
Causal inference

Econometrics of causal inference, in a nutshell

1 Background

To start with, we consider a linear structural outcome equation, and homogeneous effects:

y = βd+ ε (1)

where y is some outcome, d is an explanatory (or “treatment”) variable of interest, and ε
is an unobservable which represent unobserved determinants of y not accounted for in d.
Here β measures the causal effect of a unitary change in d on the outcome y. Examples: (y
is wages, d is yrs of schooling), (y is quantity demanded, d is price), (y is price, d is market
concentration), (y is test scores, d is class size), etc. You want to estimate β. But if d is
endogenous (in the sense that E(ε · d) 6= 0) then OLS estimate is biased.

A classic solution to the endogeneity problem is to use an instrumental variable z, which
should be correlated with d, uncorrelated with ε, and excluded from the equation of interest
(1).

Heuristically, rewrite the structural model as:

y = β′d(z, x) + ε

where the notation d(x, z) makes explicit that the treatment d depends on both the instru-
ment z (the “exogenous” variation) and other factors x (which are correlated with ε, leading
to “endogenous” variation). We derive the causal effect of d on y indirectly, by considering
an exogenous change in z, which in turn affects d and then affects y. Formally, we have

dy

dz
=
∂y

∂d

∂d

∂z
=⇒ β =

dy

dz

/
∂d

∂z

In the special case when we have a binary auxiliary variable Z ∈ {0, 1}, we obtain the
following estimator:

E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
.

This is the classical Wald estimator. A number of the treatment effect estimators we
consider below take this form, for different choices of the auxiliary variable Z.

2 Cross-sectional approaches

Here we consider the situation where each individual in the dataset is only observed once.
We also restrict attention to the binary treatment case. (Most common case for policy
evaluation.)
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2.1 Rubin causal framework

• Treatment D ∈ 0, 1

• Potential outcomes YD, D = 0, 1

• “Treatment effect”: ∆ ≡ Y1 − Y0.

• Goal of inference: moments of ∆.

– Average Treatment Effect: E[∆]

– Average TE on the treated: E[∆|D = 1]

– Local ATE: E[∆|Z = z] for some auxiliary variable Z (depends on setting)

– Local ATT, &etc...

– Note that if ∆ is a nondegenerate random variable, it implies that the treatment
effect differs across individuals in an arbitrary way. (In a linear model, this is
consistent with the model yi = βidi + εi, so that the coefficient on the treatment
variable is different for every individual.)

• In the cross-sectional setting, the crucial data limitation is that each individual can
only be observed in one of the possible treatments: that is, defining

Y = D ∗ Y1 + (1−D) ∗ Y0
the researcher observes a sample of (Y,D,Z) across individuals (Z are auxiliary vari-
ables).

A naive estimator of ATE is just the difference in conditional means E[Y |D = 1]−E[Y |D =
0]. This is obviously not a good thing to do unless Y0, Y1 ⊥ D – that is, unless treatment
is randomly assigned (as it would be in a controlled lab setting, or in a tightly controlled
field experiment). Otherwise, typically E[Y |D = 0] = E[Y0|D = 0] 6= E[Y0], and similarly
to E[Y |D = 1].

2.2 Selection on observables: propensity score weighting and matching

• Assumption: Y0, Y1 ⊥ D|Z, where Z denotes variables observed for each individual.
This is selection on observables, as the interpretation is that treatments are exogenous
once the additional observables Z are controlled for.

• Let FZ denote the joint distribution of the Z variables. With this assumption, we
have that∫
{E[Y |D = 1, Z]− E[Y |D = 0, Z]} dFZ =

∫
{E[Y1|D = 1, Z]− E[Y0|D = 0, Z]} dFZ

=

∫
{E[Y1|Z]− E[Y0|Z]} dFZ

= E[Y1 − Y0]
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which is the average treatment effect.

• But if Z is large dimensional, then inplementing this is not feasible. Therefore we
consider some dimension-reducing approaches.

• Define the propensity score:

Q = Prob(D = 1|Z).

This can be estimated for each individual in the sample. Hence we assume that we
observe (Y,D,Z,Q) for everyone in the sample. Remember that Q is just a function
of Z.

• Rosenbaum and Rubin (1983) theorem: under the selection on observables assump-
tion, we also have (Y0, Y1) ⊥ D|Q.

Proof: We want to show that P (D,Y1, Y0|Q) = P (D|Q)P (Y1, Y0|Q). Starting with
the Law of Total Probability, we have P (D,Y1, Y0|Q) = P (D|Y1, Y0, Q)P (Y1, Y0|Q).
So it suffices to show P (D|Y1, Y0, Q) = P (D|Q). Since D is binary, we can focus on
showing this for P [D = 1|Y1, Y0, Q) = P (D = 1|Q). Note that

P [D = 1|Y0, Y1, Q] = E {E[D|Y1, Y0, Z]|Y1, Y0, Q}
= E {E[D|Z]|Y1, Y0, Q}
= E {Q|Y0, Y1, Q} = Q.

which does not depend on (Y1, Y0). �

2.2.1 Inverse PS weighting

• Main result: E(Y1) = E
[
D∗Y
Q

]
(Horvitz-Thompson estimator)

Proof:

E

[
D ∗ Y
Q

]
= EE

[
D ∗ Y
Q
|Z
]

= E
1

Q
E [D ∗ Y1|Z]

= E
1

Q
E [E (D ∗ Y1|Z,D) |Z]

= E
1

Q
E [(D ∗ E(Y1|Z, ) |Z]

= E
1

Q
E [(D ∗ E(Y1|Z)) |Z]

= E
E(Y1|Z)

Q
E [D|Z]

= E
E(Y1|Z)

Q
Q = E(Y1).
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Similarly, E(Y0) = E
[
(1−D)∗Y

1−Q

]
.

• This is inverse propensity score weighting. Intuitively, in the case of E(Y1), you weight
each individual in the treated sample by the probability of that individual being in
the treated sample, which is Q.

• Since we divide by the propensity score Q above, we need that:

0 < Q(Z) < 1, ∀Z.

This is known as the overlap assumption. Practically, it implies that for any Z,
individuals with those covariates have a nonzero chance of being treated. Obviously,
if there is any set of Z with positive probability for which Q = 0, then this set must
be excluded from the expectation above, and so it is invalid to interpret it as the
unconditional mean of Y0.

2.2.2 PS matching

This is just dimension reduction. Let FQ denote the distribution of propensity scores. We
have that∫

{E[Y |D = 1, Q]− E[Y |D = 0, Q]} dFQ =

∫
{E[Y1|D = 1, Q]− E[Y0|D = 0, Q]} dFQ

=

∫
{E[Y1|Q]− E[Y0|Q]} dFQ

= E[Y1 − Y0]

which is the average treatment effect. The penultimate equality uses the Rosenbaum-Rubin
theorem.

This is “matching” in the sense that for each value of Q, you compare the average outcome
of treated vs. untreated with this Q. Many variants on this based on how you match
individuals in the treated vs. untreated samples.

2.3 Regression Discontinuity design

2.3.1 Basic setup (“sharp” design)

• Forcing variable Z: D = 0 when Z ≤ Z̄; D = 1 when Z > Z̄. This implies you
observe E[Y0|Z] for Z ≤ Z̄, and E[Y1|Z] for Z > Z̄.

• Continuity assumption: E[YD|Z] continuous at Z = Z̄, for D = 0, 1.

• Local unconfoundedness: Y0, Y1 ⊥ D|Z for Z in a neighborhood of Z̄. This means
that P (Y1, Y0, D|Z) = P (Y1, Y0|Z)P (D|Z).
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• E[Y |D = 1, Z̄+] − E[Y |D = 0, Z̄−] estimates E[Y1 − Y0|Z̄], the “local” treatment
effect for individuals with forcing variable Z = Z̄.

Proof:

E[Y |D = 1, Z̄+]− E[Y |D = 0, Z̄−] = E[Y1|D = 1, Z̄+]− E[Y0|D = 0, Z̄−]

= E[Y1|Z̄+]− E[Y0|Z̄−] (by cond. independence)

= E[Y1|Z̄]− E[Y0|Z̄] (by continuity)

�

Example: Angrist and Lavy (1999): y is test scores, d is class size, z is indicator for whether
total enrollment was “just above” a multiple of 40. Maimonides’ rules states (roughly) that
no class size should exceed forty, so that if enrollment (treated as exogenous) is “just below”
40, class sizes will be bigger, whereas if enrollment is “just above” 40, class sizes will be
smaller. They restrict their sample to all (school-cohorts) where total enrollment was within
+/- 5 of a multiple of 40.

2.3.2 “Fuzzy” design

• Probability of treatment jumps discontinuously at Z̄: that is, P [D = 1|Z] jumps (up)
at Z = Z̄. Define P+ = P (D = 1|Z̄+) and analogously P−.

• Conditional independence: Y1, Y0 ⊥ D|Z in a neighborhood of Z̄.

• Continuity: E[YD|Z̄+] = E[YD|Z̄−] for D = 0, 1.

• Let Y = (1−D)Y0 +DY1. Then

E[Y1 − Y0|Z̄] ≈ E[Y |Z̄+]− E[Y |Z̄−]

E[D|Z̄+]− E[D|Z̄−]
,

a Wald-type estimator.1

Proof: We have

E[Y |Z̄+] = (1− P+)E[Y0|Z̄+] + P+E[Y1|Z̄+]

= (1− P+)E[Y0|Z̄] + P+E[Y1|Z̄]

= E[Y0|Z̄] + P+ ·
{
E[Y1|Z̄]− E[Y0|Z̄]

}
.

Similarly E[Y |Z̄−] = E[Y0|Z̄] +P− ·
{
E[Y1|Z̄]− E[Y0|Z̄]

}
. Hence numerator of Wald

estimator is (P+ − P−) ·
{
E[Y1|Z̄]− E[Y0|Z̄]

}
. Denominator is (P+ − P−). �.

Interpretation: above is Wald IV estimator in regression of observed outcome Y on D, using
values of the instrument Z close to the jump point Z̄.

1See Hahn, Todd, and van der Klaauw (2001).
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2.4 Instrumental variables: LATE

More formally, the basic binary local average treatment effect (“LATE”) setup is the fol-
lowing (cf. Angrist and Pischke (2009)):

• Binary IV: Z ∈ {0, 1}.

• Binary potential treatment DZ ∈ {0, 1}

• Potential outcomes YDZ = y(D,Z)

• Assumption A1 (Independence): YD1,1, YD0,0, D1, D0 ⊥ Z

• A2 (Exclusion): YD,0 = YD,1 ≡ YD for D = 0, 1.

• A3 (“rank”): E[D1 −D0] 6= 0.

• A4 (Monotonicity): D1 ≥ D0 with probability 1.

• “Full” (latent) sample is (YD0 , YD1 , D0, D1, Z). We observe a sample of (Y,D,Z):

– D = (1− Z)D0 + ZD1

– Y = (1−D)Y0 +DY1 (by exclusion restriction, Z doesn’t enter)

• Main result: the Wald estimator E[Y |Z=1]−E[Y |Z=0]
E[D|Z=1]−E[D|Z=0] estimates E[Y1 − Y0|D1 > D0].

Proof: using independence and exclusion assumptions, we have

E[Y |Z = 1] = E[(1−D)Y0 +DY1|Z = 1] = E[(1−D1)Y0 +D1Y1].

Similarly, E[Y |Z = 0] = E[(1−D0)Y0 +D0Y1], implying that the numerator is

E[Y |Z = 1]− E[Y |Z = 0] = E[(Y1 − Y0)(D1 −D0)]

= E[(Y1 − Y0) · 1|D1 > D0]P (D1 > D0) + E[(Y1 − Y0) · 0|D1 = D0]P (D1 = D0)

+ E[(Y1 − Y0) · (−1)|D1 < D0]P (D1 < D0)

= E[(Y1 − Y0)|D1 > D0]P (D1 > D0) + 0 + 0.

Denominator, by similar argument, equals P (D1 > D0).

Here, the Wald estimator measures the average effect of d on y for those for whom a change
in z from 0 to 1 would have affected the treatment d. This insight is known by several terms,
including local IV and local average treatment effect (LATE) (see Angrist and Imbens (1994)
for more details).

Examples:
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Angrist and Krueger (1991) y is wages, d is yrs of schooling, z is quarter of birth
(1=Jan-Aug; 0=Sept-Dec). Exploits two institutional features: (i) can only enter
school (kindergarten) when you are 5 yrs old by Sept. 1; (ii) must remain in school
until age 16 =⇒ people with z = 1 forced to complete more yrs of schooling before
they can drop out.

In a given cohort of kindergarteners, there are the “older” kids who were born after
Sept. 1, and the younger kids who were born before Sept. 1. Hence, for all kids
born in say 2000, those born before 9/1/2000 (tagged z = 1) started school a year
earlier, and will be in tenth grade when they are allowed to drop out Those born after
9/1/2000 (tagged z = 0) started school a year later, and will only be in ninth grade
when they are allowed to drop out.2

For this case, the LATE measures the effect of an extra year of schooling on those
(dropout) students for whom an earlier birth (ie. change z from 0 to 1) would have
been forced to complete an extra year of schooling before dropping out.

Angrist (1990) y is lifetime income, d is years of experience in the (civilian) workforce,
and z is draft eligibility. Intuition: that draft eligibility led to exogenous shift in years
of experience.

Angrist, Graddy, and Imbens (2000) y is quantity demanded, d is price, and z is
weather variable.

Angrist and Evans (1990) y is parents’ labor supply, d is number of children, z is indi-
cator of sex composition of children (i.e., whether first two births were females)

3 Panel data

In panel data, one observes the same individual over several time periods, including (ideally)
periods both before and after a policy change. For example, d is often a policy change which
affects some states but not others.

In this richer data environment, one can estimate the effect of the policy change while
controlling arbitrarily for individual-specific heterogeneity, as well as for time-specific effects.
This is the difference-in-difference approach.

Abstractly, consider outcome variables indexed by the triple (i, t, d), with i, t, d ∈ {0, 1} (all
binary). Here i denotes a subsample, with i = 1 being the treated subsample. t denotes
time period, with t = 1 denoting the period when individuals in subsample i = 1 are treated.
d is the treatment variable, as before. Of the eight possible combinations, we only observe
Y000, Y010, Y100, Y111.

• Common trend: E[Y110 − Y010] = E[Y100 − Y000] = α.

2Note that if compulsory schooling were described in terms of years of schooling, then identification
strategy fails.
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• The DID estimator is:

DID = E[Y111 − Y100]− E[Y010 − Y000]

• Under the common trend assumption,

DID = E[Y111]− (E[Y000] + α)− (E[Y110]− α) + E[Y000]

= E[Y111 − Y110]

which is the treatment effect on the treated.

The DID is typically obtained by linear regression. Consider the following linear model:

yit = αi + βdit + γt + εit

with ε ⊥ d. In first differences, this is:

∆yi = β∆di + (γ1 − γ0) + ηi

with η ⊥ ∆di. By running this regression, the estimated β̂ is an estimate of the DID.

In the regression context, it is easy to control for additional variables Zit which also affect
outcomes.

There are many many examples of this. Two examples are:

Card and Krueger (1994) y is employment, d is minimum wage (look for evidence of
general equilibrium effects of minimum wage). Exploit policy shift which resulted in
rise of minimum wage in New Jersey, but not in Pennsylvania. Sample is fast food
restaurants on the NJ/Pennsylvania border.

Kim and Singal (1993) y is price, d is concentration of particular flight market. Exploit
merger of Northwest and Republic airlines, which affected only markets (so we hope)
in which Northwest or Republic offered flights.
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