The Adoption of Network Goods: Evidence from The Spread of Mobile Phones in Rwanda

Presented by: Li Song

February 10, 2014

Motivation

- Network effects can generate inefficiency
- Customers do not internalize the benefits from their adoptions to the rest of the network
- Providers do not internalize the benefits from costly provision to social welfare
- Difficulty of measuring network effects:
- Indistinguishable motivation: mimic others out of network benefit or similar taste?
- High cost in gathering individual data in a network
- Two problems addressed in this paper:
- How to capture the spillover benefits associated with network effects
- How to evaluate the impact of policies

Context

- Rwanda
- Demography
- Low income \rightarrow low demand
- Very hilly \rightarrow blocking signal propagation
- High population density \rightarrow more subscribers per tower
- Mobile phone industry
- Restricted entry
- Few alternatives for remote communication
- Network rollout
- Providers: monopolists (1998) \rightarrow competitors (2005)
- Coverage: urban centers (60% 2005) \rightarrow broader area (95\% 2009)

Result from a combination of competitive threat and regulation

- Prices (handset and network access):
- high (\$0.27 per call 2005) \rightarrow low (\$0.01- per second 2008);
- changing price structures (no non-marginal charges 2008)

Following global trend and government subsidy

- Call detail records (CDRs): 4.5 years (01/2005-05/2009)
- Anonymous identifiers for sender and receiver
- Date, time, and duration
- Cell towers used at the start and end of the transaction
- Incurred charge
- Cell tower locations:
- Infer missing data by a weighted sum of the coordinates of known towers (Appendix C)
- Individual locations:
- Inferred from the sequence of cell towers used in one's call, using "important places" algorithm (Appendix D)
- Coverage maps:
- Depict the raw coverage based on the location of towers, then average them to get individual coverage (Appendix A)
- Handset prices: weighted average of all handsets (Appendix E)
- Operator billing policies: operator's web site, reports from the government regulator, and news articles
- Household surveys:
- EICV (2005-2010), Research ICT Africa's 2007 survey

Implicit Assumptions

- Calls reveal a social network
- Accounts = individuals (disincentive to switch phone numbers)
- A call reveals a desire to communicate (most calls are social)
- conditional on individual's geographic locations
- conditional on phone ownership
- underweight option value for unrealized calls (e.g. emergency calls)
- directed network (the calling party pays)
- Independence in links (immature market)
- Call volume along a given link keeps constant as more contacts join the network
- Adoption as a dynamic decision (exogenous (high) handset price)
- Other simplifications
- Ignore the other operator
- Ignore SMS and missed calls
- Ignore handset sharing

Model-Notations

- G: social network (directed graph)
- $G_{i} \subset G$: individual i's contacts (fixed)
- S_{t} : nodes subscribing in month t

Model-Calling Decision

i maximizes her utility from calling j

$$
u_{i j t}=\max _{d \geq 0} v_{i j}\left(d, \epsilon_{i j t}\right)-c_{i j t} d
$$

- d: calling duration from i to j in month t (integers)
- $\epsilon_{i j t}$: utility shock; $\epsilon_{i j t} \stackrel{i i d}{\sim} F_{i j}$
- $v_{i j}$: benefit of calls; $v_{i j}(d, \epsilon)=d-\frac{1}{\epsilon}\left[\frac{d^{\gamma}}{\gamma}+\alpha d\right]$
- $\gamma>1$: how quickly marginal returns decline
- α : affects the censoring fraction of no call months dependent on cost
- $c_{i j t}: \operatorname{cost} c_{i j t}=\beta_{c a l l} p_{t}+h\left(\phi_{i t}, \phi_{j t}\right)$
- $\beta_{\text {call }}$ call price sensitivity
- $\phi_{i t} \in[0,1]$: fraction of the area surrounding i receiving cellular coverage
- $h\left(\phi_{i t}, \phi_{j t}\right)$: hassle cost given the caller and receiver's level of coverage
$h\left(\phi_{i t}, \phi_{j t}\right)=$
$\beta_{\text {coverage.from }} \phi_{i t}+\beta_{\text {coverage.to }} \phi_{j t}+\beta_{\text {coverage. interaction }} \phi_{i t} \phi_{j t}$

Model-Calling Decision

- Optimal conditions

$$
\begin{aligned}
& d\left(\epsilon, p_{t}, \phi_{i t}, \phi_{j t}\right)= \begin{cases}{\left[\epsilon\left(1-\beta_{c a l l} p_{t}-h\left(\phi_{i t}, \phi_{j t}\right)\right)-\alpha\right]^{\frac{1}{\gamma-1}}} & \epsilon_{i j t}>\underline{\epsilon}_{i j t} \\
0 & \epsilon_{i j t} \leq \epsilon_{i j t}\end{cases} \\
& \underline{\epsilon}_{i j t}=\frac{\alpha}{1-\beta_{c a l l} p_{t}-h\left(\phi_{i t}, \phi_{j t}\right)}
\end{aligned}
$$

- Expected utility

$$
\begin{aligned}
& E u_{i j t}\left(p_{t}, \phi_{t}\right)= \\
& \int_{\epsilon_{i j t}}^{\infty}\left[d\left(\epsilon, p_{t}, \phi_{t}\right)\left(1-\beta_{c a l l} p_{t}-h\left(\phi_{i t}, \phi_{j t}\right)-\frac{\alpha}{\epsilon}\right)-\frac{1}{\epsilon} \frac{d\left(\epsilon, p_{t}, \phi_{t}\right)}{\gamma}\right] d F_{i j}(\epsilon)
\end{aligned}
$$

Model-Adoption Decision

When i is not on the network, $u_{i t}=0$
When i is on the network

$$
u_{i t}=\sum_{j \in G_{i} \cap S_{t}} E u_{i j t}\left(p_{t}, \phi_{t}\right)+w E u_{j i t}\left(p_{t}, \phi_{t}\right)+\eta_{i}
$$

- $w \in\{0,1\}$: whether i value incoming calls
- η_{i} : an idiosyncratic benefit from being on the network; known by i but not observed by the econometrician; $E \eta_{i}=0$
If i adopt at time τ

$$
U_{i}^{\tau}=\sum_{t=\tau}^{\infty} \delta^{t} E u_{i t}\left(p_{t}, \phi_{t}\right)-\delta^{\tau} \beta^{h a n d s e t} p_{\tau}^{\text {handset }}
$$

- $\beta^{\text {handset }}$: price sensitivity

Estimation-Identification

- Observations: p_{t} (price per minute), $p_{\tau}^{\text {handset }}$ (price of handset), τ_{i} (adoption month), $\phi_{i t}$ (coverage), communication graph (there is a link from i to j if i calls j at least twice)
- Instruments to identify adoption model: slope, incidental coverage (based on the interaction of electric grid and geographic features), fraction of contacts receiving subsidized handsets (Appendix B)

Estimation-Calling Decision

- Specify $F_{i j}$ (the distribution of $\epsilon_{i j t}$):

In $N\left(\mu_{i j}, \sigma_{i}^{2}\right)$ with probability $1-q_{i} ;-\infty$ with probability q_{i}

- Deriving $\epsilon_{i j t}$ from data

$$
\epsilon\left(d \mid p_{t}, \phi_{i t}, \phi_{j t}\right)=\frac{d^{\gamma-1}+\alpha}{1-\beta_{c a l l} p_{t}-h\left(\phi_{i t}, \phi_{j t}\right)}
$$

- Deriving likelihood functions

$$
\begin{cases}F_{i j}\left[\epsilon\left(1 \mid p_{t}, \phi_{i t}, \phi_{j t}\right)\right] & d_{i j t}=0 \\ F_{i j}\left[\epsilon\left(d+1 \mid p_{t}, \phi_{i t}, \phi_{j t}\right)\right]-F_{i j}\left[\epsilon\left(d \mid p_{t}, \phi_{i t}, \phi_{j t}\right)\right] & d_{i j t}=d>0\end{cases}
$$

- Estimating parameters:
- Common parameters: $\gamma, \alpha, \beta_{\text {call }}, \beta_{\text {coverage.from }}, \beta_{\text {coverage.to }}$, and $\beta_{\text {coverage.interaction }}$
- Distribution parameters: $\mu_{i j}, q_{i}$, and σ_{i}

Estimate common parameters and distribution parameters for a random subset \rightarrow Estimate distribution parameters for the rest, imposing the estimated common parameters \rightarrow Calculate expected duration and expected utility

Estimation-Adoption Decision

- Perfect foresight and independent decisions:

$$
\begin{aligned}
U_{i}^{\tau_{i}} & \geq U_{i}^{\tau_{i} \pm K} \Rightarrow \\
\sum_{k=0}^{K-1} \delta^{k} u_{i \tau_{i}+k}\left(p_{\tau_{i}+k}, \phi_{\tau_{i}+k}\right) & \geq \beta^{\text {handset }}\left(p_{\tau_{i}}^{\text {handset }}-\delta^{K} p_{\tau_{i}+K}^{\text {handset }}\right) \\
\sum_{k=1}^{K} \delta^{K-k} u_{i \tau_{i}-k}\left(p_{\tau_{i}-k}, \phi_{\tau_{i}-k}\right) & \leq \beta^{\text {handset }}\left(p_{\tau_{i}-K}^{\text {handset }}-\delta^{K} p_{\tau_{i}}^{\text {handset }}\right)
\end{aligned}
$$

- Perfect foresight and dependent decisions: narrower bounds
- Imperfect foresight with error of zero mean across individuals \rightarrow moment inequalities

$$
E\left[Z_{m i}\left(U_{i}^{\tau}-U_{i}^{\tau \pm K}\right)\right] \geq 0
$$

for a set of instrument $Z: E\left[\eta_{i} \mid Z_{i}\right]=0$, including $Z_{0 i}=1$

- Estimation

Set $K=2$ (months), $\delta=0.9^{1 / 12}$. Estimate $\beta^{\text {handset }}$

Estimation-Results

Calling Decision

Unified Parameters	Standard Error
γ	0.0006
α	0.3292
$\beta_{\text {call }}$	0.0001
$\beta_{\text {coverage.from }}$	0.0051
$\beta_{\text {coverage.to }}$	0.0053
$\beta_{\text {coverage.interaction }}$	0.0079

Communication Graph

Links $(124.6 \mathrm{~m})$	Quantile:	0.01	0.25	0.50	0.75	0.99
	$\mu_{i j}$	1.60	3.52	4.40	5.14	7.32
	SE $\left(\mu_{i j}\right)$	0.12	0.30	0.39	0.51	1.64
	N per link	6	19	45	52	53
Nodes $(1.5 \mathrm{~m})$	Quantile:	0.01	0.25	0.50	0.75	0.99
	σ_{i}	0.13	0.49	0.67	0.95	2.01
	q_{i}	0.01	0.02	0.04	0.06	0.28
	$\mathrm{SE}\left(\sigma_{i}\right)$	0.06	0.21	0.44	0.82	1.00
	N per node	13	227	637	2,464	27,725
	N per parameter	6	21	41	46	51
Overall	$N_{\text {observations }}$	4 billion				

Adoption Decision

Adoptions	Parameter	Estimate
(1m)	$\beta^{\text {handet }}$	0.1379

Estimation-Results

- The value of joining a network
- Call utility model (cost): adopt two months earlier: pay $\$ 0.9$ more; two months later: pay $\$ 0.94$ less
- Adoption model (benefit): adopt two months earlier: gain \$0.64 more; two months later: give up \$0.87 Call utility model underestimate utility after adoption
- Model fit

Figure 4. Call Model Fit

Simulation-Method

- Equilibrium Γ : adoption times $\tau=\left[\tau_{i}\right]_{i \in S}$ satisfying
- $\tau_{i}=0$ for $i \in S_{0} \subset S$
- $\tau_{i}=\operatorname{argmax}_{t} U_{i}^{t}\left(\eta_{i}, \tau_{-i}\right)$ for $i \in S \backslash S_{0}$
- Simulation procedure (given η):
- Propose a candidate adoption path τ^{0}

For baseline use the observed adoption path

- $\tau_{i}^{k+1}=\operatorname{argmax}_{t} U_{i}^{t}\left(\eta_{i}, \tau_{-i}^{k}\right)$
- Stop when $\tau_{i}^{k+1}=\tau_{i}^{k}$ for all i
- Generate η_{i}
- Cannot generate from distribution of η since demand is interlinked (why?)
- Use $U_{i}^{\tau_{i}} \geq U_{i}^{\tau_{i} \pm K} \Rightarrow$ to determine lower bound and upper bound (see p26 for a closed form expression)
- Compute upper and lower bound for the set of equilibria $\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]$ and best guess by setting $\eta_{i}=\frac{\eta_{i}+\bar{\eta}_{i}}{2}$

Simulation-Revenue and Utility

- Revenue

$$
R^{\ulcorner }=\sum_{i \in S} \sum_{t \geq \tau_{i}} \delta^{t} p_{t} \sum_{j \in G_{i} \cap S_{t}} E d_{i j t}\left(p_{t}, \phi_{i t}, \phi_{j t}\right)
$$

- Total Utility (less calling and coverage costs, but include handsets cost)

$$
U_{c a l l s}^{\Gamma}=\sum_{i \in S} \sum_{t \geq \tau_{i}} \delta^{t} \sum_{j \in G_{i} \cap S_{t}} E u_{i j t}\left(p_{t}, \phi_{i t}, \phi_{j t}\right)+w E u_{j i t}\left(p_{t}, \phi_{i t}, \phi_{j t}\right)
$$

- Handsets cost

$$
C_{\text {handsets }}^{\Gamma}=\sum_{i \in S}\left[\delta^{\tau_{i}} p_{i \tau_{i}}^{\text {handset }}-\delta^{\bar{T}^{\text {data }}} p_{i \bar{T} \text { data }}^{\text {handset }}\right]
$$

- Net utility

$$
U_{\text {net }}^{\Gamma}=\frac{1}{\beta^{\text {handset }}} U_{c a l l s}^{\Gamma}-C_{\text {handsets }}^{\Gamma}
$$

- Note: $R^{\ulcorner(\underline{\eta})} \leq R \leq R^{\Gamma(\bar{\eta})}$ and $U_{\text {calls }}^{\Gamma(\eta)} \leq U_{\text {calls }} \leq U_{\text {calls }}^{\Gamma(\bar{\eta})}$. But this is not true for $U_{\text {net }}^{\Gamma}$ (omit η)

Simulation-Results

Figure 5. Simulation Fit

Adoption month in data vs. adoption month under
Fit metrics Lower equilibrium Mean Upper equilibrium

Correlation	0.86	0.87	0.83
Mean deviation	5.80	2.82	-0.83
Mean absolute deviation	6.63	4.56	5.08
Median deviation	5	2	-2
Median absolute deviation	5	3	4

Simulation-Results

- Estimated revenue: $\$ 205-235 m$ (Compare with $\$ 302 \mathrm{~m}$ in data)
- Estimated utility from calls: \$75-91m (\$3-4 per subscriber per month, or 1-2.4\% of household consumption)
- Estimated cost of handsets: \$21-26m (\$1 per subscriber per month, or 0.3-0.6\% of household consumption)
- Estimated net utility: \$54-65m (\$2-3 per subscriber per month, or $0.6-1.8 \%$ of household consumption)

Simulation-Robustness

- Coordinated adoption: narrower bounds
- Handset sharing: sharing costs and call shock distributions are independent in this model
- Utility from incoming calls: $w=0$ in the model; for $w=1$ results are similar
- Homophily: not a problem here

Application-Targeting Adoption Subsidies

Analyzing the effect of the 2008 adoption subsidy program

- Describe effects of Subsidized Handsets
- Discounted handsets of identifiable models are distributed to rural districts
- In districts level: Allocating additional 1% handsets generates more than 1% increasing in adoption \rightarrow network effects (Table 7)
- District spillover: Many handsets were activated in urban areas
- Usage (duration): recipients' network structure is similar to others who subscribed around the same time \rightarrow recipients value the subsidies

Application-Targeting Adoption Subsidies

- Simulated impact of Adoption Subsidy
- Assumptions:
- Subsidy recipients represent the full set of eligible individuals
- Recipients did not delay adoption in order to receive a subsidy
- Recipients preferred taking the subsidy at the point of adoption to purchasing any time in the following 4 years
- Simulations:
- Baseline
- No subsidy and only recipients change their behavior
- No subsidy and all individuals adjust
- Results (Table 9):
- The subsidy improved welfare
- The operator might have the incentive to subsidize
- Most of the effect is a proximal effect
- The subsidy provides substantial benefits to the contacts of recipients
- Predict mobile internet adoption based on data of mobile phone (Appendix K)

Application-The Provision of Service to Rural Areas

Analyze the effect of regulations on rural expansion (10 rural towers earning the lowest monthly revenue)

- Simulation
- Baseline
- No expansion and only immediate effect on call utilities
- No expansion and full impact including the effect on adoption
- When consider the population density: $\Delta \tilde{R}^{\ulcorner }=\lambda \Delta R^{\Gamma}-C$, $\Delta \tilde{U}_{n e t}^{\Gamma}=\lambda \Delta U_{n e t}^{\Gamma}$
- Results (Table 10)
- Rural expansion improved welfare, but to a small extent (0.5\%)
- Private benefits were too dispersed for rollout in the absence of intervention
- The rollout was unprofitable for the operator (??)
- The benefits were too low and dispersed for consumers to finance tower construction themselves
- Expansions profit both customers and operators for high population densities $(\lambda>1.43)$ and are unprofitable for both parties for low population densities $(\lambda<0.66)$. Expanding the network is socially optimal but not profitable for operators when $0.72<\lambda<1.26$

Conclusion

- Introduce a new method to estimate and simulate the adoption of network goods
- Customers do not internalize the benefits from their adoptions to the rest of the network \rightarrow subsidize adoption and target neighbors besides individual nodes
- Providers do not internalize the benefits from costly provision to social welfare \rightarrow regulate coverage for a country with moderate population density

Discussion

- Problems for a mature market
- Is it reasonable to omit individual choice over handsets?
- Are individual utility arising only from communication?
- How to address the problem of homophily?
- Model the operator's behavior
- How does the operator expand the network (construction of towers, introducing handset models, etc.) to maximize its profit, given users strategies?
- What is the optimal pricing structure for the operator and for the whole society?
- How do the users adjust their behavior according to the operator's choice?

