to the 
covariance of 19'~) via the preliminary estimation of yo ,  the conditional choice and transi- 
tion probabilities. Consistent estimates of the terms in this covariance matrix, namely 
r z ,  E ( f ,fA), and R, can be formed using their corresponding sample analogues, evaluated 
at ( Y ' ~ ' ,  o ' ~ ) ) .  In the case of r 1 2 ,  we perturb y around Y ' ~ ) ,  simulate the valuation 
functions at the perturbed values and then calculate the changes in the estimated param- 
eters, for each observation neN,  in order to form a consistent estimate. 

The precision of this estimator can be tightened by conducting more than one (set 
of) simulation(s). In the first stage, suppose we now independently simulate Sfuture paths 
for each choice je J (starting at period t ) ,  rather than constructing just one simulated path. 
Then, following McFadden (1989), it is straightforward to show that the only change in 
the asymptotic covariance matrix would be to replace ECf, fA) in (3.,9) with S-'EC~, fA). 
(For example, the first component of the covariance matrix falls to one half of its value 
when Sis doubled.) Indeed, as Sgoes to co (which is equivalent to calculating the expected 
utility of the remaining lifetime), the covariance matrix of o ' ~ 'converges to 
(I?!, W T ~ I ) - ~ T ~ ~ R T ~ ~ ( T ~ ~w r l l ) - ' ,  the second component in (3.9), which is the covariance 
matrix for the CCP estimator in Hotz and Miller (1993). 

Finally, we note that several variations on the proposed estimator will also yield 
consistent (and asymptotically normal) estimates of 80. For example, in forming the q ( . )  
functions, one could use any number of consistent estimators of Foand Powhen forming 
(3.7), including the (smooth) simulators proposed by McFadden (1989) for discrete-choice 
models. Below, we report on results for several alternatives in our Monte Carlo study. In 
addition, alternative ways of estimating vk(Hnt, y o ,  QO) can be employed. For example, 
one could use either: 

J =zJ I d:;F[uj*(~::~, 8)  +R,(~~~(H,$") ,H::", 8)] 

in place of U(~("(H,$~'), H::", 8), in (3.5), where d,'iN, j= 1, . . . ,J are the elements of 
d;'" and ~ f ~ y ( 8 )  I ,8). Since is a random draw from the probability distribution, G(E~H,+ 
only one of the elements in d:;" is equal to 1 and the remaining are zeros, using either 
of the above expressions will generally require less computation than is involved in forming 
the expression for u(~'"(H:','."), H::", 8) in (3.5). This will be especially true when the 
set of actions (J)is large. The proof strategy for consistency and asymptotic normality of 
8'" for these variants on the above estimator follows along similar lines to the one in the 
Appendix. 

4. THE CCS ESTIMATOR IN INFINITE-HORIZON MODELS 

With minimal work, the CCS estimator and the asymptotic properties just established can 
be extended to an important class of Markov models that have an infinite horizon. To 
demonstrate this, we make some notational changes, establish that the inversion theorem 
of Hotz and Miller (1993) still holds, define the CCS estimator in this new context, and 
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extend Proposition 1 of this paper to cover this case. The latter is contained in Proposition 
2 which concludes this section. 

Much of the notation in the previous two sections remains intact. Rather than defining 
H, as the actual history of outcomes as of the beginning of period t (along with the agent's 
initial conditions), we now interpret HI as a sufficient statistic for that history and, in this 
way, maintain the assumption that the cardinality of J? is finite. Therefore, as before, 
(H,, E,) is the set of state variables upon which the agent's decisions are based. Similarly, 
the probability distribution functions, G ( E ~  IH,,) and F(Hn,I+I H,,) retain their previous 
meaning. However, rather than objective (2.3), we now assume that a typical agent 
maximizes : 

where PE(O, 1) is a constant discount factor. Assumptions 1 through 6, given in Section 
3, remain unaltered. 

The main difference between the CCS estimator in the infinite- versus finite-horizon 
case is the end point for the simulations. In the finite-horizon case, the sequences of actions 
are simulated up to the last period of each agent's life (T) and these sequences are used to 
impute the lifetime utility realizations that, in expectation, equal the conditional valuation 
functions when evaluated at the true parameter values. In practice, it is impossible to 
simulate the actions of an infinitely-lived agent. We provide two ways of circumventing 
this issue. As we demonstrate below, which alternative is chosen will typically depend on 
the computational aspects of the application at hand. 

Analogous to the standard approach for solving infinite-horizon models of dynamic 
programming, we could approximate the utility achieved over an infinite lifetime with a 
truncated finite-horizon counterpart. Actions and outcomes are simulated for a finite 
number of time periods, denoted by T*. To implement this version of the CCS estimator, 
we merely replace (329,  which is an expression for the simulated difference of the condi- 
tional valuation functions, with: 

The main drawback of this particular CCS estimator is that when P is close to 1, many 
periods must be included to ensure the properties of the estimator are not unduly affected 
by the finite-horizon approximation. Whereas ML also suffers from this deficiency, the 
alternative we now propose does not. 

Instead of starting with any action k~ (1, . . . ,J) and simulating outcomes and future 
choices until the expected value of remaining lifetime utility (discounted back to the 
present) is negligible, suppose we simulate only until the current history is revisited. Let 
tkn(N)> t denote the period in which the current state is first revisited and let Tk,(N) be 
the first passage time back to it. Thus, the current state is revisited again in period 
[t+ Tk,(N)]. The simulated sequence of realizations leading from period t to period 
[t+ Tkn(N)] is then repeated, ad infinitum, as a deterministic cycle with a periodicity of 
Tk,(N) periods. Hence, the realized value of lifetime utility is just the realized value of 
utility received in the next Tk,(N) periods, scaled up by the factor (1  -/3Tk11(N')-'. By 
construction, the expectation of this stream of realized utilities equals the corresponding 
conditional valuation function, as in the finite-horizon model we analyzed in the previous 
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sections. In this case, (3.5) becomes: 
p')6) (1 pTi,(N)=~ 4 . ( ~ )-

V k ( Xn, s = t + l9 

x [u(~(~)(H:,".~)), H:,".~), 6) - H;,".~), o)]. If.7U ( ~ ( ~ ) ( H ( ~ , ~ ) ) ,  (4.3) 

Which version of the CCS estimator one wishes to apply depends on the specific 
nature of the application at hand. If the period length is quite short (which implies little 
discounting between adjacent periods), and there are only a few relevant features differen- 
tiating histories (meaning that M is quite small), the second version of the CCS estimator 
might be. more practical. In addition, one could combine the two strategies for simulating 
lifetime utilities, by adopting the second approach for histories that occur relatively fre- 
quently and the first approach for other histories. 

We summarize the above results for the estimation of infinite-horizon models in the 
following proposition : 

Proposition 2. Suppose that agents' preferences are characterized by (4.1) instead of 
(2.6). Then the inversion result of Proposition 1 in Hotz and Miller (1993) still applies. In 
addition, by replacing (3.5) with (4.3), the properties of the CCS estimator summarized in 
Proposition 1 of this paper apply. 

5. A MONTE CARL0 STUDY 

This final section investigates the small-sample properties of our estimator by undertaking 
a Monte Carlo study of simulated data based on the model of engine replacement in Rust 
(1987).11 Because a full description of the model is given in Rust (1987), we confine ours 
to the essentials, concentrating on the econometric aspects. 

In each month t, the owner (manager) decides whether or not to replace a bus's 
engine so as to minimize the discounted costs of maintaining it; thus, J= 2. Let d,,, index 
the action of replacing the n-th bus engine in month t, where dnIl = 1 if it is replaced and 
0 otherwise and dnt2 = (1 -dntl). The discounted monthly cost associated with maintaining 
a given bus engine is assumed to depend on H,,, its accumulated mileage, in the following 
way : 

where P ~ ( 0 , l )  is the discount factor, 601 is a parameter indexing the (fixed) cost of 
replacing an engine and OO2 is a parameter indexing the variable cost per accumulated 
miles of operating a bus and E,,,., is a stochastic cost component assumed to be identically 
and independently distributed across (n, j, t) as Type I Extreme Value with location param- 
eter 0. The law of motion governing mileage accumulation is: 

where b,, is the (stochastic) mileage realized in month t. As in Rust (1987), we assume 
that b,, is an independent and identically distributed random variable with (fixed) 

11. A copy of our computer program, complete with Rust's bus replacement problem and a version of 
Sanders' welfare participation model, is available upon request from Professor Seth Sanders, The Heinz School, 
Carnegie Mellon University, Pittsburgh, PA 15213, USA. 
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discrete support. In particular, bn,~{O, 1,2) and, although technically inconsistent, we 
follow Rust in assuming that Hn, takes on one of a discrete set of values representing 
fixed-length mileage intervals, so that H,,E{~, 2 , .  . . ,901. The transition probability 
function governing b,, is of the form, ~(b'") ,  i.e., the probability of realizations does 
not depend upon accumulated mileage. The bus manager sequentially chooses 
{ d n s l ) ~to maximize : 

subject to (5.3) and the transition probability for Hns. Denote by d$ the optimal decision 
in month t which one can easily show depends only on (H,,, E,,I, .cn12). 

Adopting the CCS estimation strategy developed in Section 3, we simulate paths 
for the two choices for each observation in a random sample buses representing 
realizations of Hn, and d,ql.Given the distribution of the &,is, it follows that the 
expressions for qj(P(N)(~nr),  Hn,,O),j= 1,2,,are given in (2.21) Hnt) and R,(~$~'(H,,,), 
and (2.22), and that the representation in (2.13) for montly costs, evaluated at some 
OEO, reduces to: 

(N) H(Z,N)+ 1 p ( , ))[Q2H,!?~'+y-ln (1 -p!N'(~,!~,N'))]), (5.5) 

and the simulated difference in valuation functions in (3.5) specializes to 

VI(X,, FO, P N ) ,  e) = X ~ O + X ~ ~ ~ I  +xn2e2,  
where 

T* =50, and P =0.9. Given this restriction, (5.6) is linear in 8, the second-stage estimation 
problem can be conducted using (weighted) least squares on the 90 cells characterizing 
the observed histories, Hn, . More formally, let : 

yi=N - I  CN 1 {Hnl = i) [ln (pjN'(Hnt = i)/[l -p!N)(~nr  = i)]) -x,~],
n = l  

for each history i ~ { 1 ,  . . . ,901. Then, a CCS estimator for e0is: 
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where K ! ~ )is a weighting factor which converges in probability to some positive constant 
k(')for each i ~ ( 1 , .. . ,90).12 

As noted by a referee, there are several severe limitations to this Monte Carlo study. 
First, in order to compare the small-sample properties of the CCS estimator with the ML 
estimator, we have picked a specification which could be estimated easily for a large 
number of different samples using either estimation method. Such a criteria ruled out more 
complicated models which could only be handled with the CCS estimator. Second, as in 
Rust (1987), we chose to set P to a number instead of estimating it. This clearly limits 
the generality of our investigation, since the discount factor plays such a crucial role in 
evaluating the future payoffs of current actions.13 

Creating the simulated data used in our Monte Carlo study involved four steps.14 
First, the true incremental mileage probabilities and the true probabilities of bus engine 
replacement conditional on bus mileage were obtained for each of the sets of underlying 
structural parameters we investigated. Next, the steady-state distribution of bus mileages 
was generated for each set of parameters in order to create a set of probabilities for bus 
mileages at the start of a bus-month. These sets of probabilities weresthen combined with 
a random number generator to create samples of bus-months of a selected size. Finally, 
the simulated data in each sample was aggregated by mileage cell to create a data set 
containing the cell count and the non-parametric engine replacement and mileage incre- 
ment probabilities for each cell in each sample for each set of underlying parameters. 

The sets of parameters used to generate these samples were as follows. The true 
transition probabilities for mileage increments were fixed at 0.349, 0.639 and 0.012 for 
b,, =0, 1,2, respectively. The bus engine replacement probabilities are obtained by applying 
Rust's fixed point algorithm to each of the two sets of structural parameters. The first set 
of structural parameters had OO1=2.0 and OO2=O.O9, while the second has 00, =8.0 and 
Oo2=0.09. We refer to these as the "low" and "high" replacement cost regimes, respec- 
tively, indexing the differences in the fixed costs of replacing an engine across the two sets. 

12. In terms of the notation and results developed in Section 3, the instruments, z!:', and sample moments, 
fn(xn, ly, 8), for the above problem can be expressed as: 

respectively. It is straightforward to show that the Proposition in Section 3 applies to (5.8) where the terms in 
the covariance matrix given in (3.9) are: 

~ I Z =aE(f")/aly. 
13. There is nothing inherent in our method which precludes estimation of p. In fact, Hotz and Miller 

(1993) do estimate this parameter for a model of contraceptive choice, using the related CCP estimator. In the 
present context, our primary reason for not estimating p was the intractability it presented for implementing 
the ML estimator. Because we wanted to compare estimates produced by the latter method with those obtained 
with our CCS estimator, we resorted to fixing p. 

14. We used the program provided to us by John Rust to generate these data sets, as well as to produce 
the ML estimates of 00 presented below. 

http:OO2=O.O9
http:Oo2=0.09
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The fixed-point algorithm provides values of the conditional valuation function corre- 
sponding to each set of parameters; these are then employed to obtain the true conditional 
probabilities. 

Before presenting our estimation results, it is useful to briefly describe the character- 
istics of our simulated data sets. There are two noticeable differences across the low and 
high replacement cost regimes. The first concerns the replacement probabilities. In the low 
replacement cost regime, the first mileage category has a replacement probability of almost 
12%, with the value rising to 30% around the fortieth cell and to 50% in the last cell. In 
contrast, in the high replacement cost regime, replacement probabilities begin at around 
0.0003, and do not reach 1% until the fortieth mileage category. They peak at around 
14% in the last cell. The second difference across the two regimes is in the steady-state 
distribution of buses over the (accumulated) mileage categories. In the high replacement 
cost regime, which corresponds roughly to the estimated values in Rust's paper, there are 
buses in every accumulated mileage category. While there are relatively more buses in the 
lower mileage categories, the distribution of bus-months is fairly even across the categories, 
with the number of bus-months per category dropping off fairly gently as one moves to 
higher mileage categories. However, in the low replacement cost regime, the steady-state 
distribution of bus-months by mileage is very uneven, with few (or no) buses observed 
for mileage categories beyond the twentieth and a steep decline in numbers per cell when 
going from the second on. While in finite samples, an increase in sample size does increase 
the counts of buses in the sparsely populated mileage categories for the low replacement 
cost regime, the rate of increase is trivial; in contrast, as sample size increases, the counts 
per category increase proportionately in the high replacement cost regime. As will be seen 
below, these two differences (in the replacement rates in certain mileage categories and 
the distribution of observed bus-months across the categories) across the two regimes 
play an important role in the success of particular methods used to implement the CCS 
estimator. 

The results of our Monte Carlo investigation for estimating O0 are reported in Tables 
1 through 4. Tables 1 and 2 present results for the low replacement cost specification using 
samples of 10,000 and 50,000 bus-months, respectively, while Tables 3 and 4 present the 
corresponding results for the high replacement cost case. For each estimator, we present 
the mean parameter estimates (averaged over 100 samples), the estimated asymptotic 
standard errors (evaluated with data from a single sample), and the corresponding empir- 
ical standard errors (using the sample standard deviation of the estimated parameters). 
All of the CCS estimates used a GLS-based weighting procedure in which: 

=N [ ~ ~ ~ ' ( H =  for i =  1, . . . ,90, (5.9)i)(l - p I N ' ( ~ =  i))]'12, 

where GI(.) is the density function for E and x , ~  =N - '  xk I 1{H, ,= i)xno. 
For the first stage of the CCS estimator, we initially used cell estimators of the form 

given in (3.3) and (3.1), respectively, to estimate the replacement and mileage increment 
probabilities. We encountered mileage categories with no bus-months and categories in 
which there were no replacements when forming the estimates of some of the replacement 
probabilities. Such categories were not used in forming the second-stage estimator of e0 
in (5.8), since the corresponding log-odds ratio is not defined when ply)= 0 or is, itself, 
undefined. This variant of the CCS estimator is labelled "CCS (Using Replacement Freq. 
for pi's)" in the tables. 
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TABLE 1 


Monte Carlo results for low replacement cost spec~jication: BoI =2.0 and Oo2 =0.09 

samples of size 10,000 bus-months* 


Estimator Parameter Mean estimate Standard error Emp. stand. dev. 

Maximum likelihood 8I 2.015 0.048 0,048 
02 0.091 0.019 0.020 

CCS (Using replacement freq. for pi's) 0 I 1.986 0.052 0,049 
02 0.071 0.020 0.021 

CCS (Using true p,'s to form y,'s) 0I 

e2 
1.958 
0.057 

0.017 
0.008 

0.013 
0.009 

CCS (Using Cox correction) 

CCS (Using kernel for pi's; 6 =0,025) 

0 I 

e2 
e I 

1.784 
0.019 
1.795 

1.685 
0.145 
0.037 

0.778 
0.099 
0.040 

CCS (Using kernel for pi's; 5 =0.01) 

CCS (Using kernel for p,'s; 5 =0.005) 

CCS (Using kernel for p,'s; 6 =0.0025) 

02 
8I 

e2 
0I 

e2 
01
e2 

0.022 
1.925 
0.046 
1.960 
0.055 
1.972 
0.061 

0,013 
0.043 
0.015 
0.046 
0.016 
0.048, 
0,018 

0.021 
0.046 
0.020 
0.049 
0.020 
0.049 
0.021 

CCS (Using kernel for pi's; <=0.001) 8I 1,986 0.052 0.049 
82 0.071 0.020 0.021 

CCS (Drop sparse mileage categories) e I 2.000 0.053 0,050 
02 0.080 0.022 0.022 

* Results are based on 100 replications of each specification. The estimated (asymptotic) standard errors were 
computed from the first sample only. All Conditional Choice Simulation (CCS) estimators used the GLS weight- 
ing factor described in text. 

Consider the results for the low replacement cost case given in Tables 1 and 2. For 
either sample size, the means of the maximum likelihood (ML) estimates are very close 
to the true parameter values and are estimated precisely. With respect to the CCS estimator 
using the cell frequencies to estimate the replacement probabilities, the average estimates 
for the replacement cost parameter, 8,,are reasonably close to the true value of 2.0. But 
the average estimates of the monthly maintenance cost parameter, 02, underestimate the 
true value of 0.09 by 21 and 9%, respectively, for the 10,000 and 50,000 bus-month samples. 
Finally, note that the average of the CCS estimates is within one standard deviation of 
the true value for either parameter and that the estimated standard errors are approxi- 
mately the same as for the ML estimator, indicating little loss in (relative) efficiency from 
using this variant of the CCS estimator. 

Turning to ML and initial CCS estimates for the high replacement cost regime 
presented in Tables 3 and 4, while the ML estimates are again close to their true values, 
both of the parameters are underestimated with the CCS estimator which uses the sample 
frequencies to estimate the p,i's. In particular, the 8, parameter is underestimated by 19 
and 5%, respectively, for the 10,000 and 50,000 samples sizes while e2is underestimated 
by 27 and 8%, respectively, for the corresponding sample sizes. Moreover, using either 
the estimated asymptotic standard errors or the empirical standard deviations, the average 
parameter estimates do not fall within two standard deviations of the corresponding true 
values; this is even true in the larger, 50,000 sample size case. 

The observed bias associated with the sample frequency variant of the CCS estimator, 
especially in the high replacement cost regime, may be due to the omission from (5.8) of 
mileage categories in which there were no observed replacements or empty cells. This 
problem is not unique to our context. As has been noted in the literature on the Berkson- 
Theil Minimum ,y2 estimator applied to logit or probit models, zero cell probabilities, 
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TABLE 2 

Monte Carlo results for low replacement cost specification: 001 =2.0 and 002=0.09 
samples of size 50,000 bus-montlts* 

Estimator Parameter Mean estimate Standard error Emp. stand. dev. 

Maximum likelihood 8I 

e7 
2.008 
0.09I 

0.021 
0.008 

0.022 
0.010 

CCS (Using replacement freq. for p,'s) 0I 

e2 
1,996 
0.082 

0,023 
0.009 

0.023 
0.010 

CCS (Using true pi's to form yls) 0I 0.984 0.008 0.007 
O2 0.078 0.004 0.004 

CCS (Using Cox correction) 8I 1.880 4.381 

CCS (Using kernel for pi's; 5=0.025) 
02 
6'1 

0.025 
1.819 

0.158 
0.018 

02 0.045 0.008 
CCS (Using kernel for p,'s; 5=0.01) 0, 

CCS 

CCS 

(Using kernel for pi's; 5=0.005) 

(Using kernel for pi's; 5=0.0025) 

82 
I

e2 
81 
6'2 

CCS (Using kernel for pi's; 5=O.OOl) 8I

e2 
CCS (Drop sparse mileage categories) 8I

e2 
* ~ e s u l t s a r e  based on 100 replications of each specification. The estimated (asymptotic) standard errors were 
computed from the first sample only. All Conditional Choice Simulation (CCS) estimators used the GLS weight- 
ing factor described in text. 

TABLE 3 

Monte Carlo results for kiglt replacement cost spec~jication : Bol =8.0 and Oo2 =0.09 
samples of size 10,000 bus-months* 

Estimator Parameter Mean estimate Standard error Emp. stand. dev. 

Maximum likelihood 8I 8.041 0.362 0,429 
e, 0.090 0.007 0.009 

CCS (Using replacement freq. for pis) 8I 6,513 0.561 0,268
e2 0.066 0.01 1 0.006 

CCS (Using true pi's to form y,'s) 	 8I 7.966 0.025 0.024 
02 0.087 0.00 1 0.001 

CCS (Using Cox correction) 8I 6.300 0.254 0.328 
e2 0.064 0.007 0.008 

CCS (Using kernel for p,'s; 5=0.025) 8I 7.447 0.280 0.335 
e2 0.077 0.006 0.007 

CCS (Using kernel for p,'s; 5=0.01) 8, 7.498 0.344 0.376 
e2 0.077 0.006 0.008 

CCS (Using kernel for p,'s; 5=0.005) 8I 7.336 0.406 0.370 
e2 0.075 0.008 0.008 

CCS (Using kernel for p,'s; 5=0.0025) 8I 7.041 0.475 0.330 
e2 0.071 0.009 0.008 

CCS (Using kernel for p,'s; <=0.001) 	 8I 6.512 0.560 0.286 
e2 0.066 0.01 I 0.006 

* Results are based on 100 replications of each specification. The estimated (asymptotic) standard errors were 
computed from the first sample only. All Conditional Choice Simulation (CCS) estimators used the GLS weight- 
ing factor described in text. 

empty cells, or, more generally, poorly estimated replacement probabilities can bias the 
estimates of the log-odds ratios in finite samples.I5 To investigate the potential impact of 
these sources of bias, we calculated the CCS estimator using the true replacement probabil- 
ities to form the yi's in (5.7), continuing to use the estimates of the replacement probabilities 

15. See Cox (1970), for example, on this point. 
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TABLE 4 


Monte Carlo results for high replacement cost specification : Bol =8.0 and OO2=0.09 

samples of size 50,000 bus-nzonths* 


Estimator Parameter Mean estimate Standard error Emp. stand. dev. 

Maximum likelihood 0I 8.025 0.181 0.202 
92 0,090 0.004 0.004 

CCS (Using replacement freq. for p,'s) 91 7.582 0.31 1 0.183 
02 0.083 0.006 0.004 

CCS (Using true p,'s to form y,'s) 01 7.990 0.011 0.007 
92 0.089 0.0004 0.0002 

CCS (Using Cox correction) 0I 7.263 0.051 0.175 
92 0.073 0.002 0.005 

CCS (Using kernel for p,'s; 5=0.025) 9I 7.710 0.153 0.179 
02 0.085 0.003 0.004 

CCS (Using kernel for p,'s; 5=0.01) 8I 7.879 0.190 0.194 

CCS (Using kernel for p,'s; 5=0.005) 
02 
0I 

0.087 
7.866 

0,004 
0.223 

0.004 
0.195 

CCS (Using kernel for p,'s; 5=0,0025) 
02 
0I 

e2 
0.087 
7.783 
0.085 

0.004 
0.261 
0.005 

0.004 
0.185 
0.004 

CCS (Using kernel for pi's; 5=0,001) 9I 

e2 
7.582 
0.083 

0.311 
0.006 

0.183 
0.004 

* Results are based on 100 replications of each specification. The estimated (asymptotic) standard errors were 
computed from the first sample only. All Conditional Choice Simulation (CCS) estimators used the GLS weight- 
ing factor described in text. 

to form the xi's. The results of this exercise are labelled the "CCS (Using True p,,'s to 
Form yis)" in each of the four tables. In each case, the resulting estimates are close to 
the true parameter values, even for the high replacement cost case (see Tables 3 and 4).16 
Thus, it appears that poorly estimated replacement probabilities-as opposed to poorly 
simulated functions-are accounting for much of the downward bias in the CCS estimates 
when simple cell frequencies are used to estimate the replacement probabilities. 

In an attempt to reduce the bias in the CCS estimates of 0 0 , we examined several 
procedures for estimating the replacement probabilities used to form log-odds ratios associ- 
ated with the various mileage categories. Herein, we report on three. The first of these 
modifications is the standard correction for logistic models proposed by Cox (1970). This 
strategy involves adding an additional term to both the numerator and the denominator 
of the log-odds ratio. Mathematically, the definition is 

where p^liis the original cell estimate of the replacement probability and Niis the number 
of bus-months in mileage category i. It can be readily seen that as Niincreases, $Fox 
approaches the uncorrected dependent variable. This correction also allows for the inclu- 
sion of cells with an estimated replacement probability of zero, for which the log-odds 

16. The corresponding estimates in Tables 1 and 2 are actually slightly more biased than the sample 
frequency variant of the CCS estimator, but this appears to be due, in the true pi variant, to the inclusion of 
data on cells which had no observed replacements. 
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ratio would otherwise remain undefined. Examining the CCS estimates of using this 
correction in Tables 1 through 4, one finds that they are even more biased than the CCS 
estimates using sample frequencies. While the additional bias is slight in the high replace- 
ment cost case (see Tables 3 and 4), it is substantial in the low replacement cost case (see 
Tables 1 and 2). For the latter regime, el is underestimated by 11 and 6% for the 10,000 
and 50,000 sample sizes, respectively, while, for 82, the extent of under-estimation is 72 
and 29% for the two respective sample sizes. 

The second procedure we examined for estimating the replacement probabilities was 
use of a kernel estimator.I7 Put simply, each of the original cell estimates of the bus engine 
replacement probability was replaced by a weighted average of itself and the estimates 
from nearby cells. More precisely, the kernel estimator of p l i  was defined as follows: 

where 6 is the bandwidth and the kernel function, X ( . ) ,  we actually use is given by 

where +(.) is the standard normal density function. The log-odds ratios for each cell i 
were then calculated using this estimator of p l i .  This procedure implicitly relies on the 
model's implication that the true underlying replacement probability is a stable, continuous 
function of the bus mileage. Using larger bandwidths effectively increases the number of 
observations used to compute replacement probabilities in each cell. 

We present results for the CCS estimator using kernel estimators of the pi;s for 
several alternative bandwidths in each of the four tables. (They are labelled "CCS 
(Using Kernel for pl;s; <=a)" for the alternative values, a, of the bandwidth.) 
Examining the results for the high replacement cost regime, we find that the averages 
of the estimates for this variant of the CCS estimator are less biased (in absolute 
value) than when sample frequencies are used to estimate the p,;s. While all of the 
bandwidths but the smallest reduce the bias in estimating both and e2(in the latter 
case, the use of the kernel smoothed estimates in the first stage of estimation simply 
reproduce the CCS estimates which use sample frequencies), a bandwidth of < =0.01 
produces estimates which are closest, on average, to the true parameter values in the 
high replacement cost regime. In contrast, using kernel estimation to produce pl;s in 
the log-odds ratios produces estimates of 8,, which are biased downward to an even 
greater extent than those using sample frequencies in the low replacement cost case. 
The only exception to this is when a small bandwidth (<=0.001) is used, which again 
just reproduces the estimates using sample frequencies. 

The fact that the CCS estimator of which uses kernel methods to estimate thepl;s 
is more biased in the low replacement cost regime suggests that there may be advantages, 
in certain cases, to excluding those categories which have few bus-months when calculating 

17. We conjecture that using a flexible parametric form to extrapolate into sparse cells would yield similar 
results to the kernel smoothing procedure actually adopted. (The large sample properties are the same in both 
cases.) 
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(5.8). Recall from the preceding discussion that, unlike the high replacement cost specifi- 
cation, the bus-months tended to be concentrated in a small subset of the possible mileage 
categories in the low replacement cost regime. (In particular, we observed few or no 
bus-months in the twentieth through ninetieth mileage categories.) The kernel estimator 
constructs a weighted average of the replacement probabilities for these sparsely populated 
or unpopulated categories. But their use is likely to result in systematically biased estimates 
of the log odds ratios associated with these categories. This is so because the log-odds 
ratio is a concave function of the pl;s with the bias being greater the further the true p,;s 
are from 0.5. 

Because of the potential for this bias, we examined a third procedure for estimating 
the replacement probabilities used to form the log-odds ratios in which those mileage 
categories with zero or low cell counts were excluded when forming (5.8). (More specifi- 
cally, we excluded observations with high values of H, and attached zero probabilities to 
the occurrence of these events.) This procedure was only undertaken for the low replace- 
ment cost regime, since it is only in this case that sparse cells were encountered; sample 
replacement frequencies were used to estimate thepli's for the included categorie~.'~ Exam-
ining the entries labelled "CCS (Drop Sparse Mileage Categories)" in Tables 3 and 4, we 
find no bias for the average of the estimates of 8 ,  in either the 10,000 or 50,000 sample 
size cases and no bias in the estimates of O2 in the larger samples. We do not find that 
the average estimate of O2 is underestimated by 11% in the 10,000 sample size case, but 
this is substantially less than the bias found for this parameter using the other two variants 
of the CCS estimator. 

While necessarily tentative, given the restricted nature of the model considered, our 
Monte Carlo investigation suggests the following conclusions concerning the use of CCS 
estimators to estimate the structural parameters of dynamic, discrete-choice models. First, 
it appears that the potential for the greatest bias in the parameter estimates arises from 
using poorly estimated conditional choice probabilities to construct the q(.) functions. 
Bias resulting from the simulation of the conditional valuation functions appears to be 
much less important. 

Second, our results provide some practical guidance as to how to generate estimates 
of the conditional choice probabilities sufficiently reliable to avoid large biases. A poor 
estimate of the conditional choice probability for a given history results from the inter- 
action of the number of observations in the cell and the size of the true underlying choice 
probabilities. As the number of observations decreases and the true probabilities move 
away from 0.5, the estimates become more variable and the potential for bias in q(.) 
increases. When all of the histories have sufficient observations to produce reliable esti- 
mates of choice probabilities, cell estimates may be used. When all of the histories have 
roughly equal numbers of observations, but the true choice probabilities are suspected to 
be small (as evidenced by their infrequency in the data), then kernel smoothing appears 
to significantly improve the estimates of q(.) and, thereby, improve the estimates of 80 as 
we11.I9 This is precisely what occurred in the high replacement cost regime examined above. 

When the observations are distributed asymmetrically over the histories but the 
sample choice probabilities associated with the populated cells are neither extremely low 

18. In particular, we excluded all but the first 20 mileage categories. Thus, in the samples of size 10,000, 
we ignored 58 observations (all clustered between mileage categories 20 and 28) and, in the samples of size 
50,000, we ignored 309 observations. In the bigger sample, none of the buses achieved a mileage category of 
more than 42. 

19. When using kernel methods, empirically-based procedures, such as cross-validation techniques, could 
be used to aid in the selection of appropriate bandwidths. See Silverman (1986) for more on these techniques. 
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or equal to zero, the omission of those histories with low numbers of observations appears 
to improve the estimates of the q(.)'s, and thus of 80.20That deleting such histories can 
improve the estimates of was shown in the case of the low replacement cost regime 
considered above. Finally, if the histories are a discrete approximation to a continuous 
underlying variable, as they are in Rust's model, then the quality of the resulting estimates 
of the conditional choice probabilities should be one factor guiding the choice of how 
many discrete categories to use in the approximation. 

APPENDIX 

Proof of Proposition 1. To prove the consistency and asymptotic distribution of O'N', it is convenient 
to formulate both the estimators for yo=(Po, Fo) and Bo in terms of a set of orthogonality conditions. 
Define the M(JK- 1) x 1 vector, g(x,, y), which is used to form the cell estimators of the conditional choice 
probabilities, as: 

It follows that our simulation estimator of (yo,  Bo) is formed using the following [R(J- l )+M(JK- I] x 1 
vector of sample moments, 

where 

Finally, define the [Q+ M(JK- l)] x WR[(J- 1) +M(JK- I)] matrix AN as 

where I is the M(JK- 1) identity matrix and BN is the convergent Q x R(J- 1) matrix: 

Then ( w ' ~ ' ,  O(N)) are implicitly defined by the Q+M(JK- 1) equations: 

(Notice that this formulation exploits Newey's (1984) observation that sequential estimators may be expressed 
as the result of a joint estimation strategy in which a non-optimal weighting matrix is used.) 

To prove ( v ' ~ ) ,  O(N)) is consistent, we verify the three conditions in Corollary 3.2 of Pakes and 
Pollard (1989, p. 1039) as augmented by their Lemma 3.5 (on p. 1045). Condition (i) of their corollary is 
that: 

20. Note that the exclusion of histories for which there are few observations in the data in estimating Oo 
is obviously subject to the requirement that at least Q histories are included so that Bo can be identified. 
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where 1 1 .  11 is the Euclidean norm; it is satified by the definition (yCN', B ' ~ " ) .  Our Assumptions 1 through 
5 ensure O x  Y is compact and G(.) is continuous. These properties, in conjunction with our Assumption 
6 ,  imply that ( 1  1) G(y, 8)  11 >O for all ( y ,  8) such that ( 1  ( y ,  8) - (yo ,  80) 11 2 6, where 6 > 0 ,  which is Condition 
(ii) of Corollary 3.2 in Pakes and Pollard. Consistency of our estimator is established by verifying that (the 
uniform convergence) Condition (iii) of their Corollary 3.2 holds in our case. Note this condition is less 
stringent than requiring: 

We shall presently show the class of functions defined by: 

is Euclidean (in the sense that all its real-valued function components are).2' Then, by Lemma (2.8) of 
Pakes and Pollard (1989, p. 1033), (A.8) is satisfied. Therefore, our estimator, (yl'N", eCN"), is consistent. 

The large-sample distributional properties of (yIN", B ' ~ ' )  can be derived by checking that the Conditions 
(i)-(v) of Pakes and Pollard's Theorem 3.3 (p. 1040) are satisfied and by appealing to their Lemma 3.5 
(p. 1045). By the definition of ( v ' ~ " ,  B ' ~ " ) ,  Condition (i) is satisfied since 11 GN ( v I ' ~ " ,  8(N")I /  = O ~ ( N - " ~ ) .By 
our Assumption 2, U(H,,, yl, 8)  is differentiable in ( y ,  8);  hence v(x,,, y ,  8) is too. Therefore, G(yl, 8) is 
differentiable in (yl, 8), with a derivative matrix of full rank, which is their Condition (ii). By a Central 
Limit Theorem, such as 7.1.2 in Chung (1974, p. 200), ~ " ~ ~ ~ ( y l ~ ,  8,) converges in distribution to a normal 
random variable centred at 0 with covariance V defined as: 

where Q=E[g(x, yo)g(x, yo)']. (Note the blocks off the diagonal are 0 because the simulation errors are 
independent of differences between choices and their conditional expectations.) This is their Condition (iv). 
Condition (v) in Theorem 3.3 of Pakes and Pollard is simply our Assumption 3. 

This leaves only (the equi-continuity) Condition (iii) of their Theorem to verify. We will show that 
F defined in (A.9) is Euclidean and that the parameterization is g2continuous at (yo  00) in the probability 
space from which the sample is drawn. Then noting: 

5 I I N ' ' ~ [ G ~ w ,  00)- (A. 11) 8) -G(VI, e)l - N ' " [ G ~ ( ~ ~ ,  G(VO, ~0)11l, 

it follows from Lemma 2.17 in Pakes and Pollard (1989, p. 1037) that Condition (iii) is met. To verify 
that the components of h e 9  are Euclidean, we analyze g(x,,, y )  and f(.~,,, 8, y )  separately. With regard 
to g(x,, y),  it is formed from differences and products of (M+ I) mappings from .Y,, to R, namely d,,,, the 
constants p"", and the indicator functions, l{H,,= H""} for ie  {I, . . . ,M}. The class of functions generated 
by each of these component mappings by varying y through Y is Euclidean; hence, by Lemma 2.14 in 
Pakes and Pollard (1989, p. 1035), g(x,,, y )  is too. Turning now to f(.r,,, y ,  8), we first observe that neither 
z,,, nor {H,,=H"'} depend on the parameters (although this could be relaxed), so both are Euclidean in 
( y ,  8). Appealing to Example 2.9 of Pakes and Pollard (1989, p. 1033) and their Lemma 2.15 (p. 1035), 
it follows that q ( ~ z ,  1{H,,,= H "'pjN', H,,,, 8 )  ) is Euclidean also. To show that v(x,,,y ,  8) is Euclidean, 
we decompose it into a weighted linear combination of indicator functions like 
I{H"'=H,!$~", H ~ ) = H ~ ~ . ~ " ) ,  onwhere the weights depend the paremeters (y ,  8) only. In particular, for 
all ie{l,  . . . ,M),  we define Uik(y, 8) by the identitity Uh(y, 8 ) =  u(~ '~ ' (H" ' ) ,  H " ' , ~ ' ~ " ,  8)  for any choice 
keJ .  Recalling (3.9,  it then follows that: 

Each of the terms on the right-hand side of (A.12) is Euclidean. Therefore f(..c,,, y ,  8)  is too. Finally, Lf2 
continuity follows from the fact that jumps occur in f only on a set of measure zero. 

21. For a formal definition of Euclidean classes of functions, see Definition 2.7 in Pakes and Pollard (1989, 
p. 1032). 
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Appealing to Theorem 3.3 and Lemma 3.5 of Pakes and Pollard (1989, pp. 1040 and 1045, respectively), 
it follows that N " ' ~ ( ( ~ ' ~ ' -  yo)', (13(~)- QO)')' is jointly distributed as a normal random variable with mean 
0 and covariance matrix 

(T'w*r)-IT' w * v  w * r ( r l w * r ) - ' ,  (A. 13) 

where 

and T l l  and r12are defined in the paper. It follows that the covariance matrix for N'/*($'~'- 00) simplifies 
to (3.9). II 

Proof ofProposition 2. First, note that in their Appendix A, Hotz and Miller (1993) prove their Proposition 
I by establishing the inversion property for each H, and t 6T. Since the conditional valuation functions are 
defined in the infinite-horizon problem for all such H, and r ~ { 0 , 1 , .  . . ,}, their proof applies, without further 
modification, to the infinite-horizon case. This establishes the existence of a mapping, denoted q(p(H,), H,), 
with the same features as those attributed to (2.8) above. Second, none of the statements in Proposition 1 given 
in text are affected by substituting (4.3) for (3.5) in (3.10) and proceeding with this alternative definition of 
f(x,,, y ,  6). This establishes the second part of Proposition 2. 11 
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