1 Hotz-Miller approach: avoid numeric dynamic program-
ming
e Rust, Pakes approach to estimating dynamic discrete-choice model very com-

puter intensive. Requires using numeric dynamic programming to compute the

value function(s) for every parameter vector 6.

e Alternative method of estimation, which avoids explicit DP. Present main ideas
and motivation using a simplified version of (Hotz and Miller 1993), (Hotz,
Miller, Sanders, and Smith 1994).

e Related to recent emphasis in literature of non/semi-parametric identification
of structural models: given data, what structural parameters can be identified

without making excessive parametric assumptions?
e For simplicity, think about Harold Zurcher model.
e What do we observe in data from DDC framework? For agent ¢, time ¢, observe:
— {Zy,di }: observed state variables Z;; and discrete decision (control) vari-
able d;;. For simplicity, assume d;; is binary, € {0, 1}
Let 1 =1,..., N index the buses, t = 1,...,T index the time periods.

— For Harold Zurcher model: Z; is mileage on bus ¢ in period ¢, and d; is

whether or not engine of bus ¢ was replaced in period ¢.

— Given renewal assumptions (that engine, once repaired, is good as new),

define transformed state variable x;;: mileage since last engine change.
— Unobserved state variables: €;, i.i.d. over ¢ and . Assume that distribution
is known (Type 1 Extreme Value in Rust model)
e In the following, let quantities with hats s denote objects obtained just from
data.
Objects with tildes ”s denote “predicted” quantities, obtained from both data

and calculated from model given parameter values 6.

e From this data alone, we can estimate (or “identify”):



— Transition probabilities of observed state and control variables: G(z'|z,d)*,

estimated by conditional empirical distribution

G|z, d) = AR Wiy S iGmrg L @i S @ oy =2,dy =0), ifd=0
Zz lzt1m'1(xi,t+1§x,adit:1), itd=1.

— Choice probabilities, conditional on state variable: Prob (d = 1|x)?, esti-

mated by

N T-1

(d=1lx) = Zzzzt xn:x)-l(ditzl,xit:x).

=1 t=1

Since Prob (d = 0|z) = 1—Prob (d = 1|z), we have P(d = 0|z) = 1—P(d =
1]z).

e With estimates of G(-|-) and p(-|-), as well as a parameter vector 6, you can

“estimate” the choice-specific value functions by constructing the sum

‘7(1’, d = 1, 0) :u(l’, d= ]_7 9) -+ 6EI’\z,d:1Ed/\I’Ee/|d/7x/ [U(IL’,, d/’ 8) + 6,
+/6E-’E”|(E’,d’Ed”‘x” e’\d”,x” [u(aj‘”, d”; 6) —|— 6” + /6 .. .]]

‘7(1’, d= 0; 0) :U<l’, d= 0; 9) + ﬁEx’\x,dzlEd’\x’ e|d x’ [U(IL’,, d,; 8) + 6,
+ﬁE{E”|IE’7d’Ed”‘x” e’\d”,x” [’LL(.Z’”7 d”; 9) + 6” + ﬁ o ” .

Here u(x, d; #) denotes the per-period utility of taking choice d at state z, without
the additive logit error. Note that the observation of d’|2’ is crucial to being
able to forward-simulate the choice-specific value functions. Otherwise, d'|z’ is
multinomial with probabilities given by Eq. (1) below, and is impossible to

calculate without knowledge of the choice-specific value functions.

Also, the expectation .4 denotes the expectation of the e conditional on choice

d being taken. For the logit case, there is a closed form:

Ele|d, ] = v — log(Pr(d|z))

1By stationarity, note we do not index the G function explicitly with time .
2By stationarity, note we do not index this probability explicitly with time ¢.



where 7 is Euler’s constant (0.577...) and Pr(d|x) is the choice probability of
action d at state z.

Both of the other expectations in the above expressions are observed directly

from the data.

Both choice-specific value functions can be simulated by (for d = 1, 2):

+0 [U(ﬂf”s, d";0) +~ — log(P(d"*|2"*)) + 3 -- m
where
- o ~ G( v, d)
= d" ~ p(efa’), 2~ G|, A7)
— &ete.

In short, you simulate V(x,d;#) by drawing S “sequences” of (d;,z;) with a
initial value of (d,z), and computing the present-discounted utility correspond
to each sequence. Then the simulation estimate of f/(x, d; 0) is obtained as the

sample average.

In practice, “truncate” the infinite sum at some large T'.
Given an estimate of V (-, d; ), you can get the predicted choice probabilities:
exp (?(x, d=1,; 9))
exp <‘~/(£E, d=1; 9)) + exp (f/(x, d=0; 0))

pld =1|z;0) = (1)

and analogously for p(d = 0|z;6). Note that the predicted choice probabilities
are different from p(d|x), which are the actual choice probabilities computed
from the actual data.

One way to estimate 6 is to minimize the distance between the predicted con-

ditional choice probabilities, and the actual conditional choice probabilities:
0 = argming||p(d = 1|z) — P (d = 1|z;6) ||

where p denotes a vector of probabilities, at various values of x.
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e Another way to estimate 6 is very similar to the Berry/BLP method. Given
the logit assumption, we can equate the actual conditional choice probabilities
p(d|z) to the model’s predicted choice probabilities p(d|x; @) to obtain that

~

0, =logp(d = 1|z) —logp(d = 1]z) = [V(z,d =1) — V(x,d = 0)].
An alternative estimator could proceed by doing

0 = argming||d, — |V(z,d =1;0) — V(z,d = 0;0)] ||.

2 Identification of DDC Models

e The argument here follows (Bajari and Hong 2005). Go back to Eq. (1): for
each z
exp (V(1;x))
exp (V(0;z)) +exp (V(1;2))
exp (V(L;z) - V(0; 7))
T Ttexp (V(1;2) — V(0;2))

p(d = 1]z) =
(2)

(Since we will not rely on parametric identification, remove parameter vector 6

from notation.)

For every z, we observe choice probability p(d = 1|z), so we can solve for

V(1;z) — V(0; x): difference in choice-specific value functions evaluated at x.

(Note: above is easily generalized to more than two choices, and also generaliz-

able to non-logit error terms.)

e We still need to identify V(0 : x), for every x. From Bellman equation, note

that the choice-specific value function for d = 0 is defined as:
V(0;2) = u(x,0) + ﬁEz/ﬂr’d:o[mgx (V(0;2") + €, V(1;2") + €})]

= u(2,0) + BEypollog Y expV(d;a')] (3)

d'=0,1

— u(2,0) + BBy llog (1 + exp(V(Lix) = V(0;2)) + V(0; )

If we normalize u(z,0) = 0 for all x, then given knowledge of V(1;z) — V(0; z)

for all z, we can iterate over the last line of Eq. (3) to obtain V' (0;z) for all .

4



e Then u(x,d) for all (x,d) can be calculated as

u(z,d) = V(d;x) — BEyy qllog Z exp V(d';2")] (4)

d'=0,1

e Note that in order to calculate the expectations in Egs. (3) and Egs. (4), we

use estimate of transition probabilities.
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