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Neural Random Utility Model

Neurobiological
dataset

Medial Prefrontal
Cortex (mPFC) Functional IVIagn.etic
Resonance Imaging

(fMRI) scanner

Levy and Glimcher (2012), Bartra et al (2013): meta-studies indicating that activity in mPFC
is tightly correlated with the values subjects place on choice objects
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Neural Random Utility Model

Neural Random Utility Model

subjective value

(observable)

Note: subjective value can be measured
even in the absence of the choice set
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Neural Random Utility Model

Neural Random Utility Model

subjective value

(observable)

Uit = Vi +Ni¢

binary choice trial t item i

Note: subjective value can be measured
even in the absence of the choice set
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Neural Random Utility Model

Neural Random Utility Model

choice Choice Mechanism
subjective value stochasticity P99
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stochasticityin | o
preference . .
stochasticty subjective value due to —
®,. . .
perception (eg:emperature) g‘:iaf:[\)’\i,;iiiiioiﬁ;iiss Random Utility

Note: subjective value can be measured
even in the absence of the choice set
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Neural Random Utility Model

Neural Random Utility Model

choice Choice Mechanism
subjective value SIERESLEY —
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vq e vy
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(utility function)

In this paper:
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® Uiy = Vit +Nit

@ DM chooses i vs. j on trial t if uj; > uj ¢ (consider only
binary choices) = yjj+ = 1 (uj+ > uj ;)

© Plyje =1 Vie,vje]l = P[Vje > iljie | Vit vje], where

Vij,t = Vit = Vie, Tljit = Nj = i
o assume® | i+ ~ iid N/ (0,0’%) —
7
= Plyje=1|vit,vjie] =@ (017:)

@ assume | vy = (Vi¢,..., V) is independent over trials | < M
vit = Vi — E[v;¢] (mean over trials)
Plyje=1|E[vid,Ev]] =

PIE[Vje] > Dije + e | B [vi,e] , I [v,e]]

@ assume |Ujj; = Vi — Vj¢ ~ iid N (0, O'g) —

]E Vit
= Plyje=1E[vi,E[vj]] = ([V’]> where O’%+l~/ = 0'727 + o2

I e

Ur7+17

*Item-pair independence follows from the binary choice setup: realizations
for different item-pairs must occur on different trials
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Laboratory Experiment (Levy et al. (2011))

<>

-

Subjects passively
viewed the outcome
of a series of small

lotteries over changes

Subjects passively
viewed 20 consumer
items, one at a time

Subjects made all
possible binary
choices over this set
of itemsin an

-

Webb, Glimcher et al (2013)

Purpose: identify the
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subject’s subjective
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Laboratory Experiment (Levy et al. (2011))

fMRI scanner
- =
- 5, measure
differencein
Stage 1 5 neural activity

é a
Subjects passively
viewed the outcome
— of a series of small

. findareawhere
lotteries over changes 2

thisdifferenceis
statistically

-

Purpose: identify the
areas of the brain
which encoded the
subject’s subjective

medial Prefrontal
Cortex (mPFC)
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Laboratory Experiment (Levy et al. (2011))

< MR scanner >

fourDVD movies, two books, four art posters,

th

Ds, two pi f stationery, and

Allitems were presented 12 timesin
random orderto each subject. On 20
randomly selected trials (which were
excluded from analysis), subjects were
asked whetherthey preferred the item
theyhad justseen or a randomly
selected amount of money (from $1 to

Subjects were thinkingabout the
value of the items they were

-
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items, one at a time
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Laboratory Experiment (Levy et al. (2011))

Stagel

Each possible binary comparison was
presented twice (switching the left-right
location on each repetition).

The result of one of these choices was
randomly selected forrealization.

Webb, Glimcher et al (2013)

H

The choices of subjects were largely
consistent (mostly transitive and non-
random).

Choices were highly idiosyncraticacross
subjects.

The goal of this experimentisto
ine whether subjecti
d in the ab: of choi be

usedto Eedit:t later choices

Neural RUM

Subjects made all
possible binary
choices over this set
of itemsin an

( Purpose: compare
| 'neural measurements
of subjective values
and the likelihood of
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@ Stage 2 = Vi, i =1,...,20, m=1,...,11 for each subject
11
— rank v; = 1—11 >~ Vim to order the items
m=1

e Compare to Stage 3: prediction rate is 59 £+ 1% (i.e., in 59 + 1% of
trials subjects chose according to this ordering) — not much!
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@ Stage 2 = Vi, i =1,...,20, m=1,...,11 for each subject
11
— rank v; = 1—11 >~ Vim to order the items
m=1

e Compare to Stage 3: prediction rate is 59 £+ 1% (i.e., in 59 + 1% of
trials subjects chose according to this ordering) — not much!
o Can do better!

e segregate prediction accuracy according to the rank-distance in neural
activity between two items

% correct predictions

1234567 8910111213141516171819
Ordinal distance in BOLD activity

= ordering of subjective values can predict choice outcomes
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@ Stage 2 = Vi, i =1,...,20, m=1,...,11 for each subject
11
— rank v; = 1—11 >~ Vim to order the items
m=1
e Compare to Stage 3: prediction rate is 59 £+ 1% (i.e., in 59 + 1% of
trials subjects chose according to this ordering) — not much!
@ Can do better!
e segregate prediction accuracy according to the rank-distance in neural
activity between two items

% correct predictions

1234567 8910111213141516171819
Ordinal distance in BOLD activity

= ordering of subjective values can predict choice outcomes
Q: Is subjective value a cardinal quantity? = NRUM
Neural RUM February 10, 2014 8/ 19



s
P [yij’t =1 | Vit V.i,t] = <U7t) 'S

Tij

Plye = 1| Evid] . Ely]] = (

Do not observe v;; on the trial t in which choice was made
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s
P [yij’t =1 | Vit V.i,t] = <U7t) 'S

Tij

Plye = 1| Evid] . Ely]] = (

Do not observe v;; on the trial t in which choice was made

To get IE [Vjj ¢]:

. 2
=a+YVim+ lim, fim ~ iid A (0, O',u)
measurement error

B = a+~v; +fij (average over m)

Bjj =~V + jij (take difference)

Note: Orderings of B; , and v; , coincide
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lgnoring Measurement Error

Plyje=1Evi],Elv]] = ¢ (]E[‘"/ut])

O+

E [V,'jyt] . BU = ’yﬁ,'j

Probit model:

7—1
Plrje=1)=9® <C+ U~~ij)

i+

Coefficient | No Constant , Constant

7 0.24 0.24
Tt (0.10) (0.10)

c -0.01
(0.08)
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0, yvij1=Vij2=0
Yi=<s1l yiityie=1
2, yi1=Vi2=1

= Py=0)<P(y=2)<P(y=1)

P(y; =0)
P(y; =1)
P(yj=2)

Data: too few once choices when Bj; is small (ordered Probit model)

Probability of Choosing Item

Probability of Choosing Item...

R

for small positive Bj;

1
= 3 = i —Never
= 1 3 I —Once
205 e 05 - —Twice
<] | o ! =
ﬁf : o : .

1 L L L L I D L L L L L L n
0 -3 -2 -1 0 1 3 -3 -2 -1 ;O 1 2 3
B;,’ Bi;

= need to account for measurement error: Bjj = vV + [i;;

Intuition: small V;; for which once is most likely might correspond to large E,-j due

to measurement error
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=ittt (URULY

Accounting for Measurement Error

Plyje = 1| Evid E[v]] = & <]E[fo]> vl B = o 4 B

O+

= ~ —1 éi' _ z,"
P {y"j,t =1]| Bij>/74ij:| =¢ <M>
2

,umrviid./\/'(O,Ui) = ﬁng(O,U%Elloi>

Random-effects Probit model:

3 +OOe_Hu /2(7 2 -
P lyi1, iz | B,-J-} = IIP {y"j,t | Bijaﬁij} djijj
27r0~ -
e t=1
ST
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Accounting for Measurement Error

Random-effects Probit model:

. +oo e*ﬁijz/zafi 2 - .
P {y:j,l,yl‘j,z | B,-J-] = | IIP {yl'j,r | Bijaﬂij] djijj
o I t=1

Caveats:

(1] Bu and Nu are not independent: (Cov( i U) = 2Var [3;] = 13 o

—1
= RE Probit estimate of Jf will be biased towards zero

@ Jijj are not independent over choice pairs: (Cov( fijs o ) Var [f1;]
= RE Probit estimate of standard errors will be biased towards zero

= use multi-way clustering techniques (Cameron et al., 2011)
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) Probit RE Probit
Coefficient
No Constant = Constant | No Constant ;| Constant

o i 0.24 0.24 1.16 1.16

T+ (0.10) (0.10) (0.52) (0.51)

c -0.01 -0.06

(0.08) (0.37)

o2 22.36 22.36
’?20%+,; (3.49) (3.50)
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(Ecifmedis MRV
Subject specific RE Probit

Coeftf | Est. | Std. Err. | P-Val  Coeff  Est. | Std. Err. A P-Val
c1 0.03 1.14 0.98 q:fl -1.17 1.07 0.27
cy -0.15 1.25 0.91 72—1 0.66 2.89 0.82
cs -0.07 1.27 0.95 7:3_1 -3.25 2.36 017
cq -0.34 1.17 0.77 7{1 10.14 2.90 0.00
cs 0.08 1.22 0.95 7;1 1.39 0.57 0.02
cg -0.07 1.22 0.95 vt | -3.23 2.50 0.20
cy -0.14 1.30 0.91 7:;1 2.78 3.30 0.40
cs 0.41 1.22 0.73 78—1 10.39 3.53 0.00
cqg -0.18 1.18 0.88 7:51 4.98 2.38 0.04
Cio 0.69 1.24 0.58 71’01 5.01 1.39 0.00
c11 0.07 1.23 0.95 71—11 2.61 3.18 0.41
c12 -0.44 1.14 0.70 7{21 13.04 3.80 0.00
o2 20.49 3.46

Note: o545 =1

@ significant reduction of observations

@ six ;! are significant and positive / six v, are

from zero

Webb, Glimcher et al (2013)
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not significantly different
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Analysis Choice Prediction Based on NRUM

Neural Random Utility Model

choice Choice Mechanism
subjective value Slochasticity —
(observable) : ( vy \% 1’2{_;I
E e v;
g 8 .
| choice |
4

=

specification
error + Measurement
Error

+ Assumption of

f(Xl) + '00:' + Vi,tl. Stability
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Analysis Choice Prediction Based on NRUM

@ The prediction based on NRUM:

o Simulate yJ; 1, & ;> using

= fyfl =
P [ys,,-j,t =1 Bs,,-j} = ¢ < - Bst)
Ofi+0,s
subject RE Probit estimate

o If yliu1+¥iiio=Ysii1+ ¥sij2, then success
@ Compare to the prediction at chance:

o Data: the frequency of ys jj1 + ys,ijj,o = 0is 46%, ysij1+ ysij2 =11is
9%, Ys,ij,1 + Vs,ij2 = 2 is 45%
o Percent of correct predictions: 1 x 46 + 3 x 9+ 1 x 45 ~ 27%

@ Compare to RUM:

Plysije =11X,X] = &((Xi = Xj)5)
'Amazon star’ rating & price

Webb, Glimcher et al (2013) Neural RUM February 10, 2014 17 / 19



Analysis Choice Prediction Based on NRUM

Amazon® Price A+P" P+B  A+P+B”
RE RE RE | RE | RE

Pop Sub : Pop Sub : Sub Sub : Sub

27 27 1 27 27 1 27 2, 27

97 T 4GB B2 B2 [ AT _60” C

55 T 60 60 T 63 62 [ a2 T 62T

38 26 ' 54 55 |97 55 AT

33 35, 46 40 | 44 51, 45

46 45 1 62 66 1 56 71! 65

65 72054 54! T 57 |7

65 70, 50 61, T1 64 1 75

4439041 201 65 33 1 50

AT 45 ) 50 4T | 45 56 | 70

4135 | 50 62, 47 64 1 59

48 48 1 45 42 1 48 52 ' 54

43 33 0 5T 50 | 46 | 60 | 46

42 37 1 48 47 1 38 56 1 62

Table TV: Choice prediction rates (%) resulting from 1000 simulated sam-
ples generated by our estimates. Prediction rates are calculated for both
(Pop)ulation and (Sub)ject-based estimates, and prediction rates are shown for
the (pop)ulation as a whole and for each (sub)ject. Prediction rates are also cal-
culated using both (A)mazon and (P)rice observables, (P)rice and the (B)OLD
measure, and all three predictors. * Amazon ratings were not available for the
five lotteries, so choice pairs with the lotteries were excluded for these sets of

predictions
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LUGELWSEM Choice Prediction Based on NRUM

BOLD Amazon® Price A+P* P+B A+P+B°

0 RE RE RE RE : RE

Sub | Sub : Sub
I

41

biased

8
subg =
subio calibrated
subyy -
Sllblg

Table IV: Choice prediction rates (%) resulting from 1000 simulated sam-
ples generated by our estimates. Predietion rates are calculated for both
(Pop)ulation and (Sub)ject-based estimates, and prediction rates are shown for
the (pop)ulation as a whole and for each (sub)ject. Prediction rates are also cal-
culated using both (A)mazon and (P)rice observables, (P)rice and the (B)OLD
measure, and all three predictors. *Amazon ratings were not available for the
five lotteries, so choice pairs with the lotteries were excluded for these sets of

L {l i ll
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Analysis Choice Prediction Based on NRUM

BOLD Amazon” Price A+P* P+B A+P+B*
RE "' =10 RE RE RE RE : RE
Pop Sub | Pop ‘ Pop Sub 1 Pop Sub ! Sub Sub : Sub
chance | 27 27 | 27 |2 o1 2 211 o7 | o | 21
__pop_[[ 3T 8T "G _|"AT 6T T53 B2 52 | 57, ({60
sub, 207736 | 36 55 60 | 60 63 | 62 62 1 62
suba 30 28 17 38 26 : 54 55 : 7 55 : 47
subg 24 49 1 29 35 | 46 40 | M 51 | 45
subg 32 53 : 53 46 45 © "™ "7 1 56 71! 65
subg 45 48 - 57 77
subg 26 40 1 NRUM just matches the 64 75
suby | 28 & performance of a coarse 3 a0
subg 30 49 behavioral model 5@, 7!
subs | 35 50 Entlelrelinfe s a7 64 | 50
subio | 33 47 : - LT 48 52 : 54
subiy | 30 33, 41 43 SST 5T 50 : 46 60 AR
subja 32 51 1 49 42 37 1 48

Neural value measure can
add predictive power to

. : iction rates (% "
Table IV: Choice prediction rates (%) rest behavioral model

ples generated by our estimates. Predictic
(Pop)ulation and (Sub)ject-based estimates, and pre. VIL 1oL
the (pop)ulation as a whole and for each (sub)ject. Pr(‘du‘tion rates are also cal-
culated using both (A)mazon and (P)rice observables, (P)rice and the (B)OLD
measure, and all three predictors. *Amazon ratings were not available for the
five lotteries, so choice pairs with the lotteries were exeluded for these sets of

Do i ll 2
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Conclusion

Main Contribution:

@ An econometric framework for relating neural measurements to choice
prediction, the Neural Random Utility Model, was introduced.

@ The comparison of the predictive power of NRUM with established
techniques was done based on data from a laboratory experiment:

o the measured neural activity cardinally encodes valuations and predict
choice behavior

e accounting for measurement error and combining neural data with
standard observables improves predictive performance
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