The Adoption of Network Goods: Evidence from The Spread of Mobile Phones in Rwanda

Presented by: Li Song

February 10, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

Network effects can generate inefficiency

- Customers do not internalize the benefits from their adoptions to the rest of the network
- Providers do not internalize the benefits from costly provision to social welfare
- Difficulty of measuring network effects:
 - Indistinguishable motivation: mimic others out of network benefit or similar taste?
 - High cost in gathering individual data in a network
- Two problems addressed in this paper:
 - How to capture the spillover benefits associated with network effects

How to evaluate the impact of policies

Context

- Rwanda
 - Demography
 - Low income \rightarrow low demand
 - Very hilly \rightarrow blocking signal propagation
 - \blacktriangleright High population density \rightarrow more subscribers per tower
 - Mobile phone industry
 - Restricted entry
 - Few alternatives for remote communication
- Network rollout
 - ▶ Providers: monopolists (1998) → competitors (2005)
 - ▶ Coverage: urban centers (60% 2005) \rightarrow broader area (95% 2009)

Result from a combination of competitive threat and regulation

- Prices (handset and network access):
 - ▶ high (\$0.27 per call 2005) → low (\$0.01- per second 2008);
 - changing price structures (no non-marginal charges 2008)

Following global trend and government subsidy

Data

- ► Call detail records (CDRs): 4.5 years (01/2005-05/2009)
 - Anonymous identifiers for sender and receiver
 - Date, time, and duration
 - Cell towers used at the start and end of the transaction
 - Incurred charge
- Cell tower locations:
 - Infer missing data by a weighted sum of the coordinates of known towers (Appendix C)
- Individual locations:
 - Inferred from the sequence of cell towers used in one's call, using "important places" algorithm (Appendix D)
- Coverage maps:
 - Depict the raw coverage based on the location of towers, then average them to get individual coverage (Appendix A)
- Handset prices: weighted average of all handsets (Appendix E)
- Operator billing policies: operator's web site, reports from the government regulator, and news articles
- Household surveys:
 - ► EICV (2005-2010), Research ICT Africa's 2007 survey

Implicit Assumptions

- Calls reveal a social network
 - Accounts = individuals (disincentive to switch phone numbers)
 - A call reveals a desire to communicate (most calls are social)
 - conditional on individual's geographic locations
 - conditional on phone ownership
 - underweight option value for unrealized calls (e.g. emergency calls)
 - directed network (the calling party pays)
- Independence in links (immature market)
 - Call volume along a given link keeps constant as more contacts join the network

- Adoption as a dynamic decision (exogenous (high) handset price)
- Other simplifications
 - Ignore the other operator
 - Ignore SMS and missed calls
 - Ignore handset sharing

Model-Notations

- ► G: social network (directed graph)
- $G_i \subset G$: individual *i*'s contacts (fixed)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• S_t : nodes subscribing in month t

Model-Calling Decision

i maximizes her utility from calling j

$$u_{ijt} = \max_{d\geq 0} v_{ij}(d,\epsilon_{ijt}) - c_{ijt}d$$

• d: calling duration from i to j in month t (integers)

•
$$\epsilon_{ijt}$$
: utility shock; $\epsilon_{ijt} \stackrel{iid}{\sim} F_{ij}$

- ► v_{ij} : benefit of calls; $v_{ij}(d, \epsilon) = d \frac{1}{\epsilon} [\frac{d^{\gamma}}{\gamma} + \alpha d]$
 - $\gamma > 1$: how quickly marginal returns decline
 - \blacktriangleright $\alpha:$ affects the censoring fraction of no call months dependent on cost

•
$$c_{ijt}$$
: cost $c_{ijt} = \beta_{call} p_t + h(\phi_{it}, \phi_{jt})$

- β_{call} call price sensitivity
- ▶ $\phi_{it} \in [0,1]$: fraction of the area surrounding i receiving cellular coverage
- h(\u03c6_{it}, \u03c6_{jt}): hassle cost given the caller and receiver's level of coverage

$$h(\phi_{it}, \phi_{jt}) = \beta_{coverage.from}\phi_{it} + \beta_{coverage.to}\phi_{jt} + \beta_{coverage.interaction}\phi_{it}\phi_{jt}$$

Model-Calling Decision

Optimal conditions

$$d(\epsilon, p_t, \phi_{it}, \phi_{jt}) = \begin{cases} \left[\epsilon(1 - \beta_{call}p_t - h(\phi_{it}, \phi_{jt})) - \alpha\right]^{\frac{1}{\gamma - 1}} & \epsilon_{ijt} > \underline{\epsilon}_{ijt} \\ 0 & \epsilon_{ijt} \le \underline{\epsilon}_{ijt} \end{cases}$$

$$\underline{\epsilon}_{ijt} = rac{lpha}{1 - eta_{call} p_t - h(\phi_{it}, \phi_{jt})}$$

Expected utility

$$\begin{aligned} & Eu_{ijt}(p_t,\phi_t) = \\ & \int_{\underline{\epsilon}_{ijt}}^{\infty} \left[d(\epsilon,p_t,\phi_t)(1-\beta_{call}p_t-h(\phi_{it},\phi_{jt})-\frac{\alpha}{\epsilon}) - \frac{1}{\epsilon} \frac{d(\epsilon,p_t,\phi_t)}{\gamma} \right] dF_{ij}(\epsilon) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Model-Adoption Decision

When *i* is not on the network, $u_{it} = 0$ When *i* is on the network

$$u_{it} = \sum_{j \in G_i \cap S_t} Eu_{ijt}(p_t, \phi_t) + wEu_{jit}(p_t, \phi_t) + \eta_i$$

- $w \in \{0,1\}$: whether *i* value incoming calls
- η_i: an idiosyncratic benefit from being on the network; known by *i* but not observed by the econometrician; Eη_i = 0
 If *i* adopt at time τ

$$U_i^{\tau} = \sum_{t=\tau}^{\infty} \delta^t Eu_{it}(p_t, \phi_t) - \delta^{\tau} \beta^{handset} p_{\tau}^{handset}$$

• $\beta^{handset}$: price sensitivity

Estimation-Identification

- Observations: pt (price per minute), p^{handset} (price of handset), τi (adoption month), φit (coverage), communication graph (there is a link from i to j if i calls j at least twice)
- Instruments to identify adoption model: slope, incidental coverage (based on the interaction of electric grid and geographic features), fraction of contacts receiving subsidized handsets (Appendix B)

Estimation-Calling Decision

- Specify F_{ij} (the distribution of ϵ_{ijt}): In N(µ_{ij}, σ_i²) with probability 1 − q_i; −∞ with probability q_i
- Deriving \(\epsilon_{ijt}\) from data

$$\epsilon(d|p_t, \phi_{it}, \phi_{jt}) = \frac{d^{\gamma-1} + \alpha}{1 - \beta_{call} p_t - h(\phi_{it}, \phi_{jt})}$$

Deriving likelihood functions

$$egin{aligned} & egin{aligned} & F_{ij}[\epsilon(1|p_t,\phi_{it},\phi_{jt})] & d_{ijt}=0 \ & egin{aligned} & F_{ij}[\epsilon(d+1|p_t,\phi_{it},\phi_{jt})] - F_{ij}[\epsilon(d|p_t,\phi_{it},\phi_{jt})] & d_{ijt}=d>0 \end{aligned}$$

- Estimating parameters:
 - Common parameters: γ, α, β_{call}, β_{coverage.from}, β_{coverage.to}, and β_{coverage.interaction}
 - Distribution parameters: μ_{ij} , q_i , and σ_i

Estimate common parameters and distribution parameters for a random subset \rightarrow Estimate distribution parameters for the rest, imposing the estimated common parameters \rightarrow Calculate expected duration and expected utility

Estimation-Adoption Decision

Perfect foresight and independent decisions:

$$U_i^{\tau_i} \geq U_i^{\tau_i \pm K} \Rightarrow$$

$$\sum_{k=0}^{K-1} \delta^{k} u_{i\tau_{i}+k}(p_{\tau_{i}+k}, \phi_{\tau_{i}+k}) \geq \beta^{handset}(p_{\tau_{i}}^{handset} - \delta^{K} p_{\tau_{i}+K}^{handset})$$

$$\sum_{k=1}^{K} \delta^{K-k} u_{i\tau_{i}-k}(p_{\tau_{i}-k}, \phi_{\tau_{i}-k}) \leq \beta^{handset}(p_{\tau_{i}-K}^{handset} - \delta^{K} p_{\tau_{i}}^{handset})$$

- Perfect foresight and dependent decisions: narrower bounds
- Imperfect foresight with error of zero mean across individuals
 moment inequalities

$$E\left[Z_{mi}(U_i^{ au}-U_i^{ au\pm K})
ight]\geq 0$$

for a set of instrument Z: $E[\eta_i|Z_i] = 0$, including $Z_{0i} = 1$

Estimation

Set K = 2(months), $\delta = 0.9^{1/12}$. Estimate $\beta^{handset}$

Estimation-Results

Calling Decision							
	Unified Parameters Standard Erro			l Error			
	$\begin{array}{ccc} \gamma & 0.0006 \\ \alpha & 0.3292 \end{array}$						
	β_{call}	0.0001					
	$\beta_{coverage.from}$		0.0051 0.0053 0.0079				
	β _{coverage.to}						
	$\beta_{coverage.interaction}$	0.0	JU79				
Communication Graph							
	Quantile:	0.01	0.25	0.50	0.75	0.99	
Links (124.6m)	μ_{ij}	1.60	3.52	4.40	5.14	7.32	
(121.011)	$SE(\mu_{ij})$	0.12	0.30	0.39	0.51	1.64	
	N per link	6	19	45	52	53	
	Quantile:	0.01	0.25	0.50	0.75	0.99	
Nodes	σ_i	0.13	0.49	0.67	0.95	2.01	
(1.5m)	$SE(\sigma_i)$	0.01	0.02	0.04	0.06	0.28	
	$\operatorname{DE}(O_1)$	0.01	0.02	0.04	0.00	0.20	
	q_i	0.06	0.21	0 .44	0.82	1.00	
	$SE(q_i)$	0.00	0.01	0.02	0.04	0.39	
	N per node	13	227	637	2,464	27,725	
Overall	N per parameter	6	21	41	46	51	
	$N_{observations}$	4 bi	4 billion				
Adoption Decision							
Adoptions	Parameter Estimate						
(1m)	$\beta^{handset} = 0.1379$						

Estimation-Results

- The value of joining a network
 - Call utility model (cost): adopt two months earlier: pay \$0.9 more; two months later: pay \$0.94 less
 - Adoption model (benefit): adopt two months earlier: gain \$0.64 more; two months later: give up \$0.87 Call utility model underestimate utility after adoption
- Model fit

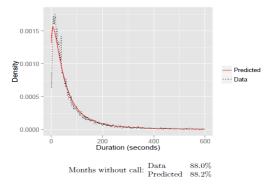


FIGURE 4. Call Model Fit

Computed on random subsample of 10,000 links.

Simulation-Method

- Equilibrium Γ : adoption times $\tau = [\tau_i]_{i \in S}$ satisfying
 - $\tau_i = 0$ for $i \in S_0 \subset S$
 - $\tau_i = \operatorname{argmax}_t U_i^t(\eta_i, \tau_{-i})$ for $i \in S \setminus S_0$
- Simulation procedure (given η):
 - Propose a candidate adoption path \u03c0⁰
 For baseline use the observed adoption path

•
$$\tau_i^{k+1} = \operatorname{argmax}_t U_i^t(\eta_i, \tau_{-i}^k)$$

- Stop when $\tau_i^{k+1} = \tau_i^k$ for all *i*
- Generate η_i
 - Cannot generate from distribution of η since demand is interlinked (why?)
 - Use U_i^{τi} ≥ U_i^{τi±K'} ⇒ to determine lower bound and upper bound (see p26 for a closed form expression)
 - Compute upper and lower bound for the set of equilibria [<u>τ</u>_i, τ̄_i] and best guess by setting η_i = <u>η_i+η̄_i</u>

Simulation-Revenue and Utility

Revenue

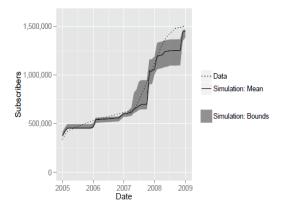
$$R^{\Gamma} = \sum_{i \in S} \sum_{t \geq \tau_i} \delta^t p_t \sum_{j \in G_i \cap S_t} Ed_{ijt}(p_t, \phi_{it}, \phi_{jt})$$

 Total Utility (less calling and coverage costs, but include handsets cost)

$$U_{calls}^{\Gamma} = \sum_{i \in S} \sum_{t \ge \tau_i} \delta^t \sum_{j \in G_i \cap S_t} Eu_{ijt}(p_t, \phi_{it}, \phi_{jt}) + wEu_{jit}(p_t, \phi_{it}, \phi_{jt})$$

Handsets cost

$$C_{handsets}^{\Gamma} = \sum_{i \in S} \left[\delta^{\tau_i} p_{i\tau_i}^{handset} - \delta^{\bar{\mathcal{T}}^{data}} p_{i\bar{\mathcal{T}}^{data}}^{handset} \right]$$


Net utility

$$U_{net}^{\Gamma} = rac{1}{eta^{handset}} U_{calls}^{\Gamma} - C_{handsets}^{\Gamma}$$

► Note: $R^{\Gamma(\underline{\eta})} \leq R \leq R^{\Gamma(\overline{\eta})}$ and $U_{calls}^{\Gamma(\underline{\eta})} \leq U_{calls} \leq U_{calls}^{\Gamma(\overline{\eta})}$. But this is not true for U_{net}^{Γ} (omit η)

Simulation-Results

FIGURE 5. Simulation Fit

Fit metrics	Adoption month in	adoption month under	
Fit metrics	Lower equilibrium	Mean	Upper equilibrium
Correlation	0.86	0.87	0.83
Mean deviation	5.80	2.82	-0.83
Mean absolute deviation	6.63	4.56	5.08
Median deviation	5	2	-2
Median absolute deviation	5	3	4

Simulation-Results

- Estimated revenue: \$205-235m (Compare with \$302m in data)
- Estimated utility from calls: \$75-91m (\$3-4 per subscriber per month, or 1-2.4% of household consumption)
- Estimated cost of handsets: \$21-26m (\$1 per subscriber per month, or 0.3-0.6% of household consumption)

 Estimated net utility: \$54-65m (\$2-3 per subscriber per month, or 0.6-1.8% of household consumption)

Simulation-Robustness

- Coordinated adoption: narrower bounds
- Handset sharing: sharing costs and call shock distributions are independent in this model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► Utility from incoming calls: w = 0 in the model; for w = 1 results are similar
- Homophily: not a problem here

Application-Targeting Adoption Subsidies

Analyzing the effect of the 2008 adoption subsidy program

- Describe effects of Subsidized Handsets
 - Discounted handsets of identifiable models are distributed to rural districts
 - In districts level: Allocating additional 1% handsets generates more than 1% increasing in adoption → network effects (Table 7)
 - District spillover: Many handsets were activated in urban areas

► Usage (duration): recipients' network structure is similar to others who subscribed around the same time → recipients value the subsidies

Application-Targeting Adoption Subsidies

- Simulated impact of Adoption Subsidy
 - Assumptions:
 - Subsidy recipients represent the full set of eligible individuals
 - Recipients did not delay adoption in order to receive a subsidy
 - Recipients preferred taking the subsidy at the point of adoption to purchasing any time in the following 4 years
 - Simulations:
 - Baseline
 - No subsidy and only recipients change their behavior
 - No subsidy and all individuals adjust
 - Results (Table 9):
 - The subsidy improved welfare
 - The operator might have the incentive to subsidize
 - Most of the effect is a proximal effect
 - The subsidy provides substantial benefits to the contacts of recipients

 Predict mobile internet adoption based on data of mobile phone (Appendix K)

Application-The Provision of Service to Rural Areas

Analyze the effect of regulations on rural expansion (10 rural towers earning the lowest monthly revenue)

- Simulation
 - Baseline
 - No expansion and only immediate effect on call utilities
 - No expansion and full impact including the effect on adoption
 - When consider the population density: $\Delta \tilde{R}^{\Gamma} = \lambda \Delta R^{\Gamma} C$, $\Delta \tilde{U}_{net}^{\Gamma} = \lambda \Delta U_{net}^{\Gamma}$
- Results (Table 10)
 - ▶ Rural expansion improved welfare, but to a small extent (0.5%)
 - Private benefits were too dispersed for rollout in the absence of intervention
 - The rollout was unprofitable for the operator (??)
 - The benefits were too low and dispersed for consumers to finance tower construction themselves
 - Expansions profit both customers and operators for high population densities ($\lambda > 1.43$) and are unprofitable for both parties for low population densities ($\lambda < 0.66$). Expanding the network is socially optimal but not profitable for operators when $0.72 < \lambda < 1.26$

Conclusion

- Introduce a new method to estimate and simulate the adoption of network goods
- ► Customers do not internalize the benefits from their adoptions to the rest of the network → subsidize adoption and target neighbors besides individual nodes
- ► Providers do not internalize the benefits from costly provision to social welfare → regulate coverage for a country with moderate population density

Discussion

Problems for a mature market

- Is it reasonable to omit individual choice over handsets?
- Are individual utility arising only from communication?
- How to address the problem of homophily?
- Model the operator's behavior
 - How does the operator expand the network (construction of towers, introducing handset models, etc.) to maximize its profit, given users strategies?
 - What is the optimal pricing structure for the operator and for the whole society?

How do the users adjust their behavior according to the operator's choice?