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PATENTS AS OPTIONS: SOME ESTIMATES OF THE VALUE
OF HOLDING EUROPEAN PATENT STOCKS

By ARIEL PAKES'

In many countries patentees must pay an annual renewal fee in order to keep their
patents in force. This paper presents and then estimates a model which uses observations
on the proportion of different cohorts of patents which are renewed at alternative ages,
and the relevant renewal fee schedules, to estimate the distribution of the returns earned
from holding patents, and the evolution of this distribution function over the lifespan of
the patents. Since patents are often applied for at an early exploratory stage of the innovation
process, the model allows patentees to be uncertain about the sequence of returns that will
be earned if the patent is kept in force. The paper solves the implied optimal stopping
problem for the micro units, derives the implications of these solutions on the aggregate
proportions renewed, and then estimates the parameters of the model from the aggregate
data. Separate estimates are obtained from data on post World War II cohorts of patents
in each of France, the United Kingdom, and Germany.

KEYWORDS: optimal stopping, maximum likelihood, simulation estimator, patent rights,
renewal fees, option values, the value of patent protection.

IN MANY COUNTRIES holders of patents must pay an annual renewal fee in order
to keep their patents in force. If the renewal fee is not paid in any single year,
the patent is permanently cancelled. Assuming that renewal decisions are based
on economic criteria, agents will only renew their patents if the value of holding
those patents over an additional year exceeds the cost of renewal. Observations
on the proportions of different cohorts of patents which are renewed at alternative
ages, together with the relevant renewal fee schedules, will, in this case, contain
information on the distribution of the values of holding patents, and on the
evolution of this distribution function over the lifespan of the patents. Since
patent rights are seldom marketed, this is one of the few sources of information
on the value of patents available. This paper presents and then estimates a model
which allows us to recover the distribution of returns from holding patents at
each age over the lifespan of patents from information on patent renewals.
Separate estimates are obtained from data on post World War II cohorts of
patents in each of the United Kingdom, France, and Germany (renewal fees were
not instituted in the United States until 1982). These estimates enable calculations
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and Daniel McFadden for comments that facilitated the solution to various problems. This paper is
an offshoot of ongoing research with Mark Schankerman. The research was supported by the NSF
through Grant PRA 81-08635. I am thankful to Andrew Meyers Dvora Ross, and Tom Abbott for
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756 ARIEL PAKES

of: the value, to patent holders, of the proprietary rights created by the patent
laws, the distribution of this value among patents, and the process which deter-
mines the evolution of the value of patents over their lifespans.

This is not the first time patent renewal data have been used to estimate
parameters of the distribution of patent values. In a previous paper (see Pakes
and Schankerman (1978)) intercountry differences in the proportion of patents
renewed and in renewal fee schedules faced by cohorts of European patents were
used to estimate the rate of obsolescence on the returns from holding patents.
The earlier paper assumed that cohorts of patents were endowed with a distribu-
tion of initial current returns which decayed deterministically thereafter.
Methodologically, the major innovation in this paper is that it does not assume
that the sequence of returns that will accrue to the patent if it is to be kept in
force is known with certainty at the time the patent is applied for. The generaliz-
ation to an uncertain sequence of returns is to allow for the fact that agents often
apply for patents at an early stage in the innovation process, a stage in which
the agent is still exploring alternative opportunities for earning returns from use
of the information embodied in the patented ideas. In part early patenting arises
from the incentive structure created by the patent system, since, if the agent does
not patent the information available to him, somebody else might. This incentive
is reinforced by the fact that the renewal fees in all countries studied are quite
small during the early ages of a patent’s life.

A patent holder who pays the renewal fee obtains both the current returns that
accrue to the patent over the coming period, and the option to pay the renewal
fee and maintain the patent in force in the following period should he desire to
do so. An agent who acts optimally will pay the renewal fee only if the sum of
the current returns plus the value of this option exceeds the renewal fee. It will
be assumed that the agent values the option at the expected discounted value of
future net returns (current returns minus renewal fees), taking account of the
fact that an optimal policy will be followed in each future period, and conditional
on the information currently at the disposal of the agent. An optimal sequential
policy for the agent has the form of an optimal renewal (or stopping) rule, a rule
determining whether to pay the renewal at each age. The proportion of patents
who drop out at age a is the proportion who do not satisfy the renewal criteria
at that age, but who did at age a — 1. The drop out proportions predicted by the
model will be a function of the precise value of the vector of the model’s
parameters, and of the renewal fee schedules. The data provide the actual
proportion of drop outs. Roughly speaking, the estimation problem is to find
those values of the model’s parameters which make the drop out proportions
implied by the model as “close” as possible to those we actually observe.

Formally then, this paper presents and solves an optimal stopping model,
derives the implications of this model on aggregate behavior, and then estimates
the parameters of the model from aggregate data. Though optimal stopping
models have appeared in the economic literature in several contexts (see, for
example, Roberts and Weitzman (1981)), I do not know of another paper which
derives an estimator for one’s parameters. There have, however, been a small
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number of recent studies which estimated alternative types of discrete choice
optimal stochastic control models on micro data. In particular, Miller (1984)
estimates a job matching model, and Wolpin (1984) estimates a sequential binary
choice model for the birth sequences of married women. Though the techniques
developed in both of these papers have a range of applications and provide an
extremely rich interpretation of the data, they have one troublesome aspect which
is shared by this paper. In all these models both the estimation technique and
the empirical results depend on the details of the stochastic specification and,
because of the complexity of the estimation problem, it is difficult to determine
the robustness of the conclusions to the stochastic assumptions chosen (a point
which we return to below). The model used here embeds a Markov assumption,
an assumption that the distribution of the next period’s return conditional on
current information depends only on current returns and the parameters of the
problem, in a search model with three types of outcomes. Each year the agents
perform experiments to explore alternative ways of best exploiting their patented
ideas. One possible outcome of these experiments is that they provide no new
information, another is that they determine that the patented ideas can never be
profitably exploited, and the third is that the experiments indicate a use which
allows the agent to increase the returns which accrue to the patent at subsequent
ages. The conditional distribution of beneficial outcomes, should they occur, is
not assumed, a priori, to be stationary over ages. This nonstationarity is to allow
for the possibility that agents explore their most promising alternatives first, a
possibility which is distinctly favored by the data. In addition, since there is a
statutory limit to patent lives (an age beyond which the agent cannot keep the
patent in force by payment of an annual fee), the model has a finite horizon.

Given our assumptions, it is possible to obtain an explicit solution for the
renewal rule as a function of the parameters of the Markov process, the age of
the patent, and the renewal fee schedules. This simplifies the estimation problem
considerably. On the other hand, the model is not as benevolent with respect to
the calculation of the aggregate drop out probabilities. To allow for heterogeneity,
it is assumed that there is a distribution of initial returns among patents. This
distribution is modified over time as agents uncover more profitable ways of
exploiting their patented ideas. The distribution of returns at each age does not
have, to the best of my knowledge, an analytic form, and, as a consequence,
neither do the drop out probabilities. I therefore resort to the simulated frequency
approach, suggested by Lerman and Manski (1981), to estimate these probabilities
for different values of the parameter vector.

Section 1 provides an overview of the renewal model used in this paper, while
Section 2 fills in the details of its stochastic specification. In Section 3, I explain
the estimation algorithm. Section 4 describes the data, provides the estimates,
and considers their implications. This last section includes a characterization of
the process by which the distribution of current returns earned from holding the
patents in a cohort evolves over time, and explicit calculations of both the annual
flow of returns resulting from the proprietary rights created by the patent laws,
and of the distribution of the value of holding the patents in a cohort.
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1. A DESCRIPTION OF THE MODEL

This section provides an overview of the renewal model used in this paper. It
begins by considering the decision problem faced by an agent who holds a patent,
and ends with the likelihood function implied by our assumptions.

The agent’s problem is to decide on whether to pay a renewal fee which will
keep the patent in force over the coming year. If the renewal fee is not paid, the
patent is permanently cancelled. If the renewal fee is paid and the age of the
patent is less than the statutory limit to patent lives, the agent will face a similar
problem at the beginning of the next year. If the patent’s age equals the statutory
limit to patent lives, the current is the last year the agent can keep the patent in
force by payment of a renewal fee.

Agents are assumed to maximize the expected discounted value of the net
returns from their actions, and may be uncertain about the sequence of returns
that will be earned if the patent is kept in force. An implication of this uncertainty
is that there is a positive probability that the agent will discover a use for the
patented ideas which makes future returns to patent protection significantly higher
than those being currently earned, and this probability may induce the agent to
pay the current renewal fee even if current returns are lower than the cost of
renewal.

Let V(a) be the expected discounted value of patent protection to the agent
just prior to its ath renewal. If the renewal fee is not paid the patent lapses and
V(a)=0. If the renewal fee is paid the agent earns the current return to patent
protection and, in addition, maintains the option to renew and keep the patent
in force at age a+1. The value of this option equals the expected discounted
value of the patent at age a + 1 conditional on current information. Formally then,

(1) V(a)=max {0, r,+BE[V(a+1)|2,]—c.} (a=1,...,L),

where L is the statutory limit to patent lives, r, is the current return to patent
protection, (2, is the information set of the agent in the patents ath year, c, is
the cost of renewal, and it is understood that zero is an absorbing state in the
stochastic process generating {V(a)}%_, (so that if the patent is not renewed at
any age it will not be in force thereafter). In equation (1), r,+BE[V(a+1)|£2,]
is the total benefit from holding the patent (the sum of current returns and the
discounted value of the option). If this expression is less than c,, the agent lets
the patent lapse.

To complete the description of the value function the conditional distributions
of future returns and costs of renewal must be specified. Given these distributions,
the solution for the sequence {V(a)}5_, can be obtained by starting with the
terminal equation, i.e., V(L) =max {0, r, — ¢, }, and integrating the system in (1)
backwards recursively. Assumptions 1 and 2 provide the general properties of
these distribution functions.

AssuMmPTION 1 (Al): Pr(z>r,4|02,)=G(z|r=r,, a, w,), where Pr(-|)
denotes a conditional probability statement, and w, is a vector of parameters.
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AssUMPTION 2 (A2): Agents hold point expectations on the renewal fees that
will be required to keep the patent in force at later ages equal to the current real
renewal fees for those ages. Moreover the renewal fee schedule in every year is
nondecreasing in age.

These assumptions simplify the analysis considerably. Assumption A2 was
motivated by the fact that the renewal fee schedules are published data, and
though these schedules are changed periodically, the real renewal fee at any age
does not vary much with the year the patent reaches that age. It is also a fact
that all the renewal fee schedules are nondecreasing in age (see Section 4.1). I
will assume an exogenously given initial distribution of current returns to patent
protection (this differentiates among patents). Assumption Al assumes that the
stochastic process generating subsequent returns (i.e., generating {r,}~_,) is both
Markov and the same for all patents.

To characterize the solution to the agent’s decision problem I need more
detailed assumptions on this Markov process. These additional assumptions are
first explained, and then gathered into Assumption 3 below. I assume that the
probability that next year’s returns are greater than any given number is larger
the higher are current returns (A3.3). Second, though the sequence of conditional
distributions, i.e. {G(|+, a)}--,, need not be stationary over age, they cannot
become ‘“‘better” at too fast a pace. A condition which suffices to rule out this
possibility is that, for any given value of current returns, the probability that next
year’s returns is greater than some number is nonincreasing in age (A3.4). This
type of nonstationarity turns out to be an important feature of the empirical
results, and is discussed in more detail below. Finally I require regularity condi-
tions that insure the finiteness and continuity of the value function (A3.1 and
A3.2).2

AsSUMPTION 3: (A3.1) There exists an & such that E[r,"|r,]<® (a=2, ...,

L; rye R,). (A3.2) G(z|r, a) is continuous in r at every z except, possibly, at values
of z at which G(z|r, a) has a discontinuity in z. (A3.3) G(z|r, a) is nonincreasing
inr. (A3.4) G(z|r, a) is nondecreasing in a. [In A3.2 to A3.4, it is to be understood
thata=1, ..., L—1; (z, r)e R%; and that the conditional distributions are also
indexed by the parameter vector, w,.]

Assumptions Al and A2 imply that the value of the option to renew the patent
(i.e., E[V(a+1)|2,]) depends only on current returns and parameters which
do not vary among patents of a given age (B, w,, and the current vector of renewal
fees). If, for convenience, we omit these latter parameters from the notation, then
the value function (equation 1) can be rewritten as

(2) V(a,r)=max {0, r+BE[V(a+1)|r,al—c,} (a=1,...,L),

2 Note that these conditions do not rule out conditional distributions with mass points, a common
characteristic of the Markov processes used in search models.
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where E[V(a+1)|r, a]=[g, V(a+1, z)G(dz|r, a). Clearly in order to character-
ize the situations in which it is optimal to renew the patent, we require the
properties of the function determining the option value. These properties are
provided in Lemma 1 and explained immediately thereafter.

LemMMA 1 (proved in Appendix A): The value of the option, thatis E[V(a+1)]|r,
a]l, is continuous and nondecreasing in r, and nonincreasing in a (re R, , a=1,
..., L).

Figure 1 illustrates the form of the function determining the total benefits from
renewing (r+ BE[V(a+1)|r, a]). Since V(a+1, z) =0 with probability one, the
value of the option is nonnegative, and the total benefits are greater than r (the
45 degree line). Further, the assumption that the probability that future returns
are greater than some number is larger the higher are current returns implies that
the value of the option (the difference between the total benefit curve and the
45 degree line) is increasing in r. As the patent ages there are less future years
in which the patent can earn returns, renewal fees rise, and the distribution of
future returns conditional on current r is not as benevolent (see A3.4). These
conditions insure that the option value is decreasing in age for each r. Note that

$ r+BE[V(a+1)|r,a] /
/r+BE[ V(a+2)|r,a+1]

Yo

|
I
|
|
|
|
|
|
|
Il

a Ta+1
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FIGURE 1.—Determining {7,}%_,
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though the total benefit function is continuous in r everywhere, it need not be
differentiable in r.

Recall that the agent renews the patent if the total benefits from renewal exceed
¢,. Proposition 1, which provides an optimal renewal rule for the agent, is an
immediate consequence of Lemma 1.

ProrosITION 1 (illustrated in Figure 1): For each age there exists a unique
7, €[0, c,], such that it is optimal for the agent to renew the patent if and only if
r.=F,. Moreover, the sequence {7,}-_, is nondecreasing in a.

Figure 1 explains this proposition. The 45 degree line enables us to find the
point at which the vertical axis equals ¢,. Comparing the values of the total
benefit curve to this point it is clear that r+BE[V(a+1)|r, a]= c,, according
as r=r7,. This, in turn, implies the simple renewal criteria provided in the
proposition—renew if and only if current returns, r,, are greater than the cutoff,
7. Note that 7, < c,, so that in general the difference ¢, — 7, is positive. If r, € (7,,
¢,) it is optimal for the agent to take a loss in current net returns (r, — ¢, <0) in
order to maintain the option of patent protection in the future. This is one
difference between a myopic model, wherein returns decay deterministically over
time and an agent would not renew unless 7, > c,, and the stochastic model. It
can be shown that the difference between the renewal fee and the cutoff, i.e.,
¢, — Ty, is nondecreasing in the current renewal fee (c,), nonincreasing in the
renewal fees for later ages (c,+., 7> 0), and, at least in the later ages, nonincreas-
ing in age (since L is the last year the patent can be kept in force ¢, — F, =0).
The fact that the renewal fees are increasing in age, while the option value is
decreasing, implies that the cutoffs are increasing in age. This result is used in
the derivation of the properties of our estimator, and, in addition, enables us to
simplify the form of the function of age, w,, and the renewal fee schedules which
determines the precise values of the cutoffs (see Section 3).

It is now straightforward, at least conceptually, to determine the proportion
of patents holders who drop out, that is who stop paying the renewal fee, at each
age. First note that the distribution of initial returns (which I denote by F(z, 1;
w,), where w, is a vector of parameters), the stochastic process generating
subsequent returns, the renewal fee schedules, and the renewal rule, determine
the (unconditional) distribution of returns at each age, say F(r, a), where

(3) l—F(r, a)=Pr{ra>r, ra—IBFa—la' L] 7'2?72, rlzfl}

(a=2,...,L, reR,).
Here it is understood that F(-) depends on w =[w,, w;], and on the vector of
renewal fee schedules faced by the cohort, say c. Note also that the definition in

(3) insures that if the patent is not renewed in any period there are no returns
to patent protection thereafter (i.e. subsequent returns are less than any re R,).

3 This is a result of the twin facts that the value function is calculated as the maximum of two
other functions, and that the conditional distributions of returns may have mass points. The value
function is not differentiable everywhere for the particular special case we estimate.
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Proposition 1 implies that the proportion of patent holders who pay the renewal
at age a is the proportion with current returns above 7,, or 1— F(#,, a). Since
the proportion who drop out at age a, say 7 (a), is simply the difference between
the proportions not paying the renewal fee at age a and those not paying the
renewal at age a—1,

4) m(a) = F(Fa, a) = F(Fa—y,a—1) (a=2,..., 1),

where it is understood that 7(-) depends also on w and ¢, and that F(7,, 1)=0
(there is no renewal fee required for the initial year of patent protection).

Equation (4) provides the theoretical probabilities required to calculate the
likelihood function implied by the model. In order to formulate this likelihood
function explicitly, we require some characteristics of the data (Section 4 provides
more detail on the data set). The data contain information on different cohorts
of patents, where a cohort is defined by the year the patent was applied for. For
some of these cohorts we do not observe the patents dropping out at later ages,
and for some we do not observe those dropping out at earlier ages (there is
censoring from both the left and the right). Let the index j distinguish between
alternative cohorts, let f; and J; be the first and last ages at which we observe the
number of patentees paying the renewal for cohort j, and let A;={f;, f;+1, ...,
L, +1}, for j=1, ..., J. The set A; indexes the distinct cells in which a patent
of cohort j could be observed. The first cell corresponds to patents which dropped
out before (or at) age f;, the next [, — f;—1 cells correspond to patents which drop
out at each subsequent age until (and including) J;, and the final cell corresponds
to patents which were still being renewed at ;. The data include, for each cohort,
the number of patents observed in each of these cells, or the sequence
{n(a, j)}f;:lfj, and the vector of renewal fee schedules faced by the cohort, or ¢;.

Now consider a patent drawn randomly from a given cohort. It will either
drop out by age f;, drop out at a subsequent age before (or including) J, or still
be paying the renewal fee at /. Equation (4) implies that the probabilities of
these mutually exclusive and exhaustive alternatives are given by

g
Y. w(a,c) for a =f,
a=1
(5) w(a,j)={ w(a, c) forfi<as<l, (G=1,...,J).

1- Y w(a,cq) fora=1+1,

With these definitions, the (log) likelihood of a particular value of the parameter
vector conditional on the observed data, or I(w), is

©  lw)=% % n(a))log#(aj; o).

Jj=1acA;

4 For the particular stochastic specification introduced in the next section this is insured by setting
¢; =0, which will imply both that 7, =0, and that the presence of 7, in equations (3) and (4) does
not affect their values.
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Our estimator of w maximizes the likelihood in equation (6), and properties
of this maximum likelihood estimator are provided in Proposition 2 below. First,
however, an explanation is in order. The asymptotic distribution provided in this
proposition follows from a theorem due to Rao (1973, Section 5.¢.2). This theorem
requires that the functions m(q, j; w) [a€ A;, j=1, ..., J] admit continuous
first order partials with respect to @ at w equal to the true value of w, say w’.
Since Assumptions 1 to 3 do not insure the differentiability of either the value
function, or of the conditional Markov distributions, they do not insure the
required condition. As a result, though it is convenient to introduce Proposition
2 here, its proof depends on the precise specification of both the distribution of
initial returns and of the Markov process generating subsequent returns—neither
of which are introduced until the next section.’

PrOPOSITION 2 (proved in Appendix B): Let n; be the total number of patents
in cohort j, let N=Y]_, n;, let n;/ N converge in probability to wyas N> (j=1,
..., J), and let o, be the maximum likelihood estimator defined by the equation
L,(0%) = sup,.y In(w), where Y is a subset of R* containing °, the true value of
w, in its interior. Then, provided identifiability and invertibility conditions are satisfied
(see Appendix B), ¥ converges in probability to »°, and

IN(0%—0°) 3700, [,

where B reads converges in distribution, n(-, -) denotes the multivariate normal

distribution, [i, ;] denotes the information matrix calculated in general as

J 1 om(a,j)om(a,j
i,=Y W, : w(a,j) dam(a,j)
j=1 " aca, 7(a,j) Ao, dw,

forr,s=1,..., k, and [i%,] denotes this matrix evaluated at » = »°.

Two comments are in order here. First the dimension in which o* converges
to the true value of w(i.e., »°) is N, the sum of the number of patents in the J
cohorts, and as Section 3 shows, N is unusually large in our samples. Second,
the fact that the «(-) functions admit first order partials which are continuous
at °, together with the consistency of the maximum likelihood estimator, insures
that [i%], the information matrix when evaluated at w =w*, is a consistent
estimator of [i},]. As a result, [i¥,]™" is used to estimate the variance-covariance
matrix of parameter estimates.

To complete the specification of the model we require a detailed description
of both the Markov process generating the returns from holding a patent, and
of the distribution of initial returns. This is provided in the next section. Section
3 explains the procedure used to obtain the estimates.

* Indeed the proof of this proposition consists entirely of showing that the #(-) functions which
are implicitly defined by the distribution of initial returns, the Markov process, and Proposition 1,
satisfy this differentiability condition.
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2. DETAILS OF THE STOCHASTIC SPECIFICATION

Equation (7), and the explanation which follows it, describe the Markov process
assumed to generate the returns from holding a patent. The conditional distribu-
tion of r,., is defined by

.= 0 with probability exp (— 6r,),
217 ) max {8r,, z} with probability 1 —exp (— 6r,),

@) where the density of z, q,(z), is a two-parameter exponential, that is,

qa(z) = Ua_l €Xp [_('Y+Z)/U'a],
and o, =¢* 'o,fora=1,...,L—1.

One advantage of the process specified in (7) is that it permits an explicit
solution for the sequence {7,}5_, as a function of the parameters of the model
(see below). This process also has the following economic interpretation. At each
age agents perform experiments designed to enable them to increase the profits
from their patented ideas. These experiments can have one of three types of
outcomes. First, they may reveal that the patented ideas can never be profitably
exploited. This event occurs with probability exp(— 0r,), that is it occurs with
smaller probability the larger are the current returns from holding the patent;
and if such an outcome does materialize the agent does not pay a renewal fee
in the following year (the zero state is an absorbing state in the stochastic process
generating current returns, which implies that if it is drawn the agent will let the
patent lapse). The second possible outcome is that the absorbing state does not
occur, but the experiments do not result in a use for the patented ideas which is
more profitable than the current one. In this case current returns decay at the
rate 6 <1, as steps forward by other agents in the economy gradually make
obsolete the returns from the agent’s own patent, and the agent must decide
whether current returns, and the possibility of discovering a use which may
increase those returns in the future, make it worthwhile to pay the next renewal
fee. Finally, the experiments may actually uncover a use for the patented ideas
which improves upon the returns which could have been generated with the
information of the previous year (the absorbing state does not occur and z > ér,).
The extent of the improvement depends on the precise realization of z. This
random variable has a two parameter exponential distribution; that is, z has
probability exp (—7y/o,) of being greater than zero (experiments do not
necessarily lead to outcomes which yield positive returns), and has a density
which declines at the constant rate o, thereafter. Note that o, = ¢° ‘0. With
¢ <1 this allows for the possibility that the probability of uncovering a use which
leads to returns greater than a given number declines over age; or for the possibility
that agents perform their best experiments first. ¢ <1 also suffices for assumption
A3.4 of the last section.

We have now defined the stochastic process generating the distribution of (r,,
ri, ..., ry) from the distribution of r,. Note that this process is a member of a
five parameter family, that is w, = (6, v, o, 8, ¢). To complete the specification
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of the model we require also a distribution of initial returns over different patents.
It is assumed that initial returns distribute lognormally, or

(8) log ry~n(u, og).

This implies that @, = (u, og); so that w = (w,, w;) contains seven parameters.

Equations (7) and (8) complete the specification of the model outlined in the
first section. Section 3 contains a brief description of how the maximum likelihood
estimate of w, that is w™®, was actually obtained. The reader who is not interested
in the details of the estimation procedure is advised to omit this section and go
directly to Section 4, which first describes the data, and then analyzes the empirical
results.

3. OBTAINING o*

Three technical problems must be solved before we can obtain w™*. First a
method must be provided to calculate the cutoffs, or the sequence {F7,}:_, as
defined in Proposition 1, as a function of ¢ and w. Given w, these cutoffs determine
the drop out probabilities, or the sequence {7 (a)}5_, as defined in equation (4),
which in turn determine the likelihood of w (see equation (6)). The second
problem, then, is to provide a method which calculates the drop out probabilities
corresponding to particular values of w and {7,}%_,. Finally, a maximization
algorithm which finds that value of w that maximizes the likelihood is required.
I now consider each of these problems in turn.

It is possible to develop a recursive system of analytic equations which solves
for the sequence {7, = r(a; w, c)}5_, for our problem. The system is obtained by
solving for the benefit function in an interval containing 7, at each age.’® The
cutoffs corresponding to particular values of w and ¢ were obtained by simply
substituting those values into this system of equations.

One cannot, to the best of my knowledge, obtain the drop out probabilities as
analytic functions of w and {7,}5_,. As a result the simulated frequency approach,
suggested by Lerman and Manski (1981), was used to obtain estimates of these
probabilities. The simulation estimator of {7 (a)}5_,, say {#(a)}~_,, is found by

S Briefly, this problem is first reduced to a more manageable one by expressing the function
determining the benefits from renewal, at each age, as the sum of L—1 component functions. The
component functions for age a are definite integrals of the component functions at age a+1 where
the limits of integration are determined by the value of r and by the subsequent cutoffs (by 7,.,,
for r=1, ..., L—a). This fact leads to a functional recursion which can be solved using Macsyma
(1983), a computer program designed for symbolic mathematical manipulations, to produce the
recursive system of analytic equations for {7,}. The continuity of the benefit function together with
the features of Macsyma enable a check of the Macsyma results for possible programming errors.
Finally, the solution can be simplified further by noting that the values of the component functions,
evaluated at 7,, must lie between two simple functions of the parameters of the model. These boundary
functions become progressively closer together for the later functions at each age and can, therefore,
be used to form an approximation whose error must lie in an easily calculable range. The functional
recursion and the boundary functions are developed in Pakes (1984, Appendix 3). The Macsyma
results were obtained by Andrew Myers and myself.
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taking pseudo random draws from the distribution of initial returns defined by
equation (8) and w,, passing each through the stochastic process defined by
equation (7) and w,, and calculating the proportion with r,_, = 7,_, but r, <7,
for a=2, ... L (see the definition of 7(a) in equation 4).” Let NSIM be the
number of pseudo random draws used to evaluate the simulated frequencies. It
is well known that 7(a) converges almost surely, in NSIM, to 7 (a) and has
variance equal to w(a)[1—m(a)]l/NSIM (a=2, ..., L). Define the pseudo
likelihood of w, say Il (w), to equal that value of the likelihood function obtained
from substituting the simulated for the actual frequencies in equation (6). w
was obtained by maximizing !/ (co) with respect to w. The 1nformat10n matrix was
obtained by perturbing each parameter by one per cent from w*, calculating the
implied derivatives of the simulated frequencies, and substituting these derivatives
into the formula for the information matrix provided in Proposition 2. The NSIM
used in the final round of the maximization subroutine was twenty thousand (see
the next paragraph), and the change from an NSIM of ten thousand, to an NSIM
of twenty thousand, did not have a perceptible effect on the estimates.

Evaluating the simulated frequencies at a given value of w is a computer time
intensive task; the CPU time for a given evaluation is approximately linear in
NSIM. A maximization subroutine for a problem involving simulated frequencies
should, therefore, conserve on the number of times it evaluates the likelihood
function at large NSIM. The subroutine used here varied NSIM within each
run. It was developed by modifying a program entitled QNMDIF (a quasi Newton
method for obtaining the maximum of a function of k variables available from
the National Physics Laboratory (1983); see also Gill, Murray, and Wright (1981)).
The jth round of the subroutine was defined by an NSIM, say NSIM(j), and a
perturbation vector, say dw’=[A4w], ..., Aw}]. Modifications were made to
QNMDIF (to both the procedure for finding the gradient vector, and to the
stepsize search; see footnote 8 for details) which directed it to find, with a
relatively small number of function evaluations, an w, say w’, such that I (w’ )=
I(wl, e, wltdel, wi,, ..., wl), fori=1...k The j+1 round used w’ as a
starting value, an increased NSIM [NSIM(j+1)> NSIM(j)], and a perturbation
vector with smaller components (Adw!™' < Awi; i=1,..., k). The final two rounds
used an NSIM of ten and twenty thousand, respectlvely, and a perturbation
vector equal to one per cent of the starting value of w.®

That completes the description of both the model and the estimation algorithm.

7 The computer program to perform the simulation was designed by Bronwyn Hall and myself,
and her assistance was, as always, gratefully appreciated.

8 This maximization subroutine was developed by Dvora Ross and myself. There were two
modifications made to QNMDIF which turned out to be particularly important. First, to find the
gradient vector for each iteration we used the 2k function evaluations obtained from changing each
component of the parameter vector by positive and negative values of that component of the
perturbation vector. If both perturbations with respect to a parameter resulted in function values less
than the starting value for the iteration, the derivative with respect to that parameter was set equal
to zero. If not, the derivative was set equal to that implied by the function evaluations. Second, the
stepsize search was modified so that function values corresponding to small differences in stepsize
were not calculated. I am grateful to the staff of the Hebrew University computing center for their
help in allocating computer time to us.
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The next section describes the data set and then provides the empirical results.

4. THE EMPIRICAL ANALYSIS
4.1. The Data

The data used in this study were obtained directly from the patent offices of
France, Germany, and the United Kingdom (the U.K.) by Mark Schankerman
and myself.® Table I summarizes some of the characteristics of this data.

Row 1 of the table provides the first age for which a renewal fee is due, or f.
There is no renewal requirement for ages less than f and the renewals at age f
reflect events that have occurred over the first f ages.'® In the U.K. then, the first
age at which we have information on the drop outs resulting from events that
have occurred over the previous year is a =6. Rows 2, 3, and 4 provide, respec-
tively: the last age at which a patent can be kept in force by payment of a
mandatory renewal fee (L), the dates of application for the cohorts studied, and
the years in which renewals are observed.'' In all countries, then, we have at
least partial information on the renewal behavior of cohorts applied for in most

TABLE 1
CHARACTERISTICS OF THE DATA?

Country France UK. Germany

Characteristic

1. f 2 5 3

2. L 20 16 18

3. Application dates of cohorts 1951-79 1950-74 1952-72

4. First/last year in which renewals are observed 1970/81 1955/78 1955/74

5. Patents studied from cohort: all patents Applied for Applied for Granted

6. Estimated average ratio of patents granted to 93 .83 35
patents applied for®

7. NPAT=N/J 36,865 37,286 21,273

2 Symbols are defined as follows: f is the first age for which a renewal fee is due; L is the last age at which an agent can keep the
patent in force by payment of an annual renewal fee; and NPAT is the average number of patents per cohort.

® For France and the U.K. these estimates were obtained as follows. Let n, be the number of patents applied for in year ¢, and 7,
be the number of patents granted. Then the ratio was calculated as T~* Z:r_ . [(E:_| .25, )/ n,]. In Germany the ratio of the patents
granted to those applied for from a given cohort was directly available, and these ratios were simply averaged over the cohorts studied.

° This data set will be described in more detail in a paper we are currently writing. We are indebted
to the respective patent offices for providing us with the data and graciously answering our subsequent
queries.

1011 terms of the model, we have, for a <f, ¢, =0, which implies that 7, =0, and that there will
not be any patents with r, <7, in these ages. On the other hand there may be patents that draw the
zero state before a = f. Since the zero state is absorbing, these patents will not be renewed at a =f
(see equation (7)).

11 post World War Germany allowed reapplication of patents previously applied for. By 1952 these
were less than 1 per cent of German applications, and this explains the choice of 1952 for the starting
cohort for Germany. The French patent office only provided information on renewals between 1970
and 1981. Given the values of f and L in France, this implies that the data contain partial information
on the renewal behavior of cohorts applied for between 1951 and 1979 in that country. In light of
these facts, I decided to use only post 1950 cohorts for the analysis of the U.K. L was changed to
20 in 1976 in Germany, and in 1980 in the U.K., and this explains the final renewal years for these
countries.
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of the 1950’s, throughout the 1960’s, and in the early 1970’s. The renewal fee
schedules were obtained in nominal domestic currency, converted to real domestic
currency using the country’s own implicit G.N.P. deflator, and then transferred
into 1980 U.S. dollars using the official exchange rate in 1980. All monetary
values are, therefore, in 1980 U.S. dollars.

Rows 5 and 6 illustrate an important intercountry difference in the characteris-
tics of the data. In France and the U.K. the data include all the patents applied
for in the cohorts specified in row 3, but in Germany the data contain only those
patents granted. Patents granted by date of application were not available for
France and the U.K., though a rough estimate of the ratio of grants to applications
in these two countries can be obtained by comparing the number of patents
applied for to those granted over time (see note b to Table I). This ratio was
quite large in France (.93), a bit smaller in the U.K. (.83), but only .35 in Germany
(row 6). Two implications of these facts should be noted. First, when interpreting
the estimates for France and the U.K. one should keep in mind that one event
that would lead to a draw of the zero (or absorbing) state in these countries is
a patentee who is told that his application is not granted (the model will then
correctly insure that there will be no subsequent returns to patent protection for
that agent). Second, the twin facts that the data include only patents granted in
Germany, and that the proportion granted is small in that country, imply that
the average number of patents per cohort is smaller in Germany (about 21,000)
than in France or the U.K. (about 37,000). Note also that rows 3 and 7 imply
that the data contain information on about one million patents in each of France
and the U.K., and on about half of a million patents in Germany.

Figure 2 provides the proportion dropping out at each age averaged over the
cohorts for which the proportion is observed. For “a” not equal to the first or
last observed cell for the cohort (a # f; or [+ 1), it is these proportions, disaggre-
gated by cohort, that enter the likelihood function. That is, the estimation
procedure compares the disaggregated proportions to the drop out probabilities
implied by different values of the model’s parameter vector. For a=f; or ;+1,
the estimation procedure tries to match the total proportion renewed, and the
averages of these proportions are provided in Figure 4 below. Figure 3 provides
the mean of the renewal fee schedules used in the analysis.

Figure 2 makes it clear that there is a distinct difference between the age-path
of the proportion renewed in Germany, and those in the other two countries. In
Germany the proportion dropping out is much lower in the early ages, sub-
sequently overtakes, and then stays larger than the proportion dropping out in
the other two countries. The lower drop out proportions in the early ages in
Germany could reflect the success of the German patent office in weeding out
the patents which have high probabilities of not being profitably developed,
especially since the renewal fees in the early ages in Germany are relatively small
and comparable to those in the other countries (see Figure 3). After age five,
however, these fees are increasing at a much faster pace in Germany, and this
should, all else equal, generate larger drop out proportions in the later ages in
Germany.
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Figure 2 also illustrates that there are, in fact, substantial differences in the
proportion dropping out both between different ages for a given country, and
between countries for a given age (the drop out proportion for age five in the
U.K. is not illustrated but equals .305). This understates the total variance in the
drop out proportions since there is variance between cohorts at a given age in
each country. Most of this latter variance is concentrated in the early ages. Finally,
note that in all countries (though to a varying extent) the drop out proportions
do not decline at as fast a pace in the last few ages as in the ages immediately
preceding them. This is what we would expect from a stochastic model of renewal
behavior, since as the age of the patent approaches L, the option value of holding
the patent goes to zero.

Turning to Figure 3, note that the average cost-of-renewal schedules are
nondecreasing in age. This is also true for the renewal fee schedules of each year
(which justifies the last statement in Assumption 2, Section 1). The renewal fees
are quite small in all countries in the early years, and increase significantly faster
in Germany thereafter.

4.2. The Empirical Results

Table II provides the parameter estimates, different dimensions of the data,
and some summary statistics, for each country. It was decided at the outset to
set the discount factor (B8) equal to .9 in all runs; and the results presented in
the table are conditional on 8 =.9."?

The parameter estimates in Germany and France are all positive and highly
significant. Recall that the dimension in which parameter estimates converge to
their true values is the total number of patents or NPAT. The extremely large
values of NPAT (row B.2) explain the relatively low estimated standard errors
in France and Germany. On the other hand the estimated information matrix for
the U.K. was singular (see note b to Table II). As will become clear presently,
this occurs because the estimates imply that in order to distinguish between
different possible values of the parameter vector we require independent informa-
tion on events which occur during the early ages; and in the U.K. we do not
have such information until age 6. As a result I pay little attention to the U.K.
estimates in what follows."

To get an indication of the fit of the model, the difference between the estimated
and actual #’s was squared and averaged over the NCHRTAGE (row B.4)
distinct cohort-age cells for which these proportions are observed. The resulting
numbers appear as MSE[#] in row C.1 of the table. Comparing them to the
variance in the actual 7’s (i.e., to V[ #; data] in row C.3), it is clear that in France

12 The decision to fix B, and a related decision to do only one run per country, served to save on
computer time. The CPU time for each run increases more than proportionately to the number of
parameters estimated.

13 On the whole the estimates presented in the table for the U.K. have implications which are very
similar to those that will be described for the French estimates. It should also be noted that the
maximization algorithm had much more difficulty in converging for the run on the U.K. data.
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and Germany only a small fraction of the variance in the actual 7’s is not
accounted for by the model (1.4 per cent in France, and .6 per cent in Germany;
in the U.K. this fraction is a somewhat larger 6.4 per cent). To see whether there
was any indication of cohort specific differences in the fit of the model, the
differences between the estimated and actual 7’s were also used to calculate a
pseudo Durbin-Watson statistic for each country (see note d to Table II). These
are provided in row C.2 of the table, and seem to distribute about two. I return
to further comments on the fit of the model after a brief description of some of
the implications of the parameter estimates, particularly those related to the
characteristics of the learning process.

The parameters whose estimates exhibit large intercountry differences are u,
og, and o. The estimates of u and oy imply that a substantial fraction of the
patents in the French data started out with low, almost negligible, initial returns;

TABLE II
PARAMETER ESTIMATES?

Country

France UKP Germany
A. Parameter
o 5689 (8.24) 5467 (6.09) 7460 (19.72)
y 9162 (13.67) 6919 (10.29) 8687 (17.09)
¢ .5084 (5.66 x 10~%) 4383 (2.17x1073) 4896 (1.16 x1073)
) .8475 (2.62x107%) .8102 (1.81x1073) .8861 (2.48 x107%)
or 1.579 (2.92x107%) 1.525 (3.04x1073) 1.158 (2.36 X 107%)
“w 4705 (2.75%x1073) 5.425(2.55x1073) 6.718 (3.70x 107%)
0 .0990 (6.36 x107) .36° .0855 (2.46 x 107%)
B. Dimension®
B.1. NPAT 1,069,095 983,471 446,741
B.2. NSIM 20,000 20,000 20,000
B.3. Age: f/L 2/20 5/16 3/18
B.4. NCHRT 29 26 21
B.5. NCHRTAGE 238 272 237
C. Summary Statistic®
C.1. MSE[#] 5.42x107* 6.91x107* 1.48x107*
C.2. PDW[#] 1.65 2.24 1.85
C.3. V[#;data] 3.90x1072 1.07x 1072 2.65x1072

2 Patents are assigned to cohorts by year of application. Numbers in parenthesis beside p

standard errors.

® Letting [i* ] be the estimated information matrix, then, for the UK., i¥

=0. The standard errors of this column were obtained

by inverting a six by six matrix consisting of i for r, s # 6. They are, therefore, conditional on 8 = 6*.

©See also the notes to Table L. NPAT is the total number of patents covered by the data. NSIM is the number of random draws

used to eval the si in the final iteration of the maximization subroutine and in the estimation of the information

matrix (see Section 3). NCHRT is the number of cohorts covered by the data. NCHRTAGE is the number of cohort-age cells covered

by the data.

dLet e,, be the difference between the estimated and the actual 7(a, j) for acA, j=1, ...
(NCHRTAGE)™! Z Z

s oLt s b J
-z z (Canry—ea,)? Zl(l,—f,)]l D e?,, T -7+
=1a=f; =

V[#; data] is the sample variance of 7(a, j).

are their estimated

, J. Then MSE [7#]=
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while the higher mean and the lower coefficient of variation in Germany imply
that this phenomena was not nearly as pronounced among German patents (the
mode of the estimated distribution of initial returns is under ten dollars in France
butis over two hundred dollars in Germany; and the parameter estimates indicated
that about thirty per cent of the French patents had initial returns under fifty
dollars, while under one per cent of the German patents do). The larger o in
Germany implies that, on average, the holders of the patents included in the
German data had a higher probability of discovering uses which increased the
returns to their patented ideas. Recall that the German data include only patents
granted while the French data include all patents applied for; and that the
granting criteria seem to be particularly stringent in Germany (Table I). It seems,
then, that the German patent office was, on the whole, successful in weeding out
patents with low initial returns and a smaller probability of increasing those
returns over time.

The estimates of 6, 5, ¢, and y do not vary much between the two countries.
The low estimates of ¢ (about .5) imply that the learning process is concentrated
in the early ages. Table III illustrates this point. The descriptive statistics provided
in this and in subsequent tables were obtained from a simulation run of 20,000
draws based on the mean of the renewal fee schedules and the parameter estimates
of Table II. Consider first the column of figures for France. The mean of the
initial distribution of returns was 380 dollars. During the initial year just under
twenty per cent of the French patent holders discovered a use which enabled

TABLE III
THE EVOLUTION OF IMPLICIT REVENUES IN THE EARLY AGES®

Country

Francé Germany
Characteristic
Eqplr|r>0] 380.43 1608.57
Pr (Downside); Pr (Upside) .0637; .1807 .0004; .2705
w(2) .0637 (no required renewal)
E(plr|r>0] 1414.72 3400.98
Pr (Downside); Pr (Upside) .0387; .0331 .0006; .0584
w(3) .0907 .0013
E,,)lr|rs>0] 1432.24 3224.56
Pr (Downside); Pr (Upside) .0118; .0012 .0005; .0039
w(4) .0792 .0121
E(,y[ra| r4>0] 1339.05 2899.41
Pr (Downside); Pr (Upside) .0048; 0.00 .0003; 0.0
w(5) .0381 0277
E,lrs|rs>0] 1192.70 2641.40
NPAT 36,865 21,273

2 The estimates in this and the following tables were obtained from a simulation run of 20.000 draws using the
estimates of w given in Table II and the mean of the renewal fee schedules. Pr (Downside) is the average probability
of discovering that the patented ideas will never by profitably exploited (of drawing the absorbing state), averaged
over the patents still in force. Pr (Upside) is the average probability of discovering a use which enables the agent
to increase returns in the following year (of z>> &r,), averaged over the patents still in force. E,[r|r> 0] is the mean
of r for patents still in force. m(a) is the proportion of patents which drop out at the ath renewal.
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them to increase subsequent returns, while over six per cent discovered that their
patented ideas could never be profitably exploited. These six per cent were the
only patents whose renewal fees were not paid in the second year. The holders
of the remaining patents paid the renewal fee and maintained the option of patent
protection on the results of the second year’s experiments. The large learning
probabilities in the first year caused a sharp increase in the average returns of
the patents still in force in the second year. During the second year much less
learning occurred than occurred during the first year. An additional nine per cent
of the patent holders stopped paying the renewal fee at the third age. Of these,
about five per cent were owned by agents who, after doing experiments for two
years, had decided that it was not worthwhile to pay the renewal fee in order to
have the option of patent protection on the results of subsequent experiments.
Average learning probabilities decreased further over the next two ages. They
were just about sufficient to keep the mean of the current returns earned on the
patents still in force constant. There was essentially no learning after the fifth
age, and the effect of the obsolescence process clearly dominates the learning
processes when comparing the means of the patents still in force in the fifth, to
those still in force in the fourth, ages. The major qualitative difference between
the German and the French columns in this table arises from the fact, noted
earlier, that the German parameter estimates imply that a much smaller proportion
of the patents in the German data started out with negligible returns. As a result
most of the patents included in the German data were known to be worth
something at the outset, and more of the German patent holders who did not
discover a more profitable use over time had current returns which induced them
to pay the renewal fee until the ages in which those fees started rising sharply
(which was after age five; see Figure 3).

I now return briefly to the issue of the fit of the model. Figure 4 provides the
proportion renewed, by age, averaged over the cohorts for which this proportion
was observed. The thick lines provide the proportions in the data, the thin lines
those estimated by our model, and, for comparison, we also provide the propor-
tions estimated from a deterministic model (the broken lines). The deterministic
model is a model in which patents are endowed with an initial distribution of
returns which decay deterministically thereafter. It is obtained by changing the
probability statement in equation (7) to read: r,., = 8r, with probability one."*
In this figure it is hard to distinguish the curve estimated by the stochastic model
from the data. On the other hand the deterministic model predicts too few renewals
in the early ages (i.e., too many drop outs), too many renewals in the middle
ages, and too few again in the later ages. Recall that the renewal fees are close
to constant over the initial ages. As a result, the deterministic model cannot
accommodate both the small number of drop outs in the initial age, and the
sharp increase in the number of drop outs over the next few ages. This point is

14 As one would expect from the large size of our samples (NPAT) the likelihood ratio test statistic
for the null hypothesis that the model was deterministic was inordinately large (over 20,000 for
Germany and over 60,000 for France; see also note 15). More informative is the fact that the MSE(#)
statistics for the deterministic model were about twice their values for the stochastic model.
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magnified in Figure 5 which provides the proportion dropping out, by age,
averaged over the cohorts for which this proportion is observed. The stochastic
model accounts for the combination of the low initial drop outs and the increase
in the number of drop outs over the next few ages by estimates which imply that
the option value of patents which start out with low returns is initially high, but
then declines rather rapidly. As will be shown presently, this model accounts for
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the spread of those who do drop out over the later ages by a somewhat skewed
distribution of initial returns, and, more importantly, by a learning process which
increases the skew in the distribution of returns substantially over the next few
ages.

In Figure 5 we can actually see the differences between the estimates from the
stochastic model and the data. These differences are concentrated in the middle
ages. The age-specific average drop out proportions in the French data have two
local maxima (at ages three and seven). The estimates from the model for France
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also have two local maxima (and at the same ages), but the model’s estimates
of these maxima are somewhat too high, and its estimate of the trough between
them is too low. In Germany the data provide a rather flat age distributon of
average drop out proportions between ages eight and eleven. The model’s esti-
mates replace this with two local maxima and a minimum, though neither the
maxima nor the minimum are nearly as pronounced as those estimated for the
earlier ages in France. In addition, the model’s estimates of the average drop out
proportions in the later ages are a bit too high in France, and a bit too low in
Germany. In sum, though Figures 4 and 5 indicate why the mean square error
of the differences between the observed and estimated proportions are small
relative to V(7r; data), they also indicate that the model is not perfectly specified,
and this should be kept in mind when considering the implications of the
parameter estimates.'’

Table IV provides a summary of the distribution of returns at ages one, three,
and five respectively. Two implications of this table are of interest. First there is
a distinct pattern to the evolution of these distribution functions over age. Between
ages one and three the upper tail of the distribution becomes thicker and is
pushed to the right. That is, a substantial fraction of the patentees who had the
“upside draws” in Table III uncovered uses for their patented ideas which
increased the returns earned from hclding their patents by large amounts. A
comparison of the quantiles for age five to those of age three reveals the onset
of the obsolescence process; that is, the quantiles from the age five distribution
are always below the same quantiles from the distribution at age three. The
second point to note is that there is a skew in the initial distribution of returns,

TABLE IV*
THE DISTRIBUTION OF RETURNS IN THE EARLY AGEs [F(r, a)]

Country France Germany

r/a 1 3 5 1 3 S

0 0 155 270 0 .001 .04

50 31 315 375 .01 .01 .04
150 .580 .525 .585 .07 .065 .095
500 .830 710 745 34 27 325
2,500 975 .86 .895 .83 655 .705
5,000 990 925 950 940 .800 845

15,000 995 990 990 990 95 97

2 See the note to Table III

!5 Given the values of NSIM and NPAT for our problem (see Table I) the binomial sampling
error in both the empirical and estimated frequencies have variances very close to zero. As a result
even our, relatively small, sample values of MSE(#) are too large for sampling variance to be the
only source of error in the model. Though this problem, which is called the problem of extra-binomial
sampling variance by Williams (1982) (see also the review in Haseman and Kupper (1979) and the
discussion in Heckman and Singer (1984)), occurs frequently in models designed to analyze propor-
tions when the underlying sample size is large, I do not know of any consistent way of accounting
for it when the model has a sequential dimension.
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and that this skew increases substantially over the first few ages. This fact leads
to a highly skewed distribution of realized patent values.

Table V provides percentiles and Lorenz curve coefficients from the distribution
of realized patent values, where the realized value of a patent is defined as the
discounted sum of net returns (current returns minus renewal fees) from age one
to the last age the given patent is kept in force. Again I begin by considering the
column of figures for France. Twenty-five per cent of the patents in the French
data had realized values of seventy-five dollars or less.'® These patents contributed
about a half of one per cent to the total value of the patents in a cohort, while
the patents in the lower half of the distribution contributed less than two per
cent of the total value of a cohort. The median of the distribution of realized
values ($534) was less than one tenth its mean ($5,631); and the five per cent of
the distribution with the highest realized values contribute about half of the total
value of a cohort. The German distribution of realized values was somewhat less
skewed than the distribution in France, though even the German distribution
was extremely skewed. The difference between the two distributions was, as might
have been expected from the fact that in Germany the data refer to grants rather
than applications, most pronounced at the lowest percentiles. In Germany these
percentiles were nonnegligible, albeit, quite small. Still only about 7 per cent of
the patents in Germany had realized values in excess of $50,000; in France only

TABLE V

PERCENTILES (pl) AND LORENZ CURVE COEFFICIENTS (1c) FROM THE DISTRIBUTION OF
REALIZED PATENT VALUES®* :

Country
France UK. Germany
Per cent
p p1 ($) 1c pl (8) 1c pl ($) ic
per cent per cent per cent
25 75.23 544 355.55 554 1,999.60 2.249
.50 533.96 1.833 1,516.84 3.247 6,252.93 7.341
5 3,731.35 8.087 7,947.55 16.369 19,576.26 25.288
.85 10,292.06 19.575 15,357.09 31.721 32,428.14 41.001
.90 17,423.11 31.261 22,206.21 44.257 44,241.87 52.672
95 31,609.59 52.461 34,740.07 62.960 65,753.61 69.223
97 42,905.78 65.514 43,889.95 73.640 78,299.01 78.348
.98 51,215.84 73.729 51,277.22 80.072 94,842.63 83.800
99 66,515.40 84.011 65,075.08 87.858 118,354.78 90.330
maximum 259,829.27 — 374,028.70 — 419,217.55 —
mean 5,631.03 — 7,357.05 —_ 16,169.48 —_
NPAT 36,865 37,826 21,273

" . * — . . . .
® The realized value for patent i is ¥."1  B""1(r, _—c ), where 7 is the last age at which patent i was kept in force. See also the
p L 1,776 ¢ 4 p
note to Table III.

16 Of course some of these patents had negative (though small in absolute value) realized values,
as they were patents on which early renewals were paid for options which did not materialize. If,
for example, we had defined the realized values as the discounted sum of net returns from age two,
rather than from age one (as in the table), the Lorenz curve coefficient corresponding to p =.25 wouid
have been negative, though close to zero.
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two and a half per cent had values this large. Given the size of the cohorts this
implies that, on average, about a thousand patents which had realized values in
excess of $50,000 were applied for annually in France, and about fifteen hundred
such patents were granted annually in Germany.

One other point is worthy of note here. The estimate of the ratio of the average
realized value in a cohort of patents applied for in France, to that value in a
cohort of patents granted in Germany, is .35—which is just equal to the average
of the ratios of grants to applications in the German cohorts (see Table I). The
estimates seem to imply, then, that the mean of the realized values of the patents
applied for in the two countries was similar. On the other hand, there were a
significantly larger number of patents applied for per year in Germany than in
France (about 60,780 in Germany, versus 36,865 in France). On average, then,
the total value of a cohort of patents in Germany was larger than the value of a
French cohort.

4.3. The Value of Patent Protection and the Characteristics of the Patenting Process

A word of caution is in order before proceeding. Though it may well be the
case that the patent renewal data are the most extensive and detailed information
source on the value of patent protection available, they, in themselves, contain
only a limited amount of information: the age path of the proportion of patents
in different groups paying a renewal fee and the renewal fee schedules. Mixing
this information with additional assumptions has lead to a set of quite detailed
conclusions, but it should be clear that these may depend on the additional
assumptions chosen (both behavioral and stochastic). The only exogenous check
of these conclusions I have considered is a broad check of the implications of
the parameter estimates against known intercountry differences in the data. In
this section I consider more general implications of the parameter estimates.
Though here it will be possible to provide rough checks for the consistency of
some of the conclusions we derive with alternative sources of information, it
should be kept in mind that there may be many models that do as well as ours
in all these respects (as well as in fit), but differ substantially in others.

To get an indication of the annual returns earned from holding the patent
stock in a country, we must account for the fact that the patent stock held at a
given point in time consists of the patents from the cohorts applied for over the
previous L years which are still in force at that time. Assuming that each of the
previous L cohorts began with the average number of patents per cohort and
faced the mean of the renewal fee schedules, and using the parameter estimates
of Table 11, we find that the net annual flow of returns from holding the patent
stocks in France, the U.K., and Germany were .315, .385, and .512 billion dollars,
respectively. To consider whether these figures imply large gains from patenting
we would like to compare them to either the total returns that accrued to the
patented ideas, or to the expenditures that went into developing them. Neither
of these two numbers are available, but the OECD (1975; Tables III and 1V)
does provide estimates of the R&D expenditures funded by the business enter-
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prises in these countries in 1963 (which is the midcohort in our data). The
estimates of the annual returns from holding the patent stocks were respectively,
15.56 per cent, 11.03 per cent, and 13.83 per cent of the R&D expenditures of
the business enterprises in France, the U.K., and Germany; and the sum of these
returns across countries was 13.14 per cent of the sum of their R&D expenditures.
Since there may be returns earned as a result of patenting per se, regardless of
whether the patents were ever renewed, and since our estimates only pertain to
the returns earned by renewing (or holding) patents already in force, the
numerator of this ratio may slightly understate the annual monetary value of the
incentives created by the patent system. Moreover, the ratio suffers from the fact
that we have not netted out various balance of trade effects.” Still, the ratio does
suggest that the proprietary rights resulting from the patent laws create annual
returns which are nonnegligible in comparison to privately funded R&D activity.

The returns earned from holding patents may, of course, be only a small
fraction of the returns that accrue to patented ideas. Nevertheless the general
similarity between the shape of the estimated distributions of the value of holding
patents on the one hand (see Table V), and currently available evidence on the
distribution of the values of patented ideas on the other, is quite striking. In
particular the evidence available from disaggregated case studies indicates an
extremely skewed distribution of the values of patented ideas (see Sanders,
Rossman, and Harris (1958); and Gabrowski and Vernon (1983)). Scherer (1958,
p- 1098), for example, notes that the data provided in Sanders, Rossman, and
Harris suggest a Pareto-Levy distribution with an infinite mean for the distribution
of profits from patented ideas; while Garbrowski and Vernon summarize their
studies on the profitability of new pharmaceutical entities with the statement:
“In effect, these results indicate that pharmaceutical firms are heavily dependent
on obtaining an occasional “‘big winner” to cover their R&D costs and generate
profits” (Gabrowski and Vernon, 1983, p. 11). Larger sample econometric studies
have focused on the relationship between the number of patents applied for and
alternative measures of the outputs and the inputs into inventive activity (see the
articles in Griliches (1984)). Pakes (1985) provides a detailed time-series cross-
section analysis of the reduced form relationship between patent applications,
R&D expenditures, and changes in the stock market value of firms, that allows
for dynamic error components to intercede between these variables. That article
concludes that changes in the number of patents applied for by firms are a very
noisy measure of the changes in stock market value of their R&D related output,
but that, on average, increases in patent applications are associated with large
increases in the firm’s value, just what we would expect from a highly skewed
distribution of the value of patented ideas. In addition, a strong simultaneous
relationship between the factors driving R&D expenditures and those driving
patents was found, suggesting that a significant search for uses and improvements
to the patented ideas continues during the early years of a patent’s life.

17 Business enterprises in these countries also own patents in force elsewhere, and foreign business
enterprises own patents in force in these countries. Moreover, not all the business sector’s R&D

expenditures are directed towards patentable innovations, and not all patentees are business enter-
prises.
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There is an explanation of the patenting process which is at least consistent
with both the empirical results found in this paper, and with those cited above.
Patents are applied for at an early stage in the inventive process, a stage in which
there is still substantial uncertainty concerning both the returns that will be earned
from holding the patents, and the returns that will accrue to the patented ideas.
Gradually the patentors uncover the true value of their patents. Most turn out
to be of little value, but the rare “winner” justifies the, investments that were
made in developing them. If this explanation captures the nature of the patenting
process we would not expect to find a very stable relationship between profits
and current and past patents, or between profits and the current and past R&D
expenditures which lead to them, except possibly for very large aggregates. For
individual economic units we would expect most increases in patents not to lead
to any increase in profits, and for there to be an occasional jump in profits which
is not necessarily preceded by any increase in patenting. Growth through discovery
will occur in spurts, and these spurts will be probabilistically related to the
investments which preceded them. Traditional production function approaches
to obtaining estimates of either the rate of return to the investments which
produced the patents, or the determinants of the quantity of resources invested
in their development, are not likely to be very precise. Nor will they provide
much evidence on the characteristics of the distribution of possible outcomes,
features of the problem that are likely to be particularly important in analyzing
the rich set of issues determining the evolution of firm and industry structure.
An alternative, pointed out by Nelson and Winter (1982), and Telser (1982), is
to be more careful in the econometric modelling of the inventive process itself,
employing, perhaps, controlled search processes in which investment expen-
ditures affect the distribution of possible outcomes.'®

One final point: Disaggregated patent renewal data, data which enable an
investigation of the returns to patent protection by technical field of the patent
and by nationality and type of patentor (e.g. individuals, small business enter-
prises, large corporate entities), is gathered by INPADOC (International Patent
Documentation Center, Vienna, Austria). These data should prove extremely
valuable. Issues related to which sectors of a particular economy, and which
economies, derive disproportionate benefits from the patent laws lie at the heart
of most discussions of the cost and benefits of alternative patent systems (see
Scherer (1965, Chapter 16), and the literature cited there). Moreover, intersectoral
differences in the patenting and R&D processes are central to the literature on
market structures, industrial policy, and technical progress.

National Bureau of Economic Research, Cambridge, MA 02138, U.S.A
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APPENDIX A

This appendix proves the following lemma.

LEMMA 1: The value of the option, that is, E[V(a+1)|r, al, is: (i) continuous and nondecreasing
in r, and (ii) nonincreasing ina (reR,,a=1,..., L

18 A step in this direction has been made by Ericson and Pakes (1983).
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PROOF: The proofs of both (i) and (ii) are obtained by backward induction on “a”, and use the
following lemma (for a proof, see Ross (1983, p. 154)). Let f(z) be nondecreasing in z and
Pr{z<k|z}<Pr{z=<k|z{} for all ke R,. Then, provided E[f(z)|z,] <, E[f(z)|z,]= E[f(z)|2}]
(for nonincreasing f(-), E[f(z)|z]< E[f(z)|z]).

Part (i). Since E[ V(L+1)|r]=0for all r, the initial condition of the inductive argument is satisfied
trivially, and it suffices to show that if the proposition is true for a=7+1, it is also true for a=1.
Recall that V(7+1, z) =max {0, z—c,,,+BE[V(7+2)|z 7+ 1]}, and note that since the hypothesis
of the inductive argument implies that E[ V(7+2)|z, 7+1] is continuous and nondecreasing in z,
V(7+1, z) is also.

To establish continuity take any re R.. E[V(7+1)|r, 7] will be continuous at r if for every
sequence {r,} such that limr, =r (or r,~>r), E[V(7+1)|r,, 7]> E[V(v+1)|r, 7] (Royden (1968,
p. 48). For any such sequence, let V,(7+1) be the random variable V(7+1, z) with distribution
G(z|r,, 7) (V(r+1) has distribution G(z|r, 7)). Since A3.2 implies that G(z|r,, ) converges in
distribution to G(z|r, 7), and V(r+1, z) is continuous in z, the distribution of V,(r+1) converges
to that of V(7+1) (Billingsley (1979, Theorem 25.7)). This fact will insure that E[V(r+1)|r,,
7] E[V(7+1)]r, 7], if there exists an & > 0 for which E[ V(7+1)]'**|r,, r] <o for all n (Billingsley
(1979, Theorem 25.12 and its corollary)). Note also that since r was arbitrary, if we show that
E[V(7+1)]"**|r,, 7]<0o, then E[ V(a+1)|r, a] is continuous in r for all re R,(a=1, ..., L).

Now

L-7
r.= 'n] =2° jZl E[r3flr =r,]

— 1+¢
E[Vn(7+ l)l-"s]S E[(Lzl rr+])
j=

(Rao, 1973, p. 149). Since Assumption A3.1 insures that there exists an & > O such that E[r}15|r =r,]<
oo, it will suffice to show that E[r}}f|r,=r, 1< E[r{;|r,=r,], forall n and j=1,..., L—1.
For this we require only that

Gf,](k’rn)EPr{k? r‘r+j,rr= rn};Pr{ka rl+]|r1 = n}E Gl,](klrn)

forallk,j=1,...,L—7andr, € R,.Asecond inductive argument proves this point. Since Assumption
A3.4 insures the inequality for j =1, it will suffice to show that if the inequality is true for j=j’, it
is also true for j=j'+1. Now

Pri{k=r jlr.=r}
=[G(k|z, 7+j)G,(dz|r,)
=[G(k|z 1+j)G, j(dz|r,)
>] G(k|z, 1+j)G, ;(dz|r,)=Pr{k= Farplri=ra}

where the first inequality follows from A3.4, and the second from the hypothesis of the inductive
argument and the Lemma since G(k|z, 1+j') is nonincreasing in z (from A3.3) and bounded by 1.

To establish that E[V(7+1)|r, ] is nondecreasing in r apply the Lemma directly and note that:
V(7+1, z) is nondecreasing in z (from the hypothesis of the inductive argument); G(z|r, 7)<
G(z|r', 7) whenever r=r' (from A3.3); and V(r+1, z) is integrable with respect to G(z|r, ) (from
the argument given above). Q.E.D.

Part (ii). For the first step of the inductive argument I assume that E[V(a+2)|r, a+1]<
E[V(a+1)|r, a] and show that this implies that E[V(a+1)|r, a]<E[ V(a)|r, a—1] for
reR,. Recall that V(a+1, z)=max{0, z—c,.,+BE[V(a+2)|z, a+1]}<max{0, z—c,+
BE[V(a+1)|z, al}= V(a, z), where the inequality follows from the hypothesis of the inductive
argument and the fact that c,., =c, (see A2). Therefore, for any re R, ,

E[V(a+1)|r,a]l=[ V(a+1,2)G(dz|r, a)<{ V(a, z)G(dz|r, a)
<[ V(a, 2)G(dz|r,a—1)= E[V(a)|r,a—1],

where the last inequality follows from the Lemma, since V(a, z) is nondecreasing in z and integrable
with respect to G(z|r, a—1) (see above), and G(z|r, a)=G(z|r, a—1) from Assumption A3.4.
To establish the initial condition for the inductive argument it suffices to note that
E[V(L+1)|r, L]=0<[_ (z~¢;)G(dz|r, L-1)=E[V(L)|r, L—1]. QE.D.
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APPENDIX B. PROPOSITION 2

Proposition 2, which provides properties of the maximum likelihood estimator, follows directly
from a theorem due to Rao (1973, Section 5.e.2) provided the following regulatory conditions are
satisfied:

(i) The functions =(a, j; w)(a=2, ..., L; j=1, ..., J) admit first order partials which are
continuous at » = »°.

(ii) For every w €'Y such that w # °, 7(a, j; )# m(a, j; °) for at least one couple (a, )
(a=2,...,L;j=1,...,J).

(ili) The information matrix, [i, ], is nonsingular at w = »°.

. Since neither the conditional Markov distributions nor the function determining the benefits from
renewing are differentiable everywhere, it is not immediately obvious that condition (i) is satisfied
in our problem, and a formal proof of this condition is given below.'® Given this proof, I simply
assume (ii) and (iii). They will be satisfied provided there is sufficient variation in the cost schedules
and ages covered by the data.

PROOF OF CONDITION (i): Omitting the index j for simplicity we have, from equation (5) in the
text,

m(a; 0) = F(F,(w), a; ) = F(Fouy(0), a— 15 0),

where F(-, a) and 7,(-) provide the distribution of returns and the cutoff at age a respectively (a =2,
..., L). Lemma B.1 below shows that F,() is continuously differentiable in w at w = w®(a=2, ... s
L). 1t therefore suffices to prove that F(r, a) is both continuously differentiable with respect to o at
® =« in an interval containing r = 7,(w°), and has a density which is continuous at r = 7,(«°)(a =1,
-+, L; recall that F(7;, 1)=0). Lemma B.2 proves a condition which suffices for this point.
Q.E.D.

LEMMA B.1 Each el it of the sequence of functions {F,(«)}5_, admits first partials which are
continuous at w = »°.

PROOF: The proof is by backwards induction on “a”. Since 7, = c;, the initial condition of the
inductive argument is satisfied trivially, and it suffices to show that 7,(w) admits continuous first
partials with respect to w at w = ° provided the 7, .(0)[r=1, 2, ..., L—a] do. Proposition 1 and
equation (7) imply that 7,(-) is defined by the implicit function

00

u(?,, w)=7F,+B[1—exp(— BFa)]] V(a+1,z;w)Q(dz, a; w)—c,=0.

Fa+1
Clearly u () possesses a continuous, strictly positive, partial derivative with respect to 7,. The implicit
function theorem therefore implies the lemma provided w(-) admits continuous first partials with
respect to w at w = w°. The hypothesis of the inductive argument implies that 7, ,(w) has continuous
first partials; and Q(z, a; w) is an exponential distribution which has a density which possesses
continuous first partials with respect to w everywhere for ze R, . It will, therefore, suffice to show
that V(a+1, z; w) has continuous first partials with respect to  at w = w° for every z€(Faqq, ),
except possibly a set of z of Lebesgue measure zero, provided that 7, (o) [for r=1, ... L—a] have
continuous first partials at @ = »°. A second inductive argument suffices to prove this point.

Since V(L, z) =max {0, z— ¢, } the initial condition for the inductive argument is satisfied trivially
and it will suffice to show that V(a+1, z) has the required property provided that V(a+2, z) does.
Equations (7) and (2) imply that

1% The following two points help to explain why condition (i) can be satisfied despite the nondifferen-
tiability of r+ BE[V(a+1)|r, a] and G(z|r, a). First, the direct dependence of*7(a) on the benefit
function is through the fact that the cutoff, 7,, is defined as the unique solution to r+ BE[ V(a+ 1)]|r,
a]=c,, and for our problem it is possible to show that r+BE[ V(a+1)|r, a] is differentiable in r in
a region about 7,(a=2, ..., L). Second, though conditional on any value of r, G(z|r, a) has points
at which it is not differentiable in z; there does not exist a value of ze R, which is a discontinuity
point for a set of r of positive Lebesgue measure; as a result, the unconditional distributions of
returns, that is F(-, a), is differentiable (see below).
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o

v'(a+1,z)=z—c, +B[1—exp (- 02)]J © V(a+2,5)Q(ds,a+1),

Fat2
. = -1z .
ifze [ra+l, 8 ra+2]’

V(a+1,z)=
: vi(a+1,z)=z—c,+B[1—exp (—02){Q(8z, a+1)V(a+2, z)

+‘[ V(a+2,5)Q(ds,a+1)}, ifze(867'F,,,,o).

8z

The argument of the last paragraph together with the hypothesis of the inductive argument implies
that v'(a+1, z) has continuous first partials with respect to » at © = »® for every z € [F,.,(w°), ©).
For ze(87'7,,,, ®) the values of z at which v?(a+1, z) has discontinuous first partials are the
values of z at which V(a+2, 6z) has the same property. Now, for 7=1 or 2, let S(a+ 7) be the set
of z€& (F,y,(w°), ) at which V(a+ 7, z) has discontinuous first partials with respect to  at = »°.
Then

m[S(a+1)]<sm[S(a+2)]+m[F,,,8" ' ]=m[S(a+2)]=0,

where m[ -] provides the Lebesgue measure of alternative sets, and the last equality follows from the
hypothesis of the inductive argument. Q.E.D.

LEMMA B.2: F(r, a) has a density which is both continuous in r and admits continuous first partials
with respect to  at w = »° for every re[F,(w®) —¢, ©©) and some e >0 (a=2, ..., L).

PROOF: The proof is by forward induction on “a”. First assume F(-, a—1) has a density with
the required properties and denote that density by f(-, a—1). Choosing 0< ¢ < 7,(0°®) — 8°F,_,(@°)
(that such an ¢ exists follows from the facts that 7, = 7,_, and 6°<1), Proposition 1 and equation
(7) imply that for any r e [7,(w°) — &, ©)

(L2.1) Pr{r>r,=z7,—¢}= J‘ Pr{r>r,=27,—¢|z}f(z,a—1) dz
Fa-y

where

_ _ _ £ 5-lr> _
(12.2) Prir>r,>7,—¢|z}= [1-exp(—-02)]Q(r,a—-1) if&8 'r=z>7,_,,
0 ifz>67'r,

and Q(-, a—1) denotes an exponential distribution. Substituting we have

571y
(L2.3) Pr{r>r,=7,—e}=Q(r,a—1) [1—exp (—02)1f(z,a—1) dz

Fa—1
For any r in the required interval the density, f(r, a), can be derived by direct differentiation of
(L2.3). The fact that it is continuous in r and possesses continuous first partials with respect to w at
o = »° follows from the same properties of: the exponential distribution and its density, of f(z, a —1)
for all ze[F,_,, c0) (which follows from the hypothesis of the inductive argument), and from the
continuity of the first partials of 7,_, with respect to » at w = ° (Lemma B.1).

To complete the inductive argument we need only show that F(-, 2) has a density with the required
properties. This can be shown by substituting @ =2 in the argument given above and noting that
F(r, 1) is the lognormal distribution which has both a continuous density and continuous first partials
with respect to w for all re R,. Q.E.D.
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