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Inference with an Incomplete Model of English
Auctions

Philip A. Haile
University of Wisconsin—Madison and National Bureau of Economic Research

Elie Tamer
Princeton University

While English auctions are the most common in practice, their rules
typically lack sufficient structure to yield a tractable theoretical model
without significant abstractions. Rather than relying on one stylized
model to provide an exact interpretation of the data, we explore an
incomplete model based on two simple assumptions: bidders neither
bid more than their valuations nor let an opponent win at a price
they would be willing to beat. Focusing on the symmetric independent
private values paradigm, we show that this limited structure enables
construction of informative bounds on the distribution function char-
acterizing bidder demand, on the optimal reserve price, and on the
effects of observable covariates on bidder valuations. If the standard
theoretical model happens to be the true model, our bounds collapse
to the true features of interest. In contrast, when the true data-gen-
erating process deviates in seemingly small ways from that implied by
equilibrium in the standard theoretical model, existing methods can
yield misleading results that need not even lie within our bounds. We
report results from Monte Carlo experiments illustrating the perform-
ance of our approach and comparing it to others. We apply our ap-
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proach to U.S. Forest Service timber auctions to evaluate reserve price
policy.

I. Introduction

We propose a new approach to empirical analysis of the most common
type of auction: the “English” or “oral ascending bid” auction, in which
bidders offer progressively higher prices until only one bidder remains.
The chief challenge we face is the fact that the free-form structure of
most English auctions is not easily captured in a theoretical model that
might provide a mapping between the observable bids and the latent
demand structure of interest. All existing models of English auctions
rely on strong abstractions for tractability. In the overwhelmingly dom-
inant model (Milgrom and Weber 1982), each bidder continuously af-
firms her participation by holding down a button while the price rises
continuously and exogenously. If bidders know their valuations, each
drops out (in the dominant strategy equilibrium) by releasing her but-
ton when either the price reaches her valuation or all her opponents
have exited. A bid in this “button auction” model is a price at which to
exit. In practice, however, there may be no observables equivalent to
the bids envisioned in the theory. At most real English auctions, bidders
call out or affirm bids whenever they wish and need not indicate whether
they are “in” or “out” as the auction proceeds. Prices typically rise in
jumps of varying sizes, and active bidding by a player’s opponents may
eliminate any incentives for her to make a bid close to her valuation,
or even to bid at all. Hence, while the standard model serves well in
illuminating strategic forces that arise in an English auction, it may serve
poorly in providing an exact interpretation of bidding data.

This mismatch threatens hopes of using theory to relate observed bids
to the underlying distributions that characterize bidder demand and
information—something essential for addressing a number of positive
and normative questions of interest. For example, simulating outcomes
under alternative selling mechanisms or applying results from the lit-
erature on market design requires information about these distribu-
tions, which the theory treats as known to the seller. Even simpler goals
such as measuring the dispersion in bidders’ private information or
assessing the effects of product characteristics on bidders’ willingness
to pay require inference on these primitive distributions. The impor-
tance of these objectives has thus far led researchers to accept the button
auction model as an approximation of the true data-generating process
(see, e.g., Paarsch 1992b, 1997; Donald and Paarsch 1996; Baldwin, Mar-
shall, and Richard 1997; Hong and Shum 1999; Haile 2001; Athey and
Haile 2002).
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english auctions 3

We take a different approach. We focus on the symmetric independent
private values model, which provides the simplest model of bidder de-
mand and has dominated the prior literature. However, rather than
committing to the interpretation of bids implied by one particular model
of the auction itself, we rely on an incomplete model consisting of two
simple assumptions.

Assumption 1. Bidders do not bid more than they are willing to pay.
Assumption 2. Bidders do not allow an opponent to win at a price

they are willing to beat.
The motivation for assumption 1 is clear: every bid made in an English

auction is potentially a winning bid, so no bidder should make a bid
above his valuation. Assumption 2 is motivated by “the essential feature
of the English auction” (McAfee and McMillan 1987): the ability of
bidders to observe and respond to the current best bid with higher bids
of their own.1 Given such an ability, assumption 2 requires that bidders
not pass up opportunities to make a profit.2

While these two assumptions have obvious intuitive appeal,3 they are
also weak restrictions in several precise senses. First, both assumptions
hold in the dominant strategy equilibrium of the standard model—
indeed, in all its symmetric separating equilibria (Bikhchandani et al.
2002). However, they also allow other types of bidding behavior. In
contrast to equilibrium in the button auction model, for example, these
assumptions allow for jump bidding, for the possibility that a bidder’s
highest bid lies below his valuation (or even that some bidders do not
bid at all), and for the ranking of bidders according to their highest

1 Notable exceptions are Internet auctions with fixed closing times, where it may be
possible for a bidder to “slip in” a winning bid at the last moment, leaving no time for
an opponent to respond (Roth and Ockenfels 2002). In most English auctions (including
some Internet auctions), a practice similar to a “going once, going twice, sold!” an-
nouncement is followed to ensure that bidders have an opportunity to respond before
the auction closes.

2 In the button auction model and most other models of English auctions, assumption
2 is implied by elimination of weakly dominated strategies. The converse is not true.
Bikhchandani, Haile, and Riley (2002), e.g., show that with private values, the button
auction model itself has a continuum of symmetric perfect Bayesian equilibria in weakly
dominated strategies, all satisfying assumptions 1 and 2. Violations of assumption 2 without
weakly dominated strategies can occur in models in which submitting each bid is costly
(Avery 1998; Daniel and Hirshleifer 1998). The bidding rules in these models can enable
one bidder to infer from early bids of her opponent that she is very unlikely to win, making
it rational for her to allow her opponent to win at a price below her own valuation. While
these models provide useful insights, their empirical relevance is uncertain in most ap-
plications, including those we study below, since all bidders are physically present for the
entire auction. Bidding costs may be more important, however, in Internet auctions, which
typically last several days and require bidders to log in (or remain on-line) to make each
bid (Easley and Tenorio 2001).

3 These are also two of the assumptions made by Yamey (1972) and Rothkopf and
Harstad (1994) in axiomatic analyses of English auctions with discrete bid increments.
The latter paper also suggests the potential for discrete bid increments to lead to rational
jump bidding.
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bids to differ from that according to their valuations. Further, assump-
tions 1 and 2 imply neither (i) a unique distribution of bids given a
distribution of valuations nor (ii) a unique distribution of valuations
given a distribution of bids (see the examples in App. B). The latter
property implies that the distribution of bidder valuations is not iden-
tified, motivating our exploration of bounds. The former property im-
plies that assumptions 1 and 2 form an incomplete model of bidding. Our
objective is to investigate the empirical content of this model—to see
what can be learned about the underlying demand structure on the
basis of only observed bids and these two restrictions on their
interpretation.

Our approach is motivated by a key tension in empirical economics:
on one hand, structure from economic theory is often essential to ob-
taining useful estimates; on the other hand, interpreting data as though
they were generated by one particular stylized model will be misleading
if the true model turns out to be significantly different. Assumptions 1
and 2 can be interpreted as necessary conditions for equilibrium in a
class of complete models. These necessary conditions define the sets of
observable outcomes consistent with each realization of the primitives.4

Our approach to inference exploits this relation between primitives and
observables in essentially the same way that one exploits equilibrium
mappings in standard structural estimation of economic models. This
type of robust structural approach may be useful in other environments
as well.5

Here this approach enables construction of informative bounds on
the distribution function characterizing bidder demand and informa-
tion. Each bid provides a lower bound on the corresponding bidder’s
valuation. Each winning bid provides an upper bound (up to the min-
imum bid increment) on losing bidders’ valuations. Exploiting relations
between distributions of order statistics and the underlying parent dis-
tribution, we use this information to construct bounds on the cumulative
distribution function (CDF) of interest. Estimation of these bounds is
both nonparametric and simple. Simulations and an application show
that the estimated bounds can be very tight in practice. In fact, if the
button auction model captures the true data-generating process, the
bounds collapse to the true distribution. Hence, there is a sense in which
nothing is lost by taking this more robust approach. In contrast, when

4 For a very different class of (oligopoly) models, Sutton (1991, 1997, 1998) uses similar
assumptions to derive bounds on the set of predicted outcomes given a specification of
primitives.

5 This approach is similar in spirit to work on incomplete structural models in other
contexts (e.g., Jovanovic 1989; Tamer, in press) and other models in which one can identify
bounds on the parameters or functions of interest, including Varian (1982, 1984), Manski
(1990, 1995), Horowitz and Manski (1995), and Hotz, Mullin, and Sanders (1997).
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the true data-generating process deviates from that of the button auction
model in seemingly small ways, existing methods can yield misleading
results. In fact, the distribution implied by observed bids and a misspe-
cified complete model (even one satisfying our assumptions) need not
lie within our bounds.

We also show how to construct bounds on the optimal reserve price.
This is possible despite the limited restrictions we place on bidder be-
havior, despite the fact that sellers may use (suboptimal) reserve prices
in the auctions we observe, and despite the fact that the optimal reserve
price depends on derivatives of the distribution function that we bound
only in levels. Besides enabling construction of bounds on this key policy
parameter, this analysis illustrates the subtlety that can be involved in
the critical task of translating imperfect knowledge of structural param-
eters/distributions into meaningful statements about policy. Finally, we
show how to use our approach to construct bounds on the effects auction
covariates have on bidder valuations—something useful for inference
on hedonic models of valuations, testing for premia for certain prod-
ucts/sellers, or testing restrictions of the private values assumption.

Our work contributes to the literature on structural estimation of
auction models begun by Paarsch (1992a). Hendricks and Paarsch
(1995), Laffont (1997), Perrigne and Vuong (1999), and Hendricks and
Porter (2000) offer surveys of the recent empirical literature on auctions.
Much of this work has focused on parametric specifications of the dis-
tributions of bidder valuations. Our approach is nonparametric. Non-
parametric methods for first-price auctions are developed by Li, Per-
rigne, and Vuong (2000, 2002) and Guerre, Perrigne, and Vuong (2000).
Athey and Haile (2002) address nonparametric identification of stan-
dard auction models. We are unaware of prior work using nonparametric
methods to study English auctions or of any method for inference on
demand at English auctions that relaxes the assumptions of the button
auction model.

Section II sets up the model and notation. In Section III we show
how assumptions 1 and 2 identify bounds on the distribution of bidder
valuations and develop estimators. Section IV addresses construction of
bounds on the optimal reserve price. Section V then discusses incor-
poration of covariates accounting for heterogeneity in the distributions
of valuations across auctions. Section VI presents the results of Monte
Carlo experiments designed to evaluate our approach and compare it
to others used previously. In Section VII we apply our methods to data
from U.S. Forest Service timber auctions, focusing on reserve price
policy.6 We offer conclusions in Section VIII.

6 Prior work addressing reserve price policies in other applications includes McAfee and
Vincent (1992), McAfee, Quan, and Vincent (1995), Li et al. (1997), Paarsch (1997), and
Carter and Newman (1998).
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II. Model and Notation

Throughout we represent random variables in upper case and their
realizations in lower case. We consider the standard symmetric inde-
pendent private values paradigm in which for each auction there are

potential bidders. Each bidder draws her¯M � {2, … , M} i � {1, … , m}
valuation independently from a distribution with support 7¯V F (7) [v, v].i 0

While we let this distribution vary with observables below, here we sup-
press this dependence for simplicity. Bidders know their own valuations
but not those of their opponents. The seller, who places value v0 on the
object, first announces his intent to hold an auction and may set a
reserve price r. Bidders then choose whether to participate. Assumptions
1 and 2 imply that all bidders with valuations above r participate. Let
N denote the number of participating bidders. At the auction, the re-
serve price (or zero, if there is no reserve) is designated the initial bid,
and monotonically increasing bids are then accepted from the partic-
ipating bidders, subject to a minimum bid increment We assumeD ≥ 0.

¯r � D ! v.
We leave the remaining details of the underlying model unspecified,

including, for example, whether bidding is completely free-form or fol-
lows a more structured procedure, what motivates individuals to bid at
one particular point in the auction rather than another, and how the
seller ends the auction. We assume only that bidding satisfies assump-
tions 1 and 2. The highest price offered by each bidder is recorded as
his “bid.” If a bidder does not bid, the reserve price (or zero) is recorded
as his bid. This is a common method of recording data at English auc-
tions and exactly that used in the Forest Service auctions studied below.8

The information available to the econometrician consists of these bids,
the reserve price, and the minimum bid increment.

The structural feature of interest is the distribution which fullyF (7),0

characterizes bidder demand and information. Note, however, that if
the seller sets a binding reserve price no auction can reveal any-r 1 v,
thing about on the truncated region of the support, that is, forF (v)0

In many auctions, the seller sets no reserve price; for such cases,v ! r.

7 We explore other demand structures in Haile and Tamer (2001). Descriptions of
standard auction models and demand structures are given in, e.g., McAfee and McMillan
(1987), Wilson (1992), Klemperer (1999), and Athey and Haile (2002).

8 Given our assumptions, these bids contain all the information revealed about F (7)0

during the auction. If only the bids of the top few bidders (at least two) were observed
from each auction, our method could still be applied as long as we knew the number of
participating bidders, i.e., those with valuations above the reserve price. As with all existing
structural methods for auctions, this knowledge is needed to correctly interpret the ob-
served order statistics of the bids.
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let If the seller sets a reserve price above let Then0 0r p v. v, r p r.
define the truncated distribution

0F (v) � F (r )0 0F(v) p . (1)01 � F (r )0

Conditional on participation, bidders have valuations that are indepen-
dently and identically distributed (i.i.d.) draws from Because bidsF(7).
can reveal only information about we treat this distribution as theF(7),
primitive of interest.9 As we show below, is often sufficient for theF(7)
positive and normative questions of interest.

For we let denote bidder j’s bid. The random variablesj p 1, … , n, Bj

represent the order statistics of the bids, with denotingB , … , B b1 : n n : n i : n

the realization of the ith lowest of the n bids. Let denote theG (7)i : n

distribution of Similarly, let denote the ordered val-B . V , … , Vi : n 1 : n n : n

uations, with each Note that need not be the bid madeV ∼ F (7). bi : n i : n i : n

by the bidder with valuation v .i : n

III. Bounds on the Distribution of Valuations

A. Identification

1. Upper Bound

To obtain an upper bound on the distribution we use assumptionF(7),
1, which can be written as for all i. If we letb ≤ v G(b) p Pr (B ≤ b),i i i

this implies the first-order stochastic dominance relation

G(v) ≥ F(v) Gv. (2)

While (2) itself provides an upper bound on we can obtain a tighterF(7),
bound by exploiting the fact that some order statistics may provideBj : n

more precise information about valuations than others. To do this, first
note that assumption 1 implies that the ith order statistic of the bids
must lie below the ith order statistic of the valuations.10

Lemma 1. for all i.b ≤ vi : n i : n

To use this result, for and¯H � [0, 1], n � {2, … , M}, i � {1, … , n},

9 If the reserve price is a random variable taking on values below with positive prob-v
ability, one obtains a random truncation model in which identification of bounds on the
full distribution follows from the arguments below. A similar observation is madeF (7)0

for the case of first-price auctions by Guerre et al. (2000). Estimation in such an envi-
ronment is the subject of ongoing work.

10 Suppose that for some Then there must be bids exceedingb 1 v i ≤ n. n � i � 1i : n i : n

the th-highest valuation, requiring a violation of assumption 1. This contradic-(n � i � 1)
tion proves lemma 1.
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define a strictly increasing differentiable function f(H; i, n) : [0, 1] r
implicitly as the solution to[0, 1]

f

n! i�1 n�iH p s (1 � s) ds. (3)�(n � i)!(i � 1)! 0

The following lemma documents a well-known (e.g., Arnold, Balakrish-
nan, and Nagaraja 1992) and useful property of i.i.d. random variables:
the distribution of any order statistic uniquely determines the parent
distribution.

Lemma 2. Given i.i.d. random variables drawn from then{V } F(7),i ip1

distribution of the ith order statistic is related to the parentF (7) Vi : n i : n

distribution by11F(7)

F(v) p f(F (v); i, n). (4)i : n

We do not observe the realizations of any order statistic nor,Vi : n

therefore, any distribution that would enable us to identifyF (7) F(7)i : n

through (4); however, we can infer bounds on each of these distribu-
tions. In particular, lemma 1 implies

F (v) ≤ G (v) Gi, n, v. (5)i : n i : n

Applying the monotone transformation to each side of (5)f(7; i, n)
and recalling (4) then gives the following result.

Theorem 1. For all 0 ¯v � [r , v,]

F(v) ≤ F (v) { min f(G (v); i, n).U i : n
¯n�{2,…,M},i�{1,…,n}

To understand the appearance of the min in the definition of F (v),U

note that, for a given v, (4) and (5) imply different bounds onM̄� nnp2

—one for each pair of indices (i, n) in (5). In general, some ofF(v)
these bounds will be more informative than others. In particular, the
closer tends to be to when the closerB V V p v, f(G (v); i, n)i : n i : n i : n i : n

will be to Our assumptions say nothing about which of these boundsF(v).
will be tightest; however, as indicated in theorem 1, the tightest bound
is obtained directly by taking the minimum at each value of v. Figure
1 illustrates for the case using hypothetical distributionsN { 3 G (7),i : 3

where the bold lower envelope is the bound F (7).U

11 This can also be written as
n

n j n�jF (v) p F(v) [1 � F(v)] .( )�i : n jjpi
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Fig. 1

2. Lower Bound

Turning now to the lower bound on the distribution we follow anF(7),
analogous approach. Rather than assumption 1, however, here we use
assumption 2, which immediately implies

v̄ b p bu i n : nv ≤ v { Gi. (6)i i {b � D b ! bn : n i n : n

Letting denote the CDF of the random variable defined in (6),uw(7) Vi

we then have Note, however, that impliesF(v) ≥ w(v). {v ! b � D}n�1 : n n : n

Furthermore, the inequality is com-¯{v ! b � D Gj ! n � 1}. v ! vj : n n : n i

pletely uninformative. Hence (6) really consists of only one inequality.
Lemma 3. v ≤ b � D.n�1 : n n : n

Although this provides a nontrivial upper bound on the realization
of only one order statistic of the valuations at each auction, the relation
(4) enables us to use this limited information to construct a much more
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informative lower bound than For let denoteD¯w(7). n p 2, … , M, G (7)n : n

the distribution of Lemma 3 then impliesB � D.n : n

DF (v) ≥ G (v) Gn, v. (7)n�1 : n n : n

Applying the monotone transformation to each side off(7; n � 1, n)
(7) and recalling (4) gives the following result.

Theorem 2. For all 0 ¯v � [r , v],

DF(v) ≥ F(v) { max f(G (v); n � 1, n).L n : n
n

As before, a different lower bound, is obtainedDf(G (v); n � 1, n),n : n

for each value of n, with the max function selecting the tightest bound
at each value v.

B. Remarks

We make two brief observations. First, the dominant strategy equilibrium
of Milgrom and Weber’s (1982) button auction model gives one example
of bidding consistent with (but not implied by) assumptions 1 and 2.
In this special case, the top losing bidder exits at his valuation, followed
immediately by the winning bidder. Hence, ; thatb p v p bn�1 : n n�1 : n n : n

is, the upper and lower bounds on the order statistic are identical.vn�1 : n

Hence (since we must have for this to occur)D p 0

Df(G (v); n � 1, n) p f(G (v); n � 1, n),n : n n�1 : n

implying that and are identical.F(7) F (7)L U

Remark 1. In the dominant strategy equilibrium of the button auc-
tion, for all v.F(v) p F (v)L U

Thus, whenever observed bids are consistent with equilibrium bidding
in the button auction model, our bounds collapse to the true distri-
bution. In fact, bids need not even be fully consistent with the button
auction model for this to occur: whenever for some n, thev p bn�1 : n n : n

lower bound implied by lemma 3 is the true distribution ; likewise,F(7)
whenever for some (i, n), the upper bound obtained fromb p vi : n i : n

lemma 1 is the true distribution. The model given as example 1 in
Appendix B, for example, satisfies both conditions. Conversely, non-
identical upper and lower bounds (up to the effects of sampling error)
imply a rejection of the button auction model. Hence, there is a sense
in which there is no cost to taking our approach rather than assuming
the full structure of the standard model: only when the data are incon-
sistent with the standard model do we identify bounds on ratherF(7)
than identify itself.F(7)

A second observation is that our limited structure—the symmetric
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independent private values model along with assumptions 1 and 2—im-
plies a testable restriction.

Remark 2. for all v.F(v) ≤ F (v)L U

This may be more useful than it initially appears. It should be clear
that violations of assumptions 1 and 2 can lead to violation of this
stochastic dominance relation by violating the inequalities (5) or (7)
that underlie it. Furthermore, the critical relation (4) holds only for
i.i.d. random variables. Hence, common value components, unobserved
heterogeneity across auctions, or other sources of correlation in bidders’
willingness to pay within auctions can cause this relation to fail—
something we have confirmed both in simulations and with field data.
While we do not pursue development of formal tests here, this restriction
offers a principle by which such tests might be developed to evaluate
the structure we assume in interpreting the data.

C. Estimation

We suppose now that the researcher observes bids in auctions t p
adding a subscript t as necessary to the variables defined above.1, … , T,

In each auction, potential bidders draw their valuations independently
from the distribution Using to denote the indicator function,F (7). 1[7]0

let and define the empirical distribution functionsTT p � 1[n p n]tp1n t

T1
Ĝ (v) p 1[n p n, b ≤ v] (8)�i : n t i : ntT tp1n

and

T1
DĜ (v) p 1[n p n, b � D ≤ v]. (9)�n : n t n : n tt tT tp1n

For each v, consistent nonparametric estimators of and areF(v) F (v)L U

easily obtained by substituting these empirical distributions for their
population analogs in theorems 1 and 2, that is,

ˆF̂ (v) { min f(G (v); i, n) (10)U i : n
¯n�{2,…,M},i�{1,…,n}

and

DˆF̂ (v) { max f(G (v); n � 1, n). (11)L n : n
¯n�{2,…,M}

Uniform consistency of these estimators is shown in the following the-
orem. In Haile and Tamer (2002), we also derive the asymptotic distri-
bution and show that bootstrap confidence bands are consistent.
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12 journal of political economy

Theorem 3. For suppose that and as¯n p 2, … , M, T r � T /T r ln n n

with Then as , (a) uniformly in v,
a.s.ˆT r �, 0 ! l ! 1. T r � F (v) r F (v)n U U

and (b) uniformly in v.
a.s.

F̂ (v) r F(v)L L

Proof. See Appendix A.
In practice, these estimators can be badly biased in small samples

because of the concavity (convexity) of the min (max) function. Intu-
itively, by taking the minimum of the estimated upper bounds

in (10), we tend to select an estimate with downwardˆf(G (v); i, n)i : n

estimation error. The resulting bias can lead to estimated bounds that
cross in finite samples—particularly if the population bounds andF (7)U

are close. To address this finite sample problem, we propose a simpleF(7)L

modification of the estimators in theorem 3. For the upper bound, the
estimator above has the form where eachˆ ˆ ˆ ˆF (7) min (y , … , y ), y �U 1 J j

We replace this minimum with a smooth weighted average that[0, 1].
approximates the minimum:

J ˆexp (y r )j Tˆ ˆ ˆm(y , … , y ; r ) p y . (12)�1 J T j J[ ]ˆ� exp (y r )jp1 kp1 k T

For r � �,

ˆ ˆ ˆ ˆm(y , … , y ; r) 1 min (y , … , y ),1 J 1 J

although

ˆ ˆ ˆ ˆlim m(y , … , y ; r) p min (y , … , y ).rr�� 1 J 1 J

Consistency of this modified estimator is obtained by letting the smooth-
ing parameter rT decrease to minus infinity at an appropriate rate as

Indeed, all the asymptotic properties of are then preservedˆT r �. F (v)L

(see App. C). However, in small samples, this substitution provides a
simple and (in extensive Monte Carlo simulations) effective adjustment
for the downward bias of We make an analogous adjustment toF̂ (v).U

the max function in exploiting the fact thatF̂ (v),L

ˆ ˆ ˆ ˆlim m(y , … , y ; r) p max (y , … , y ).rr�� 1 J 1 J

Note that setting the smoothing parameter rT to an arbitrarily large
positive number for the upper bound and an arbitrarily large negative
number for the lower bound ensures that the bounds will not cross—an
important practical issue. This follows from the fact that because

is monotonic,f(7; n � 1, n)

Dˆ ˆf(G (v); n � 1, n) ≤ f(G (v); n � 1, n)n : n n�1 : n

in any sample.
Finally, note that these nonparametric estimators are simple. Con-

structing the empirical distribution functions in (8) and (9) amounts
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english auctions 13

to calculating sample means of indicator functions. Numerical solution
for is also particularly simple because of the monotonicity off(H; i, n)
f(7; j, n).

IV. Bounds on the Optimal Reserve Price

A. Preliminaries

In many cases the key policy instrument for the seller is the reserve
price (minimum acceptable bid). The trade-off the seller faces is
straightforward: raising the reserve price will increase surplus extraction
when only one bidder is willing to bid but will also raise the likelihood
that the object fails to sell. The optimum depends on the distribution
of valuations exactly as a monopolist’s optimal price depends on the
demand curve it faces (Bulow and Roberts 1989). However, deriving
bounds on the optimal reserve price from bounds on is nontrivialF(7)
because an increase (in the sense of first-order stochastic dominance)
in bidder valuations need not raise the optimal reserve price, just as
the monopoly price need not rise with an increase in demand. Hence,
the optimal reserve need not lie between the prices that would be op-
timal if or were the true distribution.12F(7) F (7)L U

Our analysis here exploits results from the literature on optimal auc-
tions (Myerson 1981; Riley and Samuelson 1981). Consistent with this
literature we shall assume, for this section only, that is strictly in-F(7)
creasing and continuously differentiable. We also make the following
technical assumption, which is implied by the standard regularity con-
dition of Myerson (1981).13

Assumption 3. is strictly pseudo-concave14 in p on(p � v )[1 � F (p)]0 0

¯(v, v).
Before proceeding, we must address two questions. The first is

whether the optimal reserve price is well defined here. This might seem
unlikely given the limited restrictions we place on bidder behavior. How-
ever, as long as we believe that bidders act rationally, assumptions 1 and
2 are sufficient to enable application of Myerson’s revenue equivalence

12 The same issue would arise in constructing confidence bands around the optimal
reserve price based on confidence bands around a nonparametric estimate of the distri-
bution e.g., in the first-price auctions studied by Guerre et al. (2000). Our solutionF(7),
could be applied in that case as well.

13 Myerson’s condition is strict monotonicity of where is thep � {[1 � F (p)]/f (p)}, f (7)0 0 0

derivative of This condition is satisfied by many known distributions. We use theF (7).0

weaker assumption 3 primarily because imposing this restriction in our nonparametric
analysis is more straightforward.

14 A differentiable univariate function is strictly pseudo-concave on if, forp(7) A O �
all distinct x and y in A, whenever (see, e.g., Avriel et al.′p(y) ! p(x) (y � x)p (x) ≤ 0
1988). This is equivalent to strict pseudo-monotonicity of i.e., to the condition that′p (7),

whenever (Karamardian and Schaible 1990).′ ′(y � x)p (y) ! 0 (y � x)p (x) ≤ 0
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14 journal of political economy

result. Following Myerson, let a feasible auction mechanism be any well-
defined auction game with accompanying bidding strategies such that
(i) bidding is voluntary and (ii) bidding strategies form a Nash
equilibrium.

Lemma 4. Suppose that the English auction can be represented by
some feasible auction mechanism in which assumptions 1 and 2 hold.
Then an English auction with reserve price r and no minimum bid
increment is revenue equivalent to a second-price sealed-bid auction
with reserve price r.

Proof. See Appendix A.
Hence, the optimal reserve price for a sealed-bid auction is also op-

timal for an English auction with Furthermore, under Myerson’sD p 0.
regularity condition, lemma 4 and the optimality of the sealed-bid auc-
tion (with an optimal reserve) among all possible mechanisms (Myerson
1981) imply that a bid increment of zero is also optimal.15 This is useful
because, as is well known, under assumption 3, the optimal reserve price
for a sealed-bid auction is identical to the optimal price for a monopolist
with marginal cost v0 and demand curve 16q p 1 � F (p).0

Corollary 1. Under assumption 3, the optimal reserve price solves
max (p � v )[1 � F (p)].p 0 0

The second question is whether, when the seller sets a reserve price
in the auctions we observe, one can determine the optimal reserver 1 v

price from the truncated distribution F(7) p [F (7) � F (r)]/[1 � F (r)].0 0 0

This question is not special to the English auction or to our approach,
but it has not been carefully addressed before. Clearly, if r exceeds the
optimum, the truncated distribution cannot reveal the optimumF(7)
except through arbitrary functional form assumptions. The most one
could hope for is that when r is below the optimum, the truncated
distribution still determines the optimum, whereas if r is above theF(7)
optimum, properties of could at least reveal this fact. The followingF(7)
result shows that both of these hopes are fulfilled.

Lemma 5. Given any univariate CDF letF(7),

∗p (F) � arg max (p � v )[1 � F(p)].0
p�suppF

15 Under this regularity condition, the optimality of the sealed-bid auction provides an
alternative motivation for the analysis that follows, even without lemma 4: we show how
to construct bounds on the one unknown parameter of an optimal selling mechanism.

16 See, e.g., Bulow and Roberts (1989). One can easily confirm that this problem has
the same first-order condition as the reserve price problem

v̄

n�1 n�2max n[1 � F (p)]F (p) (p � v ) � (v � v )n(n � 1)f (v)[1 � F (v)]F (v) dv0 0 0 � 0 0 0 0
p�[v,v̄] p

and that the solution to each problem must be interior. Assumption 3 implies that there
is only one interior solution to the first-order condition.
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Under assumption 3, (i) if ; (ii) if∗ ∗ ∗ ∗r ≤ p (F ), p (F ) p p (F ) r 1 p (F ),0 0 0

then ∗p (F ) p r.
Proof. See Appendix A.
Hence, as long as the actual reserve price is below the optimum, we

may ignore the distinction between and 17 This condition isF(7) F (7).0

almost certainly true in the timber auctions we study below (see Sec.
VIIB) and in many other auctions with no reserve prices or extremely
low reserves. We proceed under the assumption that this condition
holds. In practice, by part ii, finding that the lower bound on ∗p (F )
exceeds r will provide evidence that this assumption is correct.

B. Identification

Even with the results above, it is not obvious how bounds on couldF(7)
be used to construct bounds on the optimal reserve price, since this is
characterized by the equation

∗1 � F(p )∗p p v � (13)0 ∗f(p )

yet bounds on place no restriction on at any point. We areF(7) f(v)
nonetheless able to obtain sharp bounds by exploiting corollary 1 and
lemma 5, which imply that we can focus on the problem of identifying
bounds on

∗p p arg max p(p),

where

p(p) p (p � v )[1 � F(p)].0

17 The assumption of a fixed reserve price r is made without loss of generality given our
ability to condition on auction observables, including the reserve price rt; however, the
distribution bounded by and if we do not condition on the reserve price is theF (7) F (7)L U

mixture

1 F (v) � F (r )0 0 tF̃(v) p .�
T 1 � F (r )t 0 t

Under assumption 3, maximizes which can be written as∗ ˜ ˜p (F) (p � v )[1 � F(p)],0

1 F (p) � F (r )0 0 t(p � v ) 1 � .� 0 [ ]T 1 � F (r )t 0 t

As long as each part i of lemma 5 implies that each term in this sum is maximized∗r ≤ p (F ),t 0

at so that ; i.e., one need not condition on rt to obtain valid bounds∗ ∗ ∗˜p (F ), p (F) p p (F )0 0

on the optimal reserve.
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Fig. 2

Observe that bounds on the distribution imply bounds on theF(7)
profit function In particular, letp(7).

p (p) p (p � v )[1 � F (p)],1 0 U

p (p) p (p � v )[1 � F(p)], (14)2 0 L

so that, by theorems 1 and 2,

p (p) ≤ p(p) ≤ p (p) Gp. (15)1 2

Define and let and∗ ∗ ∗p p sup p (p) p � arg sup p (p) p �1 p 1 1 p 1 2

If and either or has slope zero at∗ ∗arg sup p (p). p (p ) p p p (7) p (7)p 2 2 1 1 1 2

assumption 3 implies that Likewise, if∗ ∗ ∗ ∗ ∗p , p p p . p (p ) p p (p ) p1 1 2 1 2 2

then For these trivial special cases we define degenerate∗ ∗ ∗p , p p p .1 1

upper and lower bounds for completeness. Otherwise∗p p p p pU L 1

define

∗ ∗p { sup {p ! p : p (p) ≤ p },L 1 2 1

∗ ∗p { inf {p 1 p : p (p) ≤ p }.U 1 2 1

Note that and by construction. Figure 2 illustrates.∗ ∗p ≤ p p ≥ pL 1 U 1
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Fig. 3

The following result shows that pL and pU enclose the optimal reserve
price and that these are the tightest bounds one can obtain from our
bounds on ; that is, these are sharp bounds.F(7)

Theorem 4. Let assumptions 1, 2, and 3 hold. Then ∗p � [p , p ].L U

Given the bounds and on the bounds pL and pU are sharp.F(7) F (7) F(7),L U

Proof. See Appendix A.
Intuition for the first part of theorem 4 can be seen in figure 2. The

true profit function must reach a peak of at least and such a∗p(7) p ,1

peak cannot be reached at a price outside the interval since[p , p ]L U

must lie below Intuition for the sharpness can be gained fromp(7) p (7).2

figure 3, which shows the “demand curves” q p 1 � F(p), j � {U, L},j j

along with the iso-profit curve through the point In-∗ ∗(p , 1 � F (p )).1 U 1

tersections of this iso-profit curve and the upper demand curve define
pL and pU. Any downward-sloping demand curve lying between the two
original demand curves is consistent with the upper and lower bounds.
The bold curve illustrates one possibility. With this demand curve, any
price in the interval maximizes profit. The proof shows that[p , p ]L U

one can always construct a similar distribution function that also satisfies
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assumption 3 and makes a price arbitrarily close to pL (or to pU) the
unique optimum.

Note that, depending on the shape of the bounds mayp (7), (p , p )2 L U

be considerably wider than the interval even when the bounds∗ ∗(p , p ),1 2

and on the profit function are close, that is, even whenp (7) p (7) F(7)1 2 L

and are close. Of course, when and are close, bounds onF (7) F(7) F (7)U L U

the expected revenues from the auction must also be similar for reserve
prices between pL and pU—something we shall see in simulations below.

C. Estimation

To obtain estimates of the bounds pL and pU, we use the sample analogs
and of the profitˆ ˆˆ ˆp (p) p (p � v )[1 � F (p)] p (p) p (p � v )[1 � F (p)]1 0 U 2 0 L

functions in (14). Define

∗ˆ ˆp p sup p (p),1 1
p

∗ˆ ˆp � arg sup p (p),1 1
p

∗ ∗ 2ˆ ˆ ˆp p sup p ! p : min (p � p ) ≤ e ,{ }L 1 1 T
cˆp�p (p)2

∗ ∗ 2ˆ ˆ ˆp p inf p 1 p : min (p � p ) ≤ e ,{ }U 1 1 T
cˆp�p (p)2

where is the continuous correspondence defined bycp̂ (p)2

c ′ ′ˆ ˆ ˆp � p (p) ⇔ p � lim p (p ), lim p (p ) , (16)2 2 2[ ]′ ′p Fp p fp

and goes to zero at an appropriate rate as (more on thise 1 0 T r �T

in App. A).18 Theorem 5 shows that and are consistent estimators.ˆ ˆp pL U

Theorem 5. As and converge in probability, respectively,ˆ ˆT r �, p pU L

to pU and pL.
Proof. See Appendix A.

18 The estimators here are based on set estimation because could be “flat” atp (p)2

Additional discussion of this type of estimator is given in Sec. V below and in Manski∗p .1

and Tamer (2002). If one assumes that has nonzero slope at then eTp (p) p � {p , p },2 L U

can be (or set equal to zero), and standard consistency arguments apply. This resultso(1)
in a simpler estimator and may be preferred in practice.
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english auctions 19

V. Auction Heterogeneity

A. Conditional Bounds

In practice, objects sold by auction typically differ in observable dimen-
sions—for example, the size of a tract of timber, the mileage of roads
to be paved, or the location of real estate. Variation in these factors
introduces correlation in bidders’ valuations at each auction. However,
conditional on these observables, heterogeneity in valuations reflects
idiosyncratic factors (e.g., idiosyncratic tastes, cost shocks, or demand
shocks) and may reasonably be assumed to be i.i.d. Our approach easily
extends to cover such cases.

Let be a vector of observable characteristics for auction t. It isX t

straightforward to show that under the conditional independence as-
sumption, our fully nonparametric results from the preceding sections
carry through when the distributions and are replaced withF (7) G (7)i : n i : n

conditional distributions and yielding boundsF (7FX ) G (7FX ),i : n t i : n t

and on the conditional distributions and so forth.F(7FX ) F (7FX ) F(7FX )L t U t t

These extensions follow standard methods from the literature on non-
parametric econometrics and are therefore omitted here, although we
provide additional detail in Haile and Tamer (2002).

B. The Effects of Auction Covariates on Valuations

Often one is directly interested in how valuations are affected by auction-
specific observables such as characteristics of the object for sale, the
terms of a government contract, or the identity or characteristics of the
seller (e.g., his eBay rating) (see, e.g., Bryan et al. 2000; Houser and
Wooders 2000; Bajari and Hortaçsu 2002). Our bounds on the condi-
tional distributions can be used to address such questions, fol-F(7FX )t
lowing approaches developed in Manski and Tamer (2002). To do this,
we add the following assumption about the conditional mean of bidders’
valuations.

Assumption 4. where is a com-E[V FX p x ] p l(x , b ), b � B, Bit t t t 0 0

pact subset of and is known.k� , l(7, 7)
Similar restrictions on other functionals of would also suffice.F(7FX)

For example, we shall use the conditional median in our application
below. The “link function” may take any form; it may be the linearl(7, 7)
function used in most applied work or a polynomial, for example.

Assumption 4 places structure on the conditional mean of the valu-
ations. With bounds and on the conditional distributionF(vFX ) F (vFX )L t U t

of valuations, we also know the range in which the conditionalF(vFX ),t

mean can lie for each value of x. To see this, let be a random¯l(x, b ) S0 x

variable with distribution and let be a random variable withF(7Fx) SL x

distribution Then assumption 4, the fact thatF (7Fx). F(vFx) ≤ F(vFx) ≤U L
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for all v, x, and the definition of first-order stochastic dominanceF (vFx)U

imply

¯E[S ] ≤ l(x, b ) ≤ E[S ] Gx; (17)x 0 x

that is, given the average draw from the true distribution mustX p x,t

lie between the average draw from the corresponding bounds on the
distribution. An estimation approach can then be built on the idea of
excluding trial values for b0 that lead to violations of (17).

For a parameter value defineb � B,

¯V(b) p {x : l(x, b) ! E[S ] ∪ E[S ] ! l(x, b)}.x x

Given b, this is the set of values of x for which fails to lie betweenl(x, b)
the conditional means and If we observed such an x, then¯E[S ] E[S ].x x

we could rule out b as a candidate for the true parameter b0. Hence,
the parameter b0 is identified relative to b if and only if ThePr [V(b)] 1 0.
set of parameter values indistinguishable from the true b0 is

S p {b � B : Pr [V(b)] p 0}.

We shall refer to S as the identified set.
The parameter b0 is point identified (i.e., iff forS p b ) Pr [V(b)] 1 00

all In general, the identified set S will be a nonempty subsetb � B \ b .0

of However, sufficient conditions for point identification can bek� .
derived, even when the bounds and are not coincident.F (7FX) F(7FX)U L

For example, if and both and are linear in X,¯l(x, b) p xb E[S ] E[S ]x x

all parameters on regressors with unbounded support are point iden-
tified. While such conditions obviously need not hold, the important
point is that in practice even wide bounds on can yield tightF (7FX)
bounds on the parameters of this flexible semiparametric model of
bidder valuations.

In general, our problem consists of estimating the set of parameters
consistent with the data. Estimation of this identified set is based on
minimization of a criterion function that penalizes violations of (17).
Let and and¯d (x, b) p 1[E[S ] 1 l(x, b)] d (x, b) p 1[E[S ] ! l(x, b)]1 x 2 x

define

2Q(b) p {[E[S ] � l(x, b)] d (x, b)� x 1

2¯� [l(x, b) � E[S ]] d (x, b)}dP , (18)x 2 X

where is the distribution of the conditioning variable(s) X. LetPX

and denote the means of a sample of draws from ˆ¯E [S ] E [S ] F (7Fx)T x T x U
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and respectively. Substituting these simulated values for theirF̂ (7Fx),L

population counterparts in (18) gives the sample criterion function
T1 2Q (b) p {[E [S ] � l(x , b)] 1[E [S ] 1 l(x , b)]�T T x t T x tt tT tp1

2¯ ¯� [l(x , b) � E [S ]] 1[l(x , b) 1 E [S ]]}.t T x t T xt t

A seemingly natural approach would be to minimize However,Q (b).T

because we are estimating a set, this can lead to poor properties. In
particular, the sample criterion function involves sampling error, and
we want to avoid excluding parameter values that fail to minimize the
criterion only because of sampling variation. To do this, we introduce
a tolerance parameter and definee 1 0T

Ŝ { b � B : Q (b) ≤ min Q (c) � e .{ }T T T
c�B

This is the set of parameter values that put the sample criterion function
within of its minimum. By letting we ensure that as the samplee e r 0,T T

size grows, every element in is near some element of S. By limitingŜ

the rate at which we can also ensure that every element of S hase r 0,T

a nearby value in Ŝ.
To make this more precise, given two sets A and B, define

∗r(A, B) p sup inf Fb � b F
∗b�A b �B

so that the Hausdorff distance between the sets S and isŜ

The following result provides sufficient conditionsˆ ˆmax {r(S, S), r(S, S)}.
for (Hausdorff) convergence of to S.Ŝ

Theorem 6. Let assumptions 1, 2, and 4 hold. Assume that (i)
(ii) and (iii) there exists an integrable

a.s. a.s.¯ ¯E [S ] r E[S ], E [S ] r E[S ],T x x T x x

function that dominatesU : � r �

2 2¯[E[S ] � l(x, b)] d (X, b) � [E[S ] � l(x, b)] d (X, b).x 1 x 2

Then if If then
a.s.ˆe r 0, r(S, S) r 0. sup {FQ (b) � Q(b)F}/e r 0,T b�B T T

ˆr(S, S) r 0.
Proof. See Appendix A.

VI. Monte Carlo Experiments

To examine the performance of our approach, we have conducted a
number of Monte Carlo experiments. To generate artificial bidding data
for each experiment, Tn samples of valuations were first drawnn p 6
from a known distribution. Bids were then generated as in example 2
of Appendix B, where the auctioneer iteratively selects a bidder at ran-
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dom, who must then either raise the standing bid by one bid increment
or drop out. We also consider a variation allowing jump bidding in a
simplistic way: each time a bidder agrees to bid, with probability l he
jumps to a uniform draw between the standing bid (plus D) and his
valuation, rather than raising the bid by D. This binomial draw on
whether to jump bid is made independently at each bidding opportunity.
These procedures enable us to construct bidding data that deviate (con-
tinuously) from equilibrium bids in the button auction model in ways
that are common in field data. In particular, with nonzero values of D

and l, gaps between the top two bids may exist; bids may be poor
approximations of valuations; and the ordering of bidders according to
their bids may differ from that according to valuations. However, setting

and letting yields bids identical to equilibrium bids in thel p 0 D r 0
button auction model.

We performed 500 replications of each experiment. We summarize
the results graphically, plotting the true distribution of valuations, along
with pointwise mean estimates of the upper and lower bounds, fifth
percentile of the lower bounds, and ninety-fifth percentile of the upper
bounds. Figure 4 shows the results with a lognormal distribution of
valuations, with and D equal to the maximum of one and 5l p 0
percent of the standing bid. We consider sample sizes ranging from

auctions to auctions. Even in very small samples theT p 25 T p 200n n

estimators perform well, although the tightness of the bounds increases
with Tn because of changes in the smoothing parameter (we use aUrT

sequence diverging to at rate ). We also measured how frequently��� Tn

the estimated upper and lower bounds crossed on 5 percent or more
of the interval [0, 180]. This occurred in between 0 and 3 percent of
the replications for each value of Tn. This compares with frequencies
of 16–33 percent obtained without the finite sample adjustment dis-
cussed in Section IIIC.

In figure 5, we examine the effects of varying the parameters D and
l, taking a sample size in each case. Figure 5d allows theT p 200n

probability of making a jump bid to differ across bidders, depending
on the realizations of their valuations. Roughly speaking, the bounds
are less informative (wider) the farther actual bidding behavior is from
that in a symmetric equilibrium of the button auction model. In par-
ticular, larger values of D or l result in wider bounds. In figure 6 we
illustrate the results for two other distributions, a x2 (fig. 6a, c) and a
beta (fig. 6b, d). While the shapes of these distributions are quite dif-
ferent from the lognormal, the performance of the bounds is similar,
as is the case for a range of other distributions we examined.

Table 1 summarizes the bounds on the optimal reserve price obtained
using variations on the lognormal experiments above, all with n p 6
and Although in each simulation implying that ourT p 200. l p 0,n
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Fig. 4.—Monte Carlo results. Solid curves are true distribution functions, dashed curves are mean estimated upper and lower bounds, and dotted
curves are the fifth and ninety-fifth percentiles.
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Fig. 5.—Monte Carlo results. Solid curves are true distribution functions, dashed curves are mean estimated upper and lower bounds, and dotted
curves are the fifth and ninety-fifth percentiles.
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Fig. 6.—Monte Carlo results. Solid curves are true distribution functions, dashed curves are mean estimated upper and lower bounds, and dotted
curves are the fifth and ninety-fifth percentiles.
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TABLE 1
Monte Carlo Simulations: Optimal Reserve Price

Lognormal Parameters mp4, jp.5 mp3, jp1.0 mp5, jp.25

True ∗p 42.1 27.2 112.6
∗F(p ) .30 .62 .13

Mean estimated bounds
ˆ ˆ[p , p ]L U [28.4, 67.7] [17.2, 50.3] [82.9, 152.8]

90% confidence interval [27.1, 70.3] [15.2, 58.0] [80.3, 157.3]

bounds on are quite tight (recall fig. 4d), the bounds on the optimalF(7)
reserve price are fairly wide. Since our bounds on the optimal reserve
price are sharp given the bounds on these results suggest the sen-F(7),
sitivity of policy implications to seemingly small variation in the prim-
itives. A virtue of the approach we propose here is that we can explicitly
account for this in evaluating policy—something we shall do in the
application below.

A. Comparison to Existing Methods

We compare these results with those from experiments using the same
data-generating processes but estimation approaches considered pre-
viously in the literature, both based on the button auction model. The
first approach ignores winning bids and treats losing bids as though
they were equilibrium bids in the button auction model. This approach
was proposed by Donald and Paarsch (1996) and implemented by
Paarsch (1997) and Hong and Shum (in press). Following this literature,
we use a maximum likelihood implementation of this model, with the
likelihood obtained directly from the joint density of the lowest

order statistics of the valuations at each auction. We refer to thisn � 1t

as “model 1.” In practice, one would not know the true parametric
family; however, we shall ignore this source of potential misspecification
and assume the true (lognormal) family. As figure 7 illustrates, even
without misspecification of the parametric family, this method can per-
form badly. Here we report results using a sample size of aT p 200,n

bid increment of 5 percent, and We compare the truel � {0, .25}.
lognormal distribution to that at the mean parameter estimates and
include mean 90 percent confidence bands at each point calculated by
the delta method. Even with no jump bidding ( ), the performancel p 0
of this model is poor, with the true CDF lying outside the 90 percent
confidence bands on most of the support. When the resultsl p .25,
are even worse. The reason is that with minimum bid increments and
jump bidding, bids often are well below the corresponding bidders’
valuations, particularly in the case of lower-ranked bids. Interpreting
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Fig. 7.—Monte Carlo results, model 1. Solid curves are true distributions, dashed curves
are distributions implied by mean parameter estimates, and dotted curves are mean 90
percent confidence bands.

each bid as equal to the underlying valuation then results in a “stretching
out” of the estimated distribution.

An alternative, “model 2,” avoids misinterpretation of losing bids by
ignoring them altogether and assuming only that the winning bid

is equal (up to the minimum bid increment) to the second-highestbn : nt t

valuation (see, e.g., Paarsch 1992b; Baldwin et al. 1997; Hailevn �1 : nt t

2001). We use a nonparametric implementation suggested by the iden-
tification argument of Athey and Haile (2002, theorem 1). When

there is ambiguity regarding the implementation of this model,D 1 0,t

since one could assume, for example,

b p v � D or b p vn : n n �1 : n t n : n n �1 : nt t t t t t t t

or b p v � D . (19)n : n n �1 : n tt t t t

When Nt takes on only one value, the last of these options will result in

This content downloaded from 131.215.23.31 on Mon, 24 Feb 2014 13:23:49 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


28 journal of political economy

Fig. 8.—Monte Carlo results, model 2. Solid curves are true distributions, dashed curves
are mean estimates, and dotted curves are fifth and ninety-fifth percentiles.

an estimator equal to ; that is, it willDˆˆ ˆF(v) p f(G (v); n � 1, n) p F (v)n : n L

give a point estimate identical to our estimate of the lower bound. When
Nt takes on different values, one would construct an estimator equal to
an average (over n) of each leading to an estimateDˆf(G (v); n � 1, n),n : n

of a distribution lying strictly below our lower bound. We take the inter-
mediate approach of assuming which is also consistentb p v ,n : n n �1 : nt t t t

with the prior literature.
When the gap between each and is small, model 2 canb vn : n n �1 : nt t t t

give estimates that are close to the truth. Figure 8a illustrates. There
the effect of ignoring the bid increment almost perfectly offsets theDt

difference between our lower bound and the true CDF. This results in
very good estimates, at least above the thirtieth percentile. Because there
are few realizations of in the left tail, however, the performanceVn�1 : n

of the estimator is weaker below the thirtieth percentile. This can be

This content downloaded from 131.215.23.31 on Mon, 24 Feb 2014 13:23:49 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


english auctions 29

important in practice: here the true optimal reserve price lies at ap-
proximately the thirtieth percentile. As figure 8b illustrates, this problem
is more serious with a sample size of 50—still a fairly large sample of
homogeneous auctions. In figure 8c, d, and e, we see that this approach
gives poor results when bidders jump bid with probability one-fourth
or with probability Here the true distribution often lies outside4F(v) .
the 90 percent confidence bands. Figure 8f (by comparison with fig. 8c)
illustrates the perverse fact that moving the true data-generating process
closer to that of the button auction can lead to worse estimates. Here
we shrink the minimum bid increment to 0.05 percent of the standing
bid—roughly that of the timber auctions studied below. As suggested
by the discussion above, this shifts the estimate of each downward,F(v)
that is, away from the true distribution. Finally, in figure 9 we repeat
the experiments underlying figure 3, illustrating the performance of
model 2 with alternative distributions.

An important conclusion from these simulations is that, despite the
fact that equilibrium bidding in the button auction model obeys our
two assumptions, estimates based on the button auction model can be
quite misleading if the true data-generating process deviates from this
structure, even in seemingly small ways. Furthermore, imposing the full
structure of this model need not yield estimates lying within our bounds,
even asymptotically. Model 2 appears to be much more robust than
model 1, although even model 2 can deliver poor results.

VII. Application to Forest Service Timber Auctions

A. Background and Data

We apply our methods to data from auctions of timber-harvesting con-
tracts held by the U.S. Forest Service. A contract gives the purchaser
the obligation to harvest all included timber on the tract within a spec-
ified contract term, as well as rights to the harvested timber. We consider
auctions held between 1982 and 1990 in Washington and Oregon (“re-
gion 6”). Bidders are primarily specialized sawmills, wood product con-
glomerates, and independent loggers. We shall assume that bidding in
each auction is competitive and independent of all other auctions.19

As in Baldwin et al. (1997) and Haile (2001), we focus on a subset
of sales for which the independent private values assumption is most
compelling.20 We consider only “scaled sales,” where bids are species-

19 Baldwin et al. (1997) consider possible collusion in this region in an earlier time
period.

20 Other studies assuming the symmetric independent private values model for timber
auctions include Johnson (1979), Hansen (1985, 1986), Paarsch (1992b, 1997), Cummins
(1994), Elyakime et al. (1994), Carter and Newman (1998), and Campo, Perrigne, and
Vuong (2000).
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Fig. 9.—Monte Carlo results, model 2. Solid curves are true distributions, dashed curves are mean estimates, and dotted curves are fifth and ninety-
fifth percentiles.
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specific prices, and payments are made to the Forest Service on the
basis of the quantities actually harvested.21 We consider only contracts
with terms of one year or less. Consequently, most bidder uncertainty
regarding timber volumes and prices is eliminated or at least insured
by the Forest Service. This reduces the gains to bidders from conducting
their own cruises of the tracts. Indeed, for scaled sales, bidders usually
do not undertake their own cruises (Natural Resources Management
Corp. 1997). Furthermore, the restriction to sales with short contract
terms, along with our restriction to sales after 1981, minimizes the like-
lihood that opportunities for resale/subcontracting introduce a com-
mon value element as in Haile (2001).22 The features of these auctions
leave little room for private information regarding any common factors
determining bidder valuations. However, bidders are likely to have pri-
vate information about private value elements such as their idiosyncratic
demands, contracts for future sales, and their inventories of uncut tim-
ber from private sales (Baldwin et al. 1997; Haile 2001).

Before each sale in our sample, the Forest Service published a “cruise
report,” providing bidders with (among other things) estimates of tim-
ber volume, harvesting costs, costs of manufacturing end products, and
revenues from end product sales. Records of these estimates enable us
to condition on a large number of auction covariates capturing bidders’
common information about the sale—something important to the va-
lidity of our assumption that valuations are independent conditional on
observables. Forest Service officials also used these estimates to construct
a reserve price, equal to the estimated selling value less estimated har-
vesting and manufacturing costs, and an allowance for profit and risk.
Bidders were required to submit sealed bids of at least the reserve price
to be eligible to bid in the auction. Hence, sales records indicate the
registration of all bidders, including any who did not actually call out
a bid at the auction.

When bidders gather for the auction, bidding opens at the highest
sealed bid and then proceeds orally, with a minimum bid increment of
5 cents per thousand board feet (MBF), which is about $25 (1983

21 Athey and Levin (2001) point out that “skew bidding” can arise in scaled sales if
bidders have private information about errors in the Forest Service estimates of the relative
volumes of timber of different species. Such information would also introduce a common
value element to the auction. As in Baldwin et al. (1997) and Haile (2001), we assume
that there is little information of this sort in the auctions we consider and focus on the
total bid made by each bidder, the same statistic used to determine the auction winner.

22 Haile (2001) uses the opposite selection criterion to focus on resale. We also exclude
from our sample salvage sales, sales set aside for small bidders, and contracts with road
construction requirements.
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TABLE 2
Gaps Between First- and Second-Highest Bids

Quantiles High Bid Gap
Minimum
Increment

Gap �
Increment

10% 9,151 30 4.1 1.2
25% 22,041 92 10.1 6.9
50% 55,623 309 23.4 14.8
75% 127,475 858 52.1 20.0
90% 292,846 2,048 110.5 76.4

dollars) on the median tract.23 Forest Service officials report that jump
bidding is common. Table 2 provides some support, showing a gap
between the highest and second-highest bid of several hundred dollars
(roughly 10–20 times the minimum increment) in the majority of auc-
tions. Since the cost of jump bidding—the risk that one wins with the
jump bid and pays too much—is highest at the end of the auction, jump
bidding is likely to be more significant early in the auctions. However,
these gaps themselves are generally quite small relative to the total bid,
suggesting that we may be able to obtain tight bounds.

B. Reserve Price Policy

The Forest Service’s mandated objective in setting a reserve price is to
ensure that timber is sold at a “fair market value,” defined as the value
to an “average operator, rather than that of the most or least efficient”
(U.S. Forest Service 1992). Many observers have argued that Forest
Service reserve prices fall short of this criterion and are essentially non-
binding floors (see, e.g., Mead, Schniepp, and Watson 1981, 1984; Haile
1996; Campo et al. 2000). Bidders, for example, claim that the reserve
prices never prevent them from bidding on a tract (Baldwin et al. 1997).
As discussed above, for our purposes it is sufficient to assume only that
the actual reserve prices are below the profit-maximizing reserve prices.

There is an ongoing controversy over so-called below-cost sales—sales
generating revenues insufficient to cover even the costs to the Forest
Service of administering the contract (see, e.g., U.S. General Accounting
Office 1984, 1990, 1991; U.S. Forest Service 1995). Obviously, this is
possible only with reserve prices below profit-maximizing levels. How-
ever, reserve prices are not set with the goal of profit maximization nor

23 Forest Service rules actually require only that total bids rise as the auction proceeds,
although local officials often specified discrete increments. In the time period we consider,
the 5 cent increment was a common practice in this region. Sometimes increments of 1
cent per MBF were used, and many sales used no minimum increment. We use the 5 cent
increment since this results in a more conservative bound, although variations of this
magnitude have very little effect on the results: 5 cents represents about 0.05 percent of
the average bid in our sample.
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even based on costs at all. The Forest Service has a range of objectives,
including “forest stewardship” and a mandate to provide a supply of
timber to meet U.S. demand for wood and wood products. As a result,
costs of the Forest Service timber sales program may exceed those of
private timber producers, and some harvest decisions may be driven by
goals of improving forest health or preventing catastrophic fires.

Determining whether these goals justify selling with suboptimal re-
serve prices, or even below cost, requires a careful evaluation of the
costs and benefits of changing reserve prices. However, such an evalu-
ation has been hindered in part by an inability to assess the effects of
alternative reserve prices on outcomes. For example, a recent U.S. Forest
Service (1995) report asserts that “studies indicate it is nearly impossible
to use sale records to determine if marginal sales made in the past would
have been purchased under a different [reserve price] structure.” Our
results below will address precisely this issue.

C. Results

We perform our analysis conditioning on a vector of auction-specificX t

covariates consisting of the year of the auction, an index of species
concentration,24 estimated manufacturing costs, estimated selling value,
estimated harvesting costs, an indicator for the Forest Service geograph-
ical zone in which the tract lies, and a six-month inventory of timber
sold in the same region. Given prior results suggesting correlation be-
tween the number of bidders and unobserved tract characteristics in
other national forests (Haile 2001), we also condition on nt.

25 Similar
results are obtained if we also condition on the reserve price. This is
not surprising since the reserve price was almost completely determined
by a subset of the other covariates in this period. Table 3 presents
summary statistics.

Figure 10 shows our estimates of the upper and lower bounds
and along with bootstrap confidence bands (based onF (7FX ) F(7FX ),U t L t

500 replications), evaluated at the mean of the vector.26 The boundsX t

24 The index is equal to where qj is the estimated volume of species j timber on2� q ,j j

the tract. Because many bidders are specialized sawmills, a tract may be more attractive
if it consists primarily of a single species.

25 We include auctions with nt between three and eight, which is equivalent to evaluating
at the sample mean using a uniform kernel with bandwidth equal to 0.77 times the standard
deviation. This conditioning turns out to have little effect in this sample.

26 To construct the conditional empirical distribution functions, we use a product of
Gaussian kernels with a bandwidth of 0.3 times the standard deviation for each component
of Xt, except in the case of the zone dummy, where we include sales only in zone 2. Small
changes in the bandwidths have little effect on the results, although significantly wider
bandwidths lead to sufficient heterogeneity in the included tracts that the estimated upper
and lower bounds cross when using values of the smoothing parameters suggested by
simulations (recall the discussion following remark 2).
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TABLE 3
Summary Statistics

Mean
Standard
Deviation Minimum Maximum

Number of bidders 5.7 3.0 2 12
Year 1985.2 2.6 1982 1990
Species concentration .68 .23 .24 1.0
Manufacturing costs 190.3 43.0 56.7 286.5
Selling value 415.4 61.4 202.2 746.8
Harvesting cost 120.2 34.1 51.1 283.1
Six-month inventory* 1,364.4 376.5 286.4 2,084.3
Zone 2 dummy .88 0 1

* In millions of board feet.

are quite tight. The shape of the true distribution suggested by these
bounds resembles a lognormal distribution, which has been used in
several prior studies.

To construct estimates of bounds on the optimal reserve price, an
estimate of the cost of allowing the harvest of the tract, is needed.v ,0

We consider a range of possible values based on Forest Service estimates
(U.S. Forest Service 1995; U.S. General Accounting Office 1999).27 Table
4 shows the results of simulations used to evaluate the trade-offs between
net revenues and the probability that a tract goes unsold with alternative
reserve prices. Values of v0 between $20 and $120 are considered and
the implied bounds on the optimal reserve prices calculated. For each
value of v0, we consider three possible reserve prices: and theˆ ˆp , p ,L U

average of the two. The table reports simulated gains in profit per MBF
relative to actual profits, using each value of v0 as the measure of costs.
This is done both assuming and assumingˆF(7FX) p F (7FX) F(7FX) pL

providing estimated bounds on the profit gains (losses) fromF̂ (7FX),U

using each reserve price considered. Note that lemma 4 enables us to
use equilibrium bids in a second-price sealed-bid auction to obtain rev-
enue predictions.

As foreshadowed by our simulations, despite the tightness of the
bounds on in figure 8, the bounds on the optimal reserve price forF(7)
each v0 are fairly wide. Because the bounds on are tight, however,F(7)
our estimates of the expected revenues obtained with reserve prices

27 For sales in region 6 in 1993, the Forest Service estimated that costs of the timber
sales program were between $85 and $113 per MBF (U.S. General Accounting Office
1999). On the basis of sales in 1990–92, nationwide cost-based reserve prices between $18
and $47 per MBF were suggested as appropriate (U.S. Forest Service 1995), depending
on which timber sales program costs are to be covered by auction revenues. Both calcu-
lations include some costs that are sunk at the time of the auction and, therefore, should
be excluded from v0. However, other costs, such as forgone return on investment and
adverse environmental impacts, are excluded. Obtaining more precise estimates of v0,
ideally as a function of tract characteristics, would be an important step toward a more
definitive analysis of reserve price policies.
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Fig. 10.—U.S. Forest Service timber auctions. Solid curves are estimated bounds, and
dotted curves are bootstrap confidence bands.

between and differ little, with v0 held fixed. The calculated boundsˆ ˆp pL U

on the optimal reserve prices provide strong support for the assumption
that the actual reserve price (around $54) is well below the optimum.
Even with the estimated lower bound on is still slightly larger∗v p 0, p0

than the average actual reserve price. These results also suggest that, at
least on average tracts in our sample, reserve prices could be raised
considerably without causing many tracts to go unsold. Even if F(7) p

a reserve price nearly twice the actual average would be requiredF̂ (7),U

to drive the probability that a tract will go unsold past 15 percent—a
key threshold given a Forest Service policy of ensuring that at least 85
percent of all offered timber volume is actually sold (U.S. Forest Service
1992).

The potential gains in profit from raising reserve prices obviously
depend on v0. With for example, we estimate that gains wouldv p $20,0

be less than 10 percent (and not necessarily positive) even when
28 With however, the potential gains are muchF(7) p F(7). v p $80,L 0

larger. In that case, the Forest Service might achieve net gains of $10
per MBF or more, which would represent more than an 80 percent
increase in profits. With opportunity costs above the average gross rev-
enues of $92.08 per MBF, sales typically lead to a net loss. Hence, for
costs of $100 or $120, substantial gains (reductions in losses) from im-

28 Note that, in general, revenues need not be higher with a given reserve price between
pL and pU given one particular CDF between and However, if or ifF (7) F (7). D p 0L U

Myerson’s regularity condition is assumed, then lemma 4 implies that we can rule out the
optimality of reserve prices that yield a (statistically significant) reduction in expected
revenues when is assumed. This follows from the fact that a rightward shiftF(7) p F (7)L

in raises expected revenues at any reserve price. In our simulations, reductions inF(7)
expected revenues appear for a few reserve prices, but only when is assumed.F(7) p F (7)U

This content downloaded from 131.215.23.31 on Mon, 24 Feb 2014 13:23:49 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


36 journal of political economy

TABLE 4
Simulated Outcomes with Alternative Reserve Prices

Reserve Price

pL (p � p )/2L U pU

Distribution of Valuations

FL FU FL FU FL FU

Reserve price when v0p$20 62.40 86.02 109.65
Change in profit 6.96 �2.78 6.67 �2.74 1.74 �18.57
Pr(no bids) .00 .02 .07 .12 .19 .41

Reserve price when v0p$40 74.93 92.29 109.65
Change in profit 7.64 �.61 7.61 �1.14 6.30 �10.04
Pr(no bids) .03 .05 .11 .18 .19 .41

Reserve price when v0p$60 85.67 103.39 121.11
Change in profit 9.23 1.92 12.04 3.14 7.21 �6.05
Pr(no bids) .07 .12 .15 .28 .35 .58

Reserve price when v0p$80 98.20 112.34 126.48
Change in profit 13.65 7.63 15.03 6.82 10.44 .96
Pr(no bids) .13 .24 .28 .46 .46 .72

Reserve price when v0p$100 111.09 122.54 134.00
Change in profit 20.09 15.94 21.65 16.87 17.00 14.30
Pr(no bids) .28 .45 .45 .60 .67 .80

Reserve price when v0p$120 144.74 156.01 167.29
Change in profit 32.06 31.31 33.72 31.64 31.56 28.87
Pr(no bids) .84 .86 .84 .89 .88 .97

Note.—Profit and reserve price figures are given in 1983 dollars per MBF. See text for additional details.

posing higher reserve prices would be obtained by selling only tracts
receiving unusually high bids. While revenue maximization is not the
objective of the Forest Service timber sales program, these estimates
suggest the magnitudes of revenues and costs that must be weighed
against other objectives in determining optimal policy.

To evaluate the effects of auction observables on bidder valuations,
we estimate the simple semiparametric model

v p X b � eit t it

assuming Table 5 presents estimated bounds on themed[e d X ] p 0.it it

parameter vector b. Following Manski and Tamer (2002), we construct
confidence intervals using the bootstrap. Since zero lies outside the 95
percent confidence interval for each coefficient, we can reject the hy-
pothesis that any of these conditioning variables has no effect on val-
uations. The implied signs are as expected: larger inventories, higher
harvesting costs, or higher manufacturing costs reduce valuations.
Greater species concentration and higher selling value of end products
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TABLE 5
Forest Service Timber Auctions: Semiparametric Model of Bidder

Valuations (Modified Minimum Distance Estimates)

Interval Estimate
95% Bootstrapped
Confidence Interval

Constant [8.8, 15.12] [2.33, 18.15]
Species concentration [13.19, 13.64] [11.14, 16.54]
Manufacturing cost [�.85, �.81] [�1.02, �.79]
Selling value [.61, .71] [.57, .96]
Harvesting cost [�.54, �.51] [�.59, �.48]
Six-month inventory [�.026, �.025] [�.030,�.021]
Number of bidders [.81, 1.23] [ .66, 1.24]

lead to higher valuations. Moreover, the bounds are tight and the mag-
nitudes are reasonable. For example, to a first approximation, the value
of a contract is the selling value less harvesting and manufacturing costs.
If this approximation were exact (up to bidders’ idiosyncratic shocks),
the corresponding coefficients would equal �1, �1, and �1, respec-
tively, which are close to the estimated intervals. Finally, if the variation
in the number of bidders were exogenous, a negative coefficient on this
covariate would be implied by a common values model and a coefficient
of zero by a private values model (see, e.g., Haile, Hong, and Shum
2000; Athey and Haile 2002). The positive but very small coefficient
implied by our estimates is consistent with our assumption of private
values and a small amount of unobserved heterogeneity correlated with
the number of bidders.

VIII. Conclusion

Some theoretical models that serve well in capturing essential elements
of behavior in a market may nonetheless fall short of providing a map-
ping between primitives and observables that can usefully be treated as
exact by empirical researchers. This need not preclude the use of theory
to provide a structure for interpreting data, nor preclude inference on
the structural parameters and distributions essential for many policy
questions. In some cases, useful inferences can be made by relying on
weak assumptions—for example, axioms or necessary conditions for
equilibrium in a class of models—that, while insufficient to fully char-
acterize the mapping between primitives and observables, provide a
robust structural framework for inference.

We have considered one example of this approach, arguing that while
standard theoretical models of English auctions can imply unpalatable
identifying assumptions for many applications, useful inferences on the
primitives characterizing the demand and information structure can be
made on the basis of observed bids and weak restrictions on their in-
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terpretation. Here this approach enables construction of bounds on the
distributions of bidder valuations, on optimal reserve prices, on the
range of revenues that might be attained with different reserve prices
or other selling mechanisms, and on the effects of auction characteristics
on valuations. The case for focusing on bounds is particularly compel-
ling in this application: our bounds will be tight whenever the standard
model is a good approximation of the true model, and they collapse to
the true distribution if the button auction model is the true model. An
open question is whether the bounds and exhaust all infor-F(7) F (7)L U

mation in the data given our assumptions, that is, whether they are
sharp. We provide further discussion of this issue in Appendix D.

We have focused on the symmetric independent private values model
of bidder demand, which is both the simplest and most common in
prior structural empirical work. However, this places restrictions on the
demand structure that will not be appropriate in all applications. While
the statistical techniques developed here exploit this structure, our fun-
damental approach—the interpretation of bids as bounds—is natural
for other demand structures as well. Dropping the assumption of i.i.d.
valuations requires development of different statistical techniques for
mapping the information in observed bids to restrictions on the joint
distribution of bidder valuations. However, in ongoing work, we are
exploring identification and estimation of bounds on the joint distri-
bution of bidder valuations in models allowing bidder asymmetry, af-
filiation of bidders’ private values, and unobserved heterogeneity.

The case of common values is potentially even more challenging.
Identification in common values auctions typically fails in complete
models (Laffont and Vuong 1996; Athey and Haile 2002), and some of
the same difficulties arise in identifying bounds. In the case of an English
auction with common values, one key difficulty is the fact that each
bidder’s willingness to pay varies as the auction proceeds because of
information she infers from others’ behavior. Whether progress can be
made by exploiting bounds—both on what the data reveal regarding
bidders’ willingness to pay and on how bidders’ willingness to pay evolves
over the course of the auction—is a question we leave for future work.

Appendix A

Proofs Omitted from the Text

Proof of Theorem 3

Consider the vector of moments

1[B ≤ v] G (v)1 : 2 1 : 2

1[B ≤ v] G (v)2 : 2 2 : 2E p { G(v),_ _[ ] [ ]
1[B ≤ v] G (v)¯ ¯ ¯ ¯M : M M : M
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and let be the empirical analog ofĜ (v) G(v),T

T1 1[n p 2,b ≤ v]� t 1 : ntT tp12

T1
1[n p 2,b ≤ v]� t 2 : ntT tp12

_

Ĝ (v) p .T T1 ¯1[n p M, b ≤ v]� t 1 : ntT tp1M̄

_ 
T1 ¯1[n p M, b ≤ v]� ¯t M : ntT tp1 ¯ M

By the Glivenko-Cantelli theorem (e.g., Van der Vaart 1998, theorem 19.1),
almost surely uniformly in v. So by the continuous mappingĜ (v) � G(v) p o (1)T p

theorem,

ˆf(G (v)) � f(G(v)) p o (1), (A1)T p

where

f(G (v); 1, 2)1 : 2

f(G(v)) p _ ,( )¯ ¯f(G (v); M, M)¯ ¯M : M

and each component of is a continuously differentiable function fromf(7)
[0, 1] to [0, 1]. The convergence in (A1) is also uniform in v. Furthermore,
since the min function is continuous, the continuous mapping theorem implies
that, for each v,

ˆmin f(G (v); i,n) � min f(G (v); i,n) p o (1).i : n i : n p
¯ ¯n�{2,…,M},i�{1,…,n} n�{2,…,M},i�{1,…,n}

Finally,

ˆˆsup FF (v) � F (v)F ≤ sup Ff(G (v); i,n) � f(G (v); i,n)F p o (1), (A2)�U U i : n i : n p
i,nv�[v,v̄] v�[v,v̄]

where the inequality follows from the relation

ˆ ˆˆ ˆFmin (a, b) �min (a, b)F ≤ Fa � aF � Fb � bF.

Similar arguments apply for the lower bound. Q.E.D.

Proof of Lemma 4

The revenue equivalence theorem of Myerson (1981) shows that in the sym-
metric independent private values setting, any two feasible auction mechanisms
are revenue equivalent if (a) they have the same allocation rule and (b) they
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give the same surplus to a bidder with the lowest possible valuation. Fix a reserve
price r. With a minimum bid increment of zero, assumptions 1 and 2 imply that
(i) an English auction allocates the good efficiently except when no bidder has
a valuation above r, in which case the seller retains the good; and (ii) a bidder
with valuation has expected payoff zero. Both conditions i and ii also hold inv
the dominant strategy equilibrium of a second-price sealed-bid auction with the
same reserve price, implying that conditions a and b hold. Q.E.D.

Proof of Lemma 5

Part i: solves∗p (F )0

max [1 � F (p)](p � v ), (A3)0 0
p�[v,v̄]

and solves∗p (F )

max [1 � F(p)](p � v ). (A4)0
p�[r,v̄]

Plugging in the definition (1) reveals that these two objective functions are
identical up to a positive multiplicative constant. With this implies∗r ≤ p (F ),0

that (A3) and (A4) have the same (unique) solution. Part ii: The same argument
implies that the slopes of these objective functions have the same sign for all

Under assumption 3, this implies that whenever∗ ∗p ≥ r. p (F ) p r r 1 p (F ).0

Q.E.D.

Proof of Theorem 4

Since is continuous and for all p, we must haveF(7) p(p) ≥ p (p)1

∗ ∗p(p ) ≥ p . (A5)1

Suppose There are two cases to consider. First, if then∗ ∗ ∗p ! p . p (p ) ! p ,L 2 1

∗ ∗ ∗p(p ) ≤ p (p ) ! p ,2 1

contradicting (A5). In the second case, Then by the definition of∗ ∗p (p ) ≥ p .2 1

pL, there must be some such that Since then∗ ∗ ∗˜ ˜ ˜p � (p , p ) p (p) ≤ p . p(p) ≤1 2 1

whereas this requires for some contra-∗ ∗ ∗ ′ ∗˜p (p) ≤ p p(p ) ≥ p , p (p) ≥ 0 p 1 p ,2 1 1 1

dicting assumption 3. An analogous argument rules out the optimality of any
p 1 p .U

To see that these bounds are sharp (for the nontrivial case in which ),p ! pL U

we first show that, for arbitrarily small there always exists a CDF within∗e 1 0, F (7)
the bounds and that satisfies assumption 3 and such that ∗F(7) F (7) p (p) {L U

has a unique maximum at The definitions of pL and∗(p � v )[1 � F (p)] p � e.0 L

pU imply that, for small For such an e, let∗e 1 0, p (p � e) 1 p .2 L 1

p (p) p (p) ≤ p (p � e)2 2 2 Lp̃ (p) p2 {p (p � e) otherwise.2 L

This content downloaded from 131.215.23.31 on Mon, 24 Feb 2014 13:23:49 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


english auctions 41

Now let be the lower quasi-concave envelope of satisfying˜p̄ (7) p (7)2 2
29 Define˜p̄ (p � e) p p (p � e).2 L 2 L

p̄ (p) p ≤ p � e2 L
∗p (p) p a(p)p̄ (p � e) � [1 � a(p)]p̄ (p ) p � (p �e, p ) (A6)2 L 2 U L U{p̄ (p) p ≥ p ,2 U

where is a decreasing differentiable function with anda(7) a(p � e) p 1L

For some such lies between the profit functions and∗a(p ) p 0. a(7), p (7) p (7)U 1

is quasi-concave, and has a unique maximum at Now letp (7), p � e.2 L

∗p (p)∗F (p) p 1 � .
p � v 0

By construction, for all p. For is∗ ∗F (p) � [F(p), F (p)] p � (p � e, p ), F (p)L U L U

increasing by construction, with and To see that is∗ ∗ ∗¯F (v) p 0 F (v) p 1. F (p)
increasing on the interval note that here(p � e, p ),L U

∗ ′dF (p) a (p) a(p)∗ ∗ ∗p [p (p ) � p (p � e)] � p (p � e)U L L2dp p � v (p � v )0 0

1 � a(p) ∗� p (p ). (A7)U2(p � v )0

Since this derivative is strictly positive. Hence, is∗ ∗ ∗ ∗p (p ) ≤ p ! p (p � e), F (p)U 1 L

a valid CDF lying within the bounds. Finally, a slight perturbation of elim-∗F (7),
inating nondifferentiabilities and any regions with away from∗dp (p)/dp p 0

yields a differentiable strictly pseudo-concave profit function with ap � e,L

(unique) maximum at An analogous argument shows that one can con-p � e.L

struct another CDF within the bounds that yields as the unique optimump � eU

for arbitrarily small 30 Q.E.D.e 1 0.

Proof of Theorem 5

Consider the following population objective function

∗ 2Q(p) p min (p � p ) ,1
c

p�p (p)2

29 This function is obtained from as follows. Suppose that has a local min-˜ ˜p (7) p (7)2 2

imum at some price below Let For allˆ ˜ ˆ ˜ ˆ˜ ˜p p � e. a p inf {p : p (p) 1 p (p) Gp � (p, p)}.L 2 2

replace with For any local minima to the right of make aˆ ˆ˜ ˜p � (a, p), p (p) p (p). p � e,2 2 L

similar downward adjustment to Repeating these procedures yields a quasi-concavep̃ (p).2

function with for all p and a global (but typically nonunique) maximum˜p̄ (7) p̄ (p) ≤ p (p)2 2 2

at p � e.L
30 A minor variation is required in that case to ensure that the constructed distribution

is increasing. The reason is that could be significantly larger than (e.g.,∗p (p � e) p (p )2 U 1 1

if jumps downward at pU). Hence, instead of creating a revenue function definedp (7)2

by convex combinations of and as one would do in the analogue ofp (p ) p (p � e),2 L 2 U

(A6), select such that is a small positive number andˆ ˆp � [p , p � e) p (p � e) � p (p)L U 2 U 2

substitute for in the construction.p̂ pL
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where the correspondence is defined bycp (p)2

c ′ ′p � p (p) ⇔ p � limp (p ), limp (p ) .2 2 2[ ]′ ′p Fp p fp

Note that at the continuity points of By the definitions ofcp (p), p (p) p p (p).2 2 2

pL and pU, we have and otherwise. Using (16), defineQ(p ) p 0 p Q(p ) Q(p) ≥ 0L U

the sample analogue of asQ(p)

∗ 2ˆQ (p) p min (p � p ) .T 1
cˆp�p (p)2

Given consider the sets of prices that approximately min-e ≥ 0, {p : Q (p) ≤ e }T T T

imize For a sequence {eT} converging to zero at an appropriate rateQ (p).T

(slightly slower than ), we show that these sets converge (in the Hausdorff�1/2T
metric) to the set that minimizes Noting that we can writeQ(7).

∗p p sup {p ! p : Q(p) p 0},L 1

∗p p inf {p 1 p : Q(p) p 0}U 1

will then give the result. To prove this set consistency, it suffices to show that
converges uniformly to (see Manski and Tamer 2002). For uniformQ (7) Q(7)T

convergence of to it is sufficient to show thatQ (7) Q(7),T

∗ ′ ∗ˆsup min F(p � p ) � (p � p )F p 0.1 1
c c′ ˆp p�p (p),p �p (p)2 2

The left-hand side is equal to

c c ∗ ∗ c c ∗ ∗ˆ ˆ ˆ ˆsupF[p (p) � p (p)] � (p � p )F ≤ supFp (p) � p (p)F � Fp � p F2 2 1 1 2 2 1 1
p p

p o (1) � o (1),p p

where

c c ′ˆFp (p) � p (p)F p min Fp � p F,2 2
c c′ ˆp�p (p),p �p (p)2 2

and the equality above holds because by theorem 3ˆsup Fp (p) � p (p)F p o (1)p 2 2 p

and converges to zero in probability by uniform convergence∗ ∗ˆp̂ (p ) � p (p )1 1 1 1

and tightness of the process (see Haile and Tamer 2002). Q.E.D.p̂ (7) � p (7)1 1

Proof of Theorem 6

First note that for all whereas if and only if ToQ(b) ≥ 0 b � B, Q(b) p 0 b � S.
see this, note that if then Forb � S, d (x, b) p d (x, b) p 0. b � S,1 2

2 2¯[E[S ] � l(x, b)] d (x, b) � [l(x, b) � E[S ]] d (x, b) 1 0x 1 x 2

for all and for all Now, given estimates andˆx � V(b), Pr [V(b)] 1 0 b � S. F (7FX)L

one can estimate the conditional means by simulation. ReplaceF̂ (7FX), E[S ]U x

and by estimates and based on simulated draws from¯ ¯E[S ] E [S ] E [S ]x T x T x

and These simulation estimators converge almost surely to theirˆ ˆF (7FX) F (7FX).L U

population counterparts since and converge almost surely toˆ ˆF (7FX) F (7FX)L U

and (see, e.g., Stern [1997] and references therein). The argumentF(7FX) F (7FX)L U
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in the proof of theorem 5 in Manski and Tamer (2002) then completes this
proof. Q.E.D.

Appendix B

Examples

In this Appendix we show that assumptions 1 and 2 are satisfied by several models
of English auctions, but these assumptions imply neither a unique distribution
of bids given a distribution of valuations nor a unique distribution of valuations
given a distribution of bids. As noted in the text, one model yielding outcomes
consistent with assumptions 1 and 2 is the standard model of Milgrom and
Weber (1982). Below we provide two additional examples before turning to the
question of whether assumptions 1 and 2 and the distribution of bids identify
the distribution of valuations.

Example 1. Consider Harstad and Rothkopf’s (2000) “alternating recogni-
tion” auction, in which the seller begins with two randomly chosen bidders and
holds a two-bidder button auction. When one bidder drops out, a replacement
is randomly selected from the remaining bidders willing to participate. A bidder
who refuses to participate or who drops out while participating in the button
auction is never asked again to participate. This continues until there is no
willing replacement, with the remaining bidder then declared the winner at the
current price. Harstad and Rothkopf show that in the unique symmetric equi-
librium of this game, assumptions 1 and 2 hold, the allocation is efficient, and
the selling price is equal to the second-highest valuation. However, while each
losing bidder exits the two-bidder button auction at his valuation if he partici-
pates, some bidders never participate (and therefore never bid) because the
price rises above their valuations while others are bidding. Hence, when n 1

the distribution of bids will differ from that implied by the button auction2,
model, given the same distribution of bidder valuations.

Example 2. All bidders are initially identified as active, and the reserve price
(minus at least one bid increment) is designated the initial standing bid. As
long as at least two bidders are active, the seller picks one of the active bidders
at random. This bidder may either raise the current standing bid by one bid
increment or decline to bid. If the bidder declines, he becomes inactive and
another bidder is selected. If the bidder accepts, the standing bid is raised by
this increment and the process iterates. A bidder who accepts in one iteration
is exempt from bidding until another player bids (so bidders are not asked to
raise their own bids). A bidder is declared the winner when his is the standing
bid and no other bidder is active. In the dominant strategy equilibrium of this
game, each bidder agrees to bid when asked to do so if and only if his valuation
exceeds the standing bid by at least D. This ensures that assumptions 1 and 2
are satisfied. However, a bidder need not be picked to bid when the standing
bid is close to his valuation, implying that his highest bid need not be close to
his valuation; indeed, he need not be picked to bid at all before the price rises
above his valuation, in which case he would never make a bid.31 Hence, the
distribution of equilibrium bids need not match that for the button auction,
given a distribution of valuations.

31 Note that the allocation need not be efficient, since, e.g., when thev � v ! D,n : n n�1 : n

price could rise to without any bid from the bidder with valuationp � (v � D, v )n : n n�1 : n

v .n : n
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Showing that assumptions 1 and 2 are insufficient to identify the distribution
of bidder valuations from the distribution of observed bids is straightforward.
Consider a two-bidder auction in which valuations are independently distributed
according to and bidding follows the simple rules andF(7) b p v b p1 : 2 2 : 2

These bidding rules are consistent with assumptions 1 and 2. The orderv .1 : 2

statistics of the bids are then independent, with marginal distributions

¯G (b) p 1, G (b) p F (b) Gb � [v, v].1 : 2 2 : 2 1 : 2

Now suppose that valuations are drawn independently from another distribution
and bidding follows the rules and again satisfying ourF̃(7) b p v b p v ,1 : 2 2 : 2 2 : 2

assumptions. The order statistics of the bids are again independent, with mar-
ginal distributions

˜ ˜ ¯G (b) p 1, G (b) p F (b) Gb � [v, v].1 : 2 2 : 2 2 : 2

If that is, if then these two models give the1/2˜ ˜F (b) p F (b), F(b) p F (b) ,2 : 2 1 : 2 1 : 2

same distribution of the observable bids. Hence assumptions 1 and 2 and the
distribution of bids do not uniquely determine the distribution of bidder
valuations.

Appendix C

Asymptotic Equivalence of Alternative Estimators

Recalling the definition (12), let

TF̂ (v) {U

Uˆ ˆ ˆ ˆ ¯ ¯m(f(G (v); 1,2),f(G (v); 2,2),f(G (v); 1,3), … ,f(G (v);M,M);r ), (C1)¯ ¯1 : 2 2 : 2 1 : 3 M : M T

and

T D D D Lˆ ˆ ˆˆ ¯ ¯F (v) { m(f(G (v); 1, 2),f(G (v); 2, 3), … ,f(G (v); M � 1,M); r ). (C2)¯ ¯L 2 : 2 3 : 3 M : M T

Theorem 7. Assume that, for all andT¯n p 2, … ,M, T { � 1[N p n] r �tp1n t

as with Let and each at a rateU LT /T r l T r �, 0 ! l ! 1. r r �� r r �,n n n T T

exceeding Then as (a) uniformly in v, and (b)
a.s.Tˆ�log ( T) . T r �, F (v) r F (v)U U

uniformly in v. Furthermore, the asymptotic distributions of
a.s.T Tˆ ˆF (v) r F(v) F (v)L L U

and are identical to those of andTˆ ˆ ˆF (v) F (v) F (v).L U L

Proof. Consider (the argument for is analogous). Let denoteT Tˆ ˆ ˆ ˆF (v) F (v) y , … , yU L 1 J

the arguments of in (C1). Observe thatUm(7; r )T

U Uˆ ˆ ˆ ˆ ˆ ˆFm(y , … , y ; r ) �min (y , … , y )F ≤ Fm(y , … , y ; r ) �min (y , … , y )F1 J T 1 J 1 J T 1 J

ˆ ˆ� Fmin (y , … , y ) �min (y , … , y )F. (C3)1 J 1 J

Rate convergence to zero of the second term on the right-hand side of (C3)�T
was shown in Haile and Tamer (2002) (extending the proof of theorem 3),
where the asymptotic distribution of was also� ˆ ˆT[min (y , … , y ) �min (y , … , y )]1 J 1 J
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derived. If the first term converges to zero at a rate faster that then we can�T,
ignore this term asymptotically, giving the result. So observe that

J Uˆ ˆ� y exp (r y )jp1 j T jUˆ ˆ ˆ ˆ ˆ ˆm(y , … , y ; r ) �min (y , … , y ) p �min (y , … , y )1 J T 1 J 1 JJ Uˆ� exp (r y )jp1 T j

U Uˆ ˆ ˆ ˆy exp (r y ) y exp (r y )1 T 1 J T J…p � �J JU Uˆ ˆ� exp (r y ) � exp (r y )jp1 jp1T j T j

ˆ ˆ� min (y , … , y )1 J

ŷ1 …p �U… ˆ ˆ1 � �exp [r (y � y )]T J 1

ŷJ� U …ˆ ˆexp [r (y � y )] � � 1T 1 J

ˆ ˆ� min (y , … ,y ). (C4)1 J

Suppose without loss that Then for all becomesˆ ˆmin (y , … , y ) p y . j ( 1, y � y1 J 1 j 1

positive (but finite) at an exponentially fast rate.32 So if faster than rateUr r ��T

the first term in (C4) converges to at a rate faster than By the� �ˆlog ( T), y T.1

same argument, the remaining fractions go to zero at this rate. Q.E.D.

Appendix D

Sharpness

Bounds are sharp if they exhaust the information available from the data and
assumptions. Sharp bounds reflect all the restrictions on the latent quantities
of interest that one can obtain without additional assumptions. Hence, sharpness
is a desirable theoretical property of bounds. Here, bounds will be sharp if they
exploit all the information in the joint distribution of the order statistics of the
bids, our assumption that valuations are i.i.d., and assumptions 1 and 2.

To simplify the exposition, we assume a fixed number of bidders and the
absence of a binding reserve price here. Given n, define a bidding rule

n n¯G(B , … ,B FV , … ,V ) : � # [v, v] r [0, 1]1 n 1 n

to be a conditional joint distribution function for the bids made, given a real-
ization of bidders’ valuations. Because valuations are i.i.d., the joint distribution
of completely determines (and is completely determined by) the jointn{V }i : n ip1

distribution of Hence, we may focus on bidding rulesn{V } .i ip1

oG (B , … ,B FV , … ,V )1 : n n : n 1 : n n : n

that map the realizations of the order statistics of the valuations to a distribution

32 The reason for this is the following. Haile and Tamer (2002) show that
has a normal asymptotic distribution for all v, i, n.ˆ�T[f(G (v); i, n) � f(G (v); i, n)]i : n i : n

Let the random variable aT be such that is asymptotically normal with mean�T(a � a)T

zero and variance one, with a strictly positive. Then exponentially fast sincePr (a 1 0) r 1T

� � �Pr (a 1 0) p 1 � Pr ( T(a � a) ≤ � Ta) p 1 � F(� Ta),T T

where is the standard normal CDF.F(7)
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for the order statistics of the bids. Such a bidding rule satisfies assumptions 1 and
2 if

n�1

osuppG (7Fv , … ,v ) P [v � D,v ] #�[v, v ]. (D1)1 : n n : n n�1 : n n : n j : n
jp1

In general, there will be more than one G consistent with a given ; however,oG
if satisfies (D1), then at least one of these must satisfy assumptions 1 andoG
2—in particular, the one in which the bid is made by the bidder withBj : n

valuation V .j : n

Given a distribution of valuations let denote the implied joint˜ ˜ ˜F, F (7; F)1,…,n : n

distribution of the order statistics of the valuations. Let

o o…˜ ˜ ˜G (7; F, G ) p G(7Fv , … ,v )F (dv , … ,dv ; F)n � � 1 : n n : n 1,…,n : n 1 : n n : n

denote the joint distribution of the order statistics of the bids implied by the
bidding rule and the distribution Finally, let denote the observedo ˜G F. G (7)1,…,n : n

distribution of the order statistics of the bids.
Definition 1. Given assumptions 1 and 2, the symmetric independent private

values assumption, and the joint distributions of the order statistics of the bids
the bounds and are sharp if, for every distribution satisfying˜G , F F F1,…,n : n L U

for all v, there exists a bidding rule satisfying assumptionsoF̃(v) � (F(v), F (v)) GL U

1 and 2 such that o˜G (7; F, G ) p G (7).n 1,…,n : n

For simplicity, consider the case with Let be any CDF lying˜n p 3 D p 0. F
within the bounds and LetF F .L U

H(b , b , b , v , v , v )1 : 3 2 : 3 3 : 3 1 : 3 2 : 3 3 : 3

denote the joint distribution implied by Bayes’ rule and the distributions

G(b , b , b Fv , v , v )1 : 3 2 : 3 3 : 3 1 : 3 2 : 3 3 : 3

and

˜ ˜F (v , v , v ; F).1,2,3 : 3 1 : 3 2 : 3 3 : 3

Showing that the bounds are sharp means showing that one can always find a
joint distribution that (A) has marginals and and (B)˜H(7) F (7) G (7)1,2,3 : 3 1,2,3 : 3

obeys the support restrictions implied by (D1).
If we ignore point B for a moment, this is a copula problem: we want to couple

the two marginal distributions and to obtain a valid jointF̃ (7) G (7)1,2,3 : 3 1,2,3 : 3

distribution that gives back each of these as the appropriate marginal distri-
bution. Unfortunately, while much is known about the copula problem for the
case of coupling two univariate marginals, the case of multivariate marginals is
more subtle, with little of what is known in the univariate case generally ex-
tending to this multivariate case (see, e.g., Nelson 1999, sec. 3.4). Without the
constraints implied by condition (2), one can always construct one valid joint
CDF by letting

H(b , b , b ,v ,v ,v ) p1 : 3 2 : 3 3 : 3 1 : 3 2 : 3 3 : 3

F̃ (v ,v ,v )G (b , b , b ).1,2,3 : 3 1 : 3 2 : 3 3 : 3 1,2,3 : 3 1 : 3 2 : 3 3 : 3

The constraints added by point B, however, make the problem more difficult.
For the case of a one-bidder auction, assumption 2 has no bite and imposing
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the restrictions of assumption 1 becomes fairly simple (see Smith [1983] for the
solution of an equivalent problem). However, for the case of we haven ≥ 2,
been able to prove only a weaker result. In particular, instead of showing that
any joint distribution can be rationalized by every distribution within˜G F1,2,3 : 3

the bounds (using a bidding rule satisfying assumptions 1 and 2), we show that
every set of marginal distributions can be rationalized. We againG , G , G1 : 3 2 : 3 3 : 3

consider and for simplicity.n p 3 D p 0
Proposition 1. Given any and let and be the impliedG , G , G , F F1 : 3 2 : 3 3 : 3 L U

upper and lower bounds on F. Then for any distribution such that˜ ˜F F(v) �
for all v, there exists a bidding rule o[F(v), F (v)] G (b , b , b Fv , v ,L U 1 : 3 2 : 3 3 : 3 1 : 3 2 : 3

satisfying assumptions 1 and 2 such that, with valuations drawn from and˜v ) F3 : 3

bidding determined by the marginal distributions of the order statistics ofoG ,
the bids are andG , G , G .1 : 3 2 : 3 3 : 3

Sketch of proof. Let denote the marginal distribution of the jth order statisticF̃j : 3

implied by Similarly, let denote the joint distribution of the ith and˜ ˜F(7). F (7)i,j : 3

jth order statistics. We shall construct a bidding rule that consists of three bid
functions, g1, g2, and g3. We define the first (that determining ) implicitlyB1 : 3

by the equation

˜G (g (v)) p F (v) Gv.1 : 3 1 1 : 3

Letting gives�1G (t) p sup {s : G (s) ≤ t}1 : 3 1 : 3

�1 ˜g (v) p G (F (v)). (D2)1 1 : 3 1 : 3

By the definitions of the bounds and the fact that lies within the bounds, weF̃
know that

F̃ (v) ≤ G (v). (D3)1 : 3 1 : 3

Hence (D2) implies that b p g (v ) ≤ v .1 : 3 1 1 : 3 1 : 3

Next we construct a transformation such thatg (v , v )2 1 : 3 2 : 3

˜G (v) p F (dv , dv ).2 : 3 � � 1,2 : 3 1 : 3 2 : 3

v ,v : g (v ,v )≤v1 : 3 2 : 3 2 1 : 3 2 : 3

Since lies within the bounds, we know thatF̃(7)

F̃ (v) ≤ G (v) ≤ G (v).2 : 3 2 : 3 1 : 3

So for an appropriately chosen one such a transformation isa � [0, 1],
g (v , v ) p av � (1 � a)g (v ).2 1 : 3 2 : 3 2 : 3 1 1 : 3

As for the last bid we know by the definitions of the bounds thatB ,3 : 3

˜ ˜F (v) ≤ G (v) ≤ F (v).3 : 3 3 : 3 2 : 3

We can therefore find a linear transformation g (v , v ) p b p bv �3 2 : 3 3 : 3 3 : 3 2 : 3

satisfying(1 � b)v3 : 3

Pr (g (v , v ) ≤ b) p G (b)F̃ 3 2 : 3 3 : 3 3 : 3

with Then by construction,b � [0, 1].

v ≤ g (v , v ) ≤ v ,2 : 3 3 2 : 3 3 : 3 3 : 3
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ensuring that the vector function satisfies assumptions 1 and 2.g p (g , g , g )1 2 3

Q.E.D.
This result does not imply sharpness because we have ensured only that we

can match the marginals and not the joint distributionG (7), G (7), G (7),1 : 3 2 : 3 3 : 3

However, any additional information that could be extractedG (7, 7 , 7).1,2,3 : 3

from the data given our assumptions would require exploiting the correlation
structure among bids implied by Matching an arbitrary corre-G (7, 7 , 7).1,2,3 : 3

lation structure would likely require a stochastic bidding rule (rather than a set
of deterministic bid functions like those above). This makes it particularly hard
to “guess” a general solution, and a constructive approach based on copulas
appears to require fundamental advances that are beyond what could be ad-
dressed in this paper. However, since assumptions 1 and 2 do not appear to
have any implications for the correlation of bids, it seems possible that our
bounds do in fact exhaust the information in these assumptions and the ob-
servable bids.
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