Nonparametric Identification of Dynamic Models with Unobserved State Variables

Yingyao Hu and Matthew Shum

Johns Hopkins University & Caltech

• Example 1: Dynamic Investment Model

- ► *Y_t*: firm investment
- ► *M_t*: capital stock
- X^{*}_t: firm-level productivity

• Example 2: Dynamic learning

- Y_t: which brand is consumed
- M_t : # advertisements seen
- X^{*}_t: current beliefs (posterior mean) about each brand
- Examples of **Markov dynamic choice models** with *serially correlated unobserved state variables*

向下 イヨト イヨト

Introduction

Data problem:

- Consider identification of first-order Markov process $\{W_t, X_t^*\}_{t=1}^T$
- Only $\{W_t\}$ for t = 1, 2, ..., T is observed
 - In most empirical dynamic models, $W_t = (Y_t, M_t)$:
 - * Y_t is choice variable: agent's action in period t
 - * M_t is observed state variable
 - X_t^* is persistent (serially-correlated) unobserved state variable
- In these models, structural components fully summarized in Markov law of motion f_{Wt}, X^{*}_t|_{Wt-1}, X^{*}_{t-1}.
 ⇒ study nonparametric identification of thic
 - \Rightarrow study nonparametric identification of this.

Two main results:

- Nonstationary case: for each period t, the law of motion f_{Wt}, x_t^{*}|_{Wt-1}, x_{t-1}^{*} identified from *five* observations W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}
- Stationary case: Markov law of motion f_{W2,X2*|W1,X1*} identified from four observations W_{t+1}, W_t, W_{t-1}, W_{t-2}

Usefulness

Once we identify $f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$, it factorizes into structural components of interest:

$$f_{W_{t},X_{t}^{*}|W_{t-1},X_{t-1}^{*}} = f_{Y_{t},M_{t},X_{t}^{*}|Y_{t-1},M_{t-1},X_{t-1}^{*}} \\ = \underbrace{f_{Y_{t}|M_{t},X_{t}^{*}}}_{\mathsf{CCP}} \cdot \underbrace{f_{M_{t},X_{t}^{*}|Y_{t-1},M_{t-1},X_{t-1}^{*}}}_{\mathsf{Markov state laws of motion}}$$

From identified object, can recover: (i) conditional choice probability; (ii) Markov laws of motion for state variables.

Once these are known, can estimate "structural" parameters of model (eg. utility parameters) using "conditional-choice-probability (CCP)" pioneered by Hotz & Miller

Roadmap

- Background
- Identification argument: discrete case (more details)
- Identification argument: continuous case (quickly)
- Simulation: 0-1 dichotomous case
- Example to illustrate assumptions: version of Rust (1987) bus engine replacement model
- Concluding remarks

Relation to literature

- CCP-based approach to estimate dynamic discrete-choice model (Hotz-Miller, Aguirregabiria-Mira, Bajari-Benkard-Levin (2008), Pesendorfer-Schmidt-Dengler (2003), Pakes-Ostrovsky-Berry (2007), Hong-Shum (2007)). Virtue: avoid numeric dyn. programming.
- Empirical applications include: Ryan (2006), Collard-Wexler (2006)
- Nonparametric identification of DDC models (as in Magnac-Thesmar (2002), Bajari-Chernozhukov-Hong-Nekipelov (2005))
- General criticism of CCP-based approaches: cannot accommodate unobservables which are persistent over time ⇒

Background

Recent literature

- Dynamic models with time-invariant X^* (unobsd het)
 - Buchinsky-Hahn-Hotz (2004), Houde-Imai (2006)
 - ► Kasahara-Shimotsu (2007): identify Markov process $W_t | W_{t-1}, X^*$
- Time-varying X_t^* :
 - Arcidiacono-Miller (2006): CCP estimation; discrete, time-varying X_t^* .
 - Henry, Kitamura, Salanie (2008): identification in dynamic, discrete "hidden-Markov state" models
 - Cunha, Heckman, Schennach (2007): multivariate measurement error setting unobserved process $\{X_t^*\}_{t=1}^T$ noisily measured by $\{W_{1t}\}_{t=1}^T$, $\{W_{2t}\}_{t=1}^T$, $\{W_{3t}\}_{t=1}^T$, cond. indep..
- Estimating parametric DDC models w/ correlated USV
 - Bayesian: Imai, Jain, Ching (2006), Norets (2007), Gallant-Hong-Khwaja (2008)
 - Efficient simulation: Fernandez-Villaverde, Rubio-Ramirez (2006), Blevins (2008)

・ロット (雪) (日) (日) (日)

Our contribution

- X_t^* continuous
- X^{*}_t serially correlated: *unobserved state variable*
- Evolution of X_t^* can depend on W_{t-1} , X_{t-1}^*
- Focus on nonparametric identification of joint Markov process $W_t, X_t^* | W_{t-1}, X_{t-1}^*$
- Novel identification approach: use recent findings from nonclassical measurement error econometrics: Hu (2008), Hu-Schennach (2007), Carroll, Chen, and Hu (2008)

Relation to literature: nonclassical measurement errors

"Message": in X-section context, three "observations" (x, y, z) of latent x^* enough to identify (x, y, z, x^*)

• Hu (2008, JOE): X*-discrete latent variable

$$f_{\mathbf{X},\mathbf{Y},\mathbf{Z}} = \sum_{x^*} f_{\mathbf{X}|X^*} f_{\mathbf{Y}|X^*} f_{X^*,\mathbf{Z}}$$

• Hu and Schennach (2008, ECMA): X*:continuous latent variable

$$f_{\mathbf{X},\mathbf{Y},\mathbf{Z}} = \int f_{\mathbf{X}|X^*} f_{\mathbf{Y}|X^*} f_{X^*,\mathbf{Z}} dx^*$$

• Carroll, Chen and Hu (2008): S-sample indicator (this paper)

$$f_{\mathbf{X},\mathbf{Y},\mathbf{Z},\mathbf{S}} = \int f_{\mathbf{X}|\mathbf{X}^*,\mathbf{S}} f_{\mathbf{Y}|\mathbf{X}^*,\mathbf{Z}} f_{\mathbf{X}^*,\mathbf{Z},\mathbf{S}} dx^*$$

Basic setup: conditions for identification

- Consider dynamic processes $\{(W_T, X_T^*), ..., (W_t, X_t^*), ..., (W_1, X_1^*)\}_i$ i.i.d across agents $i \in \{1, 2, ..., n\}$.
- The researcher observes $\{W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}\}_i$ for many agents *i* (5 obs)
- Assumption: The dynamic process (W_t, X_t^*) satisfies

(i) First-order Markov: $f_{W_t, X_t^* | W_{t-1}, ..., W_1, X_{t-1}^*, ..., X_1^*} = f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$ (ii) Limited feedback: $f_{W_t | W_{t-1}, X_t^*, X_{t-1}^*} = f_{W_t | W_{t-1}, X_t^*}$. Picture

Comments on conditions

- Markov assumption standard in most applications of DDC models
- LF rules out direct effects from previous X_{t-1}^* to W_t :

$$f_{W_{t}|W_{t-1},X_{t}^{*},X_{t-1}^{*}} = f_{Y_{t},M_{t}|Y_{t-1},M_{t-1},X_{t}^{*},X_{t-1}^{*}}$$

$$= f_{Y_{t}|M_{t},Y_{t-1},M_{t-1},X_{t}^{*},X_{t-1}^{*}} \cdot f_{M_{t}|Y_{t-1},M_{t-1},X_{t}^{*},X_{t-1}^{*}}$$

$$= \underbrace{f_{Y_{t}|M_{t},Y_{t-1},M_{t-1},X_{t}^{*}}_{\mathsf{CCP}} \cdot \underbrace{f_{M_{t}|Y_{t-1},M_{t-1},X_{t}^{*}}}_{M_{t} \text{ law of motion}} \cdot$$

- LF restricts M_t law of motion.
 Satisfied by many empirical applications (in IO context: Crawford-Shum (2005), Das-Roberts-Tybout (2007), Xu (2008), Hendel-Nevo (2007)) Details
- To relax LF: (i) impose additional restrictions on CCP; (ii) identify higher-order Markov models (in progress)

伺 と く ヨ と く ヨ と

Special case: Discrete X_t^*

- Main result for case of continuous X_t^*
- Build intuition by considering discrete case:

$$\forall t, \ X_t^* \in \mathcal{X}^* \equiv \{1, 2, \dots, J\}.$$

- For convenience, assume W_t also discrete, with same support $\mathcal{W}_t = \mathcal{X}_t^*$.
- In what follows:
 - "L" denotes J-square matrix
 - "D" denotes J-diagonal matrix.

Backbone of argument

- BROWN: elements identified from data
- PURPLE: elements identified in proof

For fixed (w_t, w_{t-1}) , in matrix notation: here

• Lemma 2: Markov law of motion $L_{w_t, X_t^* | w_{t-1}, X_{t-1}^*}$

$$= L_{W_{t+1}|w_t,X_t^*}^{-1} L_{W_{t+1},w_t|w_{t-1},W_{t-2}} L_{W_t|w_{t-1},W_{t-2}}^{-1} L_{W_t|w_{t-1},X_{t-1}^*}^{-1}$$

Hence, all we must identify are $L_{W_{t+1}|w_t, X_t^*}$ and $L_{W_t|w_{t-1}, X_{t-1}^*}$.

- Lemma 3: From $f_{W_{t+1}, w_t | w_{t-1}, W_{t-2}}$, identify $L_{W_{t+1} | w_t, X_t^*}$.
- Stationary case: L_{Wt+1|wt,Xt}* = L_{Wt|wt-1}, X_{t-1}*, so Lemma 3 implies identification (4 obs)
- Non-stationary case: apply Lemma 3 in turn to $f_{W_{t+1}, w_t|w_{t-1}, W_{t-2}}$ and $f_{W_t, w_{t-1}|w_{t-2}, W_{t-3}}$ (5 obs)

= nar

Lemma 2: representation of $f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*}$

• Main equation: for any (w_t, w_{t-1}) here here

- Similarly: $L_{W_t|w_{t-1},W_{t-2}} = L_{W_t|w_{t-1},X_{t-1}^*}L_{X_{t-1}^*|w_{t-1},W_{t-2}}$
- Manipulating above two equations: $L_{w_t, X_t^* | w_{t-1}, X_{t-1}^*}$

$$= L_{W_{t+1}|w_{t},X^{*}}^{-1} L_{W_{t+1}|w_{t},X^{*}}^{-1} L_{W_{t+1}|w_{t-1},W_{t-2}}^{-1} L_{X_{t-1}^{*}|w_{t-1},W_{t-2}}^{-1}$$

$$= L_{W_{t+1}|w_{t},X^{*}_{t}}^{-1} L_{W_{t+1},w_{t}|w_{t-1},W_{t-2}}^{-1} L_{W_{t}|w_{t-1},X^{*}_{t-1}}^{-1} L_{W_{t}|w_{t-1},X^{*}_{t-1}}^{-1}$$

• Identification of $L_{w_t,X_t^*|w_{t-1},X_{t-1}^*}$ boils down to that of $L_{W_{t+1}|w_t,X_t^*}$ for t & t-1 (Lemma 3)

Lemma 3: proof

- Similar to Carroll, Chen, and Hu (2008)
- The key equation: $f_{W_{t+1},W_t,W_{t-1},W_{t-2}}$

$$= \int \int f_{W_{t+1},W_t,W_{t-1},W_{t-2},X_t^*,X_{t-1}^*} dx_t^* dx_{t-1}^*$$

$$= \int \int f_{W_{t+1}|W_t,X_t^*} \cdot f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} \cdot f_{W_{t-1},W_{t-2},X_{t-1}^*} dx_t^* dx_{t-1}^*$$

$$= \int \int f_{W_{t+1}|W_t,X_t^*} \cdot f_{W_t|W_{t-1},X_t^*,X_{t-1}^*} \cdot f_{X_t^*,X_{t-1}^*,W_{t-1},W_{t-2}} dx_t^* dx_t^* dx_{t-1}^*$$

$$= \int f_{W_{t+1}|W_t,X_t^*} f_{W_t|W_{t-1},X_t^*} \cdot f_{X_t^*,W_{t-1},W_{t-2}} dx_t^*$$

• Discrete-case, matrix notation (for any fixed w_t , w_{t-1}) details:

$$L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}} = L_{W_{t+1} | w_t, X_t^*} D_{w_t | w_{t-1}, X_t^*} L_{X_t^* | w_{t-1}, W_{t-2}}$$

3

(日) (同) (三) (三)

• Important fact: for (w_t, w_{t-1}) ,

$$\begin{split} \mathcal{L}_{W_{t+1},w_{t}|w_{t-1},W_{t-2}} &= \underbrace{\mathcal{L}_{W_{t+1}|w_{t},X_{t}^{*}}}_{\text{no }w_{t-1}} \underbrace{\mathcal{D}_{w_{t}|w_{t-1},X_{t}^{*}}}_{\text{only J unkwns.}} \underbrace{\mathcal{L}_{X_{t}^{*}|w_{t-1},W_{t-2}}}_{\text{no }w_{t}} \end{split} \\ \bullet \text{ for } (w_{t},w_{t-1}), (\overline{w}_{t},w_{t-1}), (\overline{w}_{t},\overline{w}_{t-1}) (w_{t},\overline{w}_{t-1}), \\ \mathcal{L}_{W_{t+1},w_{t}|w_{t-1},W_{t-2}} &= \mathcal{L}_{W_{t+1}|w_{t},X_{t}^{*}} \quad \mathcal{D}_{w_{t}|w_{t-1},X_{t}^{*}} \underbrace{\mathcal{L}_{X_{t}^{*}|w_{t-1},W_{t-2}}}_{\mathcal{L}_{X_{t}^{*}|w_{t-1},W_{t-2}} &= \underbrace{\mathcal{L}_{W_{t+1}|\overline{w}_{t},X_{t}^{*}}}_{\mathcal{L}_{W_{t}|w_{t-1},X_{t}^{*}} \quad \mathcal{L}_{X_{t}^{*}|w_{t-1},W_{t-2}} \\ \mathcal{L}_{W_{t+1},\overline{w}_{t}|w_{t-1},W_{t-2}} &= \underbrace{\mathcal{L}_{W_{t+1}|\overline{w}_{t},X_{t}^{*}}}_{\mathcal{L}_{W_{t+1}|\overline{w}_{t-1},X_{t}^{*}} \quad \mathcal{L}_{X_{t}^{*}|\overline{w}_{t-1},W_{t-2}} \\ \mathcal{L}_{W_{t+1},\overline{w}_{t}|\overline{w}_{t-1},W_{t-2}} &= \underbrace{\mathcal{L}_{W_{t+1}|w_{t},X_{t}^{*}} \quad \mathcal{D}_{w_{t}|\overline{w}_{t-1},X_{t}^{*}} \quad \underbrace{\mathcal{L}_{X_{t}^{*}|\overline{w}_{t-1},W_{t-2}}}_{\mathcal{L}_{W_{t+1}|w_{t-1},W_{t-2}} \\ \mathcal{L}_{W_{t+1},w_{t}|\overline{w}_{t-1},W_{t-2}} &= \underbrace{\mathcal{L}_{W_{t+1}|w_{t},X_{t}^{*}} \quad \mathcal{D}_{w_{t}|\overline{w}_{t-1},X_{t}^{*}} \quad \underbrace{\mathcal{L}_{X_{t}^{*}|\overline{w}_{t-1},W_{t-2}}}_{\mathcal{L}_{X_{t}^{*}|\overline{w}_{t-1},W_{t-2}} \\ \end{array}$$

-

• • • • • • • • • • • • •

- Assume: LHS invertible, which is testable
- eliminate $L_{X_t^*|w_{t-1},W_{t-2}}$ using first two equations

$$A \equiv L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}} L_{W_{t+1}, \overline{w}_t | w_{t-1}, W_{t-2}}^{-1}$$

= $L_{W_{t+1} | w_t, X_t^*} D_{w_t | w_{t-1}, X_t^*} D_{\overline{w}_t | w_{t-1}, X_t^*}^{-1} L_{W_{t+1} | \overline{w}_t, X_t^*}^{-1}$

• eliminate $L_{X_t^* \mid \overline{w}_{t-1}, W_{t-2}}$ using last two equations

$$\mathbf{B} \equiv L_{W_{t+1}, w_t | \overline{w}_{t-1}, W_{t-2}} L_{W_{t+1}, \overline{w}_t | \overline{w}_{t-1}, W_{t-2}}^{-1}$$

= $L_{W_{t+1} | w_t, X_t^*} D_{w_t | \overline{w}_{t-1}, X_t^*} D_{\overline{w}_t | \overline{w}_{t-1}, X_t^*}^{-1} L_{W_{t+1} | \overline{w}_t, X_t^*}^{-1}$

• eliminate $L_{W_{t+1}|\overline{w}_t, X_t^*}^{-1}$ $\mathbf{AB}^{-1} = L_{W_{t+1}|w_t, X_t^*} D_{w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, X_t^*} L_{W_{t+1}|w_t, X_t^*}^{-1}$

with diagonal matrix

$$D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*} = D_{w_t|w_{t-1},X_t^*} D_{\overline{w}_t|w_{t-1},X_t^*}^{-1} D_{\overline{w}_t|\overline{w}_{t-1},X_t^*} D_{w_t|\overline{w}_{t-1},X_t^*}^{-1}$$

Eigenvalue-eigenvector decomposition of observed AB⁻¹

$$\mathsf{A}\mathsf{B}^{-1} = \mathcal{L}_{W_{t+1}|w_t, X_t^*} \mathcal{D}_{w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, X_t^*} \mathcal{L}_{W_{t+1}|w_t, X_t^*}^{-1}$$

• eigenvalues: diagonal entry in $D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*}$

$$\left(D_{w_{t},\overline{w}_{t},w_{t-1},\overline{w}_{t-1},X_{t}^{*}}\right)_{j,j} = \frac{f_{W_{t}|W_{t-1},X_{t}^{*}}(w_{t}|w_{t-1},j)f_{W_{t}|W_{t-1},X_{t}^{*}}(\overline{w}_{t}|\overline{w}_{t-1},j)}{f_{W_{t}|W_{t-1},X_{t}^{*}}(\overline{w}_{t}|w_{t-1},j)f_{W_{t}|W_{t-1},X_{t}^{*}}(w_{t}|\overline{w}_{t-1},j)}$$

Assume: For uniqueness, $(D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*})_{j,j}$ are finite, distinctive • eigenvector: column in $L_{W_{t+1}|w_t,X_t^*}$, (normalized because sums to 1)

Hence, $L_{W_{t+1}|w_t, X_t^*}$ is identified (up to the value of x_t^*). Any permutation of eigenvectors yields same decomposition.

To pin-down the value of x_t^* : need to "order" eigenvectors

- not necessary in the time-invariant case, $X_t^* = X_{t-1}^*$
- useful in time-varying case: show how agents change types w/ time.
- $f_{W_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*)$ for any w_t is identified up to value of x_t^*
- To pin-down the value of x_t^* : Assume there is known functional

$$h(w_t, x_t^*) \equiv G\left[f_{W_{t+1}|W_t, X_t^*}\left(\cdot|w_t, \cdot\right)\right] \text{ is monotonic in } x_t^*.$$

Then set $x_t^* = G\left[f_{W_{t+1}|W_t,X_t^*}\left(\cdot|w_t,\cdot\right)\right]$

- G[f] may be mean, mode, median, other quantile of f.
- Note: in unobserved heterogeneity case (X^{*}_t = X^{*}, ∀t), it is enough to identify f<sub>W_{t+1}|W_t,X^{*}_t.
 </sub>

Continuous case

• generalize the results in discrete case

discrete X_t^*	\Rightarrow	continuous X_t^*	
matrix	\Rightarrow	linear operator here	
invertible	\Rightarrow	one-to-one, "injective"	
matrix diagonalization	\Rightarrow	spectral decomposition	
eigenvector	\Rightarrow	eigenfunction	

•
$$W_t = \mathcal{W}_t \subseteq \mathbb{R}^d$$
, $X_t^* \in \mathcal{X}_t^* \subseteq \mathbb{R}$, for all t

• Example: Step 1

3

Assumptions

- (i) First-order Markov; (ii) Limited feedback
- ② (Invertibility) There exists variable(s) V ⊆ W st, for any w_t, w_{t-1}, the following are one-to-one: (i) L_{V_{t-2},w_t|w_{t-1}, V_{t+1}; (ii) L_{V_{t+1}|w_t, X_t^{*}; (iii) L_{V_{t-2},w_{t-1}, V_t.}}}
- (finite, distinctive eigenvalues) (i) for any w_t, w_{t-1}

$$0 < C_1(w_t, w_{t-1}) \leq f_{W_t|W_{t-1}, X_t^*}(w_t|w_{t-1}, x_t^*) \leq C_2(w_t, w_{t-1}) < \infty, \ \forall x_t^*$$

(ii) for any w_t and $\overline{x}^*_t
eq \widetilde{x}^*_t \in \mathcal{X}^*_t$ there exists w_{t-1} such that

$$\frac{\partial^2 \ln f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1},\overline{x}_t^*)}{\partial w_t \partial w_{t-1}} \neq \frac{\partial^2 \ln f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1},\widetilde{x}_t^*)}{\partial w_t \partial w_{t-1}}.$$

 $(normalization) for any w_t, x_t^* = G \left\{ f_{V_{t+1}|W_t, X_t^*}(\cdot|w_t, x_t^*) \right\}$

Main results

- **Theorem 1**: Under assumptions above, the density $f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}}$ uniquely determines $f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$
- Corollary 1: With stationarity, the density f_{Wt+1}, Wt, Wt-1</sub>, Wt-2 uniquely determines f_{W2}, X^{*}₂|W1, X^{*}₁
- We can use existing argument from Magnac-Thesmar, Bajari-Chernozhukov-Hong-Nekipelov to argue identification of utility functions, once $W_t, X_t^* | W_{t-1}, X_{t-1}^*$ known here

Initial conditions

- Corollary 2 (Non-stationary case): Under assumptions above, the density f_{Wt+1}, Wt, Wt-1, Wt-2, Wt-3</sub> uniquely determines f_{Wt-1}, X^{*}_{t-1}.
- Corollary 3 (Stationary case): the density f_{Wt+1}, Wt, Wt-1</sub>, Wt-2 uniquely determines f_{Wt-2}, X^{*}_{t-2}.

In each case, these identified objects can be used as sampling densities for initial conditions. (Two step estimation methods for dynamic models may require this.)

Discuss assumptions: example from Rust (1987)

Consider particular version of Rust (1987): $W_t = (Y_t, M_t)$:

- $Y_t \in \{0,1\}$ (don't replace, replace)
- *M_t* is mileage
- X_t^* is trunc. normal process w/ bounded support [L, U]:

$$X_t^* = 0.5X_{t-1}^* + 0.3\psi(M_{t-1}) + 0.2\nu_t$$

•
$$\nu_t$$
 are i.i.d. truncated normal on $[L, U]$.
• $\psi(M_{t-1}) = L + (U - L) \frac{\exp(M_{t-1}) - 1}{\exp(M_{t-1}) + 1}$,

- 4 同 6 4 日 6 4 日 6

Two different specifications:

Specification A	Specification B		
$u_t = \begin{cases} -c(M_t) + X_t^* + \epsilon_{0t}, & Y_t = 0\\ -RC + \epsilon_{1t}, & Y_t = 1.\\ c(\cdot) \text{ bounded away from } 0, +\infty \end{cases}$	$u_t = \left\{ egin{array}{l} -c(M_t) + \epsilon_{0t} \ -RC + \epsilon_{1t} \ & \dots \end{array} ight.$		
$M_{t+1} = \begin{cases} M_t + \eta_{t+1}, & Y_t = 0\\ \eta_{t+1}, & Y_t = 1\\ \eta_t \text{ are } N(0, 1), \text{ trunc. to } [0, 1], \text{ i.i.d.} \end{cases}$	$M_{t+1} = \begin{cases} M_t + \exp(\eta_{t+1} + X_{t+1}^*) \\ \exp(\eta_{t+1} + X_{t+1}^*). \\ \dots \\ & \dots \end{cases}$		

- Specifications differ in where X_t^* enters.
- Discuss each assumption in turn
- Assumption 1 (Markov, LF) satisfied

Assumption 2: invertibility assumptions

Use $V_t = M_t$ (continuous element of W_t)

• $L_{M_{t+1}, w_t | w_{t-1}, M_{t-2}}$: Consider $w_t w / y_t = 1$.

- A: M_{t+1} is trunc. N(0,1), regardless of (w_{t-1}, M_{t-2}) . FAILS
- ▶ **B**: M_{t+1} depends on X_{t+1}^* , which is correlated with M_{t-2} .

• $L_{M_{t+1}|w_t, X_t^*}$: Again, consider $w_t w / y_t = 1$.

- A: $M_{t+1}|w_t, X_t^*$ is trunc. N(0, 1). FAILS
- **B:** $M_{t+1}|w_t, X_t^*$ depends on X_t^* .
- Assumption 2(iii): similar argument to 2(i)
- For Spec B: appendix discusses sufficient conditions
- NB: One-to-one rules out models where W_t only has discrete components, but X^{*}_t is continuous.
- NB: when M_{t+1} depends just on w_t, but not on X^{*}_{t+1}, then cannot use V_t = M_t: "too little feedback".

Assumption 3: Finite, distinct eigenvalues

1. Cdtn for *finite eigenvalues*: for all (w_t, w_{t-1}) , there exist functions $L(w_t, w_{t-1})$, $U(w_t, w_{t-1})$ st for all x_t^* :

$$0 < L(w_t, w_{t-1}) \leq f_{W_t|W_{t-1}, X_t^*}(w_t|w_{t-1}, x_t^*) \leq U(w_t, w_{t-1}) < \infty.$$

•
$$f_{W_t|W_{t-1},X_t^*} = f_{Y_t|M_t,X_t^*} \cdot f_{M_t|X_t^*,Y_{t-1},M_{t-1}}$$
.
Are all terms bounded away from 0, $+\infty$?

- $f_{M_t|X_t^*,Y_{t-1},M_{t-1}}$ is truncated N(0,1). OK
- Boundedness assumptions on M_t, period utility functions without much loss of generality. (Usually good for computing models)

Assumption 3: cont'd

2. Cdtn for *distinct eigenvalues*: for any $x_t^* \in \mathcal{X}_t^*$ & $w_t \in \mathcal{W}_t$, there exists $w_{t-1} \in \mathcal{W}_{t-1}$ st

$$\frac{\partial^2}{\partial m_t \partial m_{t-1}} \ln f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1},x_t^*) \quad \text{varies in } x_t^*$$

Spec. B: pick w_{t-1} st $y_{t-1} = 0$.

$$m_t | m_{t-1}, y_{t-1}, X_t^* \sim \frac{1}{m_t - m_{t-1}} \cdot \tilde{\phi} \left(\log \left(\frac{m_t - m_{t-1}}{\exp(X_t^*)} \right) \right)$$

where $\tilde{\phi}(\cdot)$ is N(0,1) density truncated to [0,1].

$$\frac{\partial^2}{\partial m_t \partial m_{t-1}} \ln f = \frac{\partial^2}{\partial m_t \partial m_{t-1}} \left(\log \left(\frac{m_t - m_{t-1}}{\exp(X_t^*)} \right) \right)^2. \text{ Cdtn holds.}$$

Spec. A: $m_t | m_{t-1}, y_{t-1}, X_t^*$ is never function of X_t^* . Cannot hold.

Assumption 4

Appropriate normalization to pin down unobserved X_t^*

• For Spec. B, median of $f_{M_{t+1}|M_t,Y_t,X_t^*}(\cdot|m_t,y_t,z)$ is

$$h(w_t, z) = (1 - y_t)m_t + C_{med} \cdot \exp(0.3\psi(m_t)) \cdot \exp(0.5z)$$

where
$$C_{med} = \text{med} \left[\exp(\eta_{t+1} + 0.2\nu_{t+1}) \right]$$
 (fixed).

- $h(w_t, z)$ is monotonic in z
- So pin down $x_t^* = med \left[f_{M_{t+1}|M_t,Y_t,X_t^*}(\cdot|m_t,y_t,x_t^*) \right]$

(日) (同) (三) (三)

Simulation

- exactly follow the identification procedure of nonstationary case
- $\{W_t, X_t^*\}$ is generated as follows: $u_1, u_2 \sim \textit{uniform}(0, 1)$

$$W_t = \begin{cases} I(u_1 > 0.95) & \text{if } (X_t^*, W_{t-1}) = (0, 0) \\ I(u_1 > 0.60) & \text{if } (X_t^*, W_{t-1}) = (1, 0) \\ I(u_1 > 0.05) & \text{if } (X_t^*, W_{t-1}) = (0, 1) \\ I(u_1 > 0.50) & \text{if } (X_t^*, W_{t-1}) = (1, 1) \end{cases},$$

$$X_t^* = \begin{cases} I(u_2 > 0.25) & \text{if } (X_{t-1}^*, W_{t-1}) = (0,0) \\ I(u_2 > 0.75) & \text{if } (X_{t-1}^*, W_{t-1}) = (1,0) \\ I(u_2 > 0.60) & \text{if } (X_{t-1}^*, W_{t-1}) = (0,1) \\ I(u_2 > 0.05) & \text{if } (X_{t-1}^*, W_{t-1}) = (1,1) \end{cases}$$

• two estimators: using $\{W_t\}$ and using $\{W_t, X_t^*\}$

• n=50000, reps=200: \implies mean (std.err)

(日)

Simulation

$\widehat{f}(W_t, X_t^* W_{t-1}, X_{t-1}^*)$	using $\{W_t\}$	using $\{W_t, X_t^*\}$	mean Differ.
(0,0 0,0)	0.0454 (0.0754)	0.0475 (0.0019)	-0.0021
(0, 0 0, 1)	0.4768 (0.0499)	0.4752 (0.0032)	0.0016
(0, 0 1, 0)	0.1357 (0.1354)	0.1491 (0.0075)	-0.0134
(0, 0 1, 1)	0.0030 (0.0092)	0.0011 (0.0008)	0.0019
(0,1 0,0)	0.5543 (0.0501)	0.5703 (0.0046)	-0.0161
(0, 1 0, 1)	0.2985 (0.0453)	0.3000 (0.0030)	-0.0015
(0, 1 1, 0)	0.3008 (0.1341)	0.3002 (0.0100)	0.0006
(0, 1 1, 1)	0.7317 (0.0136)	0.7465 (0.0047)	-0.0148
(1,0 0,0)	0.0021 (0.0047)	0.0025 (0.0004)	-0.0004
(1, 0 0, 1)	0.0245 (0.0176)	0.0250 (0.0011)	-0.0005
(1, 0 1, 0)	0.4363 (0.0886)	0.4504 (0.0103)	-0.0142
(1, 0 1, 1)	0.0083 (0.0210)	0.0033 (0.0024)	0.0050
(1, 1 0, 0)	0.3716 (0.0212)	0.3797 (0.0045)	-0.0081
(1, 1 0, 1)	0.1992 (0.0189)	0.1998 (0.0028)	-0.0006
(1,1 1,0)	0.1007 (0.0453)	0.1002 (0.0068)	0.0004
$(\ 1 \ , \ 1 \ \ 1 \ , \ 1)$	0.2441 (0.0143)	0.2491 (0.0040)	-0.0049

-2

< ロ > < 回 > < 回 > < 回 > < 回 >

Extension

Extensions

- Companion work on dynamic games
 - X_t^* is multivariate (X_t^* includes USV's for each player).
 - For example, dynamic capacity investment
 - ★ $Y_t = (Y_{1t}, Y_{2t})$: each firm's capacity investment
 - ★ $M_t = (M_{1t}, M_{2t})$: each firm's total capacity
 - * $X_t^* = (X_{1t}^*, X_{2t}^*)$: each firm's productivity
 - Consider alternatives to LF:

$$f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} = \underbrace{f_{Y_t|M_t,X_t^*}}_{\mathsf{CCP}} \cdot \underbrace{f_{X_t^*|M_t,M_{t-1},X_{t-1}^*}}_{X \text{ transition}} \cdot \underbrace{f_{M_t|Y_{t-1},M_{t-1},X_{t-1}^*}}_{M \text{ transition}}$$

Can apply arguments in Hu-Schennach (2008):

$$f_{Y_{t},M_{t},Y_{t-1}|M_{t-1},Y_{t-2}} = \int f_{Y_{t}|M_{t},M_{t-1},X_{t-1}^{*}} f_{M_{t},Y_{t-1}|M_{t-1},X_{t-1}^{*}} f_{X_{t-1}^{*}|M_{t-1},Y_{t-2}} dx_{t-1}^{*}$$

- Assumption 4 more complicated: monotonicity not enough.
- Two-step estimation (as in HM, BBL):
 - Estimate CCP, LOM by sieve MLE
 - Estimate structural parameters from optimality conditions

Concluding remarks

- Identification of Markov process $f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*}$, where X_t^* is unobserved state variable
 - nonstationary: law of motion $f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$ identified from $f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}}$ (5 obs.)
 - **2** stationary: law of motion $f_{W_2,X_2^*|W_1,X_1^*}$ identified from $f_{W_{t+1},W_t,W_{t-1},W_{t-2}}$ (4 obs.)
- More broadly: apply measurement error econometrics to non-measurement error settings:
 - Auction models: (i) unobserved # bidders; (ii) unobserved heterogeneity
 - Price search models, where number of firms not observed (only prices)

イロト イポト イヨト イヨト 三日

Details on limited feedback

Learning model (Crawford-Shum; Ching; Erdem-Keane)

- Y_t: choice of drug treatment
- M_t : # times drug has been tried
- ► X_t^{*}: current beliefs ("posterior mean") regarding drug effectiveness
- Oynamic stockpiling model (Hendel-Nevo)
 - Y_t: brand of detergent purchased
 - ► *M_t*: inclusive values from each detergent brand
 - X^{*}_t: inventory of detergent
 - In both these models, evolution of M_t depends just on (Y_{t-1}, M_{t-1}), not on X^{*}_t or X^{*}_{t-1}.
 - Note: little restriction on evolution of X_{t+1}^* , can depend on X_{t-1}^* , Y_{t-1} , M_{t-1} .

Return

Flowchart

Return

æ.

<ロ> <同> <同> < 回> < 回>