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Background

I Oil wells “fracked” using a mix of sand and water

I Sand and water are costly

I Oil productivity of well varies with quantities of inputs used

I Firms must learn the optimal mix through their own, and
other firms, experience.

I Econometric mission: estimate optimal mix of fracking inputs
at each point in time, conditional on previous data, and
compare to actual firm behavior



Well characteristics

I Hi horizontal length

I Si sand used in fracking

I Wi water used in fracking

I lati , loni latitude and longitude of well bore



Time series of oil production

Yit = Qi t
βDδ

it exp(νit)

where

I Yit = production of well i in the t-th month of its life

I Qi = baseline level of production for well i

I β < 0 parameter governing productivity decline

I Dit = number of days well i in operation in t-th month

I νit = mean-zero production shock

so
logYit = logQi + β log t + δ logDit + νit

Assume
E [νit |t,Hi ,Dit , Si ,Wi , lati , loni ] = 0



Cross section of oil production

logQi = α + η logHi + f (Si ,Wi , lati , loni ) + εi

I Assume E[εi |t,Hi ,Dit ,Si ,Wi , lati , loni ] = 0

I Zi = (Si ,Wi , lati , loni )

I f (Si ,Wi , lati , loni ) = f (Zi ) captures relationship b/w baseline
production and location and fracking choices

I Estimate f (Zi ) non-parametrically, using Gaussian process
regression (GPR)



Gaussian process regression

I Gaussian process G : distribution over continuous real
functions, defined by mean function m(Z ) and covariance
function k(Z ,Z ′), satisfying:

m(Z ) =

∫
f (Z )dG (f )

k(Z ,Z ′) =

∫
(f (Z )−m(Z ))(f (Z ′)−m(Z ′))dG (f )

I Distribution of f (Z1) . . . f (ZN) is MVN (µ,Σ), where

µ = (m(Z1) . . .m(ZN))T

Σi ,j = k(Zi ,Zj)

I For any m, k , can compute likelihood that (gi ,Zi )
N
i=1

generated by g = f (Z )



GPR Likelihood

Assume m(Z ) = 0, and k(Z ,Z ′) is MVN kernel:

k(Zi ,Zj |γ) = exp(2γ0) exp

−1

2

∑
d∈{S ,W ,lat,lon}

(Zi ,d − Zj ,d)2

exp(2γd)


I γ0 is variance of f (Z )

I γS , γW , γlat , γlon are log-bandwidths

Log-likelihood of (gi ,Zi )
N
i=1 is

logL(γ) = −1

2
gTK (γ)−1g − log |K (γ)| − N

2
log(2π)

where g = (gi . . . gN)T and K is covariance matrix, so
K (γ)i ,j = k(Zi ,Zj |γ)



Likelihood maximization

logYit = α + β log t + δ logDit + η logHi + f (Zi ) + εi + νit

= Xitθ + f (Zi ) + εi + νit

I Assume νit ∼ N (0, σ2ν) and εi ∼ N (0, σ2ε ). Def. φ = (σε, σν)
I Two-step likelihood maximization:

1. Treat f (Zi ) as observed: compute

gi =
1

Ti

Ti∑
t=1

(logYit − Xitθ)

= f (Zi ) + εi +
1

Ti

Ti∑
t=1

νit

and thence
L(Yi ,Xi |gi , θ, φ) = . . .



Likelihood maximization, cont.

L(Yi ,Xi |gi , θ, φ) = . . .

2. By GPR, vector g = (g1 . . . gN)T ∼MVN (0,K (Z|γ))
So

L(Y,X,Z|θ, φ, γ) =

∫
ψ(g|0,K (Z|γ)

N∏
i=1

L(Yi ,Xi |gi , θ, φ)dg

= . . .



Results & Discussion

I Results: see handout

I What is the benefit of this method?


