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Econometrica, Vol. 70, No. 2 (March, 2002), 801-816 

IDENTIFYING DYNAMIC DISCRETE DECISION PROCESSES 

BY THIERRY MAGNAC AND DAVID THESMAR1 

1. INTRODUCTION 

OVER THE LAST DECADE, the number of econometric applications using structural mod- 
els of dynamic discrete choice has been growing quickly. These models allow economists 
to simulate the consequences of economic policies affecting education, labor market tran- 
sitions, retirement decisions, or fertility choices (see, for example, Keane and Wolpin 
(1996), Eckstein and Wolpin (1989)). Little is known however about the identification of 
these models except that they are generically not identified (Rust (1994)). 

In this paper, we analyze the nonparametric identification of dynamic discrete choice 
models. Our methodology is based on the insight of Hotz and Miller (1993) that Bellman 
equations can be interpreted as moment conditions. We consider cases with and without 
unobserved heterogeneity. Not only do we show that these models are not identified (Rust 
(1994)), we are also able to determine their exact degree of underidentification. We begin 
with the case without correlated unobserved heterogeneity. Using Bellman equations as 
moment conditions, we show that utility functions in each alternative cannot be (non- 
parametrically) identified as long as the following structural parameters are not set: the 
distribution function of unobserved preference shocks, the discount rate, and the current 
and future preferences in one (reference) alternative. We also investigate how exclusion 
or parametric restrictions can provide identifying restrictions. As the identification proof 
is constructive, a simple method of moment estimator can be derived and overidentify- 
ing restrictions can be tested. Provided that one is willing to make stronger identifying 
assumptions, dynamic discrete choice modelling is thus little different from the contin- 
uous case. Bellman equations can be used to recover deep structural parameters as are 
Euler equations. We continue by exploring a case where the unobserved component of 
preferences is correlated over time. Even if the functional degree of underidentification 
of this model is larger, we present reasonable identifying assumptions that lead to the 
same identification results as without unobserved heterogeneity. The same methodology 
using moment conditions is applied. 

This paper expands upon the work in Rust (1994), where the generic nonidentification 
result is stated. We use a slightly different model. In our case, agents' preferences have 
unobservable and possibly persistent components. The constructive aspect of our proof 
allows us to interpret Rust's underidentification result and to propose identifying restric- 
tions. On the technical side, the insights for our identification strategy are borrowed from 
the works of Hotz and Miller (1993), Hotz et al. (1994), and Altug and Miller (1998). We 

1 We would like to acknowledge helpful comments by three anonymous referees, helpful discussions 
with G. van den Berg, J. M. Dufour, A. Kirman, F Kramarz, V. Patilea, and participants in seminars 
at CREST, University College, LSE, Louvain-la-Neuve, Montreal, Madrid, Toulouse, Cergy-Pontoise, 
Orl6ans, Marseille, and in the following conferences: ESEM, Berlin, JAE, Rotterdam, SED, Alghero, 
and ESRC, Bristol. The usual disclaimer applies. 
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express Bellman equations as moment conditions in a different way than they do. This 
allows us to dispense with the existence of an absorbing state or simulation procedures, 
and to investigate identification, an issue not previously addressed by these authors. Fur- 
thermore, correlated unobserved heterogeneity is only considered in some applications 
using maximum likelihood methods and backward induction (Keane and Wolpin (1996), 
Eckstein and Wolpin (1999)). These procedures are computer intensive and their degree 
of complexity is large (Rust (1996)). The way these models are identified is not clear 
because it is more difficult to discuss identification in a maximum likelihood framework. 
Our paper also bears some resemblance to Cameron and Heckman (1998), who develop 
identification results in a dynamic setting with correlated additive fixed effects. In their 
framework however, agents are assumed to be myopic and semiparametric preferences 
are assumed. 

Section 2 establishes the theoretical model without correlated individual effects. 
Section 3 provides the main proposition about identification and provides estimable 
moment conditions. In Section 4, the identifying power of various restrictions is ana- 
lyzed. Section 5 provides the extension to a case where individual effects are correlated. 
Section 6 concludes the paper. 

2. THE THEORETICAL SET-UP 

This section presents the general class of dynamic discrete decision models on which 
we focus in this paper. We first define notations, state assumptions on preferences and 
expectations, and derive Bellman equations that are the structural restrictions in a dynamic 
and stochastic framework. Second, we define identification. 

2.1. The Structural Model 

Consider a decision maker whose intertemporal utility is additively time separable and 
whose instantaneous preferences are defined over a discrete set of alternatives i E I = 
{ 1,... , K}. Within-period utility functions are not restricted, even by general constraints 
such as monotonicity or concavity restrictions (Matzkin (1994)). 

State variables that the decision maker considers are denoted h. Some of them, called 
x, can be observed by the econometrician.2 Others are random preference shocks 8= 

(81, . . ., 8K) in each alternative i. Let h = (x, 8). Within a period, the sequence of events 
is the following. At the beginning of the period, both x and 8 are revealed to the agent 
who then chooses an alternative d = i, and gets the utility value ui(x, Si). Next period 
state variables h' = (x', 8') are then drawn conditional on h = (x, 8) and the observed 
decision, d = i. In other words, h is assumed to follow a Markov process of order one.3 
We also restrict the way preferences, ui, depend on si: 

AsSUMPTION AS (Additive Separability): Instantaneous utility functions are given by 

Vi E I, u (x, )= U (X)+Si, 

2 Time is assumed to be one of these observed state variables in order to simplify the presentation. 
3 The only loss of generality could be that random shocks are Markov of higher order. See below 

assumption (CI) to rule out this case. 
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where: 
(i) ? = (?. . , SK) is mean-independent of x: 

E(si x) = O. 

(ii) Its cumulative distribution function, denoted G, is absolutely continuous with respect 
to the Lebesgue measure in RK. 

Along with Assumption CI stated below, Assumption AS(i) ensures that 

E(ui(x, ?)|x) = ui(x, ) -?i 

can be interpreted as a structural parameter, that is to say, as the part of the utility 
function that depends on the observable state variables. As for AS(ii), some authors (Hotz 
and Miller (1993), for instance) consider that the distribution function G depends on x. 
This implies, for example, that the variance of random preferences depends on x. In order 
to reduce expository noise as much as possible, we omit this dependence because our 
results are affected by this assumption in an obvious way that we will briefly discuss later 
on. Finally, absolute continuity of G must hold if we want the economic model to have a 
unique optimal solution for all ? (except in a set of Lebesgue-measure zero). This result 
has been established in the static discrete case by Koning and Ridder (1996).4 

Next, we need to make assumptions on how agents' beliefs (noted /t) are related to real 
life transition probabilities of h = (x, s). To focus on the identifying power of intertem- 
poral optimization, we assume that expectations are perfect (see Buchinsky and Leslie 
(1997) for the implications of alternative expectation formation processes): 

ASSUMPTION PE: Agents have perfect expectations on the law of motion from h = (x, 9) 
and d = ito h = (x', 9'). That is, for all h, d = i, h': 

ft(h'Ih, d = i) = Pr(h'Ih, d = i). 

As time is included in the observable state variable x, PE implicitly means that macro 
shocks are known ex ante by agents. It is quite a strong assumption though not surprising. 
In the Euler equation framework, it is indeed the basis of the Chamberlain (1984) critique. 
Cross-section identifying restrictions given by Euler equations are valid only if macro 
shocks and the way agents perceive them are restricted. As we are looking for conditions 
for cross-section identification in Discrete Decision Process (DDP) models, it is natural 
to begin with the case where macro shocks are known. 

In this set-up, perfect expectations cannot be derived from a learning process based on 
observations (Manski (1993)). The optimal decision is a deterministic function of the cur- 
rent state variables H = (x, ?). Out of equilibrium events have, therefore, zero probability. 
Transition probabilities conditional on out of equilibrium events cannot be observed, and 
future payoffs of decisions cannot be learned. In such a set-up, agents' beliefs have to be 
exogenously coordinated on the true transition probabilities. 

It is however possible to reconcile perfect expectations and learning in this set-up 
provided we make the following additional assumption: 

ASSUMPTION CI (Conditional Independence Assumption): Random preference shocks 
at two periods ?' and ? are independent conditional on (x, d = i). 

4Note that proof of nonidentification given in Rust (1994) does not apply here since he assumes 
that ? = 0. 
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Condition CI ensures that all unobservable state variables are independent. The econo- 
metrician can observe all state variables that display some persistence. In the last section of 
this paper, we relax Assumption CI. Its usual interpretation is that it rules out unobserved 
heterogeneity (Rust (1994)) and dynamic selection biases as in Cameron and Heckman 
(1998). 

Provided CI holds, the transition matrix of the process governing (x, 8) is written as 

Pr (h' I h, d) = Pr (x', ?' I X, d) 

so that conditional probabilities can be inferred by the agent from observing other selfs 
(Manski (1993)) and future payoffs of current decisions can be computed. 

As a consequence of assumptions AS, CI, and PE, Bellman equations relating current 
value functions in each alternative and future value functions are: 

(l) Vi (X, ?)=Ui (X) + Si + PE (max Vj (X', ?) X, d = i) 

where f3 is the discount factor. From Assumption PE, the agent integrates with respect to 
the true distribution function of future state variables x', ?', conditional on d = i and x. 
From (1), value functions can be decomposed as 

Vi(X, )V (X) + Si 

and the deterministic part, v* (x), is the solution to 

(2) v' (x)=u (x)?3E(max(v(x')?+) x,d=i), 

which, in the following, we shall improperly call Bellman equations. 

2.2. Definition of Identification 

We define and prove results in the two-period case although the argument can easily 
be extended to any finite number of periods. To fix ideas, in the following, we consider 
the discrete and finite case. 

ASSUMPTION DS (Discrete Support Assumption): The support of first-period state vari- 
ables x (resp. second-period x') is X (resp. X'). The joint support X = X U X' is discrete 
and finite, i.e., 

X = {xi, * ,X#X}- 

Under DS, the identification of the structural form boils down to the identification of 
the values of the utility function and the transition probabilities at a finite number of 
points only. It is, however, easy to adapt the proofs of identification that follow, to the 
case, for instance, where the set X is a compact set and the functions to be identified are 
continuously differentiable.5 

5 It seems, however, natural to consider the discrete case first, since decisions take their values in a 
discrete and finite set {1, . . ., K}. Thus, histories inherently have discrete components. Furthermore, 
DS allows us to abstract from the identifying power of continuity and differentiability restrictions (as 
studied by Matzkin (1994)). 



DYNAMIC DISCRETE CHOICE 805 

The data provide us with the following function: 

v(d, d') J2, V(x, x') e X xX 

Pr(d', x', d lx) = Pr(d'Ix') Pr(x'lx, d) . Pr(dIx). 

First, it should be noted that structural transition probabilities, Pr(x'lx, d), combined with 
Assumption PE on agent's expectations, directly permits identification of agents' beliefs 
about the Markov process from x, d to x'. To simplify the notation, we now remove 
this structural object from the list of parameters to be identified. Other deep structural 
parameters affect choice probabilities Pr(dl ), i E X. These parameters are: 

(i) Current behavior: the current period utility functions, (u*(x), . . . , u* (x)), for all 
x E X. 

(ii) Future behavior: second period value functions, (v* (x'), . . . , v*(x')), for all x' E X' 
and the discount rate f3. 

(iii) Expectations: the subjective belief over the Markov process of preference shocks, 
x(' I X') which is equal to G by Assumption PE. 

Second period value functions are structural objects here because we focus on short 
panel identification. In a model of longer time span, they would be interpreted as reduced 
forms of future preferences. In our short panel context, the structure of the model is 
therefore defined by parameters: 

b = {u*(X),. . . , UK(X), v*(X'), . . , v*(XY), G, f3} 

where f (X) is a short-cut for {f (x), V x E X}. 
A structure b, combined with Bellman equations (2) permits computation of value 

functions v(ic; b) for all x E X and i E I. The agent is rational and chooses alternative i 
if and only if i yields the maximum value. Let pi(i; b) be the probability that the agent 
chooses d = i given the structure b and observed state variable i: 

(3) V(x, i)EkX I, pi(xT; b) =Pr (vi*(xT;b) +s?i=max(v*(xT; b)+s?j)lIX,b) 

Predicted behavior pi (x; b) is called the reduced form of the structural model. If the true 
structure is bo, reduced form choice probabilities must equal those observed: 

V(x, d), Pr(d |x) = Pd (x; bo) . 

Data Model 

To define identification, we start with the notion of observational equivalence between 
two structures b and b' if they lead to the same reduced forms. 

DEFINITION (Observational equivalence): Let B be the set of structures b, and let <=?e 
denote observational equivalence. Let two structures (b, b') E B2: 

b z b' if and only if V(x, d), pd(x; b') = pd(x; b). 

In other words, the model does not make predictions that differ enough to select one 
of the two structures. The model is thus said to be identified by the data if it is always 
possible to discriminate among two structures. 

DEFINITION (Identification): The model is identified if and only if 

Vb,b'EB2, (b?? b') =(b=b'). 
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3. IDENTIFICATION RESULTS AND ESTIMATION 

We are now in a position to state the identification result. 

3.1. Identification 

For any i E X, denote the vector of choice probabilities p (x) = (p1(i),. .. ,K ) 
and the vector of value functions v* (x) = (v (x), . . . , vK (i)). Given G, equation (3) maps 
v*(x) into pb(x). Hotz and Miller (1993) show that these equations can be inverted as 

(4) V(X, i) E X X I, v' (X) = v4(i)+qi (j(); G) 

where qi(.) are functions mapping the simplex set in DRK onto 1R. These functions are 
derived from G only and by definition, qK(.) = 0. Furthermore, q = (ql, .. - , qK). 

For given G and v*(XY), then it is always possible to recover v'(X'), i < K, from choice 
probabilities p(X'). From (4), we get 

(5) (v*(X'),.. , v*1(X')) = p(p(X'); VK(X')). 

If z = (z1,.. K, Z), we also define function R: 8K _> R such that 

R(z; G) = EG max(zi + si - 8K) 
zeI 

Using this definition and (4), we rewrite Bellman equations (2): 

LEMMA 1: Bellman equations (2) can be expressed for any i E {1,... , K - 1} as 

(6) u* (x) = UK (X)- P(E(v* (x') I x, d = i) -E(v* (x') I x, d = K)) 

+ qi(1b(x); G) - f3(E(R(q(j5(x'); G); G) I x, d = i)) 

-E((R(q(p5(x'); G); G) I x, d = K)). 

PROOF: See Appendix A. 

This lemma proves that Bellman equations can be written in terms of (i) utility functions 
(u* (X),... , u 1(X)), (ii) the other deep structural parameters f3, G, u*(X), v*(X'), 
and (iii) the choice probabilities pb(X) = (p1(X),... , PK(X)), which are observed from 
the data. The last Bellman equation in (2) defines VK (X) as a function of b (see Appendix 
A) and is therefore not informative as VK is not a structural parameter. Lemma 1 therefore 
provides a mapping between the data and the utility functions in the first K-1 alternatives 
at a given value of the other structural parameters. More formally: 

(7) (u*(X), . , u*1(X)) = 0(j(X), ,T; 
3, G, u*(X), v (X')) 

utility functions data other structure 

where iT (= Pr(X' I X, I)) are the structural transition probabilities defined in the previous 
section and over which the expectation operator in (6) is taken. Identification can now be 
characterized: 

PROPOSITION 2: Let C = {clc = (13, G, u*(X), v*(X'))} be the set of possible discount 
factors, random preference shocks d.f. and preferences in the reference alternative. 

(i) Fix c E C. There exists only one vector (u*(X), . . . , u* 1(X)) compatible with the 
data p (X). 
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(ii) Dynamic discrete choice models are not identified. For two different elements of C, it 
is always possible to find other structural parameters and, in particular, utility functions, that 
are compatible with given data: 

Vc, c' eC xC, {+(.; c), p(.; c), c} {+(.; c'), p(.; c'), c'} 

where / and iD are defined in (5) and (7). 

PROOF: See Appendix B. 

This proposition shows that utility functions are far from identified. The degree of 
underidentification is large since it consists in f3, G and preferences in the reference alter- 
native (u* (X), vj(X')). It would be even larger if G or f3 were to depend on x. 

An implication of Proposition 2 is well known in the literature. Manski (1993, p. 129) 
proves that the discount rate is not identified because any DDP model (i.e. f3 0 0) is obser- 
vationally equivalent to a static model (i.e. f3 = 0). To some extent, terminal conditions 
matter too, since future preferences v* (X') in the reference alternative are necessary to 
identify current preferences. Below we discuss more extensively the identifying power of 
terminal date restrictions. 

Yet, the arbitrariness of future preferences in the reference alternative is "less" impor- 
tant than the arbitrariness of f3 and G. Assume now that v*(X') is unknown. An inter- 
esting structural object can still be identified. Rearranging equations from Lemma 3.1, we 
see that Vi E {1, . . , K-1}: 

(8) qi(j3(x); G) - f3(E(R(q(p(x'); G); G) I x, d = i)) 

-E((R(q(pi(x'); G); G) I x, d = K)) 

- [I (x) + PE(v(x') I x, d = i)] -[U(x) + PE(V (x') I x, d = K)] 

_Ui(x). 

Given f3 and G, the left-hand side can be identified. The right-hand side, Ui(x), measures 
the difference between the expected values of two sequences of choices: first, choose i 
now, K tomorrow, and behave optimally afterwards; second, choose K now and tomorrow 
and behave optimally afterwards. In the following, we call Ui (.) the current value function 
of i. It is identified even if future preferences are not restricted. 

COROLLARY 3: Fix f3 and G. Then, Vi E {1, . . . , K - 1}, Ui(X) can be uniquely recov- 
ered from the data. 

This corollary clarifies the difference between results that can be obtained in the static 
case (13 = 0) and in the dynamic case (13 0 0). In the static model, equation (8) means 
that the difference between the levels of utility functions, u*(.) - u*(.), is equal to Ui(.). 
It is therefore identified. In the dynamic case however, differences between levels cease 
to be identified unless the continuation value function VK (X') of the reference alternative 
is given. 

In the next section, we examine other identifying restrictions after using Lemma 3.1 to 
infer an estimation strategy of the current value function Ui(.). 
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3.2. Estimation Strategy 

The construction of our identification proof suggests a method-of-moment estimation 
strategy in two steps. Bellman equations from Lemma 3.1 are analogous to Euler equa- 
tions in the continuous choice case. As in Hotz and Miller (1993), the first step consists 
in estimating choice probabilities p(X). Denote P,1(X) such an estimate, which under 
assumption DS, is the shares of chosen alternatives in the subsamples where x = xs. 

The second step differs. Hotz and Miller (1993) and Hotz et al. (1994) express expected 
continuation values as functions of all future utilities that are parametric functions. Hotz 
and Miller (1993) show that, if a state is absorbing, expected continuation values are 
functions of both next-period utilities and choice probabilities. In Lemma 3.1, we proved 
that expected continuation values are functions of choice probabilities only. We use the 
resulting equations as the only moment conditions of the problem. 

Suppose first that p(X) is known. Given arbitrary values for f3 and G, for every obser- 
vation such that d = i, we can compute: 

Yi = qi(13(x)) - P3R(q(13(x'))). 

Remark that (8) implies that 

Ui(x) = E(Yj I x, d = i)-E(YK I x, d = K). 

We can therefore estimate Ui(X) using subsamples of individuals having chosen d= 
1,.. .,K since 

Y =E(Y I x,d=i)+,qi 

where E(Qri I x, d = i) = 0. This corresponds to the Euler equation but in a discrete case. 
Moreover, subsamples are independent and the estimations of E(Y1 I x, d = i) and E(YK 
x, d = K) are independent. 

In fact, variables Yi cannot be computed from the data since 13(X) is unknown. What 
can be computed from the data is the quantity 

Yin = qi (P, (x)) -O3R (q (P, (x'))) - 

The empirical model can therefore be rewritten as 

Yi,t =E(Yi I x, d = i) + qji + Tiv, 

where win = Yni - Yni is the sampling error of the first step. Results concerning two- 
step estimates should therefore be used (Newey and McFadden (1994)). The different 
equations are not independent any longer since the presence of P,,(x) in all equations 
induces cross-equation correlations. 

4. IDENTIFYING POWER OF VARIOUS RESTRICTIONS 

In this section, we evaluate the identifying power and testability of restrictions that are 
used in the literature on dynamic discrete decision processes. We start with showing that 
some usual assumptions like the presence of absorbing states or terminal dates, do not 
have additional identifying power. We continue by examining the identifying power given 
by exclusion restrictions or parametric restrictions. 
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4.1. Absorbing States and Terminal Dates 

It is often assumed that one state is absorbing (e.g., Hotz and Miller (1993)). Let K 
(the reference alternative) be the absorbing state. The future choice set is restricted to 
{K} when alternative K is chosen in the current period. The Kth Bellman equation is 
then written: 

V*(x) = uK(x) +?1E(v*(x') I x, d = K), 

which implies that E(R(q(p(x'); G); G) I x, d = K) = 0. This restriction is not informative 
about the structure b. It is indeed testable from the data. 

It is often assumed in the literature on maximum likelihood estimation of dynamic 
discrete choices that some date T is a terminal date. Assume that value functions at T 
in some alternatives i are known and equal to vi(T)*(.) (Keane and Wolpin (1996), Belzil 
and Hansen (1997)). If choice probabilities can be recovered from the data at date T, 
these restrictions are testable unless they only concern the value function of the reference 
alternative vi(T)*(.). Yet, this last restriction on v(T)*(.) would fall far short of solving the 
underidentification problem. From Proposition 3.2, in order to identify utility functions, 
assumptions on preferences in the reference alternative indeed have to be made at every 
period. 

4.2. Exclusion Restrictions or Parametric Restrictions 

To identify f3, restrictions can be imposed by excluding one variable from current value 
functions as we now show. An exclusion restriction takes the form 

R: (x1, X2) E X2, 3 i E I such that: x1 X2 and Ui(x1) = Ui(x2). 

Then we have the following proposition. 

PROPOSITION 4: Fix G. Add the exclusion restriction R to the set of structural restrictions 
of the model. Provided a rank condition given in the proof is satisfied, Ui (X) and f3 are just 
or over identified. 

PROOF: Use (8) for (i, x1) and (i,x2) and subtract. As Ui(x1) = Ui(x2), it yields a 
linear equation in f3 where f3 is the only unknown. The coefficient f3 can be determined 
provided the following coefficient: 

[E(R(q(p5(x')) I H = xl, d = i)) - E(R(q(pb(x')) I H = xl, d = K))] 

-[E(R(q(p(x')) I H = X2, d = i)) - E(R(q(p(x')) I H = X2, d = K))] 

is different from 0. If there are more than one exclusion restrictions and corresponding 
rank conditions, f3 is overidentified. Q.E.D. 

Stationarity of current value functions is a particular case of exclusion restrictions when 
there are more than two periods. Assume that there are three periods and apply Corollary 
3 to show that Ui(X) and Ui(X') are identified. Stationarity implies restriction R, since 
there exist x5 E X, xS, E X', and i such that Ui(xs) = Ui(xs,). 
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Finally, parametric restrictions on utility functions are very often used (Hotz and Miller 
(1993), Keane and Wolpin (1996)).6 As our framework consists of using equations (8) as 
moment conditions, these restrictions can readily be implemented and tested.7 

5. CORRELATED FIXED EFFECTS 

In this section, we consider that preferences are affected by correlated fixed effects. 
The reader might not be surprised that the underidentification result carries over to this 
case. More interestingly, we present identifying restrictions that are sufficient to identify 
structural parameters and the distribution of unobserved heterogeneity. 

For internal consistency reasons, perfect expectations (assumption PE) need to be 
grounded in observation. Therefore, agents need to have beliefs about the distribution 
of random shocks ? and the transition probabilities conditional on their own fixed effect 
(Manski (1992)). An example of such beliefs is that these probability distributions do not 
depend on the fixed effect (Assumptions CI and AS). When observation of the types of 
the other agents is not possible, agents cannot refute these latter beliefs against the gen- 
eral alternative that shocks s are correlated. Therefore, under the assumption that the 
agents believe in the absence of permanent heterogeneity, AS and CI become untestable. 

When agents can observe the fixed effects of other agents, they can infer probability 
distributions conditional on types. They can therefore refute AS and CI. In this context, 
knowledge of their own types allows agents to form more accurate expectations and gives 
them an informational advantage over econometricians. 

5.1. The General Framework 

The type of the agent is described by a one-dimensional state variable 6, constant over 
time. It is observed by all other agents but not by the econometrician. Therefore, the state 
space is modified and described by h = (x, 6, ?). Assumptions of additive separability, 
conditional independence and perfect expectations, are amended to make them condi- 
tional on observed state variables x and the type of the agent. In other words, we replace 
x in AS, CI, and PE by (x, 6). In a world where there are as many Bellman equations as 
unobserved types, equation (2) can be rewritten as 

()v*. (x, H) = u* (x, H) + PE (max (vt (x', H) + ?s ) I d = i, x, H) (9) i d=iixi ) 

The difficulty with respect to the homogenous case arises from the presence of dynamic 
selection or endogeneity biases (Cameron and Heckman (1998), Taber (2000)) because 
one state-variable, 6, remains unobserved by the econometrician. Observed histories and 
random shocks are no longer independent. The additivity in 6 of u*(x, 6) can be used to 
identify structural parameters if the decision maker is myopic as shown by Cameron and 
Heckman. In the general case, however, the value function v*(x, 6), given by equation 
(9), is not linear in 6 even if u*(x, 6) is linear in 6 because of the convexity of the max- 
operator. Cameron and Heckman's proof should therefore be extended to account for 
nonmyopic behavior. 

6 In our case where the support is discrete, a parametric specification means that the utility func- 
tions are functions of a number of parameters that is strictly less than the number of support points 
of S times K - 1. They are therefore equivalent to exclusion restrictions. 

7 Parametric restrictions cannot be used to identify d.f. G because histories have discrete support 
(see Manski (1988)). 
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5.2. The Degree of Underidentification 

To highlight the main issues, we will, from now on, restrict the model and consider 
only two alternatives. Preferences in the reference alternative (u2(X, 6), v2(X', 6)) are 
assumed to be equal to zero and state 2 is absorbing. Instantaneous utility in alternative 
1 is given by 

u1 (h) = u* (x, H) + ?l. 

Moreover, suppose that 6 can only take8 two values, 0 and 1, and that, at the initial 
date, the distribution r(H I x) = r(H) is independent of x. We first focus on the case where 
the heterogeneity, 6, only affects preferences, and not the transition process of h = (x, 8): 

(10) Pr(x' I x, d, H) = Pr(x' I x, d) and G(s 6) = G(s). 

Even under these stringent assumptions, there are dynamic selection biases since tastes 
are correlated over time. The structural equations at two dates 0 and 1 are summarized 
in the following lemma: 

LEMMA 5: Let G be a distribution function, and q and R the associated two mappings as 
defined in Section 3.1. Denote p(x, 6) as the probability of choosing alternative 1 conditional 
on type 6, and s(x) as the unconditional (observed) probability. Then: 

[ut(x, 6) = q(p(x, 6); G) -P3E(R(q(p(x', 6); G); G) I d = 1, x), 6 = 0, 1; 

(11) | s(x) = p(x, 1)r(1) + p(x, O)r(O); 

I s(x') - p(x', (X, 1) r(1) + p(x,0 )r(0) SW X.1 s(x) +p(x,O0) s(x) 

PROOF: See Appendix C. 

The first line comes from the Bellman equations, as in Lemma 3.1. The difference now 
is that there are two such equations for alternative 1, because there are two unobserved 
types. The following lines relate the choice probabilities s(x), identifiable as a population 
parameter, to the unknown type dependent choice probabilities. These Bayes equations 
provide additional structural restrictions that have to be satisfied. The difference in weights 
between periods of the two types in the population illustrates the presence of dynamic 
selection. 

Given these moment conditions, the degree of underidentification is given by 
Proposition 6. 

PROPOSITION 6: Fix G and f3. Let p(x', 1) and p(x, 1) be two arbitrary choice probabil- 
ities taking their values between 0 and 1 such that 3 ao > 0 and 

(12) min( S(( ))l s(x) )>ao, 

(13) ~ ~P(X, 1) (P(A.I 1PX, 1))- 
(13) s(x) mm ((x' Sx')~ > o 

Consider an arbitrary value 0 < r(1) < ao. Then ut(x, 6) is just identified. 

8 It does not seem that the extension to any given number of types changes the results that follow. 
The restriction on the values of 0 is of limited impact since the location and scale of utility functions 
are not identified because G is not identified. 
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PROOF: Consider the second equation in (11). As r(O) = 1 - r(1), equation (12) and 
0 < r(1) < ao imply that 0 < p(x, 0) < 1. Consider the third equation in (11). Then equa- 
tion (13) and 0 < r(1) < ao imply that 0 < p(x', 0) < 1. Therefore the second and third 
equations yield a consistent value for p(x, 0) and p(x', 0). Now replace all these quanti- 
ties in the first equation of (11) for 0 = 0, 1. Q.E.D. 

Somewhat unsurprisingly, Bellman equations cannot provide identifying restrictions for 
more than one type of agent. The behavior of one of the groups can therefore be con- 
sidered as almost arbitrary provided that conditions (12) and (13) are satisfied. These 
conditions come from the additional structure imposed by Bayes equations in Lemma 5.1. 

5.3. Identifying Restrictions 

We now investigate the identifying power of two popular restrictions. We first assume 
the additivity of the individual effect in utility: 

V(x, H), ut (x, H) = ut(x) + H. 

Second, we impose a weak form of terminal condition: from a certain period onwards, 
unobserved types do not affect utility levels. For the sake of simplicity, let us consider 
three periods 0, 1, and 2. Let x" denote observed (by the econometrician) history at time 
2. Then assume that 

V(x", 6), u (x", 6) = 1( 

PROPOSITION 7: Given G, f, r(1) and the two previous restrictions (additivity and ter- 
minal condition), and provided some rank conditions are satisfied, the utility function ut (.) 
is just identified at periods 0 and 1. 

PROOF: See Appendix D. 

The set of moment conditions given in Lemma 5 still forms the basis of this result. We 
have seen in Proposition 6 that for given G, 1, and r(1), utilities are identified provided 
we fix two choice probability functions p(x', 1) and p(x, 1). The degree of underidentifica- 
tion therefore consists of two elements of the set Y of functions mapping the state space 
into ]0, 1[. By relating utility functions of the two types, the additivity restriction reduces 
this degree by one element of W. Excluding heterogeneity at date 2 yields the same reduc- 
tion in dimensionality. The two parameters 13 and r(1) remain unidentified. They can 
nevertheless be identified by imposing two exclusion restrictions as in Section 4.2. 

Finally, the relaxation of assumption (10) can be investigated. Unobserved heterogene- 
ity could affect transition probabilities Pr(x' I x, d, 6) and not preferences if we consider 
the opposite case to the one just discussed. In this case, the analysis is similar. Begin by 
expressing the moment conditions and counting the degree of functional underidentifica- 
tion. Then impose identifying restrictions to match the degree of underidentification. For 
instance, the assumption above on terminal dates could be translated into equal transition 
probabilities for the two groups from a terminal date onwards. The additivity assumption 
is not more difficult to translate. It consists of a given deterministic relationship that exists 
between the transition probability functions of the two groups. The identification result 
follows from this. 
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6. CONCLUSION 

It is well known that dynamic discrete choice models are underidentified. The good 
news is that the degree of underidentification can be determined and the power of popular 
identifying restrictions, both with and without correlated fixed effects, can be investigated. 

The degree of underidentification consists of the discount factor, the distribution func- 
tion of random shocks in preferences, and preferences in a reference alternative. We show 
that, unlike the static case, the differences between utility levels are not identified. In the 
absence of further information on value function levels, current value fuinctions are the only 
structural object that can be identified. Imposing a terminal date or assuming the exis- 
tence of an absorbing state does not carry identifying power, while imposing exclusion or 
parametric restrictions allows us to identify the discount factor. The degree of underiden- 
tification is even larger in the case with unobserved heterogeneity. However, in this case, 
additivity of individual effects and a weak terminal condition are shown to be powerful 
identifying restrictions. 

The identification strategy based on moments naturally leads to the construction of 
method-of-moment estimators that can be implemented even with correlated individual 
effects. We are not advocating the unconditional use of methods of moments to estimate 
these models; however, moment condition analysis is shown to be a very powerful tool to 
investigate identification. Given that a model is identified, other methods such as maxi- 
mum likelihood or iterated method of moments (Aguirregabiria and Mira (2000)) could 
be used for estimation purposes. The comparison of the statistical properties of maximum 
likelihood and method of moments, as well as their numerical aspects would be a useful 
exercise (see Hotz et al. (1994)). With its different set of moment conditions, our analysis 
could help to shed new light on this issue. A Monte Carlo investigation of both methods 
is clearly needed but left for further research. 
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APPENDIX A: PROOF OF LEMMA 1 

Start from Bellman equations (2). The expected future value function can be written as 

E(max vj(x',') d = i, x) = E(EG(max vj(x', i') x') d ix) 

where 

EG (max Vj (X', x ) |X)=EG (VK (X, ? I |X ) + EG (max (vj (X', ? )-VK (X, ? ) I X ) 

= VA,(x') + EG(max(v (x') - v (x') + - | X') 

= v (x') + R(W(x'); G) 
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by definition of R(.; G) and where w = (w, WK-1, 0), and W= -v- . This new expression of 
the continuation value is then plugged back into (2). After subtracting v< (x) from both right and left 
sides, we get, for i < K: 

(14) wi (x) = u* (x) + ?E(R(wv(x')) I x, d = i) + PE(vj (x') I x, d = i) -V, (x), 

and for the reference alternative K, 

(15) v% (x) = u* (x) + ?PE(R(tb(x')) I x, d = K) + PEE(v* (x') I x, d = K). 

We replace v7 (x) in (14) by (15) and we use (4) to prove the result. Q.E.D. 

APPENDIX B: PROOF OF PROPOSITION 2 

The proof is by construction. Fix c c C. As G is fixed, derive functions q and R. As ,B, u (X), and 
v7((X') are fixed, Bellman equations (6) define a unique vector (U1 (X), . . . , W - (X)) as a function 
of the data. Equation (5) also defines a unique vector (v*(X')... . V, I (X')). Therefore, for any 
c E C, b = b(c) is defined uniquely as a function of c and observationally equivalent to b' = b(c') for 
any c' EC. Q.E.D. 

APPENDIX C: PROOF OF LEMMA 5 

The only informative Bellman equation concerns alternative 1. Using it* (X, 0) = 0 and v (X', 0) = 

0, Lemma 1 yields 

(16) q(p(x, 0); G) = it* (x, 0) +/PE(R(q(p(x', 0); G); G) I d = 1, x) 

where p(x, 0) = Pr(d = 1 l x, 0). What the data give us, apart from the transition process Pr(x' l x, d 
1), which does not depend on 0 by assumption (10), is the choice probability s(x) = p(d = 1 I), 
which is the mixture 

(17) V cEX, s(x) =p(x, l)Pr(0= lx)+p(x,O)Pr(0=0 1 ). 

Finally, assumption (10) implies that if x' is a subsequent history of (x, d = 1), 

Pr(0 = 1 x') = Pr(x 
= 

l x' x 1) ) = Pr( = 1 l x, d = 1) 

since x'I0 l x, d. Therefore, 

(18) Pr(0 = 1 1 x') = p(x, 1) Pr(0 =1 ( x) - p(x, 1) (1) 
s(x) s(x) 

which is the source of dynamic selection biases. The first part of the lemma is given by (16) and (17). 
Use (18) in (17) to prove the last expression. Q.E.D. 

APPENDIX D: PROOF OF PROPOSITION 7 

Lemma 5 gives the structural restrictions. As there are three dates, there are now two sets of 
Bellman equations for each type: 

(19) 0 = 0, 1, it* (x) = q(p(x, 0)) -0- -3E(R(q(p(x', 0)))Ix, d = 1), 

(20) 0 = 0, 1, ut(x') = q(p(x', 0))- 0 -/PE(R(q(p(x", 0)))Ix', d = 1), 



DYNAMIC DISCRETE CHOICE 815 

where additivity of individual effects is used. At the last period, heterogeneity is assumed to be 
excluded from preferences (terminal date assumption). It implies that decisions may depend on 0 
through past decisions x" but not directly: 

(21) V(x", 0), p(x", 0) = s(x"). 

To eliminate u*(.), take differences in (19) and (20) between the two types, which yields 

(22) q(p(x, 1))-q(p(x, 0)) = 1 +? E(R(q(p(x', 1))) - R(q(p(x', 0))) x, d = 1), 

(23) q(p(x', 1))-q(p(x', 0)) = 1, 

where the last equation is implied by (21). 
Mixture equations are given by Lemma 5: 

(24) s(x) = p(x, 1)r(1) +p(x, 0)r(0), 

(25) s(x') =p(x', 1) p(x, 1)r(1) 
+p(X' O) p(x, 0)r (0) 

s(x) s (x) 

The population "functions" s(x), s(x') are obtained from the data. Provided r(1) and ,B are given, 
the four unknowns {p(x, 0), p(x, 1), p(x', 0), p(x', 1)} could be recovered from (22)-(25) if this sys- 
tem of equations is locally invertible. Invertibility is equivalent to rank conditions that we assume to 
be satisfied. Once these unknowns are solved, u*(.) can be recovered from (19)-(20). Q.E.D. 
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