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Background

> Qil wells “fracked” using a mix of sand and water
» Sand and water are costly
» Qil productivity of well varies with quantities of inputs used

» Firms must learn the optimal mix through their own, and
other firms, experience.

» Econometric mission: estimate optimal mix of fracking inputs

at each point in time, conditional on previous data, and
compare to actual firm behavior



Well characteristics

v

H; horizontal length

v

Si sand used in fracking

v

W; water used in fracking

v

lat;, lon; latitude and longitude of well bore



Time series of oil production

Yie = Qit” Djy exp(vie)
where
> Y = production of well i in the t-th month of its life
> @; = baseline level of production for well i
» [ < 0 parameter governing productivity decline
» D;; = number of days well i in operation in t-th month
» v = mean-zero production shock
so

log Yi: = log Q; + Blogt + dlog Dit + vj

Assume
E [l/it’ta Hi7 Dit> 5/7 VV/; lati7 /O”,'] =0



Cross section of oil production

|0g Qi =a+n |Og H; + f(S,', VV,', lat,-, /On,‘) + €;

» Assume El¢;|t, H;, Dit, S, Wi, lat;, lon;] = 0

> Z,‘ = (5,', VV,', /at,-, /on,-)

> f(S;, W;, lat;, lon;) = f(Z;) captures relationship b/w baseline
production and location and fracking choices

» Estimate f(Z;) non-parametrically, using Gaussian process
regression (GPR)



Gaussian process regression

» Gaussian process G: distribution over continuous real
functions, defined by mean function m(Z) and covariance
function k(Z,Z’), satisfying:

m(Z) :/f(Z)dG(f)

k(z,2') = /(f(Z) —m(Z))(f(Z') — m(Z'))dG(f)
» Distribution of f(Z1)...f(Zy) is MVN (i, %), where

pw=(m(Zy)...m(Zn))"
L= k(Z;, Z)

» For any m, k, can compute likelihood that (g;, Z;)V ;
generated by g = f(Z)



GPR Likelihood
Assume m(Z) =0, and k(Z,Z’) is MVN kernel:

(Zid — Zj.a)?

1
k(Zi, Zj|v) = exp(270) exp 5 Z xp(274a)

de{S,W,lat,lon}

> o is variance of f(Z)
> VS, YW, Viat, Vion are log-bandwidths
Log-likelihood of (g,,Z)I Lis

log L(v) = —EgTK('V)’lg —log [K(7)[ — glog(%)

2

where g = (g;...gn)T and K is covariance matrix, so
K()ij = k(Zi, Zj|v)



Likelihood maximization
log Vit = a + Blogt + ¢ log Djs + nlog H; + f(Zi) + €; + vit
= Xit0 + f(Z;) + €; + Vit
» Assume v ~ N(0,02) and ¢; ~ N(0,02). Def. ¢ = (0.,0,)

> Two-step likelihood maximization:
1. Treat f(Z;) as observed: compute

.
g = Z log Yie — Xie0)

= +€I Zl/lt

and thence

‘C(Yh Xl"giv 97 d)) =



Likelihood maximization, cont.

ﬁ(Y,’, X,-]g,-, 9, (;5) = ...

2. By GPR, vector g = (g1...8n)" ~ MVYN(0, K(Z|v))
So

N

i=1



Results & Discussion

» Results: see handout
» What is the benefit of this method?



