
1 Hotz-Miller approach: avoid numeric dynamic program-

ming

• Rust, Pakes approach to estimating dynamic discrete-choice model very com-

puter intensive. Requires using numeric dynamic programming to compute the

value function(s) for every parameter vector θ.

• Alternative method of estimation, which avoids explicit DP. Present main ideas

and motivation using a simplified version of (Hotz and Miller 1993), (Hotz,

Miller, Sanders, and Smith 1994).

• Related to recent emphasis in literature of non/semi-parametric identification

of structural models: given data, what structural parameters can be identified

without making excessive parametric assumptions?

• For simplicity, think about Harold Zurcher model.

• What do we observe in data from DDC framework? For agent i, time t, observe:

– {x̃it, dit}: observed state variables x̃it and discrete decision (control) vari-

able dit. For simplicity, assume dit is binary, ∈ {0, 1}

Let i = 1, . . . , N index the buses, t = 1, . . . , T index the time periods.

– For Harold Zurcher model: x̃it is mileage on bus i in period t, and dit is

whether or not engine of bus i was replaced in period t.

– Given renewal assumptions (that engine, once repaired, is good as new),

define transformed state variable xit: mileage since last engine change.

– Unobserved state variables: εit, i.i.d. over i and t. Assume that distribution

is known (Type 1 Extreme Value in Rust model)

• In the following, let quantities with hats ’̂s denote objects obtained just from

data.

Objects with tildes ’̃s denote “predicted” quantities, obtained from both data

and calculated from model given parameter values θ.

• From this data alone, we can estimate (or “identify”):
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– Transition probabilities of observed state and control variables: G(x′|x, d)1,

estimated by conditional empirical distribution

Ĝ(x′|x, d) ≡

{

∑N

i=1

∑T−1
t=1

1
P

i

P

t
1(xit=x,dit=0)

· 1 (xi,t+1 ≤ x′, xit = x, dit = 0) , if d = 0
∑N

i=1

∑T−1
t=1

1
P

i

P

t
1(dit=1)

· 1 (xi,t+1 ≤ x′, dit = 1) , if d = 1.

– Choice probabilities, conditional on state variable: Prob (d = 1|x)2, esti-

mated by

P̂ (d = 1|x) ≡
N

∑

i=1

T−1
∑

t=1

1
∑

i

∑

t 1 (xit = x)
· 1 (dit = 1, xit = x) .

Since Prob (d = 0|x) = 1−Prob (d = 1|x), we have P̂ (d = 0|x) = 1−P̂ (d =

1|x).

• With estimates of Ĝ(·|·) and p̂(·|·), as well as a parameter vector θ, you can

“estimate” the choice-specific value functions by constructing the sum

Ṽ (x, d = 1; θ) =u(x, d = 1; θ) + βEx′|x,d=1Ed′|x′Eε′|d′,x′ [u(x′, d′; θ) + ε′

+βEx′′|x′,d′Ed′′|x′′Eε′|d′′,x′′ [u(x′′, d′′; θ) + ε′′ + β · · ·]
]

Ṽ (x, d = 0; θ) =u(x, d = 0; θ) + βEx′|x,d=1Ed′|x′Eε′|d′,x′ [u(x′, d′; θ) + ε′

+βEx′′|x′,d′Ed′′|x′′Eε′|d′′,x′′ [u(x′′, d′′; θ) + ε′′ + β · · ·]
]

.

Here u(x, d; θ) denotes the per-period utility of taking choice d at state x, without

the additive logit error. Note that the observation of d′|x′ is crucial to being

able to forward-simulate the choice-specific value functions. Otherwise, d′|x′ is

multinomial with probabilities given by Eq. (1) below, and is impossible to

calculate without knowledge of the choice-specific value functions.

Also, the expectation Eε′|d′ denotes the expectation of the ε conditional on choice

d being taken. For the logit case, there is a closed form:

E[ε|d, x] = γ − log(Pr(d|x))

1By stationarity, note we do not index the G function explicitly with time t.
2By stationarity, note we do not index this probability explicitly with time t.
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where γ is Euler’s constant (0.577...) and Pr(d|x) is the choice probability of

action d at state x.

Both of the other expectations in the above expressions are observed directly

from the data.

• Both choice-specific value functions can be simulated by (for d = 1, 2):

Ṽ (x, d; θ) ≈ =
1

S

∑

s

[

u(x, d; θ) + γ − log(P̂ (d|x)) + β
[

u(x′s, d′s; θ) + γ − log(P̂ (d′s|x′s))

+β
[

u(x′′s, d′′s; θ) + γ − log(P̂ (d′′s|x′′s)) + β · · ·
]]]

where

– x′s ∼ Ĝ(·|x, d)

– d′s ∼ p̂(·|x′s), x′′s ∼ Ĝ(·|x′s, d′s)

– &etc.

In short, you simulate Ṽ (x, d; θ) by drawing S “sequences” of (dt, xt) with a

initial value of (d, x), and computing the present-discounted utility correspond

to each sequence. Then the simulation estimate of Ṽ (x, d; θ) is obtained as the

sample average.

• In practice, “truncate” the infinite sum at some large T .

• Given an estimate of Ṽ (·, d; θ), you can get the predicted choice probabilities:

p̃(d = 1|x; θ) ≡
exp

(

Ṽ (x, d = 1; θ)
)

exp
(

Ṽ (x, d = 1; θ)
)

+ exp
(

Ṽ (x, d = 0; θ)
) (1)

and analogously for p̃(d = 0|x; θ). Note that the predicted choice probabilities

are different from p̂(d|x), which are the actual choice probabilities computed

from the actual data.

• One way to estimate θ is to minimize the distance between the predicted con-

ditional choice probabilities, and the actual conditional choice probabilities:

θ̂ = argminθ||p̂(d = 1|x) − p̃ (d = 1|x; θ) ||

where p denotes a vector of probabilities, at various values of x.
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• Another way to estimate θ is very similar to the Berry/BLP method. Given

the logit assumption, we can equate the actual conditional choice probabilities

p̂(d|x) to the model’s predicted choice probabilities p̃(d|x; θ) to obtain that

δ̂x ≡ log p̂(d = 1|x) − log p̂(d = 1|x) = [V (x, d = 1) − V (x, d = 0)] .

An alternative estimator could proceed by doing

θ̄ = argminθ||δ̂x −
[

V̂ (x, d = 1; θ) − V̂ (x, d = 0; θ)
]

||.

2 Identification of DDC Models

• The argument here follows (Bajari and Hong 2005). Go back to Eq. (1): for

each x

p̃(d = 1|x) =
exp (V (1; x))

exp (V (0; x)) + exp (V (1; x))

=
exp (V (1; x) − V (0; x))

1 + exp (V (1; x) − V (0; x))

(2)

(Since we will not rely on parametric identification, remove parameter vector θ

from notation.)

For every x, we observe choice probability p̃(d = 1|x), so we can solve for

V (1; x) − V (0; x): difference in choice-specific value functions evaluated at x.

(Note: above is easily generalized to more than two choices, and also generaliz-

able to non-logit error terms.)

• We still need to identify V (0 : x), for every x. From Bellman equation, note

that the choice-specific value function for d = 0 is defined as:

V (0; x) = u(x, 0) + βEx′,ε′|x,d=0[max
d

(V (0; x′) + ε′0, V (1; x′) + ε′1)]

= u(x, 0) + βEx′|x,0[log
∑

d′=0,1

exp V (d′; x′)]

= u(x, 0) + βEx′|x,0[log (1 + exp(V (1; x) − V (0; x)) + V (0; x)]

(3)

If we normalize u(x, 0) = 0 for all x, then given knowledge of V (1; x) − V (0; x)

for all x, we can iterate over the last line of Eq. (3) to obtain V (0; x) for all x.
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• Then u(x, d) for all (x, d) can be calculated as

u(x, d) = V (d; x) − βEx′|x,d[log
∑

d′=0,1

exp V (d′; x′)] (4)

• Note that in order to calculate the expectations in Eqs. (3) and Eqs. (4), we

use estimate of transition probabilities.
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