A non-random sample from *Experiential and* social learning in firms: The case of hydraulic fracturing in the Bakken Shale (Thomas Covert, 2013)

Liam F. Clegg

February 26, 2014

Background

- Oil wells "fracked" using a mix of sand and water
- Sand and water are costly
- Oil productivity of well varies with quantities of inputs used
- Firms must learn the optimal mix through their own, and other firms, experience.
- Econometric mission: estimate optimal mix of fracking inputs at each point in time, conditional on previous data, and compare to actual firm behavior

Well characteristics

- *H_i* horizontal length
- S_i sand used in fracking
- W_i water used in fracking
- *lat_i*, *lon_i* latitude and longitude of well bore

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Time series of oil production

$$Y_{it} = Q_i t^eta D_{it}^\delta \exp(
u_{it})$$

where

- Y_{it} = production of well *i* in the *t*-th month of its life
- Q_i = baseline level of production for well *i*
- $\beta < 0$ parameter governing productivity decline
- D_{it} = number of days well *i* in operation in *t*-th month
- ν_{it} = mean-zero production shock

SO

$$\log Y_{it} = \log Q_i + \beta \log t + \delta \log D_{it} + \nu_{it}$$

Assume

$$\mathbb{E}\left[\nu_{it}|t, H_i, D_{it}, S_i, W_i, lat_i, lon_i\right] = 0$$

Cross section of oil production

 $\log Q_i = \alpha + \eta \log H_i + f(S_i, W_i, lat_i, lon_i) + \epsilon_i$

- Assume $\mathbb{E}[\epsilon_i | t, H_i, D_{it}, S_i, W_i, lat_i, lon_i] = 0$
- $\triangleright Z_i = (S_i, W_i, lat_i, lon_i)$
- ► f(S_i, W_i, lat_i, lon_i) = f(Z_i) captures relationship b/w baseline production and location and fracking choices

 Estimate f(Z_i) non-parametrically, using Gaussian process regression (GPR)

Gaussian process regression

Gaussian process G: distribution over continuous real functions, defined by mean function m(Z) and covariance function k(Z, Z'), satisfying:

$$m(Z)=\int f(Z)dG(f)$$

$$k(Z,Z') = \int (f(Z) - m(Z))(f(Z') - m(Z'))dG(f)$$

• Distribution of $f(Z_1) \dots f(Z_N)$ is $\mathcal{MVN}(\mu, \Sigma)$, where

$$\mu = (m(Z_1) \dots m(Z_N))^T$$
$$\Sigma_{i,j} = k(Z_i, Z_j)$$

For any m, k, can compute likelihood that (g_i, Z_i)^N_{i=1} generated by g = f(Z)

GPR Likelihood

Assume m(Z) = 0, and k(Z, Z') is MVN kernel:

$$k(Z_i, Z_j | \gamma) = \exp(2\gamma_0) \exp\left(-\frac{1}{2} \sum_{d \in \{S, W, lat, lon\}} \frac{(Z_{i,d} - Z_{j,d})^2}{\exp(2\gamma_d)}\right)$$

•
$$\gamma_0$$
 is variance of $f(Z)$

▶ $\gamma_S, \gamma_W, \gamma_{lat}, \gamma_{lon}$ are log-bandwidths Log-likelihood of $(g_i, Z_i)_{i=1}^N$ is

$$\log \mathcal{L}(\gamma) = -\frac{1}{2}g^{T}K(\gamma)^{-1}g - \log |K(\gamma)| - \frac{N}{2}\log(2\pi)$$

where $g = (g_i \dots g_N)^T$ and K is covariance matrix, so $K(\gamma)_{i,j} = k(Z_i, Z_j | \gamma)$

Likelihood maximization

$$\log Y_{it} = \alpha + \beta \log t + \delta \log D_{it} + \eta \log H_i + f(Z_i) + \epsilon_i + \nu_{it}$$
$$= X_{it}\theta + f(Z_i) + \epsilon_i + \nu_{it}$$

- Assume $\nu_{it} \sim \mathcal{N}(0, \sigma_{\nu}^2)$ and $\epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$. Def. $\phi = (\sigma_{\epsilon}, \sigma_{\nu})$
- Two-step likelihood maximization:
 - 1. Treat $f(Z_i)$ as observed: compute

$$egin{aligned} g_i &= rac{1}{T_i} \sum_{t=1}^{T_i} (\log Y_{it} - X_{it} heta) \ &= f(Z_i) + \epsilon_i + rac{1}{T_i} \sum_{t=1}^{T_i}
u_{it} \end{aligned}$$

and thence

$$\mathcal{L}(\mathbf{Y}_i, \mathbf{X}_i | g_i, \theta, \phi) = \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Likelihood maximization, cont.

$$\mathcal{L}(\mathbf{Y}_i, \mathbf{X}_i | g_i, \theta, \phi) = \dots$$

2. By GPR, vector $\mathbf{g} = (g_1 \dots g_N)^T \sim \mathcal{MVN}(0, \mathcal{K}(\mathbf{Z}|\gamma))$ So

$$\mathcal{L}(\mathbf{Y}, \mathbf{X}, \mathbf{Z} | \theta, \phi, \gamma) = \int \psi(\mathbf{g} | \mathbf{0}, \mathcal{K}(\mathbf{Z} | \gamma) \prod_{i=1}^{N} \mathcal{L}(\mathbf{Y}_{i}, \mathbf{X}_{i} | g_{i}, \theta, \phi) d\mathbf{g}$$
$$= \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results & Discussion

- Results: see handout
- What is the benefit of this method?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ