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Modeling the Choice of 
Residential Location 
Daniel McFadden, Department of Economics, Massachusetts Institute of 

Technology, Cambridge 

The problem of translating the theory of economic choice behavior into 
concrete models suitable for analyzing housing location is discussed. The 
analysis is based on the premise that the classical, economically rational 
consumer will choose a residential location by weighing the attributes of 
each available alternative and by selecting the alternative that maximizes 
utility. The assumption of independence in the commonly used multi· 
nomial logit model of choice Is relaxed to permit a structure of perceived 
similarities among alternatives. In this analysis, choice is described by 
a multinomial logit model for aggregates of similar alternatives. Also 
discussed are methods for controlling the size of data collection and 
estimation tasks by sampling alternatives from the full set of alterna­
tives. 

The classical, economically rational consumer will 
choose a residential location by weighing the attributes 
of each available alternative-accessibility to work 
place, shopping, and schools; quality of neighborhood 
life and availability of public services; costs, including 
price, taxes, and ti·avel costs; and dwelling character­
istics, such as age, number of rooms, type of appli­
ances-and by choosing the alternative that maximizes 
utility. 

This paper considers the problem of translating the 
theory of economic choice behavior into concrete models 
suitable for the empirical analysis of housing location. 
We are concerned particularly with two problems in the 
modeling of individual, or disaggregate, choice among 
residential locations. First, there may be a structure 
of perceived similarities among alternatives that invali­
dates the commonly used joint multinomial logit model 
of choice. We treat individual dwelling units as the 
basic alternatives among which choice is made. Each 
unit will have a list of attributes, observed and unob­
served, to which the individual responds. We assume 
that the space of attributes, including unobserved attri­
butes, is sufficiently ric.h so that each physical dwelling 
unit is represented by a unique point in attribute space. 
Of course, the individual may perceive two dwellings 
that are similar in some attributes as quite similar 
overall; it is the impact of such perceptions on choice 
that I wish to model. 

I shall introduce a family of probabilistic choice 
models, of which the joint multinomial logit model is a 
special case, that has the property of aggregating 
dwelling units perceived as similar. The weight given 
to an aggregate of alternatives in the choice process 
will depend on the degree of perceived similarity. 

At one extreme, the elements of the aggregate will 
be perceived as independent, and choice will be de­
scribed by a multinomial logit model with individual 
dwellings as alternatives. At the other extreme, all 
dwellings with the same observed attributes will be per­
ceived as virtually the same, and choice will be de­
scribed by a multinomial logit model with dwelling 
types, which are distinguished by observed attributes, as 
the alternatives. The family of models introduced here 
permits empirical estimation of the degree of perceived 
similarity and tests of the two extreme cases men­
tioned above. 

The second problem treated in this paper is that of 
estimation of individual choice models when the number 
of elemental alternatives is impractically large. The 

section on limiting the number of alternatives establishes 
that, if choice among a set of alternatives is described 
by a multinomial logit model, then the model can be 
estimated by sampling from the full set of alternatives, 
with appropriate adjustment in the estimation mecha­
nism. Thus, estimation can be carried out with limited 
data collection and computation. 

The solutions I give to the two problems above will be 
applied to empirical studies of housing location by 
Quigley (!) and Lerman ~). 

THEORY OF HOUSING LOCATION 
CHOICE 

Assume the classical model of the rational, utility­
maximizing consumer. Suppose the consumer faces a 
residential location decision, with a choice of communi­
ties indexed c = 1, ... , C and dwellings indexed 
n = 1, ... , N0 in community c. The consumer will have 
a utility U00 for alternative en, which is a function of the 
attributes of this alternative, including accessibility, 
quality of public services, neighborhood and dwelling 
characteristics, etc., as well as a function of the con­
sumer's characteristics, such as age, family size, and 
income. The consumer will choose the alternative that 
maximizes his utility. 

Not all attributes of alternatives will be observed. 
The unobserved variables will have some probability 
distribution in the population, conditioned on the value 
of the observed variables. If the observer knows the 
form of the utility function and the probability distribu­
tion of unobserved variables, then probabilistic state­
ments can be made about the expected distribution of 
choices: 

Pen = Prob [Ucn > Ubm for bm ,;. en I (I) 

where Pen denotes the probability of choice en and the 
probability on the right side is defined with respect to 
the distribution of unobserved variables. The econo­
metric approach to this problem is to specify, as a 
maintained hypothesis, a class of utility forms and dis­
tributions from which one member can be statistically 
identified. 

Consider the decomposition u •• = v •• + Eon of utility 
into a term v •• that is a function specified up to a finite 
vector of unknown parameters, of observed variables, 
and a term fen summarizing the contribution of unob­
served variables. Hereafter, v •• will be called the 
strict utility of en. Let e: denote the vector (<11, .. ., 
€1N1• ••• ' fc1, .•• , €cN) and let F(~) denote the cumula­
tive distribution function of ~ Then Equation 1 can be 
written 

(2) 

where Fen denotes the derivative of F with respect to its 
en argument, and (V •• + '•• - V 40 ) denotes a vector with 
components indexed by dm. An econometric model of 
choice is specified by choosing a parametric form for 



V do and a parametric distribution F. 

MULTINOMIAL LOGIT MODEL 

An empirically important specialization of Equation 2 
is the multinomial logit model, 

(3) 

obtained by assuming the ~. to be independently and 
identically distributed with the extreme value distribu­
tion, 

Prob (fen .; f) = exp(-e"•) (4) 

This model was proposed as a theory of psychological 
choice behavior by Luce (3). Its econometric analysis 
has been investigated by McFadden (4, 5) and Nerlove 
and Press (6). A particular structural-feature of this 
model, termed independence from irrelevant alterna­
tives by Luce, is that the relative odds for any two al­
ternatives are independent of the attributes, or even 
the availability, of any other alternative. This prop­
erty is extremely useful in simplifying econometric esti­
mation and forecasting (7) but can be shown to be im-

. plausible for choice probi.ems where it is unreasonable 
to assume that the ~. are statistically independent (8, 9). 

For later analysis, it will be useful to rewrite the -
joint choice Equation 3 in terms of a conditional choice 
probability Pnlo for dwelling, given community, and a 
marginal choice probability P 0 for community. The 
strict utility Va. can often be expressed in an additively 
separable, linear-in-parameters form 

Yen =ff Xcn +ex' Ye (5) 

where Xo• is a vector of observed attributes that vary 
with both community and dwelling (e.g., work-place ac­
cessibility), Ye is a vector of observed attributes that 
vary only with community (e.g., availability of commu­
nity recreation facilities), and a and 8 are vectors of 
unknown parameters. Hereafter, we assume the struc­
ture of Equation 5. From Equations 3 and 5, one ob­
tains the formulas 

I Ne I N 
Pnjc = exp(Ycn) ~l exp(Vcm) =exp(.ll'Xcn) ~l exp({J' Xcm) (6) 

Define an inclusive value 

(8) 

Then, Equations 6 and 7 can be rewritten 

Pnj c = exp((J' Xcn)/cxp(lc) (9) 

Pc= cxp(a'yc +le)/ t exp(cx'yb +lb) 
b=I 

(10) 

One method of estimating the joint model (Equation 
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3) is to first estimate the parameters B from the con­
ditional choice model (Equation 6). Next define Io using 
the log of the denominator of the estimated equation. 
Finally, estimate the parameters a from the marginal 
probability model (Equation 10), given Io. This sequen­
tial approach to estimation economizes on the number 
of alternatives and the number nf parameters considered 
at each stage of estimation, with some loss of efficiency 
relative to direct estimation of the joint model (Equation 
3). 

NESTED LOGIT MODEL 

An empirical generalization of the multinomial logit 
model in the form of Equations 9 and 10 is obtained by 
allowing the inclusive value Io in the latter to have a co­
efficient other than one: 

Pc= exp[a'yc +(I - a)lcl/ t exp[a'yb +(I - a)lb I I b=l 

(I I) 

where (1 - a) is a parameter. The model represented 
by Equations 9 and 11, termed the "nested logit model," 
was first used with the estimation procedure described 
above, but with an unsatisfactory definition of inclusive 
value (9). Ben-Akiva has suggested the correct defini­
tion (Equation 8) of inclusive value and explored the im­
plications of fitting the joint model or various nested 
models. Amemiya (10) corrects an error in the formula 
used in the earlier studies to compute the standard 
errors of estimates in the last stage of the sequential 
estimation procedure [see also McFadden (!_!)]. 

GENERALIZED EXTREME VALUE 
MODEL 

I shall now introduce a family of choice models, derived 
from stochastic utility maximization, that includes multi­
nomial and nested logit. This family allows a general 
pattern of dependence among the unobserved attributes 
of alternatives and yields an analytically tractable closed 
form for the choice probabilities. The following result 
characterizes the family. 

Suppose G(y1, ... , yJ) is a nonnegative, homogeneous­
of-degree-one function of (y1, ... , yJ) ~ 0. Suppose 
G- 00 if y 1- 00 for each i, and for k distinct components 
ii, ... , i1., akG/ay1 ... y1k is nonnegative if k is odd and 
nonpositive if k is even. Then 

defines a probabilistic choice model from alternatives 
i = 1, ... , J, which· is consistent with utility maximiza­
tion. Further, expected maximum utility, defined by 

(13) 

(with f the density for F), satisfies 

U =log G[exp(V1 ), ... , exp(V1)] + 'Y (14) 

where y = 0.57721 is Euler's constant, and 

(15) 

I have proved this result (11). J 

The special case G(yi, --:--:- . , yJ) = !: YJ yields the 
J=l 

multinomial logit model. An example of a more general 
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G function satisfying the hypotheses of the theorem is 

M 
G(y) = 1; 3m [ 1; y;1/Cl-amJJ l·•m 

m=l itBm 
(16) 

where Ba c (1, ... , J }, U B. = (1, ... , J), a. > O, and 
0,;; O'a <1:- •=l 

For the bivariate case with a single class m, Equa­
tion 16 reduces to 

G(y) = [ y :/Cl-a) + y~/Cl-aJ] I·• (17) 

The bivariate extreme value distribution based on 
this form has been studied by Oliveira (12, 13), who 
shows that a is the product-moment correlation be­
tween the two variates. In the general case of Equation 
16, a. can be interpreted as an index of the similarity 
of the unobserved attributes B.. However, the relation 
between the a. and product-moment correlations between 
the alternatives is more complex. 

The choice probabilities for Equation 16 satisfy 

M 

Pi = 1; P(ij Bm) P(Bm) 
m=J 

where 

P(i \ Bm) =exp [Vi/(! - Om)l/ 1; exp [Vj/(I - Om)J 
J~Bm 

if i < B., and 

(18) 

(19) 

(20) 

if i I B., with P(i jB.) denoting the conditional probabil­
ity, and 

(21) 

Choice probabilities of the form of Equation 18 were 
apparently first derived, for the case of three alterna­
tives and B1 = (1 }, B2 = (2, 3}, by Scott Cardell. For 
the case of disjoint B., the form of Equation 18 was 
treated independently by Daly and Zachary (14), 
Williams (15), and Ben-Akiva and Lerman (16). The 
demonstration by Daly a~d Zachary that Equation 18 
is consistent with random utility maximization is note­
worthy in that it permits generalization of the genera­
lized extreme value model and provides a powerful tool 
for testing the consistency of choice models. 

Consider an example of Equation 16, 

(22) 

where alternative 1 represents a dwelling in one com­
munity, and alternatives 2 and 3 represent dwellings of 
a similar type in a second community. Let Vi be the 
strict utility of alternative i. The choice probabilities 
when the three alternatives are offered are, from Equa­
tion 18, 

P(l \1,2,3)=cxp(V1)/(1cxp(V 1)+exp[V2/(l-a)] 

+exp [V3/(1 - a)] 11·•) (23) 

P(2 I l, 2, 3) =exp [V2/(l - a)] I exp [V2/(l - a)] 

+exp [V3/(I - a)]I·• 

.,. ( exp(Vi) +I exp[V2/(l - a)] + exp[V3/(I - o)]l1·•) (24) 

where P (i I A) denotes the probability that i is chosen 
from the alternatives A. If only alternatives 1 and 2 are 
available, then the choice probability (obtained from 
Equation 23 by setting VJ = -"'} has the binomial form 

PO\ I. 2) = exp (V1)/[exp(V1) +exp(V2)] (25) 

If only alternatives 2 and 3 are available, the choice 
probability again has a binomial logit form, 

P(2\2, 3)=exp[V2/0-a)]/lexp[V2/0-o)] +exp[V3/(1-o)J.I (26) 

Examining the choice probabilities of Equations 23 and 
24 when all three alternatives are available, the value 
a = 0 gives multinomial logit probabilities, while the 
limiting value cr .... 1 gives the probabilities 

P(l \ I , 2, 3) =exp (V 1)/I exp(Vi) +max [exp (V2), exp(V3 )] I (27) 

P(21I , 2, 3)=exp(V2 )/[exp(V2)+exp(V3)] ifV2>V3 

= 'hexp(V,)/[exp(V2)+exp(V3)] ifV2 = V3 
(28) 

In this extreme case, the consumer will treat two alter­
natives with identical strict utilities V2 =Vs as a single 
alternative in comparisons with alternative 1. 

RELATION BETWEEN THE NESTED 
LOGIT AND THE GENERALIZED 
EXTREME VALUE MODEL 

The choice probabilities in Equation 18 can be special­
ized to the nested logit model given by Equations 9 and 
11, as we shall now show. This result establishes that 
nested logit models are consistent with stochastic util­
ity maximization and that the coefficient of inclusive 
value provides an estimate of the similarity- of the un­
observed terms in the first level of the nested model. 
Hence, it is possible to estimate some generalized ex­
treme value choice models using nested logit models and 
inclusive values. Further, the generalized extreme 
value choice models provide a generalization of nested 
logit models and could be estimated directly to test for 
the presence and form of a nested (or tree) structure 
for similarities. 

To obtain the nested logit model Equations 9 and 11 
from Equation 18: replace the alternative index i with 
the double index en for community c and dwelling n; re­
place m by c; assume the sets Be have the form Ba = 
(cl, .. . , cN. }; and assume the similarity coefficients 
have a common value CJ. Then Equation 18 becomes 

j Ne I 
Pm = exp [Vcn/(1-a)J l f,;, exp[Vcm/(1- a )]f .., 

implying that 

/ 1-0 
cxp[Y,.111 /(1-a)Jf 

(29) 

(30) 



and that 

/

Ne 

Pnjc =Pen/Pc= exp[Vcn/0 -a)] ~l exp[Vcm/0 -a)] (31) 

Recalling that v •• = /J'x •• + city., these formulas can be 
written 

Pc =exp [er' ye + 0 - a)l0 1 / f exp [cr'yb + 0 - a)lbl 
b=l 

{

Ne 

Pnjc =exp [lfXcn/O - a)] L exp [/3'Xcm/O - a)] 
m~l 

=exp (/3'Xcn/0 - a)]/exp(l0 ) 

Ne 

I., =log L exp (/3'Xcm/0 - a)] 
m=l 

(32) 

(33) 

(34) 

Hence, the nested logit model is a specialization of the 
generalized extreme value model, with the coefficient 
1 - a of inclusive value an index of the degree of inde­
pendence of random terms for alternative dwellings in 
the same community. 

This argument can be extended to trees of any depth. 
A sufficient condition for a nested logit model to be 
consistent with stochastic utility maximization is that 
the coefficient of each inclusive value lie in the unit 
interval. 

LIMITING THE NUMBER OF 
ALTERNATIVES CONSIDERED 

Consider application of the joint multinomial logit model 
Equation 3 to the demand for housing, with alternatives 
indexed by community and by dwelling within the com-
m unity. Ideally, the functional form of the model is 
appropriate for describing choice among the full set of 
alternatives available to consumers, and it is practical 
in terms of data collection and statistical analysis to 
study decision behavior at this level. 

In practice, the number of available alternatives at 
the most disaggregate level often imposes infeasible 
data-processing requirements and strains the plausi­
bility of the independence from irrelevant alternatives 
property of the multinomial logit functional form, as in 
the example of similar dwellings in the same community 
that are likely to have similar unobserved attributes. 

Consider first the· problem where enumeration of all 
alternatives is impractical but where data on selected 
disaggregate alternatives can be observed. If the multi­
nomial logit functional form is valid, we shall establish 
the result that consistent estimates of the parameters of 
the strict utility function can be obtained from a fixed 
or random sample of alternatives from the full choice 
set. 

Let C denote the full choice set. We shall assume it 
does not vary over the sample; however, this is ines­
sential and can easily be generalized. Let P(i jC, z, 9*) 
denote the true selection probabilities, where 9 is a 
vector of parameters, and z is a vector of explanatory 
variables. We assume the choice probabilities satisfy 
the independence from irrelevant alternatives assump­
tion: 

i e D ~ c- P(i jC',1.,0)= P(ij D,z,O) L P(jjC,z,0) 
jd) 

(35) 
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which characterizes the multinomial logit model. 
Now suppose for each case that a subset D is drawn 

from the set C according to a probability distribution 
1T(D Ii, z), which may but need not be conditioned on the 
observed choice i. The observed choice may be either 
in or out of the set D. Examples of 1T distributions are 
(a) choose a fixed subset D of C independent of the ob­
served choice, (b) choose a random subset D of C con­
taining the observed choice, and (c) choose a subset D 
of C consisting of the observed choice i and one or more 
other alternatives, selected randomly. 

We give two examples of distributions of type (c): 

1. (c-1): Suppose D is always selected to be a two­
element set containing i and one other alternative se­
lected at random. If J is the number of alternatives in 
C, then 

71' (D j i, z) = I /(J - I) if D = [i,j] andj ~ i (36) 

or zero otherwise. 
2. (c-2): Suppose C is partitioned into sets (C11 ... , 

CH}, with J. elements in C., and suppose Dis formed by 
choosing i (from the partition set C,) and one randomly 
selected alternative from each remaining partition set. 
Then 

M 

71'(Dli,z)=Jn/ IT 1m 
m=l 

if i e D, M = #(D) (37) 

and D n C. I ifJ for m = 1, ... , M, or zero otherwise. 

The rr distributions of the types (a), (b), and (c-1) and 
(c-2) all satisfy the following basic property, which 
guarantees that, if an alternative j appears in an as­
signed set D, then it has the logical possibility of being 
an observed choice from the set D, in the sense that the 
assignment mechanism could assign the set D if a choice 
of j is observed. 

Positive Conditioning Property 

If j € D c C and rr(D Ii, z) > 0, then 1T(D Jj, z) > 0. 
Their distributions (a), (b), and (c-1) but not (c-2) 

satisfy a stronger condition. 

Uniform Conditioning Property 

If i, j € D c C, then TI(D Ii, z) = 1T(D Jj, z). 
Consider a sample n = 1, ... , N, with the alternative 

chosen on case n denoted i., and D. denoting the choice 
set assigned to this case from the distribution rr(D Ii., zJ. 
Observations with an observed choice not in the as­
signed set of alternatives are assumed to be excluded 
from the sample. Write the multinomial logit model in 
the form 

P(ij C, z, 0) =exp [V;(z, O) 1/L exp [Vi(z, O)] 
jEC 

where V1(z, 9) is the strict utility of alternative i. 

(38) 

If rr(D Ii, z) satisfies the positive conditioning prop­
erty and the choice model is multinomial logit, then 
maximization of the modified likelihood function 

o L L'Xp[V;(zn,Ol+log7!'(D11 jj,zn)]/ 
JcD ~ 

(39) 
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yields, under normal regularity conditions, consistent 
estimates of 0*. When 1T(D Ii, z) satisfies the uniform 
conditioning property, then Equation 39 reduces to the 
standard likelihood function, 

LN =(I /N) i: log jexp[(Vi
0
(z, 9)] /~exp [Vj(Z0 , 8)] l 

n=l l / JeD ~ 
(40) 

A proof is given by McFadden (17). 
In conclusion, analysis of housing location can be 

carried out with a limited number of alternatives, which 
facilitates data collection and processing, provided the 
choice process is described by the multinomial logit 
model. If a mechanism such as (c-2) is used to select 
alternatives, the likelihood function should be modified 
to the form of Equation 39 to obtain consistent estimates 
of all parameters. If a non-modified likelihood function 
is used, estimation can still be carried out satisfactorily 
provided the effect of the selection mechanism for alter­
natives is absorbed by class-specific parameters. Cau­
tion is required in this case in verifying that the con­
figuration of class-specific variables in the model is 
adequate to accommodate the selection mechanism ef­
fects, and in interpreting the estimates of class-specific 
parameters. 

AGGREGATION OF ALTERNATIVES AND 
THE TREATMENT OF SIMILARITIES 

The preceding section has shown that, when the multi­
nomial logit functional form is valid, estimation can be 
carried out by using randomly selected "representative" 
alternatives from each "class" of elemental alternatives, 
where the classes are defined by the analyst. Community 
and dwelling type were classification criteria mentioned 
in the earlier examples. Analysis of choice among 
classes by identifying them with "representative" mem­
bers can be viewed as a method of aggregation of alter­
natives. 

We shall now consider alternative methods of aggrega­
tion that can be employed when the multinomial logit form 
fails because of dependence between unobserved attri­
butes of different alternatives within a class. 

Again consider a consumer faced with a choice of 
housing locations inc= 1, ... , C communities, with 
n = 1, ... , Ne dwellings in community c, all of which 
have common unobserved community attributes. This 
introduces a dependence that conflicts with the assump­
tions of the joint multinomial logit model. To represent 
this dependence we shall assume that the choice prob­
abilities have the nested logit structure of Equations 
32-34, with cr a measure of the degree to which dwellings 
within a class c are perceived as similar. When cr = 0, 
Equation 32 reduces to the multinomial logit model, and 
in the limit when cr = 1, it reduces to 

(41) 

An analysis of housing demand by Quigley (1) using 
Pittsburgh data employs a model of the form of Equa­
tion 41. In Quigley's model, the nesting of community 
and housing type is reversed, with c denoting housing 
type, and n denoting specific dwelling, identified by com­
munity and location. Quigley assumes a sufficient struc­
ture on location choice so that the term max {3'Xen can 
be computed prior to parameter estimation. Then Equa­
tion 41 can be treated as an ordinary multinomial logit 
model. 

In an analysis of neighborhood choice using Washing-

ton, D.C., data, Lerman(?_) estimates a model of the 
form 

Pc =exp [a' ye + x; + (1 -a)log Ncl 

c 
+ ~ exp(a'yb +x: +(1-a)logNbl (42) 

b=l 

where c indexes census tracts andXt is an "average'' 
of the utility terms f3'xe. of the dwellings in tract c. He 
notes that log Ne is 

the measure of tract size required to correct for the fact that a census 
tract is actually a group of housing units. Other conditions being equal, 
a very large tract (i.e., one with a large number of housing units) would 
have a higher probability of being selected than a very small one, since 
the number of disaggregate opportunities is greater in the former than 
the latter. If all units of a particular type in a given zone are relatively 
homogeneous and the {joint multinomial] logit model applies to each 
individual unit, then the appropriate term to correct for tract size is the 
natural logarithm of the number of units [with] a coefficient of one. 

Noting the model (Equation 41) as a second extreme 
case, Lerman concludes that "if the assumptions of the 
[joint multinomial] logit model are violated, the coef­
ficient may differ from one." Lerman estimates the 
coefficient of log Ne to' be 1 - cr = 0 .49 2, with a standard 
error of 0 .094. Hence, cr satisfies the hypotheses of 
theorem 1 and is significantly different from both zero 
and one. 

In the nested logit model (Equations 32 and 34), the 
inclusive value can be rewritten 

le = ix; /(I - a)] +log Ne 

Ne 

+log l/Nc ~ x exp [(Wx,m - X~)/(l - a)] (43) 
m=l 

If a tract c is homogeneous in terms of observed vari­
ables so that 13'x •• = x:, then the last term in Equation 
43 vanishes, and the choice probability for the nested 
logit model (Equation 3 2) is exactly the Lerman model 
(Equation 42). This establishes the consistency of the 
Lerman model with stochastic utility maximization and 
supports his conclusion that the coefficient of log Ne in­
dexes the degree of independence of the alternatives 
within a tract. The same argument can be used to in­
terpret Quigley' s model, with x: = max {3

1
Xen· 

WhenXt is the mean of {3
1x •• , and not all {3

1x •• = Xt, 
the convexity of the exponential implies 

Ne . . 

I/Ne~ exp[(/3'Xcm • X~)/(I - u)] ;;. I (44) 
m=l 

and hence le « [Xt / (1 - cr)J + log N., with the difference 
of the two sides of the inequality depending on the vari­
ance of {3

1x... One limiting case of Equation 43 that is 
of interest occurs when the number of dwellings within 
a tract is large and the x •• behave as if they were in­
dependently identically normally distributed with mean 
XJ'. Let we denote the variance of f31x... If Ne = r.N, 
with r. fixed and N - "', then 

exp I [a'y, +13·x~ +(I -a)log re+ V2w~]/(I -u)) 
Pc -+ c (45) 

L exp I [a'yh +If Xti + (1 - a) log rb + Yzw6 I /(l - u)I 
b=J 

When the disaggregate data Xen are not observed, but 
their distribution can be approximated or estimated, 
and w. is known, then Equation 45 can be used with stan-



dard multinomial logit estimation programs to provide 
estimates of cr and {3. If ro is unobserved, then it can 
be estimated when Wo is known; when Yo contains a tract­
specific dummy variable, however, the tract-specific 
coefficient and ro are unidentified. This suggests one 
interpretation of tract-specific coefficients as indicating 
in part the number of equivalent disaggregate alterna­
tives contained in the tract. 

When wa is not known, but is known to have the struc­
ture w~ = {31 Oa/3, and the variables xa. are multivariate 
normal with covariance matrix Oa, direct estimation of 
{3, a, and a is possible. A modification of standard 
multinomial logit programs to handle nonlinear con­
straints on {3 would be required for full maximum like­
lihood estimation. Alternately, consistent estimators 
could be obtained by writing out the terms in the qua­
dratic form ti Oo{3 as independent parameters and ig­
noring constraints. 

CONCLUSION 

This paper has considered the problem of modeling dis­
aggregate choice of housing location when the number 
of disaggregate alternatives is impractically large and 
when the presence of a structure of similarities between 
alternatives invalidates the commonly used joint multi­
nomial legit choice model. Theorems on sampling from 
the full set of alternatives and on generalizations of the 
multinomial legit model structure to accommodate simi­
larities provide methods for circumventing these prob­
lems. Studies of housing demand by Quigley (1) and 
Lerman (2) motivate the analysis and illustrate its ap­
plicability. 
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