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I However, incorporating unobserved (to the researcher)
state variables that are serially correlated and
endogenous remains prohibitively difficult.

I In this paper the authors propose a likelihood based
method relying on sequential importance sampling to
estimate dynamic discrete games of complete information
with serially correlated unobserved endogenous
state variables.
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I They apply the method to a dynamic oligopolistic model
of entry for the generic pharmaceutical industry.

I This application is interesting because the firm specific
production costs are serially correlated unobserved state
variables that are endogenous to past entry decisions.

I It is worth to note that the proposed method is applicable
to similar games that have a Markovian representation of
the latent dynamics and an algorithm to solve the game.
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I The paper also provides evidence on the dynamic spillover
effects of experience in one product market on subsequent
performance in the market for another product.

I In order to evaluate the effects of current experience on
future market performance as measured by future costs
and entry, they formulate and estimate a dynamic game
theoretic model of oligopolistic competition.

I In a dynamic setting, current entry can have a potential
spillover effect on future entry.
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Motivation

I In the case of a generic pharmaceutical firm there can be
economies of scope that come from experience working
with a particular ingredient, therapeutic class, or form of
drug (e.g., oral liquid or liquid injectable).

I It allows for serially correlated firm specific costs that
evolve endogenously based on past entry decisions.

I Furthermore, endogeneity of costs to past entry decisions
induces heterogeneity among firms even if they are
identical ex ante, which they need not be.

I They estimate the model parameters using Bayesian
MCMC methods.
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The model

I Firms maximize profits over an infinite horizon
t = 1, ....,∞ where each time the market is open counts
as one time increment.

I A market opening is defined to be an entry opportunity
that becomes available to generic manufacturers each
time a branded product goes off patent.

I The actions available to firm i when market t opens are
to enter or not, which is denoted as

Ai ,t =

{
1, If firm i enter;
0, otherwise.
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The model

I There are I firms in total so that the number of entrants
in market t is given by

Nt =
I∑

i=1

Ai ,t (4)

I The evolution of current costs, Cit , is determined by past
entry decisions and random shocks.

I They consider the convention of cit = log(Cit).

I The equation governing the log cost of firm i at market t
is

cit = µc + ρc(ci ,t−1 − µc)− κcAi ,t−1 + σceit , (5)
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The model

I The term eit is a normally distributed shock with mean
zero and unit variance, σc is a scale parameter, κc is the
entry spillover or immediate impact on cost at market t if
there was entry in market t − 1.

I µc is a location parameter that represents the overall
average of the log cost over a long period of time.

I The autoregressive parameter ρc represents the degree of
persistence between the current cost and its long run
stationary level
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Assumption
All firms are ex ante identical, with the effects of current
decisions on future costs creating heterogeneity between firms.

I The log cost can be decomposed into a sum of two
components, a known component (or observable to the
researcher based on past actions), ck,i ,t and a component
unobservable to the researcher, cu,i ,t as follows:
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ci ,t = cu,i ,t + ck,i ,t (9)

cu,i ,t = µc + ρc(cu,i ,t−1 − µc) + σceit (10)

ck,i ,t = ρcck,i ,t−1 − κcAi ,t−1 (11)

I The total (lump sum) revenue to be divided among firms
who enter a market at time t is Rt = exp(rt), which is
realized from the following independent and identical
distribution,

rt = µr + σreI+1,t , (12)

where eI+1,t is normally distributed with mean zero and
unit variance.
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I Under this simplification, they suggest that a reasonable
functional form for dominant firm is per period profit at
time t is

Πit = Ai ,t ×
{

Rγ
t

Nt
− Cit

}
, (14)

where γ ∈ (0.908, 1).

I The firms total discounted profit at time t is

∞∑
j=0

βjΠit+j , 0 < β < 1. (15)
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Solving the Model

I The Bellman equation for the choice specific value
function for firm i ’s dynamic problem at time t is given by

Vi (Ai,t , A−i,t , Ci,t , C−i,t , Rt) = Πi,t + E|Ωt
(Vi (Ai,t , A−i,t , Ci,t , C−i,t , Rt)),

(18)

where Ωt = (Ai ,t , A−i ,t , Ci ,t , C−i ,t , Rt)

I The solution concept is given by “em Pure Strategy
Perfect Markov Equilibrium”.

I The numerical scheme is as follows:
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1 Generate a parameter value by means of an MCMC
algorithm.

2 For that parameter value, generate values for the latent
variable over the sample period by means of the
importance sampler.

3 Solve the dynamic game to compute the equilibrium
outcome as function of the observed and unobserved
state variables and the parameter value.

4 Use the equilibrium outcome generated from the solution
to compute a likelihood that depends on the observed
data and latent state variables (at the given parameter
value).
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5 Integrate out the latent state variables by averaging the
log likelihood over repetitions of the importance sampler
to obtain a log likelihood that depends only observed
variables (at the given parameter value).

6 Use the likelihood that depends only on observed
variables to make the accept/reject decision of the
MCMC algorithm

I Cycling through steps (1) to (6) generates an
MCMC chain that is a sample from the posterior
distribution of the parameters from which the
posterior mean, mode, standard deviation, etc. can
be computed.
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