A non-random sample from Experiential and social learning in firms: The case of hydraulic fracturing in the Bakken Shale (Thomas Covert, 2013)

Liam F. Clegg

February 26, 2014

Background

- Oil wells "fracked" using a mix of sand and water
- Sand and water are costly
- Oil productivity of well varies with quantities of inputs used
- Firms must learn the optimal mix through their own, and other firms, experience.
- Econometric mission: estimate optimal mix of fracking inputs at each point in time, conditional on previous data, and compare to actual firm behavior

Well characteristics

- H_{i} horizontal length
- S_{i} sand used in fracking
- W_{i} water used in fracking
- lati, lon ${ }_{i}$ latitude and longitude of well bore

Time series of oil production

$$
Y_{i t}=Q_{i} t^{\beta} D_{i t}^{\delta} \exp \left(\nu_{i t}\right)
$$

where

- $Y_{i t}=$ production of well i in the t-th month of its life
- $Q_{i}=$ baseline level of production for well i
- $\beta<0$ parameter governing productivity decline
- $D_{i t}=$ number of days well i in operation in t-th month
- $\nu_{i t}=$ mean-zero production shock
so

$$
\log Y_{i t}=\log Q_{i}+\beta \log t+\delta \log D_{i t}+\nu_{i t}
$$

Assume

$$
\mathbb{E}\left[\nu_{i t} \mid t, H_{i}, D_{i t}, S_{i}, W_{i}, l a t_{i}, l o n_{i}\right]=0
$$

Cross section of oil production

$$
\log Q_{i}=\alpha+\eta \log H_{i}+f\left(S_{i}, W_{i}, \text { lat }_{i}, \text { lon }_{i}\right)+\epsilon_{i}
$$

- Assume $\mathbb{E}\left[\epsilon_{i} \mid t, H_{i}, D_{i t}, S_{i}, W_{i}\right.$, lat $_{i}$, lon $\left._{i}\right]=0$
- $Z_{i}=\left(S_{i}, W_{i}\right.$, lat $_{i}$, lon $\left._{i}\right)$
- $f\left(S_{i}, W_{i}\right.$, lat $_{i}$, lon $\left._{i}\right)=f\left(Z_{i}\right)$ captures relationship b/w baseline production and location and fracking choices
- Estimate $f\left(Z_{i}\right)$ non-parametrically, using Gaussian process regression (GPR)

Gaussian process regression

- Gaussian process G : distribution over continuous real functions, defined by mean function $m(Z)$ and covariance function $k\left(Z, Z^{\prime}\right)$, satisfying:

$$
\begin{gathered}
m(Z)=\int f(Z) d G(f) \\
k\left(Z, Z^{\prime}\right)=\int(f(Z)-m(Z))\left(f\left(Z^{\prime}\right)-m\left(Z^{\prime}\right)\right) d G(f)
\end{gathered}
$$

- Distribution of $f\left(Z_{1}\right) \ldots f\left(Z_{N}\right)$ is $\mathcal{M V \mathcal { N }}(\mu, \Sigma)$, where

$$
\begin{aligned}
\mu & =\left(m\left(Z_{1}\right) \ldots m\left(Z_{N}\right)\right)^{T} \\
\Sigma_{i, j} & =k\left(Z_{i}, Z_{j}\right)
\end{aligned}
$$

- For any m, k, can compute likelihood that $\left(g_{i}, Z_{i}\right)_{i=1}^{N}$ generated by $g=f(Z)$

GPR Likelihood

Assume $m(Z)=0$, and $k\left(Z, Z^{\prime}\right)$ is MVN kernel:

$$
k\left(Z_{i}, Z_{j} \mid \gamma\right)=\exp \left(2 \gamma_{0}\right) \exp \left(-\frac{1}{2} \sum_{d \in\{S, W, \text { lat,lon }\}} \frac{\left(Z_{i, d}-Z_{j, d}\right)^{2}}{\exp \left(2 \gamma_{d}\right)}\right)
$$

- γ_{0} is variance of $f(Z)$
- $\gamma_{s}, \gamma_{W}, \gamma_{l a t}, \gamma_{\text {lon }}$ are log-bandwidths

Log-likelihood of $\left(g_{i}, Z_{i}\right)_{i=1}^{N}$ is

$$
\log \mathcal{L}(\gamma)=-\frac{1}{2} g^{T} K(\gamma)^{-1} g-\log |K(\gamma)|-\frac{N}{2} \log (2 \pi)
$$

where $g=\left(g_{i} \ldots g_{N}\right)^{T}$ and K is covariance matrix, so $K(\gamma)_{i, j}=k\left(Z_{i}, Z_{j} \mid \gamma\right)$

Likelihood maximization

$$
\begin{aligned}
\log Y_{i t} & =\alpha+\beta \log t+\delta \log D_{i t}+\eta \log H_{i}+f\left(Z_{i}\right)+\epsilon_{i}+\nu_{i t} \\
& =X_{i t} \theta+f\left(Z_{i}\right)+\epsilon_{i}+\nu_{i t}
\end{aligned}
$$

- Assume $\nu_{i t} \sim \mathcal{N}\left(0, \sigma_{\nu}^{2}\right)$ and $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$. Def. $\phi=\left(\sigma_{\epsilon}, \sigma_{\nu}\right)$
- Two-step likelihood maximization:

1. Treat $f\left(Z_{i}\right)$ as observed: compute

$$
\begin{aligned}
g_{i} & =\frac{1}{T_{i}} \sum_{t=1}^{T_{i}}\left(\log Y_{i t}-X_{i t} \theta\right) \\
& =f\left(Z_{i}\right)+\epsilon_{i}+\frac{1}{T_{i}} \sum_{t=1}^{T_{i}} \nu_{i t}
\end{aligned}
$$

and thence

$$
\mathcal{L}\left(\mathbf{Y}_{i}, \mathbf{X}_{i} \mid g_{i}, \theta, \phi\right)=\ldots
$$

Likelihood maximization, cont.

$$
\mathcal{L}\left(\mathbf{Y}_{i}, \mathbf{X}_{i} \mid g_{i}, \theta, \phi\right)=\ldots
$$

2. By GPR, vector $\mathbf{g}=\left(g_{1} \ldots g_{N}\right)^{T} \sim \mathcal{M V \mathcal { N }}(0, K(\mathbf{Z} \mid \gamma))$ So

$$
\begin{aligned}
\mathcal{L}(\mathbf{Y}, \mathbf{X}, \mathbf{Z} \mid \theta, \phi, \gamma) & =\int \psi\left(\mathbf{g} \mid \mathbf{0}, K(\mathbf{Z} \mid \gamma) \prod_{i=1}^{N} \mathcal{L}\left(\mathbf{Y}_{i}, \mathbf{X}_{i} \mid g_{i}, \theta, \phi\right) d \mathbf{g}\right. \\
& =\ldots
\end{aligned}
$$

Results \& Discussion

- Results: see handout
- What is the benefit of this method?

