Nonparametric Identification of Dynamic Models with Unobserved State Variables

Yingyao Hu and Matthew Shum

Johns Hopkins University \& Caltech

- Example 1: Dynamic Investment Model
- Y_{t} : firm investment
- M_{t} : capital stock
- X_{t}^{*} : firm-level productivity
- Example 2: Dynamic learning
- Y_{t} : which brand is consumed
- M_{t} : \# advertisements seen
- X_{t}^{*} : current beliefs (posterior mean) about each brand
- Examples of Markov dynamic choice models with serially correlated unobserved state variables

Introduction

Data problem:

- Consider identification of first-order Markov process $\left\{W_{t}, X_{t}^{*}\right\}_{t=1}^{T}$
- Only $\left\{W_{t}\right\}$ for $t=1,2, \ldots, T$ is observed
- In most empirical dynamic models, $W_{t}=\left(Y_{t}, M_{t}\right)$:
$\star Y_{t}$ is choice variable: agent's action in period t
$\star M_{t}$ is observed state variable
- X_{t}^{*} is persistent (serially-correlated) unobserved state variable
- In these models, structural components fully summarized in Markov law of motion $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$.
\Rightarrow study nonparametric identification of this.

Two main results:

(1) Nonstationary case: for each period t, the law of motion $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$ identified from five observations $W_{t+1}, W_{t}, W_{t-1}, W_{t-2}, W_{t-3}$
(2) Stationary case: Markov law of motion $f_{W_{2}, X_{2}^{*} \mid W_{1}, X_{1}^{*}}$ identified from four observations $W_{t+1}, W_{t}, W_{t-1}, W_{t-2}$

Usefulness

Once we identify $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$, it factorizes into structural components of interest:

$$
\begin{aligned}
f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}} & =f_{Y_{t}, M_{t}, X_{t}^{*} \mid Y_{t-1}, M_{t-1}, X_{t-1}^{*}} \\
& =\underbrace{f_{Y_{t} \mid M_{t}, X_{t}^{*}}}_{C C P} \cdot \underbrace{f_{M_{t}, X_{t}^{*} \mid Y_{t-1}, M_{t-1}, X_{t-1}^{*}}}_{\text {Markov state laws of motion }}
\end{aligned}
$$

From identified object, can recover: (i) conditional choice probability; (ii) Markov laws of motion for state variables.
Once these are known, can estimate "structural" parameters of model (eg. utility parameters) using "conditional-choice-probability (CCP)" pioneered by Hotz \& Miller

Roadmap

- Background
- Identification argument: discrete case (more details)
- Identification argument: continuous case (quickly)
- Simulation: 0-1 dichotomous case
- Example to illustrate assumptions: version of Rust (1987) bus engine replacement model
- Concluding remarks

Relation to literature

- CCP-based approach to estimate dynamic discrete-choice model (Hotz-Miller, Aguirregabiria-Mira, Bajari-Benkard-Levin (2008), Pesendorfer-Schmidt-Dengler (2003), Pakes-Ostrovsky-Berry (2007), Hong-Shum (2007)). Virtue: avoid numeric dyn. programming.
- Empirical applications include: Ryan (2006), Collard-Wexler (2006)
- Nonparametric identification of DDC models (as in Magnac-Thesmar (2002), Bajari-Chernozhukov-Hong-Nekipelov (2005))
- General criticism of CCP-based approaches: cannot accommodate unobservables which are persistent over time \Longrightarrow

Recent literature

- Dynamic models with time-invariant X^{*} (unobsd het)
- Buchinsky-Hahn-Hotz (2004), Houde-Imai (2006)
- Kasahara-Shimotsu (2007): identify Markov process $W_{t} \mid W_{t-1}, X^{*}$
- Time-varying X_{t}^{*} :
- Arcidiacono-Miller (2006): CCP estimation; discrete, time-varying X_{t}^{*}.
- Henry, Kitamura, Salanie (2008): identification in dynamic, discrete "hidden-Markov state" models
- Cunha, Heckman, Schennach (2007): multivariate measurement error setting - unobserved process $\left\{X_{t}^{*}\right\}_{t=1}^{T}$ noisily measured by $\left\{W_{1 t}\right\}_{t=1}^{T},\left\{W_{2 t}\right\}_{t=1}^{T},\left\{W_{3 t}\right\}_{t=1}^{T}$, cond. indep..
- Estimating parametric DDC models w/ correlated USV
- Bayesian: Imai, Jain, Ching (2006), Norets (2007), Gallant-Hong-Khwaja (2008)
- Efficient simulation: Fernandez-Villaverde, Rubio-Ramirez (2006), Blevins (2008)

Our contribution

- X_{t}^{*} continuous
- X_{t}^{*} serially correlated: unobserved state variable
- Evolution of X_{t}^{*} can depend on W_{t-1}, X_{t-1}^{*}
- Focus on nonparametric identification of joint Markov process $W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}$
- Novel identification approach: use recent findings from nonclassical measurement error econometrics: Hu (2008), Hu-Schennach (2007), Carroll, Chen, and Hu (2008)

Relation to literature: nonclassical measurement errors

"Message": in X-section context, three "observations" (x, y, z) of latent x^{*} enough to identify $\left(x, y, z, x^{*}\right)$

- Hu (2008, JOE): X^{*}-discrete latent variable

$$
f_{X, Y, Z}=\sum_{x^{*}} f_{X \mid X^{*}} f_{Y \mid X^{*}} f_{X^{*}, Z}
$$

- Hu and Schennach (2008, ECMA): X^{*} :continuous latent variable

$$
f_{X, Y, Z}=\int f_{X \mid X *} f_{Y \mid X^{*}} f_{X^{*}, Z} d x^{*}
$$

- Carroll, Chen and Hu (2008): S-sample indicator (this paper)

$$
f_{X, Y, Z, S}=\int f_{X \mid X^{*}, S} f_{Y \mid X^{*}, Z} f_{X^{*}, Z, S} d x^{*}
$$

Basic setup: conditions for identification

- Consider dynamic processes $\left\{\left(W_{T}, X_{T}^{*}\right), \ldots,\left(W_{t}, X_{t}^{*}\right), \ldots,\left(W_{1}, X_{1}^{*}\right)\right\}_{i}$, i.i.d across agents $i \in\{1,2, \ldots, n\}$.
- The researcher observes $\left\{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}, W_{t-3}\right\}_{i}$ for many agents i (5 obs)
- Assumption: The dynamic process $\left(W_{t}, X_{t}^{*}\right)$ satisfies
(i) First-order Markov: $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, \ldots, W_{1}, X_{t-1}^{*}, \ldots, X_{1}^{*}}=f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$
(ii) Limited feedback: $f_{W_{t} \mid W_{t-1}, X_{t}^{*}, X_{t-1}^{*}}=f_{W_{t} \mid W_{t-1}, X_{t}^{*}}$.

Comments on conditions

- Markov assumption standard in most applications of DDC models
- LF rules out direct effects from previous X_{t-1}^{*} to W_{t} :

$$
\begin{aligned}
f_{W_{t} \mid W_{t-1}, X_{t}^{*}, X_{t-1}^{*}} & =f_{Y_{t}, M_{t} \mid Y_{t-1}, M_{t-1}, X_{t}^{*}, X_{t-1}^{*}} \\
& =f_{Y_{t} \mid M_{t}, Y_{t-1}, M_{t-1}, X_{t}^{*}}, X_{t-1}^{*} \cdot f_{M_{t} \mid Y_{t-1}, M_{t-1}, X_{t}^{*}, X_{t-1}^{*}} \\
& =\underbrace{f_{Y_{t} \mid M_{t}, Y_{t-1}, M_{t-1}, X_{t}^{*}}}_{\text {CCP }} \cdot \underbrace{f_{M_{t} \mid Y_{t-1}, M_{t-1}, X_{t}^{*}}}_{M_{t} \text { law of motion }} .
\end{aligned}
$$

- LF restricts M_{t} law of motion.

Satisfied by many empirical applications (in IO context:
Crawford-Shum (2005), Das-Roberts-Tybout (2007), Xu (2008), Hendel-Nevo (2007)) Details

- To relax LF: (i) impose additional restrictions on CCP; (ii) identify higher-order Markov models (in progress)

Special case: Discrete X_{t}^{*}

- Main result for case of continuous X_{t}^{*}
- Build intuition by considering discrete case:

$$
\forall t, X_{t}^{*} \in \mathcal{X}^{*} \equiv\{1,2, \ldots, J\} .
$$

- For convenience, assume W_{t} also discrete, with same support $\mathcal{W}_{t}=\mathcal{X}_{t}^{*}$.
- In what follows:
- "L" denotes J-square matrix
- "D" denotes J-diagonal matrix.

Backbone of argument

- BROWN: elements identified from data
- PURPLE: elements identified in proof

For fixed $\left(w_{t}, w_{t-1}\right)$, in matrix notation:

- Lemma 2: Markov law of motion $L_{w_{t}, X_{t}^{*} \mid w_{t-1}, X_{t-1}^{*}}$

$$
=L_{W_{t+1} \mid w_{t}, X_{t}^{*}}^{-1} L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}} L_{W_{t} \mid w_{t-1}, W_{t-2}}^{-1} L_{W_{t} \mid w_{t-1}, X_{t-1}^{*}}
$$

Hence, all we must identify are $L_{W_{t+1} \mid w_{t}, X_{t}^{*}}$ and $L_{W_{t} \mid w_{t-1}, X_{t-1}^{*}}$.

- Lemma 3: From $f_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}}$, identify $L_{W_{t+1} \mid w_{t}, X_{t}^{*}}$.
- Stationary case: $L_{W_{t+1} \mid w_{t}, X_{t}^{*}}=L_{W_{t} \mid w_{t-1}, X_{t-1}^{*}}$, so Lemma 3 implies identification (4 obs)
- Non-stationary case: apply Lemma 3 in turn to $f_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}}$ and $f_{W_{t}, w_{t-1} \mid w_{t-2}, W_{t-3}}$ (5 obs)

Lemma 2: representation of $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$

- Main equation: for any $\left(w_{t}, w_{t-1}\right)$

$$
\begin{aligned}
L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}} & =L_{W_{t+1} \mid w_{t}, X^{*}} L_{w_{t}, X_{t}^{*} \mid w_{t-1}, W_{t-2}} \\
& =L_{W_{t+1} \mid w_{t}, X^{*}} L_{w_{t}, X_{t}^{*} \mid w_{t-1}, X_{t-1}^{*}} L_{X_{t-1}^{*} \mid w_{t-1}, W_{t-2}}
\end{aligned}
$$

- Similarly: $L_{W_{t} \mid w_{t-1}, W_{t-2}}=L_{W_{t} \mid w_{t-1}, X_{t-1}^{*}} L_{X_{t-1}^{*} \mid w_{t-1}, W_{t-2}}$
- Manipulating above two equations: $L_{w_{t}, X_{t}^{*} \mid w_{t-1}, X_{t-1}^{*}}$

$$
\begin{aligned}
& =L_{W_{t+1} \mid w_{t}, X^{*}}^{-1} L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}} L_{X_{t-1}^{*} \mid w_{t-1}, W_{t-2}}^{-1} \\
& =L_{W_{t+1} \mid w_{t}, X_{t}^{*}}^{-1} L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}} L_{W_{t} \mid w_{t-1}, W_{t-2}}^{-1} L_{W_{t} \mid w_{t-1}, X_{t-1}^{*}}
\end{aligned}
$$

- Identification of $L_{w_{t}, X_{t}^{*} \mid w_{t-1}, X_{t-1}^{*}}$ boils down to that of $L_{W_{t+1} \mid w_{t}, X_{t}^{*}}$ for $t \& t-1$ (Lemma 3)

Lemma 3: proof

- Similar to Carroll, Chen, and Hu (2008)
- The key equation: $f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}}$

$$
\begin{aligned}
& =\iint f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}, X_{t}^{*}, X_{t-1}^{*}} d x_{t}^{*} d x_{t-1}^{*} \\
& =\iint f_{W_{t+1} \mid} \mid W_{t}, X_{t}^{*} \cdot f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}} \cdot f_{W_{t-1}, W_{t-2}, X_{t-1}^{*}} d x_{t}^{*} d x_{t-1}^{*} \\
& =\iint f_{W_{t+1} \mid} \mid W_{t}, X_{t}^{*} \cdot f_{W_{t} \mid W_{t-1}, X_{t}^{*}, X_{t-1}^{*}} \cdot f_{X_{t}^{*}, X_{t-1}^{*}, W_{t-1}, W_{t-2}} d x_{t}^{*} d x_{t-1}^{*} \\
& =\int f_{W_{t+1} \mid W_{t}, X_{t}^{*}} f_{W_{t} \mid W_{t-1}, X_{t}^{*}} \cdot f_{X_{t}^{*}, W_{t-1}, W_{t-2}} d x_{t}^{*}
\end{aligned}
$$

- Discrete-case, matrix notation (for any fixed w_{t}, w_{t-1})

$$
L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}}=L_{W_{t+1} \mid w_{t}, X_{t}^{*}} D_{w_{t} \mid w_{t-1}, X_{t}^{*}} L_{X_{t}^{*} \mid w_{t-1}, W_{t-2}}
$$

Lemma 3: Proof (cont'd)

- Important fact: for $\left(w_{t}, w_{t-1}\right)$,

$$
L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}}=\underbrace{L_{W_{t+1}} \mid w_{t}, X_{t}^{*}}_{\text {no } w_{t-1}} \underbrace{D_{w_{t} \mid w_{t-1}, X_{t}^{*}}}_{\text {only } J \text { unkwns. }} \underbrace{L_{X_{t}^{*} \mid w_{t-1}}, W_{t-2}}_{\text {no } w_{t}}
$$

- for $\left(w_{t}, w_{t-1}\right),\left(\bar{w}_{t}, w_{t-1}\right),\left(\bar{w}_{t}, \bar{w}_{t-1}\right)\left(w_{t}, \bar{w}_{t-1}\right)$,

$$
\begin{aligned}
& L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}}=L_{W_{t+1} \mid w_{t}, X_{t}^{*}} \quad D_{w_{t} \mid w_{t-1}, X_{t}^{*}} \underbrace{L_{W_{t+1}, \bar{w}_{t} \mid w_{t-1}, W_{t-2}}=\overbrace{W_{t+1} \mid \bar{w}_{t}, X_{t}^{*}}}_{\underbrace{L_{X_{t}^{*} \mid w_{t-1}, W_{t-2}}}_{\|}} D_{\bar{w}_{t} \mid w_{t-1}, X_{t}^{*}} \overbrace{L_{X_{t}^{*} \mid w_{t-1}, W_{t-2}}}^{\|} \overbrace{L_{W_{t+1} \mid \bar{w}_{t}, X_{t}^{*}}} D_{\bar{w}_{t} \mid \bar{w}_{t-1}, X_{t}^{*}}^{\underbrace{}_{L_{t}^{*} \mid \bar{w}_{t-1}, W_{t-2}}} \\
& L_{W_{t+1}, \bar{w}_{t} \mid \bar{w}_{t-1}, W_{t-2}} \\
& L_{W_{t+1}, w_{t} \mid \bar{w}_{t-1}, W_{t-2}}=L_{W_{t+1} \mid w_{t}, X_{t}^{*}} \quad D_{w_{t} \mid \bar{w}_{t-1}, X_{t}^{*}} \overbrace{L_{X_{t}^{*} \mid \bar{w}_{t-1}, W_{t-2}}}
\end{aligned}
$$

Lemma 3: Proof (cont'd)

- Assume: LHS invertible, which is testable
- eliminate $L_{X_{t}^{*} \mid w_{t-1}, W_{t-2}}$ using first two equations

$$
\begin{aligned}
\mathbf{A} & \equiv L_{W_{t+1}, w_{t} \mid w_{t-1}, W_{t-2}} L_{W_{t+1}, \bar{w}_{t} \mid w_{t-1}, W_{t-2}}^{-1} \\
& =L_{W_{t+1} \mid w_{t}, X_{t}^{*}} D_{w_{t} \mid w_{t-1}, X_{t}^{*}} D_{\bar{w}_{t} \mid w_{t-1}, X_{t}^{*}}^{-1} L_{W_{t+1} \mid \bar{w}_{t}, X_{t}^{*}}^{-1}
\end{aligned}
$$

- eliminate $L_{X_{t}^{*} \mid \bar{w}_{t-1}, W_{t-2}}$ using last two equations

$$
\begin{aligned}
\mathrm{B} & \equiv L_{W_{t+1}, w_{t} \mid \bar{w}_{t-1}, W_{t-2}} L_{W_{t+1}, \bar{w}_{t} \mid \bar{w}_{t-1}, W_{t-2}}^{-1} \\
& =L_{W_{t+1} \mid w_{t}, X_{t}^{*}} D_{w_{t} \mid \bar{w}_{t-1}, X_{t}^{*}} D_{\bar{w}_{t} \mid \bar{w}_{t-1}, X_{t}^{*}}^{-1} L_{W_{t+1} \mid \bar{w}_{t}, X_{t}^{*}}^{-1}
\end{aligned}
$$

- eliminate $L_{W_{t+1} \mid \bar{w}_{t}, X_{t}^{*}}^{-1}$

$$
\mathrm{AB}^{-1}=L_{W_{t+1} \mid w_{t}, X_{t}^{*}} D_{w_{t}, \bar{w}_{t}, w_{t-1}, \bar{w}_{t-1}, X_{t}^{*}} L_{W_{t+1} \mid w_{t}, X_{t}^{*}}^{-1}
$$

with diagonal matrix

$$
D_{w_{t}, \bar{w}_{t}, w_{t-1}, \bar{w}_{t-1}, X_{t}^{*}}=D_{w_{t} \mid w_{t-1}, X_{t}^{*}} D_{\bar{w}_{t} \mid w_{t-1}, X_{t}^{*}}^{-1} D_{\bar{w}_{t} \mid \bar{w}_{t-1}, X_{t}^{*}} D_{w_{t} \mid \bar{w}_{t-1}, X_{t}^{*}}^{-1}
$$

Lemma 3: Proof (cont'd)

Eigenvalue-eigenvector decomposition of observed $A B^{-1}$

$$
\mathrm{AB}^{-1}=L_{W_{t+1} \mid w_{t}, X_{t}^{*}} D_{w_{t}, \bar{w}_{t}, w_{t-1}, \bar{w}_{t-1}, X_{t}^{*}} L_{W_{t+1} \mid w_{t}, X_{t}^{*}}^{-1}
$$

- eigenvalues: diagonal entry in $D_{w_{t}, \bar{w}_{t}, w_{t-1}, \bar{w}_{t-1}, X_{t}^{*}}$

$$
\left(D_{w_{t}, \bar{w}_{t}, w_{t-1}, \bar{w}_{t-1}, X_{t}^{*}}\right)_{j, j}=\frac{f_{W_{t} \mid W_{t-1}, X_{t}^{*}}\left(w_{t} \mid w_{t-1}, j\right) f_{W_{t} \mid W_{t-1}, X_{t}^{*}}\left(\bar{w}_{t} \mid \bar{w}_{t-1}, j\right)}{f_{W_{t} \mid W_{t-1}, X_{t}^{*}}\left(\bar{w}_{t} \mid w_{t-1}, j\right) f_{W_{t} \mid W_{t-1}, X_{t}^{*}}\left(w_{t} \mid \bar{w}_{t-1}, j\right)}
$$

Assume: For uniqueness, $\left(D_{w_{t}, \bar{w}_{t}, w_{t-1}, \bar{w}_{t-1}, X_{t}^{*}}\right)_{j, j}$ are finite, distinctive

- eigenvector: column in $L_{W_{t+1} \mid w_{t}, X_{t}^{*}}$, (normalized because sums to 1)

Hence, $L_{W_{t+1} \mid w_{t}, X_{t}^{*}}$ is identified (up to the value of x_{t}^{*}). Any permutation of eigenvectors yields same decomposition.

Lemma 3: Proof (cont'd)

To pin-down the value of x_{t}^{*} : need to "order" eigenvectors

- not necessary in the time-invariant case, $X_{t}^{*}=X_{t-1}^{*}$
- useful in time-varying case: show how agents change types $\mathrm{w} /$ time.
- $f_{W_{t+1} \mid W_{t}, X_{t}^{*}}\left(\cdot \mid w_{t}, x_{t}^{*}\right)$ for any w_{t} is identified up to value of x_{t}^{*}
- To pin-down the value of x_{t}^{*} : Assume there is known functional

$$
h\left(w_{t}, x_{t}^{*}\right) \equiv G\left[f_{W_{t+1} \mid W_{t}, x_{t}^{*}}\left(\cdot \mid w_{t}, \cdot\right)\right] \text { is monotonic in } x_{t}^{*}
$$

Then set $x_{t}^{*}=G\left[f_{W_{t+1} \mid W_{t}, X_{t}^{*}}\left(\cdot \mid w_{t}, \cdot\right)\right]$

- $G[f]$ may be mean, mode, median, other quantile of f.
- Note: in unobserved heterogeneity case $\left(X_{t}^{*}=X^{*}, \forall t\right)$, it is enough to identify $f_{W_{t+1} \mid W_{t}, X_{t}^{*}}$.

Continuous case

- generalize the results in discrete case

discrete X_{t}^{*}	\Rightarrow	continuous X_{t}^{*}
matrix	\Rightarrow	linear operator hare
invertible	\Rightarrow	one-to-one, "injective"
matrix diagonalization	\Rightarrow	spectral decomposition
eigenvector	\Rightarrow	eigenfunction

- $W_{t}=\mathcal{W}_{t} \subseteq \mathbb{R}^{d}, X_{t}^{*} \in \mathcal{X}_{t}^{*} \subseteq \mathbb{R}$, for all t
- Example: Step 1

Assumptions

(1) (i) First-order Markov; (ii) Limited feedback
(2) (Invertibility) There exists variable(s) $V \subseteq W$ st, for any w_{t}, w_{t-1}, the following are one-to-one: (i) $L_{V_{t-2}, w_{t} \mid w_{t-1}, V_{t+1}}$; (ii) $L_{V_{t+1} \mid w_{t}, X_{t}^{*}}$; $L_{V_{t-2}, w_{t-1},}, V_{t}$.
(3) (finite, distinctive eigenvalues) (i) for any w_{t}, w_{t-1}

$$
0<C_{1}\left(w_{t}, w_{t-1}\right) \leq f_{w_{t} \mid w_{t-1}, x_{t}^{*}}\left(w_{t} \mid w_{t-1}, x_{t}^{*}\right) \leq C_{2}\left(w_{t}, w_{t-1}\right)<\infty, \forall x_{t}^{*}
$$

(ii) for any w_{t} and $\bar{x}_{t}^{*} \neq \widetilde{x}_{t}^{*} \in \mathcal{X}_{t}^{*}$ there exists w_{t-1} such that

$$
\frac{\partial^{2} \ln f_{w_{t} \mid w_{t-1}, x_{t}^{*}}\left(w_{t} \mid w_{t-1}, \bar{x}_{t}^{*}\right)}{\partial w_{t} \partial w_{t-1}} \neq \frac{\partial^{2} \ln f_{w_{t} \mid w_{t-1}, x_{t}^{*}}\left(w_{t} \mid w_{t-1}, \widetilde{x}_{t}^{*}\right)}{\partial w_{t} \partial w_{t-1}} .
$$

(9) (normalization) for any $w_{t}, x_{t}^{*}=G\left\{f_{V_{t+1} \mid W_{t}, X_{t}^{*}}\left(\cdot \mid w_{t}, x_{t}^{*}\right)\right\}$

Main results

- Theorem 1: Under assumptions above, the density $f_{W_{t+1}}, W_{t}, W_{t-1}, W_{t-2}, W_{t-3}$ uniquely determines $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$
- Corollary 1: With stationarity, the density $f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}}$ uniquely determines $f_{W_{2}, X_{2}^{*} \mid W_{1}, X_{1}^{*}}$
- We can use existing argument from Magnac-Thesmar, Bajari-Chernozhukov-Hong-Nekipelov to argue identification of utility functions, once $W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}$ known here

Initial conditions

- Corollary 2 (Non-stationary case): Under assumptions above, the density $f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}, W_{t-3}}$ uniquely determines $f_{W_{t-1}, X_{t-1}^{*}}$.
- Corollary 3 (Stationary case): the density $f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}}$ uniquely determines $f_{W_{t-2}, X_{t-2}^{*}}$.

In each case, these identified objects can be used as sampling densities for initial conditions. (Two step estimation methods for dynamic models may require this.)

Discuss assumptions: example from Rust (1987)

Consider particular version of Rust (1987): $W_{t}=\left(Y_{t}, M_{t}\right)$:

- $Y_{t} \in\{0,1\}$ (don't replace, replace)
- M_{t} is mileage
- X_{t}^{*} is trunc. normal process $\mathrm{w} /$ bounded support $[L, U]$:

$$
X_{t}^{*}=0.5 X_{t-1}^{*}+0.3 \psi\left(M_{t-1}\right)+0.2 \nu_{t}
$$

- ν_{t} are i.i.d. truncated normal on $[L, U]$.
- $\psi\left(M_{t-1}\right)=L+(U-L) \frac{\exp \left(M_{t-1}\right)-1}{\exp \left(M_{t-1}\right)+1}$,

Two different specifications:

Specification A	Specification B
$\begin{gathered} u_{t}= \begin{cases}-c\left(M_{t}\right)+X_{t}^{*}+\epsilon_{0 t}, & Y_{t}=0 \\ -R C+\epsilon_{1 t}, & Y_{t}=1 .\end{cases} \\ c(\cdot) \text { bounded away from } 0,+\infty \end{gathered}$	$u_{t}=\left\{\begin{array}{l} -c\left(M_{t}\right)+\epsilon_{0 t} \\ -R C+\epsilon_{1 t} \end{array}\right.$
$M_{t+1}= \begin{cases}M_{t}+\eta_{t+1}, & Y_{t}=0 \\ \eta_{t+1}, & Y_{t}=1\end{cases}$ η_{t} are $N(0,1)$, trunc. to $[0,1]$, i.i.d.	$M_{t+1}=\left\{\begin{array}{l} M_{t}+\exp \left(\eta_{t+1}+X_{t+1}^{*}\right) \\ \exp \left(\eta_{t+1}+X_{t+1}^{*}\right) \end{array}\right.$

- Specifications differ in where X_{t}^{*} enters.
- Discuss each assumption in turn
- Assumption 1 (Markov, LF) satisfied

Assumption 2: invertibility assumptions

Use $V_{t}=M_{t}$ (continuous element of W_{t})

- $L_{M_{t+1}, w_{t} \mid w_{t-1}, M_{t-2}}$: Consider $w_{t} w / y_{t}=1$.
- A: M_{t+1} is trunc. $N(0,1)$, regardless of $\left(w_{t-1}, M_{t-2}\right)$. FAILS
- B: M_{t+1} depends on X_{t+1}^{*}, which is correlated with M_{t-2}.
- $L_{M_{t+1} \mid w_{t}, X_{t}^{*}}$: Again, consider $w_{t} w / y_{t}=1$.
- A: $M_{t+1} \mid w_{t}, X_{t}^{*}$ is trunc. $N(0,1)$. FAILS
- B: $M_{t+1} \mid w_{t}, X_{t}^{*}$ depends on X_{t}^{*}.
- Assumption 2(iii): similar argument to 2(i)
- For Spec B: appendix discusses sufficient conditions
- NB: One-to-one rules out models where W_{t} only has discrete components, but X_{t}^{*} is continuous.
- NB: when M_{t+1} depends just on w_{t}, but not on X_{t+1}^{*}, then cannot use $V_{t}=M_{t}$: "too little feedback".

Assumption 3: Finite, distinct eigenvalues

1. Cdtn for finite eigenvalues: for all $\left(w_{t}, w_{t-1}\right)$, there exist functions $L\left(w_{t}, w_{t-1}\right), U\left(w_{t}, w_{t-1}\right)$ st for all x_{t}^{*} :

$$
0<L\left(w_{t}, w_{t-1}\right) \leq f_{W_{t} \mid w_{t-1}, X_{t}^{*}}\left(w_{t} \mid w_{t-1}, x_{t}^{*}\right) \leq U\left(w_{t}, w_{t-1}\right)<\infty .
$$

- $f_{W_{t} \mid W_{t-1}, X_{t}^{*}}=f_{Y_{t} \mid M_{t}, X_{t}^{*}} \cdot f_{M_{t} \mid X_{t}^{*}, Y_{t-1}, M_{t-1}}$.

Are all terms bounded away from $0,+\infty$?

- $f_{M_{t} \mid X_{t}^{*}, Y_{t-1}, M_{t-1}}$ is truncated $N(0,1)$. OK
- Per-period utilities bounded (except ϵ 's), so CCP's also bounded away from 0
- Boundedness assumptions on M_{t}, period utility functions without much loss of generality. (Usually good for computing models)

Assumption 3: cont'd

2. Cdtn for distinct eigenvalues: for any $x_{t}^{*} \in \mathcal{X}_{t}^{*} \& w_{t} \in \mathcal{W}_{t}$, there exists $w_{t-1} \in \mathcal{W}_{t-1}$ st

$$
\frac{\partial^{2}}{\partial m_{t} \partial m_{t-1}} \ln f_{W_{t} \mid W_{t-1}, X_{t}^{*}}\left(w_{t} \mid w_{t-1}, x_{t}^{*}\right) \quad \text { varies in } x_{t}^{*}
$$

Spec. B: pick w_{t-1} st $y_{t-1}=0$.

$$
m_{t} \mid m_{t-1}, y_{t-1}, X_{t}^{*} \sim \frac{1}{m_{t}-m_{t-1}} \cdot \tilde{\phi}\left(\log \left(\frac{m_{t}-m_{t-1}}{\exp \left(X_{t}^{*}\right)}\right)\right)
$$

where $\tilde{\phi}(\cdot)$ is $\mathrm{N}(0,1)$ density truncated to $[0,1]$.
$\frac{\partial^{2}}{\partial m_{t} \partial m_{t-1}} \ln f=\frac{\partial^{2}}{\partial m_{t} \partial m_{t-1}}\left(\log \left(\frac{m_{t}-m_{t-1}}{\exp \left(X_{t}^{*}\right)}\right)\right)^{2}$. Cdtn holds.
Spec. A: $m_{t} \mid m_{t-1}, y_{t-1}, X_{t}^{*}$ is never function of X_{t}^{*}. Cannot hold.

Assumption 4

Appropriate normalization to pin down unobserved X_{t}^{*}

- For Spec. B, median of $f_{M_{t+1} \mid M_{t}, Y_{t}, X_{t}^{*}}\left(\cdot \mid m_{t}, y_{t}, z\right)$ is

$$
h\left(w_{t}, z\right)=\left(1-y_{t}\right) m_{t}+C_{m e d} \cdot \exp \left(0.3 \psi\left(m_{t}\right)\right) \cdot \exp (0.5 z)
$$

where $C_{\text {med }}=\operatorname{med}\left[\exp \left(\eta_{t+1}+0.2 \nu_{t+1}\right)\right]($ fixed $)$.

- $h\left(w_{t}, z\right)$ is monotonic in z
- So pin down $x_{t}^{*}=m e d\left[f_{M_{t+1} \mid M_{t}, Y_{t}, X_{t}^{*}}\left(\cdot \mid m_{t}, y_{t}, x_{t}^{*}\right)\right]$

Simulation

- exactly follow the identification procedure of nonstationary case
- $\left\{W_{t}, X_{t}^{*}\right\}$ is generated as follows: $u_{1}, u_{2} \sim \operatorname{uniform}(0,1)$

$$
\begin{gathered}
W_{t}= \begin{cases}I\left(u_{1}>0.95\right) & \text { if }\left(X_{t}^{*}, W_{t-1}\right)=(0,0) \\
I\left(u_{1}>0.60\right) & \text { if }\left(X_{t}^{*}, W_{t-1}\right)=(1,0) \\
I\left(u_{1}>0.05\right) & \text { if }\left(X_{t}^{*}, W_{t-1}\right)=(0,1) \\
I\left(u_{1}>0.50\right) & \text { if }\left(X_{t}^{*}, W_{t-1}\right)=(1,1)\end{cases} \\
X_{t}^{*}= \begin{cases}I\left(u_{2}>0.25\right) & \text { if }\left(X_{t-1}^{*}, W_{t-1}\right)=(0,0) \\
I\left(u_{2}>0.75\right) & \text { if }\left(X_{t-1}^{*}, W_{t-1}\right)=(1,0) \\
I\left(u_{2}>0.60\right) & \text { if }\left(X_{t-1}^{*}, W_{t-1}\right)=(0,1) \\
I\left(u_{2}>0.05\right) & \text { if }\left(X_{t-1}^{*}, W_{t-1}\right)=(1,1)\end{cases}
\end{gathered}
$$

- two estimators: using $\left\{W_{t}\right\}$ and using $\left\{W_{t}, X_{t}^{*}\right\}$
- $\mathrm{n}=50000$, reps $=200: \Longrightarrow$ mean (std.err)

Simulation

$\widehat{f}\left(W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}\right)$	using $\left\{W_{t}\right\}$	using $\left\{W_{t}, X_{t}^{*}\right\}$	mean Differ.
$(0,0 \mid 0,0)$	$0.0454(0.0754)$	$0.0475(0.0019)$	-0.0021
$(0,0 \mid 0,1)$	$0.4768(0.0499)$	$0.4752(0.0032)$	0.0016
$(0,0 \mid 1,0)$	$0.1357(0.1354)$	$0.1491(0.0075)$	-0.0134
$(0,0 \mid 1,1)$	$0.0030(0.0092)$	$0.0011(0.0008)$	0.0019
$(0,1 \mid 0,0)$	$0.5543(0.0501)$	$0.5703(0.0046)$	-0.0161
$(0,1 \mid 0,1)$	$0.2985(0.0453)$	$0.3000(0.0030)$	-0.0015
$(0,1 \mid 1,0)$	$0.3008(0.1341)$	$0.3002(0.0100)$	0.0006
$(0,1 \mid 1,1)$	$0.7317(0.0136)$	$0.7465(0.0047)$	-0.0148
$(1,0 \mid 0,0)$	$0.0021(0.0047)$	$0.0025(0.0004)$	-0.0004
$(1,0 \mid 0,1)$	$0.0245(0.0176)$	$0.0250(0.0011)$	-0.0005
$(1,0 \mid 1,0)$	$0.4363(0.0886)$	$0.4504(0.0103)$	-0.0142
$(1,0 \mid 1,1)$	$0.0083(0.0210)$	$0.0033(0.0024)$	0.0050
$(1,1 \mid 0,0)$	$0.3716(0.0212)$	$0.3797(0.0045)$	-0.0081
$(1,1 \mid 0,1)$	$0.1992(0.0189)$	$0.1998(0.0028)$	-0.0006
$(1,1 \mid 1,0)$	$0.1007(0.0453)$	$0.1002(0.0068)$	0.0004
$(1,1 \mid 1,1)$	$0.2441(0.0143)$	$0.2491(0.0040)$	-0.0049

Extensions

(1) Companion work on dynamic games

- X_{t}^{*} is multivariate (X_{t}^{*} includes USV's for each player).
- For example, dynamic capacity investment
$\star Y_{t}=\left(Y_{1 t}, Y_{2 t}\right)$: each firm's capacity investment
$\star M_{t}=\left(M_{1 t}, M_{2 t}\right)$: each firm's total capacity
$\star X_{t}^{*}=\left(X_{1 t}^{*}, X_{2 t}^{*}\right)$: each firm's productivity
- Consider alternatives to LF:

$$
f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}=\underbrace{f_{Y_{t} \mid M_{t}, X_{t}^{*}}}_{\mathrm{CCP}} \cdot \underbrace{f_{X_{t}^{*} \mid M_{t}, M_{t-1}, X_{t-1}^{*}}}_{X \text { transition }} \cdot \underbrace{f_{M_{t} \mid Y_{t-1}, M_{t-1}, X_{t-1}^{*}}}_{M \text { transition }}
$$

- Can apply arguments in Hu-Schennach (2008):

$$
f_{Y_{t}, M_{t}, Y_{t-1} \mid M_{t-1}, Y_{t-2}}=\int f_{Y_{t} \mid M_{t}, M_{t-1}, x_{t-1}^{*}} f_{M_{t}, Y_{t-1} \mid M_{t-1}, X_{t-1}^{*}} f_{x_{t-1}^{*} \mid M_{t-1}, Y_{t-2}} d x_{t-1}^{*}
$$

- Assumption 4 more complicated: monotonicity not enough.
(2) Two-step estimation (as in HM, BBL):
- Estimate CCP, LOM by sieve MLE
- Estimate structural parameters from optimality conditions

Concluding remarks

- Identification of Markov process $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$, where X_{t}^{*} is unobserved state variable
(1) nonstationary: law of motion $f_{W_{t}, X_{t}^{*} \mid W_{t-1}, X_{t-1}^{*}}$ identified from $f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}, W_{t-3}}$ (5 obs.)
(2) stationary: law of motion $f_{W_{2}, X_{2}^{*} \mid W_{1}, X_{1}^{*}}$ identified from $f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}}(4 \mathrm{obs}$.)
- More broadly: apply measurement error econometrics to non-measurement error settings:
- Auction models: (i) unobserved \# bidders; (ii) unobserved heterogeneity
- Price search models, where number of firms not observed (only prices)

Details on limited feedback

(1) Learning model (Crawford-Shum; Ching; Erdem-Keane)

- Y_{t} : choice of drug treatment
- M_{t} : \# times drug has been tried
- X_{t}^{*} : current beliefs ("posterior mean") regarding drug effectiveness
(2) Dynamic stockpiling model (Hendel-Nevo)
- Y_{t} : brand of detergent purchased
- M_{t} : inclusive values from each detergent brand
- X_{t}^{*} : inventory of detergent
- In both these models, evolution of M_{t} depends just on $\left(Y_{t-1}, M_{t-1}\right)$, not on X_{t}^{*} or X_{t-1}^{*}.
- Note: little restriction on evolution of X_{t+1}^{*}, can depend on $X_{t-1}^{*}, Y_{t-1}, M_{t-1}$.

Flowchart

Return

