
Lecture notes: second set 1

In these lecture notes we consider specification and estimation of dynamic optimiza-

tion model. Focus on single-agent models.

1 Rust (1987)

Rust (1987) is one of the first papers in this literature. Model is quite simple, but

empirical framework introduced in this paper for dynamic discrete-choice (DDC)

models is still widely applied.

Agent is Harold Zurcher, manager of bus depot in Madison, Wisconsin. Each week,

HZ must decide whether to replace the bus engine, or keep it running for another week.

This engine replacement problem is an example of an optimal stopping problem, which

features the usual tradeoff: (i) there are large fixed costs associated with “stopping”

(replacing the engine), but new engine has lower associated future maintenance costs;

(ii) by not replacing the engine, you avoid the fixed replacement costs, but suffer

higher future maintenance costs. Optimal solution is characterized by a threshold-

type of rule: there is a “critical” cutoff mileage level x∗ below which no replacement

takes place, but above which replacement will take place.

(Another well-known example of optimal stopping problem in economics is job search

model: each period, unemployed worker decides whether to accept a job offer, or

continue searching. Optimal policy is characterized by “reservation wage”: accept all

job offers with wage above a certain threshold.)

1.1 Behavioral Model

At the end of each week t, HZ decides whether or not to replace engine. Control

variable defined as:

it =

{

1 if HZ replaces

0 otherwise.

For simplicity. we describe the case where there is only one bus (in the paper, buses

are treated as independent entities).

HZ chooses the (infinite) sequence {i1, i2, i3, . . . , it, it+1, . . . } to maximize discounted
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expected utility stream:

max
{i1,i2,i3,... ,it,it+1,...}

E

∞∑

t=1

βt−1u (xt, εt, it; θ) (1)

where

• xt is the mileage of the bus at the end of week t. Assume that evolution of

mileage is stochastic (from HZ’s point of view) and follows

xt+1

{

∼ G(x′|xt) if it = 0 (don’t replace engine in period t)

= 0 if it = 1: once replaced, bus is good as new
(2)

and G(x′|x) is the conditional probability distribution of next period’s mileage

x′ given that current mileage is x. HZ knows G; econometrician knows the form

of G, up to a vector of parameters which are estimated.

• εt denotes shocks in period t, which affect HZ’s choice of whether to replace the

engine. These are the “structural errors” of the model (they are observed by

HZ, but not by us), and we will discuss them in more detail below.

• Since mileage evolves randomly, this implies that even given a sequence of

replacement choices {i1, i2, i3, . . . , it, it+1, . . . }, the corresponding sequence of

mileages {x1, x2, x3, . . . , xt, xt+1, . . . } is still random. The expection in Eq. (1)

is over this stochastic sequence of mileages and over the shocks {ε1, ε2, . . . }.

• The state variables of this problem are:

1. xt: the mileage. Both HZ and the econometrician observe this, so we call

this the “observed state variable”

2. εt: the utility shocks. Econometrician does not observe this, so we call it

the “unobserved state variable”

Define value function:

V (xt, εt) = max
iτ , τ=t+1,t+2,...

Et

[
∞∑

τ=t+1

βτ−tu (xt, εt, it; θ) |xt

]
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where maximum is over all possible sequences of {it+1, it+2, . . . }. Note that we have

imposed stationarity, so that the value function V (·) is a function of t only indirectly,

through the value that the state variable x takes during period t.

(An important distinction between empirical papers with dynamic optimization mod-

els is whether agents have infinite-horizon, or finite-horizon. Stationarity (or time ho-

mogeneity) is assumed for infinite-horizon problems, and they are solved using value

function iteration. Finite-horizon problems are non-stationary, and solved by back-

ward induction starting from the final period. Most structural dynamic models used

in labor economics are finite-horizon.)

Using the Bellman equation, we can break down the DO problem into an (infinite)

sequence of single-period decisions:

it = i∗(xt, εt; θ) = argmaxi

{
u(xt, εt, i; θ) + βEx′,ε′|xt,εt,itV (x′, ε′)

}

where the value function is

V (x, ε) = max
i=1,0

{
u(x, ε, i; θ) + βEx′,ε′|xt,εt,itV (x′, ε′)

}

= max
{
u(x, ε, 0; θ) + βEx′,ε′|xt,εt,itV (x′, ε′), u(x, ε, 1; θ) + βV (0).

}

= max
{

Ṽ (xt, εt, 1), Ṽ (xt, εt, 0)
}

.

(3)

In the above, we define the choice-specific value function

Ṽ (xt, εt, it) =

{

u(x, ε, 1; θ) + βV (0) if it = 1

u(x, ε, 0; θ) + βEx′,ε′|xt,εt,itV (x′, ε′) if it = 0.

We make the following parametric assumptions on utility flow:

u(x, ε, i; θ) = −c ((1 − i) ∗ x; θ) − i ∗RC + εi

where

• c(· · · ) is the maintenance cost function, which is presumably increasing in x

(higher x means higher costs)

• RC denotes the “lumpy” fixed costs of adjustment. The presence of these costs

implies that HZ won’t want to replace the engine every period.
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• εi, i = 0, 1 are structural errors, which represents factors which affect HZ’s

replacement choice it in period t, but are unobserved by the econometrician.

As Rust remarks (bottom, pg. 1008), you need this in order to generate a

positive likelihood for your observed data. Without these ε’s, we observed as

much as HZ does, and model will not be able to explain situations where (say)

mileage was 20,000, but in one case HZ replaces, and in second case HZ doesn’t

replace.

As remarked earlier, these assumption imply a very simple type of optimal decision

rule i∗(x, ε; θ): in any period t, you replace when xt ≥ x∗(εt), where x∗(εt) is some

optimal cutoff mileage level, which depends on the value of the shocks εt.

Parameters to be estimated are:

1. parameters of maintenance cost function c(· · · );

2. replacement cost RC;

3. parameters of mileage transition function G(x′|x).

Note: in these models, the discount factor β is typically not estimated. Essentially,

the time series data on {it, xt} could be equally well explained by a myopic model,

which posits that

it = argmaxi∈{0,1} {u(xt, εt, 0), u(xt, εt, 1)} ,

or a forward-looking model, which posits that

it = argmaxi∈{0,1}

{

Ṽ (xt, εt, 0), Ṽ (xt, εt, 1)
}

.

In both models, the choice it depends just on the current state variables xt, εt. Indeed,

Magnac and Thesmar (2002) shows that in general, DDC models are nonparametri-

cally underidentified, without knowledge of β or G(ε), the distribution of the ε shocks.

Intuitively, in this model, it is difficult to identify β apart from fixed costs. In this

model, if HZ were myopic (ie. β close to zero) and replacement costs RC were low, his
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decisions may look similar as when he were forward-looking (ie. β close to 1) and RC

were large. Reduced-form tests for forward-looking behavior exploit scenarios in which

some variables which affect future utility are known in period t: consumers are deemed

forward-looking if their period t decisions depends on these variables. (Example:

Chevalier and Goolsbee (2005) examine whether students’ choices of purchasing a

textbook now depend on the possibility that a new edition will be released soon.)

1.2 Econometric Model

Data: observe {it, xt} , t = 1, . . . , T for 62 buses. Treat buses as homogeneous and

independent (ie. replacement decision on bus i is not affected by replacement decision

on bus j).

Rust makes the following conditional independence assumption, on the Markovian

transition probabilities in the Bellman equation above:

p(x′, ε′|x, ε, i) = p(ε′|x′) · p(x′|x, i). (4)

Namely, two types of conditional independence: (i) given x, ε’s are independent over

time; and (ii) conditional on x and i, x′ is independent of ε.

Likelihood function for a single bus:

l (x1, . . . , xT , it, . . . , iT |x0, i0; θ)

=

T∏

t=1

Prob (it, xt|x0, i0, . . . , xt−1, it−1; θ)

=
T∏

t=1

Prob (it, xt|xt−1, it−1; θ)

=

T∏

t=1

Prob (it|xt; θ) × Prob (xt|xt−1, it−1; θ3) .

(5)

The third line arises from the Markovian feature of the problem, and the last equality

arises due to the conditional independence assumption.

Given the factorization of the likelihood function above, we can estimate in two steps:

1. Estimate θ3, the parameters of the Markov transition probabilities for mileage,
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conditional on non-replacement of engine (i.e., it = 0). (Recall that xt+1 = 0 wp1 if

it = 1.)

We assume a discrete distribution for ∆xt ≡ xt+1 − xt, the incremental mileage

between any two periods:

∆xt =







[0, 5000) w/prob p

[5000, 10000) w/prob q

[10000,∞) w/prob 1 − p− q

so that θ3 ≡ {p, q}, with 0 < p, q < 1 and p + q < 1.

This first step can be executed separately from the more substantial second step.

2. Estimate θ, parameters of maintenance cost function c(· · · ) and engine replacement

costs.

Here, we make a further assumption that the ε’s are distributed i.i.d. (across choices

and periods), according to the Type I extreme value distribution.

Expand the expression for Prob(it = 1|xt; θ) equals

Prob
{
−c(0; θ) −RC + ε1t + βV (0) > −c(xt; θ) + ε0t + βEx′,ε′|xt,εt,it=0V (x′, ε′)

}

=Prob
{
ε1t − ε0t > c(0; θ) − c(xt; θ) + β

[
Ex′,ε′|xt,εt,it=0V (x, ε) − V (0)

]
+RC

}

Next, we make a further assumption that the ε’s are distributed i.i.d. (across choices

and periods), according to the Type I extreme value distribution. Then the replace-

ment probability simplifies further to a multinomial logit-like expression:

=
exp (−c(0; θ) −RC + βV (0))

exp (−c(0; θ) − RC + βV (0)) + exp
(
−c(xt; θ) + βEx′,ε′|xt,εt,it=0V (x′, ε′)

)

where the last line follows if we assume that ε1t and ε0t are independent, and each is

distributed iid TIEV, also independently over time. This is called a “dynamic logit”

model, in the literature.

We use the notation u(x, i; θ) and Ṽ (x, i) to denote, respectively, the per-period utility

function, and choice-specific value function, minus the additive ε error. Then the

choice probability takes the form

Prob (it|xt; θ) =
exp

(
u(xt, it, θ) + βEx′,ε′|xt,εt,itV (x′, ε′)

)

∑

i=0,1 exp
(
u(xt, i, θ) + βEx′,ε′|xt,εt,iV (x′, ε′)

) . (6)
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1.2.1 Estimation method for second step: Nested fixed-point algorithm

The second-step of the estimation procedures is via a “nested fixed point algorithm”.

Outer loop: search over different parameter values θ̂.

Inner loop: For θ̂, we need to compute the value function V (x; θ̂). After V (x, ε; θ̂)

is obtained, we can compute the LL fxn in Eq. (6).

1.2.2 Computational details for inner loop

Compute value function V (x; θ̂) by iterating over Bellman’s equation (3).

A clever and computationally convenient feature in Rust’s paper is that he iterates

over the expected value function EV (x, i) ≡ Ex′,ε′|x,iV (x′, ε′; θ). The reason for this is

that you avoid having to calculate the value function at values of ε0 and ε1, which are

additional state variables. He iterates over the following equation (which is Eq. 4.14

in his paper):

EV (x, i) =

∫

y

log







∑

j∈C(y)

exp [u(y, j; θ) + βEV (y, j)]






p(dy|x, i) (7)

Somewhat awkward notation: here “EV” denotes a function. Here x, i denotes the

previous period’s mileage and replacement choice, and y, j denote the current period’s

mileage and choice (as will be clear below).

This equation can be derived from Bellman’s equation (3):

V (y, ε; θ) = max
j∈0,1

[u(y, j; θ) + ε + βEV (y, j)]

⇒ Ey,ε [V (y, ε; θ) | x, i] ≡ EV (x, i; θ) =Ey,ε|x,i

{

max
j∈0,1

[u(y, j; θ) + ε + βEV (y, j)]

}

=Ey|x,iEε|y,x,i

{

max
j∈0,1

[u(y, j; θ) + ε + βEV (y, j)]

}

=Ey|x,i log

{
∑

j=0,1

[u(y, j; θ) + βEV (y, j)]

}

=

∫

y

log

{
∑

j=0,1

[u(y, j; θ) + βEV (y, j)]

}

p(dy|x, i).
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The next-to-last equality uses the closed-form expression for the expectation of the

maximum, for extreme-value variates.

Once the EV (x, i; θ) function is computed for θ, the choice probabilities p(it|xt) can

be constructed as
exp (u(xt, it; θ) + βEV (xt, it; θ))

∑

i=0,1 exp (u(xt, i; θ) + βEV (xt, i; θ))
.

The value iteration procedure: The expected value function EV (· · · ; θ) will

be computed for each value of the parameters θ. The computational procedure is

iterative.

Let τ index the iterations. Let EV τ (x, i) denote the expected value function during

the τ -th iteration. (We suppress the functional dependence of EV on θ for conve-

nience.) Let the values of the state variable x be discretized into a grid of points,

which we denote ~r.

• τ = 0: Start from an initial guess of the expected value function EV (x, i).

Common way is to start with EV (x, i) = 0, for all x ∈ ~r, and i = 0, 1.

• τ = 1: Use Eq. (7) and EV 0(x; θ) to calculate, at each x ∈ ~r, and i ∈ {0, 1}.

V 1(x, i) =

∫

y

log







∑

j∈C(y)

exp
[
u(y, j; θ) + βEV 0(y, j)

]






p(dy|x, i)

=p ·

∫ x+5000

x

log







∑

j∈C(y)

exp
[
u(y, j; θ) + βEV 0(y, j)

]






dy +

q ·

∫ x+10000

x+5000

log {· · · } dy + (1 − p− q) ·

∫ ∞

x+10000

log {· · · } dy.

Now check: is EV 1(x, i) close to EV 0(x, i)? One way is to check whether

supx,i|EV
1(x, i) − EV 0(x, i)| < η

where η is some very small number (eg. 0.0001). If so, then you are done. If

not, then
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– Interpolate to get V 1(·, i) at all points x 6∈ ~r.

– Go to next iteration τ = 2.

2 Hotz-Miller approach: avoid numeric dynamic program-

ming

• One problem with Rust approach to estimating dynamic discrete-choice model

very computer intensive. Requires using numeric dynamic programming to

compute the value function(s) for every parameter vector θ.

• Alternative method of estimation, which avoids explicit DP. Present main ideas

and motivation using a simplified version of Hotz and Miller (1993), Hotz, Miller,

Sanders, and Smith (1994).

• For simplicity, think about Harold Zurcher model.

• What do we observe in data from DDC framework? For agent i, time t, observe:

– {x̃it, dit}: observed state variables x̃it and discrete decision (control) vari-

able dit. For simplicity, assume dit is binary, ∈ {0, 1}

Let i = 1, . . . , N index the buses, t = 1, . . . , T index the time periods.

– For Harold Zurcher model: x̃it is mileage on bus i in period t, and dit is

whether or not engine of bus i was replaced in period t.

– Given renewal assumptions (that engine, once repaired, is good as new),

define transformed state variable xit: mileage since last engine change.

– Unobserved state variables: εit, i.i.d. over i and t. Assume that distribution

is known (Type 1 Extreme Value in Rust model)

• In the following, let quantities with hats ’̂s denote objects obtained just from

data.

Objects with tildes ’̃s denote “predicted” quantities, obtained from both data

and calculated from model given parameter values θ.

• From this data alone, we can estimate (or “identify”):
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– Transition probabilities of observed state and control variables: G(x′|x, d)1,

estimated by conditional empirical distribution

Ĝ(x′|x, d) ≡

{ ∑N

i=1

∑T−1
t=1

1
P

i

P

t 1(xit=x,dit=0)
· 1 (xi,t+1 ≤ x′, xit = x, dit = 0) , if d = 0

∑N
i=1

∑T−1
t=1

1
P

i

P

t 1(dit=1)
· 1 (xi,t+1 ≤ x′, dit = 1) , if d = 1.

– Choice probabilities, conditional on state variable: Prob (d = 1|x)2, esti-

mated by

P̂ (d = 1|x) ≡
N∑

i=1

T−1∑

t=1

1
∑

i

∑

t 1 (xit = x)
· 1 (dit = 1, xit = x) .

Since Prob (d = 0|x) = 1−Prob (d = 1|x), we have P̂ (d = 0|x) = 1−P̂ (d =

1|x).

• With estimates of Ĝ(·|·) and p̂(·|·), as well as a parameter vector θ, you can

“estimate” the choice-specific value functions by constructing the sum

Ṽ (x, d = 1; θ) =u(x, d = 1; θ) + βEx′|x,d=1Ed′|x′Eε′|d′,x′ [u(x′, d′; θ) + ε′

+βEx′′|x′,d′Ed′′|x′′Eε′|d′′,x′′ [u(x′′, d′′; θ) + ε′′ + β · · ·]
]

Ṽ (x, d = 0; θ) =u(x, d = 0; θ) + βEx′|x,d=0Ed′|x′Eε′|d′,x′ [u(x′, d′; θ) + ε′

+βEx′′|x′,d′Ed′′|x′′Eε′|d′′,x′′ [u(x′′, d′′; θ) + ε′′ + β · · ·]
]
.

Here u(x, d; θ) denotes the per-period utility of taking choice d at state x, without

the additive logit error. Note that the observation of d′|x′ is crucial to being

able to forward-simulate the choice-specific value functions. Otherwise, d′|x′ is

multinomial with probabilities given by Eq. (8) below, and is impossible to

calculate without knowledge of the choice-specific value functions.

• In practice, “truncate” the infinite sum at some period T :

Ṽ (x, d = 1; θ) =u(x, d = 1; θ) + βEx′|x,d=1Ed′|x′Eε′′|d′,x′ [u(x′, d′; θ) + ε′

+ βEx′′|x′,d′′Ed′′|x′′Eε′|d′′,x′′ [u(x′′, d′′; θ) + ε′′ + · · ·

βExT |xT−1,dT−1EdT |xTEεT |dT ,xT

[
u(xT , dT ; θ) + εT

]]]

1By stationarity, note we do not index the G function explicitly with time t.
2By stationarity, note we do not index this probability explicitly with time t.
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Also, the expectation Eε|d,x denotes the expectation of the ε conditional on

choice d being taken, and current mileage x. For the logit case, there is a closed

form:

E[ε|d, x] = γ − log(Pr(d|x))

where γ is Euler’s constant (0.577...) and Pr(d|x) is the choice probability of

action d at state x.

Both of the other expectations in the above expressions are observed directly

from the data.

• Both choice-specific value functions can be simulated by (for d = 1, 2):

Ṽ (x, d; θ) ≈ =
1

S

∑

s

[

u(x, d; θ) + γ − log(P̂ (d|x)) + β
[

u(x′
s
, d′

s
; θ) + γ − log(P̂ (d′

s
|x′

s
))

+β
[

u(x′′
s
, d′′

s
; θ) + γ − log(P̂ (d′′

s
|x′′

s
)) + β · · ·

]]]

where

– x′s ∼ Ĝ(·|x, d)

– d′
s ∼ p̂(·|x′s), x′′s ∼ Ĝ(·|x′s, d′s)

– &etc.

In short, you simulate Ṽ (x, d; θ) by drawing S “sequences” of (dt, xt) with a

initial value of (d, x), and computing the present-discounted utility correspond

to each sequence. Then the simulation estimate of Ṽ (x, d; θ) is obtained as the

sample average.

• Given an estimate of Ṽ (·, d; θ), you can get the predicted choice probabilities:

p̃(d = 1|x; θ) ≡
exp

(

Ṽ (x, d = 1; θ)
)

exp
(

Ṽ (x, d = 1; θ)
)

+ exp
(

Ṽ (x, d = 0; θ)
) (8)

and analogously for p̃(d = 0|x; θ). Note that the predicted choice probabilities

are different from p̂(d|x), which are the actual choice probabilities computed

from the actual data. The predicted choice probabilities depend on the param-

eters θ, whereas p̂(d|x) depend solely on the data.
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• One way to estimate θ is to minimize the distance between the predicted con-

ditional choice probabilities, and the actual conditional choice probabilities:

θ̂ = argminθ||p̂(d = 1|x) − p̃ (d = 1|x; θ) ||

where p denotes a vector of probabilities, at various values of x.

• Another way to estimate θ is very similar to the Berry/BLP method. Given

the logit assumption, we can equate the actual conditional choice probabilities

p̂(d|x) to the model’s predicted choice probabilities p̃(d|x; θ) to obtain that

δ̂x ≡ log p̂(d = 1|x) − log p̂(d = 1|x) =
[

V̂ (x, d = 1) − V̂ (x, d = 0)
]

.

An alternative estimator could proceed by doing

θ̄ = argminθ||δ̂x −
[

Ṽ (x, d = 1; θ) − Ṽ (x, d = 0; θ)
]

||.

3 Introduction to structure of dynamic oligopoly models

• Consider a simple two-firm model, and assume that all the dynamics are deter-

ministic.

• Let x1t, x2t, denote the state variables for each firm in each period. Let q1t, q2t

denote the control variables. Example: x’s are capacity levels, and q’s are

incremental changes to capacity in each period.

• Assume (for now) that xit+1 = g (xit, qit), i = 1, 2, so that next period’s state is

a deterministic function of this period’s state and control variable. (Can allow

for cross-effects with no problem.)

• Firm i (=1,2) chooses a sequence qi1, qi2, qi3, . . . to maximize its discounted

profits:

∞∑

t=0

βtΠ (x1t, x2t, q1t, q2t)

where Π(· · · ) denotes single-period profits.
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• Because the two firms are duopolists, and they must make these choices recog-

nizing that their choices can affect their rival’s choices. We want to consider

a dynamic equilibrium of such a model, when (roughly speaking) each firm’s

sequence of q’s is a “best-response” to its rival’s sequence.

• A firm’s strategy in period t, qit, can potentially depend on the whole “history”

of the game (Ht−1 ≡ {x1t′ , x2t′ , q1t′ , q2t′}t′=0,... ,t−1), and well as on the time period

t itself. This becomes quickly intractable, so we usually make some simplifying

regularity conditions:

– Firms employ stationary strategies: so that strategies are not explicitly a

function of time t (i.e. they depend on time only indirectly, through the

history Ht−1). Given stationarity, we will drop the t subscript, and use

primes ′ to denote next-period values.

– A dimension-reducing assumption is usually made: for example, we might

assume that qit depends only on x1t, x2t, which are the “payoff-relevant”

state variables which directly affect firm i’s profits in period i. This is usu-

ally called a “Markov” assumption. With this assumption qit = qi (x1t, x2t),

for all t.

– Furthermore, we usually make a symmetry assumption, that each firm

employs an identical strategy assumption. This implies that q1 (x1t, x2t) =

q2 (x2t, x1t).

• To characterize the equilibrium further, assume we have an equilibrium strategy

function q∗ (·, ·). For each firm i, then, and at each state vector x1, x2, this

optimal policy must satisfy Bellman’s equation, in order for the strategy to

constitute subgame-perfect behavior:

q∗ (x1, x2) = argmaxq {Π (x1, x2, q, q
∗ (x2, x1)) + βV (x′1 = g (x1, q) , x

′
2 = g (x2, q

∗ (x2, x1)))}

(9)

from firm 1’s perspective, and similarly for firm 2. V (·, ·) is the value function,

defined recursively at all possible state vectors x1, x2 via the Bellman equation:

V (x1, x2) = maxq {Π (x1, x2, q, q
∗ (x2, x1)) + βV (x′1 = g (x1, q) , x

′
2 = g (x2, q

∗ (x2, x1)))} .

(10)



Lecture notes: second set 14

• I have described the simplest case; given this structure, it is clear that the

following extensions are straightforward:

– Cross-effects: x′i = g (xi, x−i, qi, q−i)

– Stochastic evolution: x′i|xi, qi is a random variable. In this case, replace

last term of Bellman eq. by E [V (x′1, x
′
2) |x1, x2, q, q2 = q∗ (x2, x1)].

This expectation denotes player 1’s equilibrium beliefs about the evolution

of x1 and x2 (equilibrium in the sense that he assumes that player 2 plays

the equilibrium strategy q∗(x2, x1)).

– > 2 firms

– Firms employ asymmetric strategies, so that q1 (x1, x2) 6= q2 (x2, x1)

– . . .

• Computing the equilibrium strategy q∗(· · · ) consists in iterating over the Bell-

man equation (9). However, the problem is more complicated than the single-

agent case for several reasons:

– The value function itself depends on the optimal strategy function q∗(· · · ),

via the assumption that the rival firm is always using the optimal strategy.

So value iteration procedure is more complicated:

1. Start with initial guess V 0(x1, x2)

2. If q’s are continuous controls, then when strategies are symmetric,

then q0(x1, x2) = q0(x2, x1) ≡ q0, and first-order condition defines the

unknown q0:

0 = Π3

(
x1, x2, q

0, q0
)

+ βV 0
1

(
g
(
x1, q

0
)
, g
(
x2, q

0
))

· g2

(
x1, q

0
)
. (11)

3. If q’s are discrete, taking values ∈ Q, then in the symmetric case:

q0 = argmaxq∈Q

{
Π
(
x1, x2, q, q

0
)

+ βV 0
(
g (x1, q) , g

(
x2, q

0
))}

(12)

4. Symmetry assumption helps a lot: computational problem is essen-

tially the same as single-agent problem (except state space is expanded

to include state variables of both firms).
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When strategies are asymmetric, then for continuous controls, we must

solve for q0
1 ≡ q0(x1, x2) and q0

2 ≡ q0(x2, x1) to satisfy the system of

first-order conditions (here subscripts denotes partial derivatives)

0 = Π3

(
x1, x2, q

0
1, q

0
2

)
+ βV 0

1

(
g
(
x1, q

0
1

)
, g
(
x2, q

0
2

))
· g2

(
x1, q

0
1

)

0 = Π3

(
x2, x1, q

0
2, q

0
1

)
+ βV 0

1

(
g
(
x2, q

0
2

)
, g
(
x1, q

0
1

))
· g2

(
x2, q

0
2

)
.

(13)

For the discrete control case:

q0 = argmaxq∈Q

{
Π
(
x1, x2, q, q

0
2

)
+ βV 0

(
g (x1, q) , g

(
x2, q

0
2

))}

q0
2 = argmaxq∈Q

{
Π
(
x2, x1, q, q

0
1

)
+ βV 0

(
g (x2, q) , g

(
x1, q

0
1

))}
.

(14)

5. Update the next iteration of the value function:

V 1(x1, x2) =
{
Π
(
x1, x2, q

0
1, q

0
2

)
+ βV 0

(
g
(
x1, q

0
1

)
, g
(
x2, q

0
2

))}
. (15)

Note: this and the previous step must be done at all points (x1, x2) in

the discretized grid. As usual, use interpolation or approximation to

obtain V 1(· · · ) at points not on the grid.

6. Stop when supx1,x2||V
i+1(x1, x2) − V i(x1, x2)|| ≤ ε.

– In principle, one could estimate a dynamic games model, given time series

of {xt, qt} for both firms, by using a nested fixed-point estimation algo-

rithm. In the outer loop, loop over different values of the parameters θ,

and then in the inner loop, you compute the equilibrium of the dynamic

game (in the way described above) for each value of θ.

– However, there is an inherent “Curse of dimensionality” with dynamic

games, because the dimensionality of the state vector (x1, x2) is equal to

the number of firms. (For instance, if you want to discretize 1000 pts in one

dimension, you have to discretize at 1,000,000 pts to maintain the same

fineness in two dimensions!)

Some papers provide computational methods to circumvent this problem

(Keane and Wolpin (1994), Pakes and McGuire (2001), Imai, Jain, and

Ching (2005)). Generally, these papers advocate only computing the value

function at a (small) subset of the state points each iteration, and then

approximating the value function at the rest of the state points using values

calculated during previous iterations.
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• Clearly, it is possible to extend the Hotz-Miller insights to facilitate estimation of

dynamic oligopoly models, in the case where q is a discrete control. Advantage,

as before, is that you can avoid numerically solving for the value function.

Data directly tell you: the choice probabilities (distribution of q|x1, x2); state

transitions: (joint distribution of x′1x
′
2|x1, x2, q2, q2). This will be a topic in Han

Hong’s lectures.

���

EXTRA TOPIC

4 An example of dynamic oligopoly: automobile market with

secondary markets

We go over Esteban and Shum (2004).

In durable goods industries (like car market), secondary markets leads to intertem-

poral linkages between primary adn secondary markets. Used goods of today were

new goods of yesterday.

Interesting economic question: Does this harm or benefit producers?

• Intuition different from static markets:

Benchmark in DG setting is Coase outcome (firm’s inability to commit to low

levels of production can erode market power)

• Vs. this benchmark, 2-mkts can benefit producers:

1. 2-mkt offers substitutes for firms’ new production ⇒ curtails Coasian ten-

dency to overproduce (“commitment benefit”)

2. With heterogeneous consumers, 2-mkts segment market, allow firms to

target new goods to high-valuation consumers (“sorting benefit”)

���
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Economic Model: Car market

Multiproduct firms producing cars which differ in quality, durability and depreciation

schedule.

Empirical model accommodates cost/demand shocks; for simplicity, describe deter-

ministic model.

• Firms j = 1, . . . , N . (e.g. Ford, GM, Honda)

• L is total number of brands/models (e.g. Taurus, Accord, Escort).

• Firm j produces Lj models; set of products denoted Lj.

• Model i lasts Ti periods. There are K ≡
∑L

i=1 Ti “model-years” actively traded

during any given period.

• Each model year differs in one-dimensional quality ⇒ quality ladder

[α1, α2, . . . , αK, αK+1 = 0]

where αK+1 is quality of outside option.

• Notation: depreciation schedules for different models

– Define: η(i) is ranking of model i when new.

– Define: v(η(i)) is ranking of 1-yr old; v2(η(i)) ≡ v (v(η(i)) is ranking of

2-yr old, etc.

⇒ Depreciation schedule of model i described by sequence

{
η (i) , υ (η (i)) , ... , υTi−1 (η (i))

}
.

Note: each model has its own depreciation schedule.

– Note that firms are asymmetric. Hence equilibrium is characterized by set

of L Bellman equations (as will be derived below).

���

Economic model: Dynamic demand

Derive from individual-level optimizing behavior.
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• A continuum of infinitely-lived consumers who differ in their preference for

quality θ (one dimension)

• Quasilinear per-period utility: Ut = θαk + m − pk
t , where m is total income.

Assume no liquidity constraints.

• Choice set: model-years k = 1, . . . , K, plus outside option (utility normalized

=0)

• Consumers incur no transactions costs: abstract away from timing issues.

Implies simple form of dynamic decision rule: in period t, consumer θ chooses

model-year k yielding maximal “rental utility”:

kt = argmaxk

{

0, αkθ − pk
t + δEtp

v(k)
t+1 , k = 1, . . . , K

}

where δ is discount factor and expected rental price is pk
t − δEtp

v(k)
t+1 .

(Drop Et for convenience: assume perfect foresight, so Etpt+1 = pt+1.)

���

Demand functions

• Given prices pk
t , p

υ(k)
t+1 for all k = 1, . . . , K, each period there are K indifferent

consumers θ̄ ≥ θ̃1
t ≥ θ̃2

t ≥ θ̃3
t ≥ . . . ≥ θ̃K

t ≥ 0, s.t.

θ1

X1
X4 X3 X 2

θ4
θ3 θ2

0 θ

Outside
_

~~ ~ ~

• The indifferent consumers solve

αkθ̃
k
t − pk

t + δp
υ(k)
t+1 = αk+1θ̃

k
t − pk+1

t + δp
υ(k+1)
t+1 , for k = 1, . . . , K − 1

• Consumer heterogeneity: θ is uniformly distributed.
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• Derive inverse demand function (subject to non-negativity constraints)

pk
t = (αk − αk+1) θ̄

(

1 −
1

M

k∑

r=1

xr
t

)

+ δp
υ(k)
t+1 + pk+1

t − δp
υ(k+1)
t+1

���

Supply side

• yt = [1, x1
t , . . . , x

K
t ]′: vector of all cars transacted in period t.

• dt ≡
[

x
η(1)
t , x

η(2)
t , . . . , x

η(L)
t

]′

: vector of all cars produced in period t.

• Define matrices A and B, to get law of motion for yt:

yt = Ayt−1 +Bdt.

• Marginal costs constant; no (dis-)economies of scope: Cjt =
∑

i∈L ci · x
η(i)
t .

• Period t profits for car i is

Πi
t

(
yt,yt+1, . . . ,yt+Ti−1

)
=
(
pi

t(yt,yt+1, . . . ,yt+Ti−1) − cit
)
· q1

t :

depends on past, current, future prod’n of car i.

Important: dependence of current profits on future actions leads to a time-

consistency problem, which is absent from “usual” dynamic problems. Very

roughly, time-inconsistency implies that an agent’s optimal action in period t

differs depending on whether the agent is deciding in period t, or period t− 1,

or period t− 2, etc.

Think of durable goods monopoly: in period 1, his optimal period 2 price is the

monopoly price (because that would raise his profits in period 1). But when

period 2 comes, his optimal period 2 price is actually a lower price (since he

wants to sell to people who did not buy in period 1).

• For individual firm: ∀t, ∀j ∈ N , ∀i ∈ Lj, period-t production x
η(i)
t maximizes

(∗) max
x

η(i)
t ,∀i∈Lj

∞∑

τ=0

∑

i∈Lj

δτ
[
Πi

t+τ

(
yt+τ ,yt+τ+1, . . . ,yt+τ+Ti−1

)]

︸ ︷︷ ︸

period t + τ profits

, s.t.
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yt+τ = Ayt+τ−1 +Bdt+τ , for τ = 1, . . . ,∞.

• Note: obj fxn different in each period t: usual problem is

max
n

x
η(i)
t , i∈Lj

o

∞

t=0

∞∑

t=0

∑

i∈Lj

δtΠi
t

(
yt,yt+1, . . . ,yt+Ti−1

)
.

FOC for x
η(i)
t contains derivative (say)

∂Πi
t−1

∂x
η(i)
t

: in choosing period-t prodn, rec-

ognize that it affects period-(t+ 1) profits ⇒ time-inconsistent.

���

Time-consistent Equilibrium production

• Restrict attention to Markov strategies: Ayt−1 is the “payoff-relevant state

vector” for period t (stocks of cars produced prior to period t which are still

actively traded in period t) =⇒

Therefore consider production rules x
η(i)
t = gi(Ayt−1), ∀i ∈ Lj, ∀j ∈ N .

• In Markov-perfect equilibrium, g1(.), . . . , gL(.) satisfy Bellman equation

Vj(Ayt−1) = max
x

η(i)
t , i∈Lj

∑

i∈Lj

Πj(yt,yt+1, . . . ,yt+Ti−1) + δVj(Ayt)

for all firms j, and the Markov decision rules

xi
t = gi(Ayt−1), for all i ∈ Lj.

Value function Vj(Ayt−1)=(*) (optimal profits from t onwards).

���

Linear Quadratic (LQ) Specification

• We focus on linear equilibrium decision rule xt+h = GAyt+h−1

No “trigger” strategies (step functions)

• ⇒ Quadratic value function V (Ayt−1) = y′tA
′SAyt.
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• Bellman equation can be rewritten in matrix notation

y′t−1A
′SAyt−1 =

max
xi

t, i∈J

{
∑

i∈J

[
Ti−1∑

z=0

y′t+zδ
zRυz(i)yt

]}

− y′tCjyt + y′tδ
[
A′SjA

]
yt

• Recursive substitution yields

y′t−1A
′SAyt−1 =

max
xi

t, i∈J
y′t

{[
∑

i∈J

Ti−1∑

z=0

(A′)z [(I +BG)′]zδzRvz(i)

]

−Cj + δ
[
A′SjA

]

}

yt

≡ max
x

η(i)
t , i∈J

y′tQjyt.

���

Deriving equilibrium production rules

• Value iteration: solve for S and G by iterating over Bellman equation.

• For each S, derive corresponding G via FOC of right-hand side:

B′
j

(
Qj +Q′

j

)
yt = B′

j

(
Qj +Q′

j

)
Ayt−1 +B′

j

(
Qj +Q′

j

)
Bdt = 0.

This system of FOC’s corresponds to Eq. (3) in dynamic games handout.

Rearranging, we get:

dt+h = − (WB)−1 (WA)yt−1,

where W j ≡ B
′
j

(
Qj +Q′

j

)
for each firm j and W ≡ [W 1, . . . ,WN ]′.

Basis for estimating supply side of model.

���

Estimation

θ is not identified, set to constant.
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To generate estimating equations, introduce shocks to firms’ marginal costs:

C(x
η(i)
t ) = x

η(i)
t (ci + εit) .

Assumptions: εt ≡ [ε1t, . . . , εLt]
′ has zero-mean, i.i.d. across t. The vector εt is known

to all firms when they make their period t choices (no asymmetric information).

From “certainty equivalence” properties of linear-quadratic model, optimal firm strate-

gies are the same as in deterministic model, but with an additive shock:

dt = GAyt−1 +wt,where E(wt) = 0.

where E(wt) = 0 and independent of yt−1.

With the cost shocks, then, production (and also prices) will be random over time.

However, due to independence of shocks across time, the innovations in prices will

have mean zero at time t:

pt+1 = Etpt+1 + ωt+1

where Etωt+1 = 0.

This implies that the realized “demand function residual” will also have mean zero,

conditional on formation known at time t:

0 = E



p
η(i)
t −

(
αη(i) − αη(i)+1

)



1 −
1

M

η(i)
∑

r=1

xr
t



− δp
υ(η(i))
t+1 − p

η(i)+1
t + δp

υ(η(i)+1)
t+1

∣
∣
∣
∣
Ωt





= E




(
1 − δL−1

) (

p
η(i)
t − p

η(i)+1
t

)

−
(
αη(i) − αη(i)+1

)



1 −
1

M

η(i)
∑

r=1

xr
t





∣
∣
∣
∣
Ωt





These form the basis for the moment conditions which we use for estimation, which

we denote µT (ψ).

���

GMM Estimation

• Source of identification: co-movements time series of prices and production.
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•

• GMM estimator ψ ≡ argminψµT (ψ)′Ω−1
T µT (ψ).

• Nested GMM procedure: for each value of parameters ψ, solve LQ dynamic

programming problem for coefficients G (ψ) of optimal production rules. LQ

dynamic programming problem is very easy and quick to solve.

• Results
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