
Lecture notes: third set 1

Papers to be covered:

• Laffont, Ossard, and Vuong (1995)

• Guerre, Perrigne, and Vuong (2000)

• Haile, Hong, and Shum (2003)

In this lecture, focus on empirical of auction models. Auctions are models of asymmetric
information which have generated the most interest empirically. We begin by summarizing
some relevant theory.

1 Theoretical background

An auction is a game of incomplete information. Assume that there are N players, or
bidders, indexed by i = 1, . . . , N . There are two fundamental random elements in any
auction model.

• Bidders’ private signals X1, . . . , XN . We assume that the signals are scalar random
variables, although there has been recent interest in models where each signal is multi-
dimensional.

• Bidders’ utilities: ui (Xi, X−i), where X−i ≡ {X1, . . . , Xi−1, Xi+1, . . . , XN}, the vec-
tor of signals excluding bidder i’s signal. Since signals are private, Vi ≡ ui(Xi, X−i) is
a random variable from all bidders’ point of view. In what follows, we will also refer
to bidder i’s (random) utility as her valuation.

Differing assumptions on the form of bidders’ utility function lead to the important dis-
tinction between common value and private value models. In the private value case,
Vi = Xi, ∀i: each bidder knows his own valuation, but not that of his rivals.1 In the (pure)
common value case, Vi = V, ∀i, where V is in turn a random variable from all bidders’ point
of view, and bidders’ signals are to be interpreted as their noisy estimates of the true but
known common value V . Therefore, signals will generally not be independent when com-
mon values are involved. More generally a common value model arises when ui(Xi, X−i) is
functionally dependent on X−i.

1More generally, in a private value model, ui(Xi, X−i) is restricted to be a function only of Xi.
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Before proceeding, we give some examples to illustrate the auction formats discussed above.

• Symmetric independent private values (IPV) model: Xi ∼ F , i.i.d. across all bid-
ders i, and Vi = Xi. Therefore, F (X1, . . . , XN ) = F (X1) ∗ F (X2) · · · ∗ F (XN ), and
F (V1, X1, . . . , VN , XN ) =

∏
i [F (Xi)]

2.

• Conditional independent model: signals are independent, conditional on a common
component V . Vi = V,∀i, but F (V,X1, . . . , XN ) = F (V )

∏
i F (Xi|V ).

Models also differ depending on the auction rules. In a first-price auction, the object
is awarded to the highest bidder, at her bid. A second-price auction also awards the
object to the highest bidder, but she pays a price equal to the bid of the second-highest
bidder. (Sometimes second-price auctions are also called “Vickrey” auctions, after the late
Nobel laureate William Vickrey.) In an English or ascending auction, the price the raised
continuously by the auctioneer, and the winner is the last bidder to remain, and he pays an
amount equal to the price at which all of his rivals have dropped out of the auction. In a
Dutch auction, the price is lowered continuously by the auctioneer, and the winner is the
first bidder to agree to pay any price.

There is a large amount of theory and empirical work. In this lecture, we focus on first-
price auction models. We also discuss a few theoretical concepts that will come up in the
empirical papers discussed later.

1.1 Equilibrium bidding

In discussing equilibrium bidding in the different auction models, we will focus on the general
symmetric affiliated model, used in the seminal paper of Milgrom and Weber (1982). The
assumptions made in this model are:

• Vi = ui(Xi, X−i)

• Symmetry: F (V1, X1, . . . , VN , XN ) is symmetric (i.e., exchangeable) in the indices i
so that, for example, F (VN , XN , . . . , V1, X1) = F (V1, X1, . . . , VN , XN ).

• The random variables V1, . . . , VN , X1, . . . , XN are affiliated. Let Z1, . . . , ZM and
Z∗1 , . . . , Z

∗
M denote two realizations of a random vector process, and Z̄ and Z de-

note, respectively, the component-wise maximum and minimum. Then we say that
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Z1, . . . , ZM are affiliated if F (Z̄)F (Z) ≥ F (Z1, . . . , ZM )F (Z∗1 , . . . , Z
∗
M ). In other

words, large values for some of the variables make large values for the other variables
most likely. Affiliation implies useful stochastic orderings on the conditional distri-
butions of bidders’ signals and valuations, which is necessary in deriving monotonic
equilibrium bidding strategies.

Let Yi ≡ maxj 6=iXj , the highest of the signals observed by bidder i’s rivals. Given affiliation,
the conditional expectation E[Vi|Xi, Yi] is increasing in both Xi and Yi.

Winner’s curse Another consequence of affiliation is the winner’s curse, which is just
the fact that

E[Vi|Xi] ≥ E[Vi|Xi > Yi]

where the conditioning event in the second expectation (Xi > Yi) is the event of winning
the auction.

To see this, note that

E[Vi|Xi] = EX−iE [Vi|Xi;X−i] =
∫
· · ·
∫

︸ ︷︷ ︸
N−1

E [Vi|Xi;X−i]F (dX1, . . . , dXN )

≥
∫ Xi

· · ·
∫ Xi

︸ ︷︷ ︸
N−1

E [Vi|Xi;X−i]F (dX1, . . . , dXN )

= E [Vi|Xi > Xj , j 6= i] = E [Vi|Xi > Yi] .

In other words, if bidder i “naively” bids E [Vi|Xi], her expected payoff from a first-price
auction is negative for every Xi. In equilibrium, therefore, rational bidders should “shade
down” their bids by a factor to account for the winner’s curse.

This winner’s curse intuition arises in many non-auction settings also. For example, in
two-sided markets where traders have private signals about unknown fundamental value of
the asset, the ability to consummate a trade is “good news” for sellers, but “bad news” for
buyers, implying that, without ex-ante gains from trade, traders may not be able to settle
on a market-clearing price. The result is the famous “lemons” result by Akerlof (1970), as
well as a version of the “no-trade” theorem in Milgrom and Stokey (1982). Glosten and
Milgrom (1985) apply the same intuition to explain bid-ask spreads in financial markets.
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Next, we cover some specific auction results in some detail, in order to understand method-
ology in the empirical papers.

1.2 First-price auctions

We derive the symmetric monotonic equilibrium bidding strategy b∗(·) for first-price auc-
tions. If bidder i wins the auction, he pays his bid b∗(Xi). His expected profit is

=E [(Vi − b)1 (b∗(Yi) < b) |Xi = x]

=EYiE
[
(Vi − b)1

(
Yi < b∗−1(b)

)
|Xi = x, Yi

]
=EYi

[
(V (x, Yi)− b)1

(
Yi < b∗−1(b)

)
|Xi = x

]
=
∫ b∗−1(b)

−∞
(V (x, Yi)− b)f(Yi|x)dYi.

The first-order conditions are

0 =−
∫ b∗−1(b)

−∞
f(Yi|x)dYi +

1
b∗′(x)

[
(V (x, x)− b) ∗ fYi|Xi(x|x)

]
⇔

0 =− FYi|x(x|x) +
1

b∗′(x)
[
(V (x, x)− b) ∗ fYi|Xi(x|x)

]
⇔

b∗′(x) = (V (x, x)− b∗(x))
[
f(x|x)
F (x|x)

]
⇒

b∗(x) = exp
(
−
∫ x

x

f(s|s)
F (s|s)

ds

)
b(x) +

∫ x

x
V (α, α)dL(α|x)

where

L(α|x) = exp
(
−
∫ x

α

f(s|s)
F (s|s)

)
.

Initial condition: b(x) = V (x, x).

For the IPV case:

V (α, α) = α

F (s|s) = F (s)N−1

f(s|s) = (n− 1)F (s)N−2f(s)
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An example Xi ∼ U [0, 1], i.i.d. across bidders i. Then F (s) = s, f(s) = 1. Then

b∗(x) = 0 +
∫ x

0
α exp

(
−
∫ x

α

(n− 1)f(s)
F (s)

ds

)
(n− 1)f(α)

F (α)
dα

=
∫ x

0
exp

(
−(n− 1)(log

x

α
)
)

(n− 1)dα

=
∫ x

0

(α
x

)N−1
(N − 1)dα

= α

(
N − 1
N

)(α
x

)N]x
0

=
(
N − 1
N

)
x.

1.2.1 Reserve prices

A reserve price just changes the initial condition of the equilibrium bid function. With
reserve price r, initial condition is now b(x∗(r)) = r. Here x∗(r) denotes the screening
value, defined as

x∗(r) ≡ inf {x : E [Vi|Xi = x, Yi < x] ≥ r} . (1)

Conditional expectation in brackets is value of winning to bidder i, who has signal x.
Screening value is lowest signal such that bidder i is willing to pay at least the reserve price
r.

(Note: in PV case, x∗(r) = r. In CV case, with affiliation, generally x∗(r) > r, due to
winners curse.)

Equilibrium bidding strategy is now:

b∗(x)

{
= exp

(
−
∫ x
x∗(r)

f(s|s)
F (s|s)ds

)
r +

∫ x
x∗(r) V (α, α)dL(α|x) for x ≥ x∗(r)

< r for x < x∗(r)

For IPV, uniform example above:

b∗(x) =
(
N − 1
N

)
x+

1
N

( r
x

)N−1
r.

1.3 Second-price auctions

Assume the existence of a monotonic equilibrium bidding strategy b∗(x). Next we derive
the functional form of this equilibrium strategy.
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Given monotonicity, the price that bidder i will pay (if he wins) is b∗(Yi): the bid submitted
by his closest rivals. He only wins when his bid b < b∗(Yi). Therefore, his expected profit
from participating in the auction with a bid b and a signal Xi = x is:

EYi [(Vi − b∗(Yi)) 1 (b∗(Yi) < b) |Xi = x]

=EYi [(Vi − b∗(Yi)) 1 (Yi < Xi) |Xi = x]

=EYi|XiE [(Vi − b∗(Yi)) 1 (Yi < Xi) |Xi = x, Yi]

=EYi|Xi [(E(Vi|Xi, Yi)− b∗(Yi)) 1 (Yi < Xi)]

≡EYi|Xi [(v(Xi, Yi)− b∗(Yi)) 1 (Yi < Xi)]

=
∫ (b∗)−1(b)

−∞
(v(x, Yi)− b∗(Yi)) f (Yi|Xi = x) .

(2)

Bidder i chooses his bid b to maximize his profits. The first-order conditions are (using
Leibniz’ rule):

0 = b∗−1′(b) ∗
[
v(x, b∗−1(b))− b∗(b∗−1(b))

]
∗ f(b∗−1(b)|Xi)⇔

0 =
1

b∗′(b)
[v(x, x)− b∗(x)] ∗ f(b∗−1(b)|Xi)⇔

b∗(x) = v(x, x) = E [Vi|Xi = x, Yi = x] .

In the PV case, the equilibrium bidding strategy simplifies to

b∗(x) = v(x, x) = x.

With reserve price, equilibrium strategy remains the same, except that bidders with signals
less than the screening value x∗(r) (defined in Eq. (1) above) do not bid.

2 Laffont-Ossard-Vuong (1995): “Econometrics of First-Price

Auctions”

• Structural estimation of 1PA model, in IPV context.

• Example of a parametric approach to estimation.

• Goal of empirical work:

– We observe bids b1, . . . , bn, and we want to recover valuations v1, . . . , vn.
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– Why? Analogously to demand estimation, we can evaluate the “market power”
of bidders, as measured by the margin v − p.
Could be interesting to examine: how fast does margin decrease as n (number
of bidders) increases?

– Useful for the optimal design of auctions:

1. What is auction format which would maximize seller revenue?

2. What value for reserve price would maximize seller revenue?

• Another exercise in simulation estimation

���

MODEL

• I bidders

• Information structure is IPV: valuations vi, i = 1, . . . , I are i.i.d. from F (·|zl, θ) where
l indexes auctions, and zl are characteristics of l-th auctions

• θ is parameter vector of interest, and goal of estimation

• p0 denotes “reserve price”: bid is rejected if < p0.

• Dutch auction: strategically identical to first-price sealed bid auction.

Equilibrium bidding strategy is:

bi = e
(
vi, I, p0, F

)
=

 vi −
R vi
p0
F (x)I−1dx

F (vi)I−1 if vi > p0

0 otherwise
(3)

Note: (1) bi(vi = p0) = p0; (2) strictly increasing in vi.

���

Dataset: only observe winning bid bwl for each auction l. Because bidders with lower bids
never have a chance to bid in Dutch auction.

Given monotonicity, the winning bid bw = e
(
v(I), I, p

0, F
)
, where v(I) ≡ maxi vi (the highest

order statistic out of the I valuations).
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Furthermore, the CDF of v(I) is F (·|zl, θ)I , with corresponding density I · F I−1f .

���

Goal is to estimate θ by (roughly speaking) matching the winning bid in each auction l to
its expectation.

Expected winning bid is (for simplicity, drop zl and θ now)

Ev(I)>p
0(bw) =

∫ ∞
p0

e
(
v(I), I, p

0, F
)
I · F (v|θ)I−1f(v|θ)dv

= I

∫ ∞
p0

(
v −

∫ v
p0 F (x)I−1dx

F (v)I−1

)
F (v|θ)I−1f(v|θ)dv

= I

∫ ∞
p0

(
v · F (v)I−1 −

∫ ∞
p0

F (x)I−1dx

)
f(v)dv. (∗).

���

If we were to estimate by simulated nonlinear least squares, we would proceed by finding
θ to minimize the sum-of-squares between the observed winning bids and the predicted
winning bid, given by expression (*) above. Since (*) involves complicated integrals, we
would simulate (*), for each parameter vector θ.

How would this be done:

• Draw valuations vs, s = 1, . . . , S i.i.d. according to f(v|θ). This can be done by
drawint u1, . . . , uS i.i.d. from the U [0, 1] distribution, then transform each draw:

vs = F−1(us|θ).

• For each simulated valuation vs, compute integrand Vs = vsF (vs|θ)I−1−
∫ vs
p0 F (x|θ)I−1dx.

(Second term can also be simulated, but one-dimensional integral is that very hard to
compute.)

• Approximate the expected winning bid as 1
S

∑
s Vs.

However, the authors do not do this— they propose a more elegant solution. In particular,
they simplify the simulation procedure for the expected winning bid by appealing to the
Revenue-Equivalence Theorem: an important result for auctions where bidders’ signals
are independent, and the model is symmetric. (This was first derived explicitly in Myerson
(1981), and this statement is due to Klemperer (1999).)
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Theorem 1 (Revenue Equivalence) Assume each of N risk-neutral bidders has a privately-
known signal X independently drawn from a common distribution F that is strictly increas-
ing and atomless on its support [X, X̄]. Any auction mechanism which is (i) efficient in
awarding the object to the bidder with the highest signal with probability one; and (ii) leaves
any bidder with the lowest signal X with zero surplus yields the same expected revenue for
the seller, and results in a bidder with signal x making the same expected payment.

From a mechanism design point of view, auctions are complicated because they are multiple-
agent problems, in which a given agent’s payoff can depend on the reports of all the agents.
However, in the independent signal case, there is no gain (in terms of stronger incentives) in
making any given agent’s payoff depend on her rivals’ reports, so that a symmetric auction
with independent signal essentially boils down to independent contracts offered to each of
the agents individually.

Furthermore, in any efficient auction, the probability that a given agent with a signal x
wins is the same (and, in fact, equals F (x)N−1). This implies that each bidder’s expected
surplus function (as a function of his signal) is the same, and therefore that the expected
payment schedule is the same.

���

By RET:

• expected revenue in 1PA same as expected revenue in 2PA

• expected revenue in 2PA is Ev(I−1)

• with reserve price, expected revenue in 2PA is Emax(v(I−1), p0). (Note: with IPV
structure, reserve price r screens out same subset of valuations v ≤ r in both 1PA
and 2PA.)

���

Hence, we have that
Eb∗(v(I)) = E

[
max

(
v(I−1), p

0
)]

which is insanely easy to simulate:

For each parameter vector θ, and each auction l

9
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• For each simulation draw s = 1, . . . , S:

– Draw vs1, . . . , v
s
Il

: vector of simulated valuations for auction l (which had Il

participants)

– Sort the draws in ascending order: vs1:Il
< · · · < vsIl:Il

– Set bw,sl = vI−1l:Il (ie. the second-highest valuation)

– If bw,sl < p0
l , set bw,sl = p0

l . (ie. bw,sl = max
(
vsI−1l:Il

, p0
l

)
)

• Approximate E (bwl ; θ) = 1
S

∑
s b
w,s
l .

Estimate θ by simulated nonlinear least squares:

min
θ

1
L

L∑
l=1

(bwl − E (bwl ; θ))2 .

Results.

���

Remarks:

• Problem: bias when number of simulation draws S is fixed (as number of auctions
L → ∞). Propose bias correction estimator, which is consistent and asymptotic
normal under these conditions.

• This clever methodology is useful for independent value models: works for all cases
where revenue equivalence theorem holds.

• Does not work for affiliated value models (including common value models)

���

3 Application: internet used car auctions

• Consider Lewis (2007) paper on used cars sold on eBay (simplified exposition)

• Question: does information revealed by sellers lead to high prices? (Question about
the credibiltiy of information revealed by sellers.)
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• Observe transsactions price in ascending auction. Assume that transaction price is
equal to

v(Xn−1:n, Xn−1:n)

(as in second-price auction).

• Consider pure common value setup with conditionally independent signals. Log-
normality is assumed:

ṽ ≡ log v = µ+ σεv ∼ N(µ, σ2)

xi|ṽ = ṽ + rεi ∼ N(ṽ, r2)

These are, respectively, the prior distribution of valuations, and the conditional dis-
tribution of signals.

• Allow seller information variables z to affect the mean and variance of the prior
distribution:

µ = α′z

σ = κ(β′z).

κ(·) is just a transformation of the index β′z to ensure that the estimate of σ > 0.

• z includes variables such as: number of photos, how much text is on the website.
(Larger z denotes better information.)

• Question: is α > 0?

• Results.

4 Guerre-Perrigne-Vuong (2000): Nonparametric Identifica-

tion and Estimation in IPV First-price Auction Model

The recent emphasis in the empirical literature is on nonparametric identification and esti-
mation of auction models. Motivation is to estimate bidders’ unobserved valuations, while
avoiding parametric assumption (as in the LOV paper).

• Recall first-order condition for equilibrium bid (general affiliated values case):

b′(x) = (v(x, x)− b(x)) ·
fyi|xi(x|x)
Fyi|xi(x|x)

; yi ≡ max
j 6=i

xi. (4)

11
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• In IPV case:

v(x, x) = x

Fyi|xi(x|x) = F (x)n−1

fyi|xi(x|x) =
∂

∂x
F (x)n−1 = (n− 1)F (x)n−2f(x)

so that first-order condition becomes

b′(x) = (x− b(x)) · (n− 1)
F (x)n−2f(x)
F (x)n−1

= (x− b(x)) · (n− 1)
f(x)
F (x)

.

(5)

• Now, note that because equilibrium bidding function b(x) is just a monotone increasing
function of the valuation x, the change of variables formulas yield that (take bi ≡ b(xi))

–
G(bi) = F (xi)

–
g(bi) = f(xi) · 1/b′(xi)

.

Hence, substituting the above into Eq. (5):

1
g(bi)

= (n− 1)
xi − bi
G(bi)

⇔ xi = bi +
G(bi)

(n− 1)g(bi)
.

(6)

Everything on the RHS of the preceding equation is observed: the equilibrium bid
CDF G and density g can be estimated directly from the data nonparametrically.
Assuming a dataset consisting of T n-bidder auctions:

ĝ(b) ≈ 1
T · n

T∑
t=1

n∑
i=1

1
h
K
(
b− bit
h

)

Ĝ(b) ≈ 1
T · n

T∑
t=1

n∑
i=1

1(bit ≤ b).

(7)

The first is a kernel density estimate of bid density. The second is the empirical
distribution function (EDF).
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• In the above, K is a “kernel function”. A kernel function is a function satisfying the
following conditions:

1. It is a probability density function, ie:
∫ +∞
−∞ K(d)du = 1, and K(u) ≥ 0 for all u.

2. It is symmetric around zero: K(u) = K(−u).

3. h is bandwidth: describe below

4. Examples:

(a) K(u) = φ(u) (standard normal density function);

(b) K(u) = 1
21(|u| ≤ 1) (uniform kernel);

(c) K(u) = 3
4(1− u2)1(|u| ≤ 1) (Epanechnikov kernel)

• To get some intuition for the kernel estimate of ĝ(b), consider the histogram

h(b) =
1
Tn

∑
t

∑
i

1(bit ∈ [b− ε, b+ ε])

for some small ε > 0. The histogram at b, h(b) is the frequency with which the
observed bids land within an ε-neighborhood of b.

• In comparison, the kernel estimate of ĝ(b) replaces 1(bit ∈ [b−ε, b+ε]) with 1
hK
(
b−bit
h

)
.

This is:

– always ≥ 0

– takes large values for bit close to b; small values (or zero) for bit far from b

– takes values in R+ (can be much larger than 1)

– h is bandwidth, which blows up 1
hK
(
b−bit
h

)
: when it is smaller, then this quantity

becomes larger.

Think of h as measuring the “neighborhood size” (like ε in the histogram). When
T →∞, then we can make h smaller and smaller.

Bias/variance tradeoff.

– Roughly speaking, then, ĝ(b) is a “smoothed” histogram,

• For Ĝ(b), recall definition of the CDF:

G(b̃) = Pr(b ≤ b̃).

The EDF measures these probabilities by the (within-sample) frequency of the events.
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• Hence, the IPV first-price auction model is nonparametrically identified. For each
observed bid bi, the corresponding valuation xi = b−1(bi) can be recovered as:

x̂i = bi +
Ĝ(bi)

(n− 1)ĝ(bi)
. (8)

Hence, GPV recommend a two-step approach to estimating the valuation distribution f(x):

1. In first step, estimate G(b) and g(b) nonparametrically, using Eqs. (7).

2. In second step, estimate f(x) by using kernel density estimator of recovered valuations:

f̂(x) ≈ 1
T · n

T∑
t=1

n∑
i=1

1
h
K
(
x− x̂it
h

)
. (9)

Athey and Haile (2002) shows many nonparametric identification results for a variety of
auction models (first-price, second-price) under a variety of assumption on the information
structure (symmetry, asymmetry). They focus on situations when only a subset of the bids
submitted in an auction are available to a researcher.

As an example of such a result, we see that identification continues to hold, even when only
the highest-bid in each auction is observed. Specifically, if only bn:n is observed, we can
estimate Gn:n, the CDF of the maximum bid, from the data. Note that the relationship
between the CDF of the maximum bid and the marginal CDF of an equilibrium bid is

Gn:n(b) = G(b)n

implying that G(b) can be recovered from knowledge of Gn:n(b). Once G(b) is recovered,
the corresponding density g(b) can also be recovered, and we could solve Eq. (8) for every
b to obtain the inverse bid function.

���

5 Affiliated values models

Can this methodology be extended to affiliated values models (including common value
models)?

However, Laffont and Vuong (1996) nonidentification result: from observation of bids in
n-bidder auctions, the affiliated private value model (ie. a PV model where valuations are
dependent across bidders) is indistinguishable from a CV model.
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• Intuitively, all you identify from observed bid data is joint density of b1, . . . , bn. In
particular, can recover the correlation structure amongst the bids. But correlation of
bids in an auction could be due to both affiliated PV, or to CV.

5.1 Affiliated private value models

Li, Perrigne, and Vuong (2002) proceed to consider nonparametric identification and esti-
mation of the affiliated private values model. In this model, valuations xi, . . . , xn are drawn
from some joint distribution (and there can be arbitrary correlation amongst them).

First order condition for this model is: for bidder i

b′(xi) = (xi − b(x)) ·
fyi|xi(x|x)
Fyi|xi(x|x)

; yi ≡ max
j 6=i

xi.

where yi ≡ maxj 6=i {x1, . . . , xn}.

Procedure similar to GPV can be used here to recover, for each bid bi, the corresponding
valuation xi = b−1(bi). As before, exploit the following change of variable formulas:

•
Gb∗|b(b|b) = Fy|x(x|x)

•
gb∗|b(b|b) = fy|x(x|x) · 1/b′(x)

where b∗ denotes (for a given bidder), the highest bid submitted by this bidder’s rivals: for
a given bidder i, b∗i = maxj 6=i bj . To prepare what follows, we introduce n subscript (so we
index distributions according to the number of bidders in the auction).

Li, Perrigne, and Vuong (2000) suggest nonparametric estimates of the form

Ĝn(b; b) =
1

Tn × h× n

T∑
t=1

n∑
i=1

K

(
b− bit
h

)
1 (b∗it < b, nt = n)

ĝn(b; b) =
1

Tn × h2 × n

T∑
t=1

n∑
i=1

1(nt = n)K
(
b− bit
h

)
K

(
b− b∗it
h

)
.

(10)

Here h and h are bandwidths and K(·) is a kernel. Ĝn(b; b) and ĝn(b; b) are nonparametric
estimates of

Gn(b; b) ≡ Gn(b|b)gn (b) =
∂

∂b
Pr(B∗it ≤ m,Bit ≤ b)|m=b

15
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and

gn(b; b) ≡ gn(b|b)gn (b) =
∂2

∂m∂b
Pr(B∗it ≤ m,Bit ≤ b)|m=b

respectively, where gn(·) is the marginal density of bids in equilibrium. Because

Gn(b; b)
gn(b; b)

=
Gn(b|b)
gn(b|b) (11)

Ĝn(b;b)
ĝn(b;b) is a consistent estimator of Gn(b|b)

gn(b|b) . Hence, by evaluating Ĝn(·, ·) and ĝn(·, ·) at each
observed bid, we can construct a pseudo-sample of consistent estimates of the realizations
of each xit = b−1(bit) using Eq. (4):

x̂it =
Ĝn(bit; bit)
ĝn(bit; bit)

. (12)

Subsequently, joint distribution of x1, . . . , xn can be recovered as sample joint distribution
of x̂1, . . . , x̂n.

5.2 Common value models: testing between CV and PV

Laffont-Vuong did not consider variation in n, the number of bidders.

In Haile, Hong, and Shum (2003), we explore how variation in n allows us to test for
existence of CV.

Introduce notation:

v(xi, xi, n) = E[Vi|Xi = xi,max
j 6=i

Xj = xi, n].

Recall the winner’s curse: it implies that v(x, x, n) is invariant to n for all x in a PV model
but strictly decreasing in n for all x in a CV model.

Consider the first-order condition in the common value case:

b′(x, n) = (v(x, x, n)− b(x, n)) ·
fyi|xi,n(x|x)
Fyi|xi,n(x|x)

; yi ≡ max
j 6=i

xi.

Hence, the Li, Perrigne, and Vuong (2002) procedure from the previous section can be
used to recover the “pseudovalue” v(xi, xi, n) corresponding to each observed bid bi. Note
that we cannot recover xi = b−1(bi) itself from the first-order condition, but can recover
v(xi, xi, n). (This insight was also articulated in Hendricks, Pinkse, and Porter (2003).)

In Haile, Hong, and Shum (2003), we use this intuition to develop a test for CV:

16
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H0 (PV) : E [v(X,X;n)] = E [v(X,X;n+ 1)] = · · · = E [v(X,X; n̄)]

H1 (CV) : E [v(X,X;n)] > E [v(X,X;n+ 1)] > · · · > E [v(X,X; n̄)]

Problem: bias at boundaries in kernel estimation of pseudo-values. The bid density g(b, b)
is estimated inaccurately for bids close to the boundary of the empirical support of bids.

Solution: use quantile-trimmed means: µn,τ = E[v(X,X;n)1{xτ < X < x1−τ}]

above ⇒ H0 (PV) : µn,τ = µn+1,τ = · · · = µn,τ

H1 (CV) : µn,τ > µn+1,τ > · · · > µn,τ .

Theorem 3 Let µ̂n,τ = 1
n×Tn

∑Tn
t=1

∑n
i=1 v̂it 1{bτ,n ≤ bit ≤ b1−τ,n} and assume [...conditions

for kernel estimation...]. Then
(i) µ̂n,τ

p−→ E[v(X,X, n) 1{xτ < X < x1−τ}];
(ii)
√
Tnh (µ̂n,τ − µn,τ ) d−→ N(0, ωn), where

ωn =
[∫ (∫

K(v)K(u+ v)dv
)2
du
] [

1
n

∫ F−1
b (1−τ)

F−1
b (τ)

Gn(b;b)2

gn(b;b)3 gn(b)2db

]
.

Test statistic Now use standard multivariate one-sided LR test (Bartholomew, 1959) for
normally distributed parameters µ̂n,τ

• an = Tnh
ωn

(inverse variance weights)

• µ =
Pn̄
n=n an µ̂n,τPn̄
n=n an

(MLE under null)

• µ∗n, . . . , µ∗n̄ solves

min
µn,...,µn̄

n̄∑
n=n

an (µ̂n,τ − µn)2 s.t. µn ≥ µn+1 ≥ · · · ≥ µn̄. (13)

17
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• χ̄2 =
∑n̄

n=n an
(
µ∗n,τ − µ̄

)2
– distributed as mixture of χ2

k rv’s, k = 0, 1, . . . , n− n

– mixing weights: PrH0 {soln to (13) has exactly k slack constraints}

(obtain by simulation)

• estimate ωn using asymptotic formula or with bootstrap

5.3 Endogenous participation

The validity of this test relies crucially on the assumption that variation in n, the number
of bidders, across auction is exogenous. Next, we consider how this can be relaxed.

Idea: bidder participation determined by unobservable (to us) factors, denoted W , which
are also correlated with bidder valuations.

Problems:

1. valuations varying with N ( =⇒ second-stage test may be invalid). Extreme case:
if N is decreasing in W , then µN=2 > µN=3, even under PV. “Usual” problem
that endogeneity can confound results.

2. to estimate pseudo-values using the FOC, we must condition on all info (both
N and W , e.g.) bidders do ( =⇒ first stage estimation invalid too!). We must
estimate equilibrium bid distributions g and G conditional on both N and W .

IV approach: assume there is an instrument Z which satisfies

Assumption 1 N = φ(Z,W ), with φ nonconstant in Z and strictly increasing in W .
(Implies W uniquely determined given N and Z, and discrete.)

This assumption is strong, but we will see why we need it.

Assumption 2 Z is independent of (U1, . . . , Un, X1, . . . , Xn,W ) .

Assumption 3 The support of N |Z consists of a set of contiguous integers.

With these assumptions, it turns out there is no loss in generality from taking φ(· · · ) to be
additive, and equal to:

φ(Zt,Wt) = int[E(N |Zt)] +Wt.

18
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Hence, the unobserved factor in auction t, is essentially “observed” after we run a first-stage
nonparametric regression of Nt on Zt:

Ŵt = Ni − ̂int[E(N |Zt)].

This suggests that we can adapt the test in the following way:

1. Estimate bid distributions G(b, b|n,w) and g(b, b|n,w) conditional on both n and w.

2. For bid bit in auction t, we can recover the corresponding pseudovalue as:

v̂(xi, xi|nt, wt) = bit +
Ĝ(bit, bit|nt, wt)
ĝ(bit, bit|nt, wt)

.

3. Now the winner’s curse implies that under PV, the conditional expectation Exv(x, x|n,w)
conditional on (n,w) is invariant in n, for all w. However, under CV, it is decreasing
in n, for all w.
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